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ABSTRACT 

Morphometric measures derived from spinal cord segmentations can serve as diagnostic and 
prognostic biomarkers in neurological diseases and injuries affecting the spinal cord. For instance, 
the spinal cord cross-sectional area can be used to monitor cord atrophy in multiple sclerosis and 
to characterize compression in degenerative cervical myelopathy. While robust, automatic 
segmentation methods to a wide variety of contrasts and pathologies have been developed over 
the past few years, whether their predictions are stable as the model is updated using new 
datasets has not been assessed. This is particularly important for deriving normative values from 
healthy participants. In this study, we present a spinal cord segmentation model trained on a 
multisite (n=75 sites, 1631 participants) dataset, including 9 different MRI contrasts and several 
spinal cord pathologies. We also introduce a lifelong learning framework to automatically monitor 
the morphometric drift as the model is updated using additional datasets. The framework is 
triggered by an automatic GitHub Actions workflow every time a new model is created, recording 
the morphometric values derived from the model’s predictions over time. As a real-world 
application of the proposed framework, we employed the spinal cord segmentation model to 
update a recently-introduced normative database of healthy participants containing commonly 
used measures of spinal cord morphometry. Results showed that: (i) our model performs well 
compared to its previous versions and existing pathology-specific models on the lumbar spinal 
cord, images with severe compression, and in the presence of intramedullary lesions and/or 
atrophy achieving an average Dice score of 0.95 ± 0.03; (ii) the automatic workflow for monitoring 
morphometric drift provides a quick feedback loop for developing future segmentation models; 
and (iii) the scaling factor required to update the database of morphometric measures is nearly 
constant among slices across the given vertebral levels, showing minimum drift between the 
current and previous versions of the model monitored by the framework. The model is freely 
available in Spinal Cord Toolbox v7.0.  
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1 Currently under review at the Imaging Neuroscience journal (https://direct.mit.edu/imag) 
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1. INTRODUCTION 

Spinal cord segmentation is relevant for quantifying morphometric changes, such as cord atrophy 
in multiple sclerosis (MS) (Losseff et al. 1996; Lukas et al. 2013; Bautin and Cohen-Adad 2021), 
compression severity in degenerative cervical myelopathy (DCM) (Horáková et al. 2022; Martin et 
al. 2018), and spared tissue in spinal cord injury (SCI) (Karthik et al. 2024). The development of a 
robust and accurate spinal cord segmentation tool requires a large sample size which often 
involves the collaboration of multiple sites and the inclusion of a wide spectrum of MRI scans 
spanning various spinal cord pathologies, image resolutions, orientations, contrasts, and potential 
image artifacts. Consequently, obtaining stable morphometric measurements is challenging, as 
MRI contrasts with different resolutions (and degrees of anisotropy) have varying levels of partial 
volume effects, leading to subtle shifts in the boundary between the cord and the cerebrospinal 
fluid (CSF) (Cohen-Adad et al. 2021a; Valošek and Cohen-Adad 2024). 

While automatic tools for spinal cord segmentation exist, they have typically been developed in 
isolated, static environments (Masse-Gignac et al. 2023; Tsagkas et al. 2023; M. Chen et al. 2013; 
Nozawa et al. 2023; Gros et al. 2019; De Leener, Kadoury, and Cohen-Adad 2014). As a result, 
these tools rely on different procedures for creating ground truth (GT) masks, model architectures, 
and training strategies. Chen et al. (M. Chen et al. 2013) presented an atlas-based 
topology-preserving method for segmenting scans with different fields of view. Gros et al. (2019) 
proposed a collection of contrast-specific models (sct_deepseg_sc) trained on a multisite dataset 
of healthy controls and MS patients. However, the most commonly used variant is a convolutional 
network with 2D kernels, which prevents the models from capturing the full 3D spatial context and 
results in poor spinal cord segmentations in DCM and SCI patients with lesions. Masse-Gignac et 
al. (2023) proposed a cascade of two Convolutional Neural Networks (CNNs), trained separately 
on axial and sagittal T2w scans, for segmenting injured spinal cords. The GT masks used for 
training were adapted from the segmentations obtained initially by sct_deepseg_sc 2D. Nozawa et 
al. (Nozawa et al. 2023) focused on the segmentation of compressed spinal cords with 2D UNets 
using transfer learning from DeepLabv3 models (L.-C. Chen et al. 2017). Bédard et al. (2025) 
introduced contrast_agnostic, a 3D model trained on a public dataset of healthy participants 
(Cohen-Adad et al. 2021b), which generalizes across contrasts but struggles to segment the cord 
in pathological cases such as DCM as a consequence of being trained only on healthy 
participants’ data. SCIseg (Naga Karthik, Valošek, et al. 2025), a 3D model trained exclusively on 
T2-weighted images for the segmentation of the spinal cord and intramedullary lesions in DCM 
and SCI patients, improves segmentation in pathological cases but is limited by its reliance on a 
single contrast. With the plethora of models specializing in a specific set of contrasts and 
pathologies, there is a lack of standardization across all phases of developing an automatic 
segmentation pipeline. Furthermore, no continuous learning pipeline is in place to monitor the 
drift/degradation in the segmentation performance of these models over time. 

2 

https://paperpile.com/c/IOJ3Bo/mLTk4+DIr2o+auolN
https://paperpile.com/c/IOJ3Bo/0Qvqg+aXdVt
https://paperpile.com/c/IOJ3Bo/0Qvqg+aXdVt
https://paperpile.com/c/IOJ3Bo/pstDE
https://paperpile.com/c/IOJ3Bo/u7f4M+CY3Y6
https://paperpile.com/c/IOJ3Bo/BGuwy+cNcSi+WZFFp+TBuJa+ytV6+UV5LW
https://paperpile.com/c/IOJ3Bo/BGuwy+cNcSi+WZFFp+TBuJa+ytV6+UV5LW
https://paperpile.com/c/IOJ3Bo/WZFFp
https://paperpile.com/c/IOJ3Bo/ytV6/?noauthor=1
https://paperpile.com/c/IOJ3Bo/BGuwy/?noauthor=1
https://paperpile.com/c/IOJ3Bo/TBuJa
https://paperpile.com/c/IOJ3Bo/WtDlA
https://paperpile.com/c/IOJ3Bo/sXj8/?noauthor=1
https://paperpile.com/c/IOJ3Bo/jRFBf
https://paperpile.com/c/IOJ3Bo/2IZza


 

Morphometric measures derived from spinal cord segmentations are highly dependent on the 
method used (Cohen-Adad et al. 2021b; Bédard et al. 2025) and may drift as the methods are 
iterated upon. This can result in a discrepancy between normative values of healthy populations 
evaluated by each segmentation method. In addition, morphometric measures suffer from large 
inter-subject variability due to factors such as sex and age, limiting our ability to detect subtle 
morphometric changes (Valošek et al. 2024; Labounek et al. 2024; Papinutto et al. 2020; Bédard 
and Cohen-Adad 2022; Bédard et al. 2024; Taso et al. 2016). One approach to mitigate this 
variability is to compare them with morphometrics obtained from healthy controls (Valošek et al. 
2024; Labounek et al. 2024; Bédard et al. 2024; Horáková et al. 2022; Kato et al. 2012). These 
normalization techniques assume that the morphometrics of new subjects are computed using the 
same method as the original normative database (Valošek et al. 2024). However, this is an 
assumption which no longer holds as segmentation methods are iteratively improved upon, 
highlighting the need for population databases to evolve alongside segmentation techniques. 

Given that the aforementioned tools only target a limited set of pathologies, often with few MRI 
contrasts, there is great value in unifying their specialized analyses into a single model which 
could work with a substantially larger, cumulative, training set. With segmentation frameworks 
such as nnUNetV2 (Isensee et al. 2021), which has been widely adopted by the medical imaging 
community due to its robustness and generalization to several modalities and neural network 
architectures (Isensee et al. 2024), achieving this objective is now possible. In addition, a 
standardized training strategy to continuously update models over time, monitor performance drift 
between various model updates, and manage model retraining would streamline these 
approaches substantially. Such a lifelong learning2 framework (Prapas et al. 2021; Agirre, Jonsson, 
and Larcher 2021; Liu and Mazumder 2021) ensures that the model remains robust to shifts in the 
data distribution and continually refine their segmentation performance across the diverse set of 
contrasts and pathologies (Karthik et al. 2022). 

To address these challenges, our study contributes the following: 

1.​ An automatic spinal cord segmentation model trained on a multi-site dataset gathered 
from 75 sites worldwide. This dataset consisted of 9 different MRI contrasts spanning a 
wide range of image resolutions, including pathologies such as MS (with different 
phenotypes), traumatic SCI (acute and chronic) and non-traumatic SCI. 

2.​ A lifelong learning framework for developing models to segment new contrasts and 
pathologies over time. This framework also presents an automatic workflow capable of 
monitoring the drift in the spinal cord morphometrics across various versions of the 
models using GitHub Actions. 

2 Note that this differs from the classical approach to lifelong/continual learning, where it is assumed that 
access to previously available data is constrained. Instead, we focus on the post-deployment aspect of the 
learning system which is continuously updated over time with unrestrained access to data.  
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3.​ Validation of the lifelong learning framework to update a normative database of spinal cord 
morphometric measures (Valošek et al. 2024).  

The proposed spinal cord segmentation model and normative database are open-source and 
integrated into the Spinal Cord Toolbox (SCT) (De Leener et al. 2017), accessible as of v7.0.  

 

2. MATERIALS AND METHODS 

2.1. Data curation and training protocol 

2.1.1. Data and participants 

Our real-world dataset contains data from 75 sites and 1,631 participants, including healthy 
participants (n=428), people with degenerative cervical myelopathy (DCM; n=359), spinal cord 
injury (SCI; n=286), MS or suspected MS (n=164), amyotrophic lateral sclerosis (ALS; n=13), 
neuromyelitis optica spectrum disorder (NMOSD; n=10), and syringomyelia (SYR; n=1). The MS 
cohort spanned different phenotypes, ranging from preclinical MS stage (i.e., radiologically 
isolated syndrome, RIS; n=61) to clinically definite MS, including relapsing-remitting MS (RRMS; 
n=249), and primary progressive MS (PPMS; n=60). Within the SCI cohort, the images spanned 
various phases and lesion etiologies of the injury, namely traumatic (n=171; intermediate and 
chronic), acute traumatic (pre-decompression) SCI (n=95), ischemic (n=13), hemorrhagic (n=5), 
and unknown (n=2) lesions. A single participant may contribute one or more different sequences, 
depending on the site, resulting in a total of 3,453 images (3D volumes3). The study included 9 
different contrasts, namely, T1-weighted (T1w; nvol.=318), T2-weighted (T2w; nvol.=1377), 
T2*-weighted (T2*w; nvol.=499), diffusion-weighted (DWI; nvol.=243), gradient-echo sequence with 
(MT-on; nvol.=248) and without (GRE-T1w; nvol.= 243) magnetization transfer pulse, phase-sensitive 
inversion recovery (PSIR; nvol.=333), short tau inversion recovery (STIR; nvol.=89), and MP2RAGE 
UNIT1 (nvol.=103). The images could cover any of the cervical, thoracic and lumbar spinal regions 
(i.e. the model was trained on chunks containing either of those regions). Whole-spine scans 
covering all regions are not used for training. Spatial resolutions included isotropic (0.8 mm to 1 
mm), anisotropic axially-oriented (in-plane resolution: 0.29 mm to 1 mm; slice thickness: 1 mm to 
9.3 mm) and sagittally-oriented (in-plane resolution: 0.28 mm to 1 mm; slice thickness: 0.8 mm to 
4.83 mm) images. Images were acquired at 1T, 1.5T, 3T, and 7T on various scanner manufacturers 
(Siemens, Philips and GE). Figure 1 shows the overall summary of the dataset and Table S1 
provides more details on the distribution of image resolutions for each contrast.  

3 Note that “images” and “volumes” are used interchangeably, both referring to 3D MRI scans.  

4 

https://paperpile.com/c/IOJ3Bo/8uTN6
https://paperpile.com/c/IOJ3Bo/1przh


 

 

 

Figure 1. Overview of the dataset and image characteristics. Representative axial slices of 9 
contrasts and the total of images used for each contrast in brackets, the orientation (axial/sagittal) 
along with the median resolution of images. The respective doughnut chart illustrates the 
proportion of clinical status among the scanned participants, including healthy controls (HC), 
patients with radiologically isolated syndrome (RIS), patients with multiple sclerosis (MS) and their 
different phenotypes, including primary progressive (PPMS) and relapsing-remitting (RRMS), 
patients with amyotrophic lateral sclerosis (ALS), patients with neuromyelitis optica spectrum 
disorder (NMOSD), pre-decompression acute traumatic SCI (AcuteSCI), post-decompression 
traumatic spinal cord injury (SCI), degenerative cervical myelopathy (DCM), and syringomyelia 
(SYR; not shown). Labels indicate the phenotype associated with the patient, with their respective 
colors shared across contrast sets. 
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2.1.2. Generating ground truth masks 

We used the GT masks in the spine-generic multi-subject database, generated using the same 
preprocessing procedure as described in (Bédard et al. 2025). For the newly obtained datasets, 
we initially performed a quality control (QC) using sct_qc, SCT’s visual QC tool (Valošek and 
Cohen-Adad 2024). Four experienced raters (ENK, SB, JV, JCA) qualitatively assessed the 
image-GT pairs and flagged images with motion artifacts and poor signal quality to be excluded 
from training. In cases where the GT masks were under- or over-segmented (e.g., due to the lower 
contrast at the spinal cord-cerebrospinal fluid boundary or due to the presence of cord 
compression), the GT masks were recreated using a combination of the contrast-agnostic model 
(Bédard et al. 2025) and manual corrections. In datasets with severe deformations to the spinal 
cord anatomy (e.g., SCI and DCM), a pathology-specific model, SCIseg (Naga Karthik, Valošek, et 
al. 2025; Karthik et al. 2024) was used instead, followed by manual corrections by JV and ENK. In 
pathologies involving intramedullary lesions (e.g., MS, SCI, and DCM), lesions were considered 
part of the spinal cord and included in the GT masks. All GT masks were binarized using a 
threshold of 0.5 prior to preprocessing and training to ensure uniformity.  

For each site, the data were split subject-wise following an 80%-20% train-test split ratio, 
ensuring that participants with multiple scans (or multiple sessions), were included either in the 
training set or the testing set (mutually exclusive). This ensures that no data leakage between train 
and test splits could occur. After pooling the training and testing data from each subject and each 
site, the aggregated dataset included 2,945 training and 508 testing images. 

2.1.3. Data preprocessing, augmentation and training 

We chose the nnUNet framework for training our spinal cord segmentation model as it easily 
allows future retraining of the model with new contrasts and pathologies and can also be readily 
integrated into existing open-source packages such as SCT (De Leener et al. 2017; SlicerNNUnet: 
3D Slicer nnUNet Integration to Streamline Usage for nnUNet Based AI Extensions, n.d.), 
facilitating broader use by the spinal cord imaging community. 

All images and GT masks were re-oriented to right-posterior-inferior (RPI). The median resolution 
of images in the training set was [0.9 x 0.7 x 1] mm³ and the median shape was [96 x 320 x 318]. 
Images were resampled to the median resolution using spline interpolation (order=3), and GT 

masks were resampled using linear interpolation (order=1). The patch size was set to [64 x 224 x 
160]. Standard data augmentation transforms in the nnUNet pipeline, being randomly applied, 
were predefined with a probability (p) and called in the following order: affine transformation 
(rotation and scaling; p=0.2), Gaussian noise addition (p=0.1), Gaussian smoothing (p=0.2), image 
brightness augmentation (p=0.15), simulation of low resolution with downsampling and 
upsampling factors sampled uniformly from [0.5, 1.0]  (p=0.25), gamma correction (p=0.1), 
mirroring transform across all axes. Lastly, all images were normalized using z-score 
normalization.  
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The network architecture is a standard convolutional neural network architecture with 6 layers in 
the encoder, starting with 32 feature maps at the initial layer and ending with 320 feature maps at 
the bottleneck (i.e. 32→64→128→256→320→320). The network was trained with a combination 
of Dice (Milletari, Navab, and Ahmadi 2016) and cross-entropy losses. At each layer, deep 
supervision (Dou et al. 2017) was also used, where auxiliary losses from the feature maps at each 
upsampling resolution are added to the final loss. The model was trained using 5-fold 
cross-validation for 1000 epochs, a batch size of two, and with the stochastic gradient descent 
optimizer and a polynomial learning rate scheduler. All experiments were run on a single 48 GB 
NVIDIA A6000 GPU. 

2.2. Lifelong learning for morphometric drift monitoring  

  

Figure 2.  Overview of the lifelong learning strategy for continuous training of spinal cord 
segmentation models. Unlabelled data containing various contrasts and pathologies, gathered 
from multiple sites worldwide, are segmented automatically with an existing state-of-the-art model 
and undergo visual quality control for inconsistencies in segmentations, excluding data with 
artifacts. Labelled datasets are aggregated to train the spinal cord segmentation model. 
Post-training, the model is deployed as an official release, triggering an automatic GitHub Actions 
workflow that generates the segmentations, computes the morphometrics, and actively monitors 
the drift in the morphometric variability between the current version of the model and the 
previously released versions (automated tasks shown in the blue box). As new data arrive, the 
process is repeated, enabling continuous (re)training of the models to segment a diverse set of 
contrasts and pathologies.  

We take an MLOps (Tabassam 2023; Alla and Adari 2020; Treveil et al. 2020) approach to propose 
our lifelong learning framework for monitoring morphometric drift across various versions of the 
model (Figure 2). Once the segmentation model is trained, we deploy the model as an official 
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release on GitHub. The release triggers an automatic GitHub Actions workflow that: (i) downloads 
the publicly available dataset, (ii) runs the morphometric analysis, (iii) generates the plots 
quantifying the drift in the performance between the current and previous versions of the model, 
and (iv) updates the GitHub release assets by uploading the plots and the morphometric values. It 
is worth emphasizing that all the above steps are performed automatically once a model is 
released, thus facilitating model development through continuous integration and continuous 
deployment (CI/CD) (see Figure 3 for pseudocode of the workflow). To ensure a fair comparison 
with previous work (Bédard et al. 2025; Gros et al. 2019), the spinal cord cross-sectional area 
(CSA) is computed on a frozen test of healthy participants (n=49) containing 6 contrasts (T1w, 
T2w, T2*w, DWI, MT-on, GRE-T1w) for each participant. More importantly, monitoring 
performance drift among models on publicly-available participant data avoids data privacy issues 
when running the morphometric analysis on the cloud using GitHub Actions workflows. 
Furthermore, running this task after each model finishes training ensures that the deployed model 
does not drift too much from the stable version (Bédard et al. 2025). We can then use the current 
version of the model (which is now the new state-of-the-art) to annotate existing or new unlabelled 
datasets (arriving in the future), perform QC, add them to growing collection of datasets, and 
retrain the next version of the model, closing the loop for a continuous learning strategy. Note that 
this differs from the classical approach to lifelong/continual learning, where it is assumed that 
access to previously available data is constrained or unavailable (Sodhani et al. 2022), as our new 
models have unrestrained access to all prior data. 

Our choice of using GitHub Actions workflow stems from the ease of accessibility of previous 
spinal cord segmentation models in SCT (De Leener et al., 2017). When a new model is released 
on GitHub, it can be easily downloaded using the command sct_deepseg spinalcord 
-install -custom-url <release-url> without having to install any model-specific 
packages. As a result, the GitHub Actions workflow is simply tasked with installing SCT and 
running the above-mentioned command for computing morphometrics across various models 
(accessible via the URL of their releases). 
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Figure 3.  Pseudocode of the automatic workflow for monitoring morphometric drift after 
deploying the segmentation model. The workflow is divided into three jobs: (1) downloading the 
dataset from git-annex, (2) running morphometric analysis (computing CSA) across the test set, 
and (3) generating plots to monitor drift in morphometric variability and updating the GitHub 
release with the plots. Note that job #2 is parallelized across several GitHub runners on the cloud, 
where each runner processes a subset of the test set for computational efficiency.  

2.3. Validation protocol 

2.3.1. Evaluation Metrics 

To evaluate the segmentation accuracy quantitatively, we report the Dice coefficient, average 
surface distance (ASD), and relative volume error (RVE) on the ‘frozen’ test mentioned previously. 
For a more clinically oriented assessment of the models, we also computed CSA averaged over 
C2-C3 vertebral levels of the cervical spinal cord on the same test set predictions to measure the 
morphometric variability for each model. These measurements are done as follows:   
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1.​ CSA: The per-slice area (mm2) of the predicted segmentation was computed across all 
slices and then averaged for each contrast. 

2.​ CSA STD: For a given contrast, we computed the mean CSA over all slices averaged 
across the C2-C3 vertebral level. This was repeated for all contrasts for a given participant. 
Then, across all the participants, we computed the standard deviation (STD) of CSA across 
all contrasts to assess CSA variability.  

The underlying assumption is that one participant should have similar spinal cord CSA across 
contrasts, with a lower CSA STD corresponding with a better model.  

2.3.2. Qualitative evaluation of segmentations on various contrasts and pathologies 

We compared the segmentations between our model and previous state-of-the-art models to 
evaluate the quality of segmentations on challenging cases, including severely compressed spinal 
cords of DCM patients, and chronic hyperintense lesions of patients with SCI. We also evaluated 
our model’s ability to produce segmentations on MPRAGE T1map, resting state axial 
gradient-echo echo-planar-imaging (GRE-EPI) on healthy participants and patients with cervical 
radiculopathy, whole-spine scans of healthy participants (Molinier et al. 2024) and scans acquired 
at 7T to highlight the model’s ability to generalize to various MRI contrasts, fields-of-view, scanner 
strengths, and pathologies unseen during training. 

We quantitatively compared the proposed model (contrast_agnostic_v3.0) with its predecessor 
(contrast_agnostic_v2.0) and existing open-source pathology-specific models sct_deepseg_sc 

(Gros et al. 2019) (for MS) and SCIsegV2 (Karthik et al. 2024; Naga Karthik, Valošek, et al. 2025) 
(for SCI and DCM) using the Dice score, Relative Volume Error (RVE) and Surface Distance, from 
the ANIMA toolbox (Commowick et al. 2018).  

 

2.3.3. Quantitative evaluation of morphometric drift 

We applied the proposed lifelong learning framework and quantified the drift in the morphometric 
variability in terms of the STD of CSA across six contrasts (T2w, T1w, T2*w, MT-on, GRE-T1w, and 
DWI). Specifically, once released, we let the GitHub Actions workflow run the morphometric 
analysis and compare our proposed model against two existing spinal cord segmentation 
methods; sct_deepseg_sc (Gros et al. 2019), and contrast_agnostic_v2.0 (Bédard et al. 
2025).   

2.3.4. Ablation study with recursively-generated GT spinal cord masks 

As described in Section 2.2, the spinal cord masks used as GT during training are gathered from 
multiple sites, containing a combination of manually annotated masks, masks obtained from 
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automatic pathology-specific models. As a result, the differences in delineating the spinal 
cord-CSF boundary might vary across individual expert raters and the automatic methods due to 
partial volume effects, hindering model performance. To eliminate this potential noise in the 
distribution of GT masks gathered from multiple sites, we performed an ablation study where the 
proposed model was used to produce new GT masks for the entire training set. In practice, this 
was achieved by running the inference on the entire training dataset and using the automatically 
generated predictions as the new GT masks for training the subsequent model without any 
manual corrections. As inter-rater biases are eliminated, the new set of GT masks represents a 
uniform distribution of GT labels.  

2.3.5. Updating the normative database of spinal cord morphometrics 

The database of healthy adult morphometrics proposed by Valošek et al. (2024) included 
morphometrics measures computed from 203 healthy individuals from the open-access Spine 
Generic Multi-Subject dataset (Cohen-Adad et al. 2021b). These morphometric measures were 
obtained from segmentations generated with sct_deepseg_sc (Gros et al. (2019)), with manual 
corrections for over/under segmentation errors. As outlined in the Introduction, morphometric 
measures are dependent on the segmentation method used. Therefore, we evaluated the 
following strategy of monitoring and updating the normative database: 

1.​ Generate new segmentations using the proposed contrast_agnostic_v3.0 model on 
the T2w scans from 203 healthy participants in the normative database (Valošek et al. 
2024). 

2.​ Perform a manual quality control of the spinal cord segmentation masks. 

3.​ Compute 6 morphometric measures(CSA, anteroposterior diameter, transverse diameter, 
compression ratio, eccentricity and solidity) from the segmentation masks (Valošek et al. 
2024).  

4.​ Compute a scaling factor between the morphometric measures derived from different 
segmentation models, allowing for comparison of morphometric measures across 
segmentation models.  

 𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟 =  
𝑚𝑒𝑡𝑟𝑖𝑐

𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡−𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐_𝑣3.0

𝑚𝑒𝑡𝑟𝑖𝑐
𝑠𝑐𝑡_𝑑𝑒𝑒𝑝𝑠𝑒𝑔_𝑠𝑐
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3. RESULTS 

3.1. Evaluation on various contrasts and pathologies 

3.1.1. Qualitative comparison of segmentations 

Figure 4 qualitatively compares the segmentations of contrast_agnostic_v3.0 (current 

version), contrast_agnostic_v2.0 (previous version) and sct_deepseg_sc on healthy and 
pathological scans. While all three models were trained on T1w, T2w and T2*w contrasts,  
contrast_agnostic_v2.0 was trained on healthy participant data only and  

sct_deepseg_sc was trained on a multisite dataset of MS patients. We observed a noticeable 
improvement in the segmentation of the heavily compressed spinal cord (with and without the 
presence of lesions) in DCM patients with our current model (contrast_agnostic_v3.0). Note 

that contrast_agnostic_v1.0 is not a model but only a preliminary collection of scripts used 
to generate the soft ground truths (Bédard et al. 2025).  

 

Figure 4.  Comparison of the automatic spinal cord segmentations between 
contrast_agnostic_v3.0 (current version, highlighted), contrast_agnostic_v2.0 and 
sct_deepseg_sc on healthy controls (HC), DCM, SCI and MS patients on the test set (unseen 
during training). Red arrows show the instances where the previous models fail, particularly under 
heavy compression (with/without lesions) in sub-860594, sub-6143 and sub-1860B.  

Figure 5 qualitatively shows the segmentation outputs of the model across a wide variety of 
contrasts and pathologies on both sagittal and axial orientations, including whole-spine scans. 
The model accurately segments the spinal cord under compression (DCM), in cases where the 
tubular structure of the cord is severely damaged (acute and chronic traumatic SCI) and in the 
presence of lesions (MS) and atrophy (ALS). All the images used for visualization belong to the test 
set gathered from different sites (as denoted by different subject IDs in the bottom left). Notably, in 
the case of whole-spine images, the model learned to segment the entire spine despite only being 
trained independently on individual cervical, thoracic and lumbar segments.   
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Figure 5.  Qualitative visualization of the proposed contrast-agnostic_v3.0 model’s 
segmentations across various contrasts and pathologies on test images from multiple sites. Our 
model accurately segments compressed spinal cords, severely damaged cords due to injury, and 
cords with the presence of lesions. Legend: SCI=spinal cord injury, DCM=degenerative cervical 
myelopathy, MS=multiple sclerosis, NMO=neuromyelitis optica, ALS=amyotrophic lateral sclerosis, 
CR=cervical radiculopathy, and HC=healthy control. 

 

3.1.2. Quantitative evaluation on healthy controls and pathologies  

Table 1 presents a quantitative comparison of the current (contrast_agnostic_v3.0) and previous 
(contrast_agnostic_v2.0) versions of the segmentation model in the lifelong training framework 
along with the existing pathology-specific models on test sets gathered from multiple sites 
containing healthy participant and pathological data. Starting with a comparison of the models on 
the frozen test set of healthy participants (Table 1A), we then present results for test sets 
containing T2*w images of MS patients from two sites (Table 1B), axial and sagittal T2w scans of 
DCM patients from two sites (Table 1D), and  axial and sagittal T2w scans of traumatic SCI ( 
acute, intermediate and chronic phases) from six sites (Table 1D). In all comparisons, the 
proposed contrast_agnostic_v3.0 model achieved similar or better performance compared 
to the previous state-of-the-art or pathology-specific models.  
 
 
Table 1. Quantitative comparison of spinal cord segmentations for previous segmentation 
methods on the test set (n = 49 participants; nvol = 294 images) averaged across all contrasts. 
Quantitative comparison on patients with MS on T2*w contrast (n = 36 participants; nvol = 36 
images). Quantitative comparison on patients with DCM on axial and sagittal T2w scans (nvol = 39)   
RVE stands for Relative Volume Error, and ASD stands for Average Surface Distance. 
 

Methods Dice (↑) RVE (%) ASD (↓) 

Opt. value: 1 Opt. value: 0 Opt. value: 0 

A)​ Healthy participants (n = 49; 6 contrasts per participant; nvol = 294) 

sct_deepseg_sc 0.95 ± 0.03 -0.18 ± 8.95 0.04 ± 0.27 

contrast_agnostic_v2.0 0.95 ± 0.02 -0.05 ± 4.18 0.02 ± 0.12 

contrast_agnostic_v3.0​
(proposed) 

0.96 ± 0.02 -0.76 ± 4.59 0.04 ± 0.27 
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B)​ Patients with MS (n = 36; T2*w contrast; nvol = 36) 

sct_deepseg_sc 0.94 ± 0.02 -9.03 ± 3.35 0.003 ± 0.009 

contrast_agnostic_v2.0 0.94 ± 0.01 -10.12 ± 2.89 0.009 ± 0.016 

contrast_agnostic_v3.0​
(proposed) 

0.96 ± 0.01 -5.34 ± 2.89 0.005 ± 0.014 

C)​ Patients with DCM (n = 39; T2w contrast; nvol = 39) 

SCIsegV2 0.97 ± 0.01 -2.34 ± 1.79 0.001 ± 0.001 

contrast_agnostic_v2.0 0.91 ± 0.02 -11.91 ± 4.16 0.01 ± 0.04 

contrast_agnostic_v3.0​
(proposed) 

0.96 ± 0.01 -2.51 ± 2.25 0.001 ± 0.001 

D)​ Patients with SCI (n = 60; T2w contrast; nvol = 60) 

SCIsegV2 0.93 ± 0.04 5.22 ± 7.63 0.01 ± 0.01 

sct_deepseg_sc 0.82 ± 0.23 -13.68 ± 24.1 7.61 ± 31.87 

contrast_agnostic_v2.0 0.74 ± 0.17 -28.81 ± 20.49 1.38 ± 4.56 

contrast_agnostic_v3.0​
(proposed) 

0.93 ± 0.06 1.75 ± 14.63 0.01 ± 0.04 

 

 

3.2. Quantitative evaluation of morphometric drift across model versions 

3.2.1. Variability of CSA across contrasts 

The figures below are automatically output by the GitHub Actions workflow in the proposed 
lifelong training framework. 

Figure 6 shows the CSA STD across six contrasts on the test set of healthy participants (n=49; 
nvol=294) of the spine-generic Multi-Subject database (Cohen-Adad et al. 2021b) between three 
methods: (i) sct_deepseg_sc (Gros et al. 2019), (ii) contrast-agnostic_v2.0 (Bédard et al. 

2025), and the current version,  contrast-agnostic_v3.0. The contrast-agnostic_v3.0 
model obtained relatively more stable segmentations with the lowest STD of CSA across contrasts 
compared to the other methods. Figure S1 plots the variability in spinal cord CSA per each 
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individual contrast. Similar to the analysis of CSA variability across contrasts, we also plot the 
variability in CSA across 3 vendors (GE, Siemens, and Philips) on a test set containing scans of a 
healthy participant acquired from 15 sites in Figure S2.  

In Figure 7, we plot the level of agreement between the CSA estimated by the models on the 
commonly used T1w and T2w contrasts on the same test set described above. In addition to 
segmenting a wide range of contrasts and pathologies as shown in the previous figures, the 
contrast-agnostic_v3.0 model achieves a similar alignment between T1w and T2w 

contrasts as contrast-agnostic_v2.0 was trained only on a healthy participant database. 
Table S2 compares the models’ performances using the Dice score, RVE and ASD metrics.  

 

Figure 6.  CSA variability measured in terms of the standard deviation across 6 contrasts on a test 
set of healthy participants (n=49). Our proposed model achieved the lowest STD averaged across 
6 contrasts (i.e. each point shows the mean of 6 contrasts for the given participant) showing more 
stability in segmentations across contrasts. The lower the CSA STD across contrasts, the better. 
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Figure 7.  Level of agreement between T1w and T2w CSA at C2-C3 for 
contrast_agnostic_v3.0, contrast_agnostic_v2.0 and sct_deepseg_sc. Each point 
represents one participant. The black dashed line represents perfect agreement between the CSA 
of T1w and T2w contrasts. 

 

3.2.2. CSA variability with recursively-generated GT masks  

Since the GT masks for each contrast and pathology in the training set are a mixture of manual 
segmentations from different raters and automatic segmentations from different models, the 
collection of GT masks can be seen as a noisy distribution of segmentations with high variability 
at the spinal cord-CSF boundary. Figure 8 shows the results of our ablation study where all the 
GT masks were re-generated with contrast-agnostic_v3.0, and a new model was trained on 
the resulting collection. Recall that no manual corrections (or QC) were performed to maintain a 
uniform distribution of the regenerated GT masks. We used the same test set of healthy 
participants (n=49, 6 contrasts) from the spine-generic multi-subject database and compared two 
models: (i) the proposed model with the original (noisy) distribution of GT masks (shown with the 
green violin plot), and (ii) the proposed model, but trained on the new (uniform) distribution of the 
GT masks (shown with the blue violin plot). We observed that the model trained on the recursively 
generated GT masks showed a slightly higher STD across contrasts compared to the model 
trained on the original GT masks. In supplementary Figure S3, we also plot the variability in CSA 
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per contrast between the two methods, demonstrating how the model trained on recurisely 
generated GT masks underestimated the CSA on all contrasts.  

 

Figure 8. Standard deviation of the CSA across 6 contrasts for models trained on: (i) recursively 
generated GT masks (blue), and (ii) original GT masks (green). Each point shows the mean of 6 
contrasts for the given participant. The model trained on noisy labels tends to produce stable 
segmentations resulting in a lower STD across contrasts. The lower the CSA STD across contrasts, 
the better.  

 

3.2.3. Normative database results 

Figure 9A shows the plots for 6 different morphometric measures computed on 203 healthy 
participants using two versions of segmentation masks: (i) the segmentations from 
sct_deepseg_sc with manual corrections (pink) used in (Valošek et al. 2024) and (ii) the 
segmentations from the proposed contrast-agnostic_v3.0 model (green, no manual 
correction). Given the difference in the segmentations at the cord-CSF boundary, we present the 
scaling factor between the morphometric measures computed with the 2 methods in Figure 9B. 
We observed that the scaling factor is nearly constant among slices across the given vertebral 
levels. For the benefit of future studies using the normative database of spinal cord 
morphometrics, they have been made open-source4.  

4 https://github.com/spinalcordtoolbox/PAM50-normalized-metrics/releases/tag/r20250321  
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Figure 9. (A) Morphometric measures computed on n=203 healthy participants from the Spine 
Generic Dataset (Cohen-Adad et al. 2021b) for 6 morphometric measures using 2 different 
segmentation methods: sct_deepseg_sc with manual correction (green) and 
contrast-agnostic_v3.0 (orange) with (B) scaling factor between the methods means ± std are 
displayed. Metrics are shown in the PAM50 space. 
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4. DISCUSSION 

In this study, we presented an automatic model for the robust segmentation of the spinal cord 
across different MRI contrasts and pathologies. Our model was developed using heterogeneous 
data gathered from 75 clinical sites and hospitals worldwide, acquired with different resolutions, 
orientations, field strengths, and scanner manufacturers. We have shown that our proposed model 
provides reliable spinal cord segmentation on MRI scans across different pathologies including 
spinal cord compression (asymptomatic compression and DCM), atrophy (ALS), severely injured 
spinal cords in traumatic SCI, and spinal cords containing intramedullary lesions (SCI and MS). To 
facilitate the continual development of segmentation models over time, we presented a lifelong 
learning scenario to automatically monitor the drift in morphometric variability across various 
model versions and enable periodic retraining by adding new contrasts and pathologies. As a 
real-world application of the lifelong learning framework, we applied the most recent version of 
our spinal cord segmentation model to update the morphometric measures of a normative 
database of healthy adults.  

4.1. Data curation 

Data gathered from multiple sites tends to be noisy in many respects, due in part to various 
imaging artifacts, metallic hardware, and environmental noise. While noisy GT masks are 
inevitable due to inter-rater variability, they could potentially be useful for training robust 
segmentation models (Yao et al. 2023; Shi and Wu 2021). However, noise in training data tends to 
disrupt model training by making the models unintentionally focus on such outliers (Rahman et al. 
2022; Taha and Hanbury 2015), resulting in poor overall segmentation and inaccurate evaluation of 
the models’ performance. In our proposed lifelong training scenario, it was critical to ensure the 
quality of the input data at each step of model development over time, as our segmentation 
models were trained from scratch on all the previous and new data. To account for this, we 
labelled each new dataset containing new contrasts or pathologies with existing automatic 
models (Gros et al. 2019; Bédard et al. 2025; Naga Karthik, Valošek, et al. 2025) and used  sct_qc 
(SCT’s visual QC tool) to quickly identify cases with failed segmentations requiring manual 
corrections and flagged images with strong artifacts for exclusion. These QC reports provide a 
compressed snapshot of the dataset, which is useful for sharing with the clinical sites (Jwa, 
Norgaard, and Poldrack 2025).  

4.2. Lifelong learning segmentation of the spinal cord 

4.2.1. Robustness across contrasts and pathologies 

Gathering datasets containing new contrasts and pathologies over time, and training a model on 
this aggregated dataset resulted in robust segmentation of the spinal cord on a wide range of 
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contrasts and pathologies. As seen in Figure 4 and Figure 5, the contrast_agnostic_v3.0 
model performed comparatively well when measured against the performance of  previous models 
when applied to unseen images, benefitting from the lifelong learning strategy of updating the 
training database with new contrasts and pathologies. This was particularly notable for samples 
which exhibited severe compression, in the presence of both hyper/hypo-intense lesions (MS and 
its phenotypes and different SCI phases), on lumbar spine, and unusual scanner strengths (7T 
MP2RAGE). Our model also performed well by generalizing to MRI contrasts not included in the 
training set (e.g., MPRAGE T1map, GRE-EPI, and Fieldmap images). Interestingly, the model was 
also capable of accurate whole-spine segmentation, despite only being trained on “chunks” of 
individual spinal regions. This echoes the findings of our recent study, which found that 
segmentation models do not benefit from additional context when trained on scans covering the 
entire spinal cord (Naga Karthik, McGinnis, et al. 2025).  

The competitive performance of the proposed model compared to existing pathology-specific 
models (Table 1) highlights the advantage of continually developing segmentation models over 
time as it reduces the cost of maintaining multiple models while ensuring that single class of 
models can be trained to be contrast- and pathology-agnostic over time.  

 

4.2.2. Automatic monitoring of morphometric drift  

Continuous monitoring of deployed models in production is a standard practice in MLOps 
pipelines, achieved through software technologies such as Docker, GitHub Actions, Kubernetes, 
and Git LFS (Kandpal et al., 2023; Spjuth et al., 2021; Tabassam, 2023). In a continuous learning 
system, monitoring deployed models is critical to ensure that the performance of the models on 
downstream tasks does not significantly degrade throughout their evolution (Agirre, Jonsson, and 
Larcher 2021). Performance drifts could be caused by shifts in the input data distribution, typically 
manifesting in the form of changes in the participant demographics (e.g. adult population to 
pediatric population) and acquisition parameters (e.g. 3T data to 7T data) (González et al. 2024). 
Therefore, monitoring morphometric drift between various model versions is crucial, as 
downstream tasks which rely on quantifying changes in the spinal cord morphometry are strongly 
tied to the accuracy of the segmentation (Valošek et al. 2024; Joo et al. 2025). In this regard, our 
proposed automatic workflow for monitoring morphometric drift provides a quick feedback loop 
with two possible outcomes: (i) the magnitude of drift in the CSA variability with the new model is 
high, thus requiring re-evaluation of the data curation and/or model training steps to bring the drift 
within an acceptable range, or, (ii) the magnitude of CSA drift is within an acceptable range of the 
previous “stable” version, making it the new state-of-the-art for annotating (new) unlabelled data 
to train subsequent models. Also, note that the proposed lifelong learning framework using GitHub 
Actions is not specific to spinal cord segmentation but can be reused for any other segmentation 
task involving the development of multiple models over time. 
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4.2.3. Training on recursively generated labels  

Any form of human intervention is undesirable in a post-deployment lifelong learning scenario 
making it prone to errors. However, existing models are unable to automatically utilize incoming 
data as it arrives (Agirre, Jonsson, and Larcher 2021; Prapas et al. 2021; González et al. 2024), 
necessitating periodic checks to prevent degradation of model performance. While our proposed 
continuous training strategy automatically monitors the drift in morphometric variability after 
training, one could also automate the re-training process, thus making the continuous learning 
loop fully automatic. Currently, when new data arrives, we rely on the combination of automatic 
annotation using the latest version of the model and performing visual QC, identifying cases with 
failed/incorrect segmentations for manual corrections. What if we forego this data curation step 
involving manual intervention? 

In our attempt to evaluate the potential of such an approach (Figure 8, Figure S3), we observed 
that the model underestimated the average CSA on a healthy subset of participants for each of 
the 6 contrasts and resulted in a higher CSA STD across contrasts, when compared to the 
performance of the model trained on the original GT masks obtained from a combination of 
automatic and manual segmentations. Recent research in the context of text generation and 
image synthesis (Shumailov et al. 2024) has shown that multiple iterations of training on 
recursively generated data tend to make the model catastrophically forget (Sodhani et al. 2022) 
the underlying true data distribution, leading to model collapse, something which we did not 
observe. Given the inconsistencies in manual/automatic segmentations at the cord-CSF boundary 
owing to varying partial volume effects with images of different contrasts and resolutions, we 
hypothesize that training on such noisy labels acted as an inherent regularizer, making the model 
more robust across contrasts. On the other hand, training on uniform distribution of 
model-generated segmentations where the inconsistencies have been smoothed out, the model 
tends to under-segment the spinal cord, something which would need to be kept in mind for 
analyses based on models trained this way.  

4.2.4. Binary vs. soft masks 

While training directly on soft masks still achieves the lowest morphometric variability across 
contrasts (Bédard et al. 2025), the registration step (which requires mutual co-registration of all 
contrasts) requires more than one contrast per participant, becoming a bottleneck in developing 
segmentation models, as well as further manual intervention in correcting registration outputs 
across both healthy and pathological data. Furthermore, training on soft masks requires 
converting existing datasets with binary GT masks to soft masks within an appropriate 
contrast-dependent threshold. Given the lifelong learning framework for developing segmentation 
models, the softness of the masks from one model cannot be accurately quantified to match the 
softness for the next model, owing to partial volume effects and differences in the training data 
distribution, subtly biasing the ground truth with subsequent newer versions of the model. On the 
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contrary, training on binarized GT masks (thresholded at 0.5) presents a simple and scalable 
solution, reducing the impact of model-specific biases as most models tend to be uncertain at the 
boundaries of the segmentation masks (Lemay et al. 2022). While training on binary masks is 
scalable in a lifelong learning framework, it could potentially be limiting in cases where the CSA is 
small at the tip of the spinal cord. At these regions, soft masks can better represent the partial 
volume compared to binary masks.  

4.3. Application on normative database of morphometrics 

Keeping an updated normative morphometrics database is crucial to maintaining lifelong models 
(Valošek et al. 2024), as it allows users to relate their measurements obtained using the latest 
segmentation method up-to-date. Additionally, when adding new individuals to the normative 
database, one should re-segment all images within it using the latest segmentation method to 
ensure the database follows the state of the model. Maintaining and updating such a dataset 
requires coordination across the segmentation model, the SCT software, and the Spine Generic 
dataset, a process not currently implemented, but can be accomplished using GitHub Actions. 
The scaling factors identified using our framework also ensures backward compatibility with 
previous segmentation methods included in SCT (i.e., sct_deepseg_sc), allowing researchers to  
compare  morphometric measures derived from different segmentation models. We encourage 
users to update to contrast_agnostic_v3.0, however, as it significantly improves the spinal 
cord segmentation robustness in previously difficult pathologies, such as cord compression and 
spinal cord injury.  

4.4. Limitations 

A major limitation of this study is that our strategy for monitoring and evaluating morphometric 
drift across various model versions depends on a fixed set of contrasts (n=6) in a frozen test set of 
healthy participants. While newer models may generalize well to other pathologies and contrasts, 
their true performance could be limited by the evaluation of the CSA on only 6 contrasts. Future 
work could add better methods for evaluating morphometric drift (e.g. by computing other 
commonly used spinal cord morphometrics) on data from both healthy participants and from 
participants with spinal cord pathologies. With the rise of open-source challenges targeting 
specific spinal cord pathologies5,6, our GitHub Actions-based workflows could be adapted to 
include evaluations not only of healthy participants but on participants with pathologies as well.  

Another issue is the stagnation of the training data distribution when developing models over time. 
With subsequent models being trained on new data (potentially from different populations – 

6 https://ivdm3seg.weebly.com 

5 https://portal.fli-iam.irisa.fr/ms-multi-spine/ 
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pediatric, adult and geriatric), the data distribution used for the earliest model might no longer be 
representative of the current distribution. In such cases, comparing histogram-based distribution 
shifts using KL divergence, or detecting drifts in the feature space by extracting radiomic features 
(van Griethuysen et al. 2017) could ensure the continued relevance of the training and test sets for 
evaluating future models. If the drift between data distribution is large, keeping only a subset of 
the old data when training new models is recommended.  

5. CONCLUSION 

This study introduces an automatic tool for the robust segmentation of the spinal cord across 
various MRI contrasts and spinal pathologies. The model was trained on diverse datasets 
collected from 75 clinical sites and hospitals worldwide, with heterogeneous image resolutions, 
orientations, field strengths, and scanner manufacturers. Our results demonstrate that the model 
effectively segments spinal cord scans from healthy participants, as well as from those with 
compressions, atrophy, intramedullary lesions and SCI. To support the continuous improvement of 
segmentation models, we propose a lifelong learning framework which automatically monitors the 
drifts in morphometric variability across model versions. The proposed framework facilitates 
periodic retraining by incorporating new contrasts and pathologies and provides a quick feedback 
loop for developing future segmentation models. As a real-world application of this framework, we 
employed the proposed spinal cord segmentation model to update morphometric measurements 
in a normative database of healthy adults. Our results showed that the scaling factor required to 
update the database of morphometric measures is nearly constant among slices across the given 
vertebral levels, showing minimum drift between the current and previous versions of the model 
trained within the lifelong learning framework.  
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Supplementary Material: Minimizing 
morphometric drift in lifelong learning 
segmentation of the spinal cord 
 
This document contains the supplementary material presenting an overview of the dataset 
characteristics, additional plots comparing the variability in spinal cord cross-sectional area (CSA) 
per individual contrasts, CSA variability split across vendors, and quantitative comparison in terms 
of the Dice scores, relative volume error and average surface distance.  

 

S1.1. Dataset characteristics 

Table S1 contains a detailed overview of the range of image resolutions and orientations for each 
contrast in the dataset. Note that the images span a wide range of resolutions, especially with 
thick slices in the axial orientation for a few contrasts.   
 
Table S1. Dataset characteristics grouped by image orientation (axial, sagittal) and resolution 
(isotropic, anisotropic) for each contrast. Mean in-plane resolution and mean slice thickness are 
shown, followed by their respective minimum and maximum range of resolutions (in [ ]).  

Contrasts Isotropic Anisotropic 
Axial Orientation 

Anisotropic 
Sagittal Orientation 

 in-plane 
resolution 

(mm2) 

slice 
thickness 

(mm) 

in-plane 
resolution 

(mm2) 

slice 
thickness 

(mm) 

in-plane 
resolution 

(mm2) 

slice 
thickness 

(mm) 

 
T1-w 

1.0 x 1.0 
[1.0, 1.0] 

1.0 
[1.0, 1.0] 

0.35 x 0.35 
[0.35 x 0.35, 
0.35 x 0.35] 

2.54 
[2.5, 5.0] 

1.0 x 1.0 
[1.0, 1.0] 

1.0 
[1.0, 1.0] 

 
T2-w 

0.8 x 0.8 
[0.8, 0.8] 

0.8 
[0.8, 0.8] 

0.5 x 0.5 
[0.3 x 0.3,  
0.8 x 1.0] 

3.8 
[1.0, 7.0] 

0.48 x 0.48 
[0.28 x 0.28, 
0.96 x 0.96] 

2.13 
[0.8, 4.83] 

 
T2*-w 

– – 0.44 x 0.44 
[0.29 x 0.29, 

0.5 x 0.5] 

4.93 
[2.5, 9.2] 

– – 



 
MT-on 

– – 0.89 x 0.89 
[0.62 x 0.62, 

0.9 x 0.9]  

5.06 
[5.0, 9.3] 

– – 

 
GRE-T1w 

– – 0.89 x 0.89 
[0.68 x 0.68, 

0.9 x 0.9] 

5.0 
[5.0, 5.0] 

– – 

 
DWI 

– – 0.89 x 0.89 
[0.34 x 0.34, 

1.0 x 1.0] 

5.0 
[4.91, 5.0] 

– – 

 
PSIR 

– – – – 0.69 x 0.69 
[0.67 x 0.67, 
0.69 x 0.69] 

3.0 
[3.0, 3.0] 

 
STIR 

– – – – 0.7 x 0.7 
[0.7 x 0.7, 
0.7 x 0.7] 

3.0 
[3.0, 3.0] 

MP2RAGE 
UNIT1 

1.0 x 1.0 
[1.0, 1.0] 

1.0 
[1.0, 1.0] 

– –   

 
 

S1.2. CSA variability across individual contrasts 

Figure S1 shows the variability in the spinal cord CSA across six contrasts on the test set (n=49; 
nvol=294) of the spine-generic multi-subject database (Cohen-Adad et al., 2021a) between three 
methods: (i) sct_deepseg_sc (Gros et al., 2019), (ii) contrast-agnostic_v2.0 (Bédard et al., 

2025), and the proposed model,  contrast-agnostic_v3.0. Compared to the previous version 

(v2.0), our proposed model (v3.0) achieves a similar CSA variability on the test set of healthy 
participants despite being trained on heterogeneous data containing new contrasts and several 
pathologies.  
 

https://paperpile.com/c/KYWZre/nObZ
https://paperpile.com/c/KYWZre/50z7
https://paperpile.com/c/KYWZre/lM7t
https://paperpile.com/c/KYWZre/lM7t


 
Figure S1.  Variability in spinal cord CSA across 6 contrasts compared with existing automatic 
segmentation methods on a test set of healthy participants (n=49). Even after the addition of new 
pathologies and contrasts to the training set, CSA variability achieved by the proposed 
contrast-agnostic_v3.0 model remains similar to contrast-agnostic_v2.0 (trained only 

on a healthy participants database) and shows a substantial improvement over sct_deepseg_sc.  
 

S1.3. CSA variability across scanner manufacturers 

In this section, we evaluate the variability in the CSA measurements for a single subject across 
different scanner manufacturers. We used the spine-generic data-single-subject dataset 
(Cohen-Adad et al., 2021), which includes cervical spinal cord scans in a single healthy participant 
using six contrasts (T2w, T1w, T2*w, MT-on, GRE-T1w, and DWI) across 15 sites with 3 scanner 
vendors (GE; n=4, Philips; n=4, Siemens; n=7). As with the previous evaluations, we compared 
three methods: sct_deepseg_sc (Gros et al., 2019), contrast_agnostic_v2.0 (Bédard et al., 

2025), and the proposed contrast_agnostic_v3.0, for contrasts and sites. In all 
comparisons, the spinal cord segmentations were obtained independently for each of the above 
methods, and the vertebral levels were identified using sct_label_vertebrae. Then, we 
calculated the CSA averaged across C2-C3 vertebral levels and computed its standard deviation 
(STD) across scanner manufacturers. 

It is important to stress that all data points represent the same participant. Each of the 6 contrasts 
compares the two segmentation methods across all 15 sites. Figure S2 presents the CSA STD 
across 6 contrasts per site for both segmentation methods, separated per MRI vendor. The STD 
using the contrast_agnostic_v3.0 method yields a lower STD than when using 

sct_deepseg_sc for segmentation and is very similar to contrast_agnostic_v2.0. 

https://paperpile.com/c/KYWZre/nObZ
https://paperpile.com/c/KYWZre/50z7
https://paperpile.com/c/KYWZre/lM7t
https://paperpile.com/c/KYWZre/lM7t


Figure S2. Variability of spinal cord CSA across contrasts separated per vendor for segmentations 
generated with sct_deepseg_sc (Gros et al., 2019), contrast-agnostic_v2.0 (Bédard et al., 2025) 
and contrast-agnostic_v3.0 (proposed) segmentation and contrast-agnostic of the same 
participant scanned across 15 different MRI sites. Each dot represents one site; mean and 
standard deviation are presented above. 
 

S1.4. CSA variability with recursively generated labels 

Figure S3. Variability in spinal cord CSA across 6 contrasts on a test set of healthy participants 
(n=49) compared between the models trained with the: (i) original distribution of GT masks created 

https://paperpile.com/c/KYWZre/50z7
https://paperpile.com/c/KYWZre/lM7t


from a mix of manual annotations and automatic segmentation methods, and (ii) GT masks 
regenerated with contrast_agnostic_v3.0 model without any manual corrections. The model 
trained on recursively generated GT masks achieved a lower average CSA per contrast compared 
to the model trained on the original distribution of GT masks on all contrasts.  
 
Figure S3 plots the average CSA per contrast for the ablation study, comparing the downstream 
effect of training the contrast_agnostic_v3.0 model on the original distribution of GT masks and 
the masks generated recursively without any manual correction.  
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