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HybridFlow: Infusing Continuity into Masked Codebook for
Extreme Low-Bitrate Image Compression

Anonymous Authors

ABSTRACT
This paper investigates the challenging problem of learned image
compression (LIC) with extreme low bitrates. Previous LIC methods
based on transmitting quantized continuous features often yield
blurry and noisy reconstruction due to the severe quantization loss.
While previous LIC methods based on learned codebooks that dis-
cretize visual space usually give poor-fidelity reconstruction due to
the insufficient representation power of limited codewords in cap-
turing faithful details. We propose a novel dual-stream framework,
HyrbidFlow, which combines the continuous-feature-based and
codebook-based streams to achieve both high perceptual quality
and high fidelity under extreme low bitrates. The codebook-based
stream benefits from the high-quality learned codebook priors to
provide high quality and clarity in reconstructed images. The con-
tinuous feature stream targets at maintaining fidelity details. To
achieve the ultra low bitrate, a masked token-based transformer
is further proposed, where we only transmit a masked portion
of codeword indices and recover the missing indices through to-
ken generation guided by information from the continuous feature
stream. We also develop a bridging correction network to merge the
two streams in pixel decoding for final image reconstruction, where
the continuous stream features rectify biases of the codebook-based
pixel decoder to impose reconstructed fidelity details. Experimental
results demonstrate superior performance across several datasets
under extremely low bitrates, compared with existing single-stream
codebook-based or continuous-feature-based LIC methods.

CCS CONCEPTS
• Computing methodologies→ Image compression.

KEYWORDS
HybridFlow, extreme low-bitrate image compression, masking

1 INTRODUCTION
The explosive amount of visual information required by increas-
ingly sophisticated applications like communication, broadcasting,
gaming, etc. poses great challenges to network transmission and
data storage. Effective image compression at ultra-low bitrates has
become highly desired but remains poorly solved.

Powered by trained neural networks, learned image compres-
sion (LIC) has been proven superior than conventional methods like
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VVC [6] or JPEG2000 [42]. The whole idea is to encode the input im-
age into a latent space in the encoder, compress the latent feature to
reduce transmission bits, and reconstruct the output image using de-
compressed latent in the decoder. Based on the type of information
to transfer, LIC methods can be roughly grouped into two cate-
gories. The first category [3, 9, 13, 16, 22–24, 26, 28, 32, 37, 44, 47]
has been broadly studied, featuring transmitting continuous com-
pressed feature maps. The original latent feature goes through clas-
sic quantization and entropy coding to obtain a compact bitstream
with continuous values, and the decoder recovers a degraded latent
feature for reconstruction. When the bitrate is extremely low, the
recovered latent feature has poor quality due to severe quantization,
resulting in low-quality reconstruction that is overly smooth and
lacks of expressive details.

The second category [20, 21, 35] has recently merged attributed
to the increasing popularity of using learned general image priors
by a quantized-vector-based codebook for image restoration tasks,
featuring transmitting integer indices. A learned visual codebook
is pretrained to discretize the distribution of the image latent into
a finite discrete set space. By sharing the codebook among the
encoder and decoder, the encoder maps the latent feature into
codeword indices, and the decoder recovers an approximate latent
feature for reconstruction by retrieving codeword features using the
integer indices. High-quality codebooks learned from high-quality
images usually ensure high-perceptual-quality reconstruction with
clear and rich details [7, 38, 40, 48]. However, the output image
may be unfaithful to the original input, e.g., small content changes
are dissolved by discretized codebook. Large codebook capturing
detailed visual aspects or multiple codebooks each focusing on
class-specific representations [33] can alleviate this issue, but with a
sacrifice of increased bitrates. Hence, when bitrate is extremely low,
the limited codebook size results in poor-fidelity reconstruction.

In this paper, we propose a hybrid framework that benefits from
the dual-stream complementarity of the above two categories, en-
abling extreme low-bitrate transmission and high-quality recon-
struction at the same time. Two parallel flows are generated from the
input image: a discrete index map based on a high-quality codebook
that utilizes learned general image priors to obtain high-perceptual
reconstruction quality, and an extreme low-bitrate continuous fea-
ture stream providing fidelity details. The two flows are combined
through an effective bridging mechanism for masked token genera-
tion and corrective pixel decoding. Our contributions are:

• We introduce a novel dual-stream framework for image com-
pression, HybridFlow, which achieves clear and faithful high-
quality image reconstruction even at extremely low bitrates
(<0.05 bpp), surpassing previous approaches.

• A "masked-prediction" strategy is further introduced to the
codebook-based discrete flow. Motivated from the masked
token-based transformer architecture ofMAGE [31], by guided-
generation from just a portion of the index map, we not only

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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reduce the transmitted indices, but also achieve a control-
lable trade-off between reconstruction quality and bitrate.

• We propose a bridging mechanism to merge the two infor-
mation streams. The continuous features are fed into the
cross-attention module of the token decoder to guide the
predictive generation of the codebook-based features. At the
same time, the continuous features rectify biases of the pixel
decoding process using codebook-based features through a
correction network alongside the pixel decoder.

We conduct experiments to evaluate the effectiveness of our
approach both qualitatively and quantitatively over several bench-
mark datasets. Qualitative results show that our “HybridFlow"
framework can preserve the high quality and clarity of codebook-
based reconstruction, while effectively correcting pixel-level dis-
tortion through infusing continuous image feature. Quantitative
performance achieves an average improvement of about 3.5dB in
PSNR compared to pure codebook-based methods with the same or
even better LPIPS scores, and a significant improvement of LPIPS
scores (55.7%) compared to pure continuous-feature-based methods.
Overall, our "HybridFlow" provides a balance between credibility
and clarity, between trustworthiness and perceptual quality.

2 RELATEDWORK
2.1 LIC based on Continuous Features
Image compression using neural network models have gained wide-
spread attention. LIC has three key processing steps: learning a
concise latent image representation; effectively quantizing this rep-
resentation to reduce information transmission rates; and efficiently
reconstructing high-quality images from the quantized information.

The majority of works are based on the hyperprior framework
[3, 10, 16, 23, 36]. The image latent feature is compressed by the
conventional quantization and entropy encoding process into a
bit-efficient data stream, and the decoder recovers the degraded
latent feature by conventional entropy decoding and dequantization.
The transmitted data are complex floating-point numbers, and we
categorize these methods as LIC based on continuous features.

Quantization is necessary to reduce transmission demands but
introduces information loss in the recovered latent feature. Many re-
search works have been focused on reducing such information loss
by improving the entropy model of quantization/dequantization.
These approaches usually work well for moderate to high bitrates,
where quality latent feature can be recovered. However, for ex-
tremely low bitrates, heavy quantization leads to significant degra-
dation in recovered latent feature, resulting in severe reconstruction
artifacts like blurs, blocky effects, etc.

2.2 LIC based on Codebooks
Learned generative image priors, a.k.a., visual codebooks, have
achieved impressive performance over a variety of image restora-
tion tasks [8, 11, 17, 18, 33, 43, 48]. The visual codewords span a
quantized latent feature space into which each image can be embed-
ded as a quantized feature by mapping to the nearest codewords.
This idea naturally aligns with the compression task, and has been
used for LIC recently [20, 21, 35]. The encoder computes the embed-
ded quantized feature, which is represented by an integer indices
map of mapped codewords, and the decoder retrieves the quantized

feature from the indices map using the same codebook. The inte-
ger indices are extremely efficient and robust to transfer, and we
categorize these methods as LIC based on codebooks.

The richness of the codebook, e.g., the number of multiple code-
books capturing different semantic visual subspaces like AdaCode
[33], the size of codebooks, and the information required to com-
bine multiple codebooks [21], determines the tradeoff between
bitrate and reconstruction quality. Due to the difficulty of learning
a universally abundant visual codebook to capture the complicated
general image content, such methods usually show advantages with
low to moderate bitrates, unless when applied to specific content
like human faces [20, 48]. For general high-bitrate cases, the finite
number of codewords can be insufficient to recover the rich de-
tails of the general latent feature, in comparison to the hyperprior
framework with conventional quantization. With low to moderate
bitrates, the high-quality codebook can give high-quality latent
feature for high-quality reconstruction, despite the inputs’ quality.
However, when the bitrate is extremely low, the small codebook
causes too much collapse in the visual space. As a result, different
images can be treated as variants of each other and mapped to the
same sets of codewords, giving similar generic reconstruction. In
such cases, although the output has high perceptual quality, it can
be pixel-level (even semantic-level) unfaithful to the original input.

2.3 Masked Image Modeling
Masked Image Modeling aims at utilizing self-supervised learn-
ing to improve the efficiency and robustness of the learned image
representation. The key idea is to remove a portion of the input
before passing it to the model and training the model to recon-
struct the missing content. Early researches like MAE [15], BEiT
[4], ADIOS[41] , SiamMAE [14] and SimMIM [46] directly work on
the pixel level. This usually leads to blurred reconstruction (e.g, as
shown inMAE sample figures), since pixels are considered low-level
representations rather than high-level semantics and it is innately
challenging to learn high-level representations by random masking.
To inject more semantics into target tokens, various works based
on discrete image representations have been purposed recently. For
example, when an image is encoded into a token sequence in a finite
discrete space, a tokenizer similar to language models, is applied to
the masking modeling. Masked Generative Encoder (MAGE) [31]
(an extension of MAE in the discrete latent domain) and MaskGIT
[7] demonstrate remarkably strong ability to learn image represen-
tations. Such methods address previous issues in image domain
modeling, such as blurriness and excessive smoothing.

Nevertheless, we have noticed a phenomenon where these mod-
els, when provided with different partial information from the
same original image, tend to generate visually dissimilar images.
Although these generated images exhibit semantic similarity and
clarity based on the learned distribution, they diverge significantly
from the visual characteristics of the original image. This discrep-
ancy contradicts the objective of maintaining fidelity to the original
image in the context of image compression tasks.

3 METHOD
Figure 1 gives the workflow of our dual-stream HybridFlow for
high-quality reconstruction with ultra low bitrates (< 0.05bpp).
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Figure 1: The dual-stream "HybridFlow" framework for extreme low-bitrate image compression.

3.1 HybridFlow Image Compression
Codebook-based Representation. Given an input image 𝑥 ∈
R3×𝐻×𝑊 , the first data stream is generated as a discrete indices
map 𝑑 ∈ R

𝐻
𝑛
×𝑊

𝑛 by using a learned visual codebook C ∈ R𝑐×𝑛𝑧 .
Specifically, 𝑥 is encoded by a VQ-Encoder EVQ into a latent repre-
sentation 𝑦𝑉𝑄 ∈ R𝑐×

𝐻
𝑛
×𝑊

𝑛 , which is further mapped into indices
map 𝑑 . Each entry vector 𝑦𝑖 𝑗 ∈ 𝑦𝑉𝑄 (𝑖 = 1, . . . , 𝐻𝑛 , 𝑗 = 1, . . . , 𝑊𝑛 ) is
mapped to the closest codeword 𝑐𝑖 𝑗 ∈ C with a codeword index
𝑑𝑖 𝑗 ∈ [0, 𝑛𝑧). In practice a single codebook with a relatively small
size is used to obtain an ultra low bitrate (𝑛𝑧 =1024 with about 0.02
bpp for discrete data stream in our experiments).

Masking Module. To further reduce transmission bits in the
discrete stream, instead of directly transmitting the indices map
𝑑 as previous efforts [21, 35], we opt for a selective approach to
transfer only a portion of 𝑑 . Utilizing a mask module equipped
with predefined, structured, and compression-friendly masking
schedules, such as 1_4 masking and 1_9 masking as illustrated in
Figure 3, we transmit amasked𝑑′ instead of𝑑 . The chosen schedules
determine the proportion of the remaining information, providing
more efficient compression rates.

Continuous-domain Representation. A second data stream
is generated from the input 𝑥 ∈ R3×𝐻×𝑊 as a continuous latent
feature 𝑦𝑐 ∈ R𝑓 ×

𝐻
𝑚
×𝑊

𝑚 , by using a continuous-feature-based LIC
method. In this paper, we use the MLIC [23] method which gives the
state-of-the-art low-bitrate compression performance. In general,
the lowest bitrate previous methods can provide with a reasonable
reconstruction is around 0.1 bpp. To obtain an ultra low bitrate, the
original image is first downsampled by 4× before fed into the MLIC
pipeline. This gives about 0.025 bpp for the continuous data stream
in our experiments.

Mask Predictor.On the decoder side, a token-based transformer
predictor T is used to recover the full indices map 𝑑 from the re-
ceived masked 𝑑′. Inspired by MAGE [31], we employ the encoder-
to-decoder transformer structure for this predictor. In addition,
using the continuous-domainMLIC decoding process, a continuous-
domain latent 𝑦𝑐 is recovered, which is fed into the mask predictor
to guide the generation of the missing tokens. The idea is analogous

to the audio-to-text translation [27, 29, 39] where audio information
is used to guide the text token generation through cross-attention.
We insert a cross-attention module in each decoder block of the
transformer decoder into which the continuous-domain latent fea-
ture is fed as guidance to assist discrete token generation.

Pixel Decoder. To merge the dual data streams for high-quality
reconstruction, a duplicate pixel decoder is introduced alongside
the VQ-Decoder DVQ. From the recovered 𝑑 , the vector-quantized
latent 𝑦𝑉𝑄 can be retrieved from the codebook C comprising the
corresponding codewords indicated by𝑑 . In previous efforts [21, 35],
the VQ-Decoder reconstructs output 𝑥 based on 𝑦𝑉𝑄 alone. In our
approach, the duplicate decoder serves as a correction network,
which takes as input the recovered continuous-domain latent 𝑦𝑐 ,
and sends the decoded representation from each up-sampling layer
of the duplicate pixel decoder to the corresponding up-sampling
layer of the VQ-Decoder to rectify the biases. Such rectification
imposes important fidelity information from the continuous domain
to the reconstructed image, providing high perceptual quality and
high fidelity simultaneously.

3.2 Complexity-aware Dynamic Masking
Image regions have uneven detail complexity. By adjusting bits allo-
cation to different regions according to their complexity can further
improve the compression efficiency. We analyze the complexity
score of image regions using several metrics, including entropy,
contrast, color diversity (histogram entropy), and spatial frequency
(in Fourier domain), similar to ClassSR and its further extensions
[25, 34, 45]. Each metric is normalized to be in range [0,1] over the
training data, and the normalized metrics are averaged together
to give a final complexity score. Then for each image region, a
dynamic mask schedule is set based on the image complexity score.
A low mask ratio is assigned to regions with rich complex details
to preserve the intricate information, while a high mask ratio can
be used for simple regions for extreme bit reduction.

3.3 Training Pipeline
To effectively train the proposed HybridFlow framework, our train-
ing process is divided into three stages, as described in Figure 2.
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Figure 2: Training pipeline for our proposed framework.

Figure 3: Candidate mask schedules for codeword indices
map (shown in the 8x8 indices map). The average mask ratio
for each schedule is 50%, 75%, 90.3%, 93.75%, respectively.

Pre-training. The continuous-feature based LIC encoder to
generate the continuous latent feature and hyperpriors used the
pre-trained MLIC encoder [23]. The codebook-based VQ-Encoder
and the learned visual codebook to generate the codebook-based
latent feature, as well as the VQ-Decoder, used the pre-trained
VQGAN model [11]. These pre-trained modules aimed to compute
the dual-stream latent features that emphasized on high-quality
reconstruction and high-fidelity reconstruction respectively.

Transformer Predictor Training. The pre-trained modules in
the previous stage were kept frozen, and we trained the transformer
predictor in this stage. For each decoder block in the transformer
predictor, we selectively trained our cross-attention module, the
MLP module, and the outermost MLP structure responsible for
mapping to token logits, while maintaining the pre-trained param-
eters related to self-attention unchanged. We followed the training
design of MAGE, where we randomly masked parts of the token
sequence. Let 𝑌 denote the flattened token output (indices) from
the VQGAN Codebook, 𝑀𝑏 denote a randomly generated binary
mask, 𝑌𝑚 denote all masked tokens and 𝑌𝑟 denote the remaining
unmasked tokens. The transformer predictor were trained to ac-
curately predict the masked tokens. The loss function between

the probability distribution of predicted masked tokens and the
corresponding ground truth was formalized as:

𝐿𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = −𝐸 (
∑︁

log𝑝 (𝑚𝑖 |𝑌𝑟 )), (1)

where 𝑚𝑖 ∈ 𝑌𝑚 is the predicted masked tokens. Following the
previous MIM works [7, 15, 31], we calculated the loss only on the
masked proportion for better model capacity.

Pixel Decoder Training. The modules mentioned in previous
stages were kept frozen, and we trained the pixel decoder in this
stage. We first replicated an identical pixel decoder from the pre-
trained VQGANdecoder [11] as our duplicate decoder, which served
as a correction network. Then we finetuned the duplicate decoder
by minimizing the pixel-level loss between the original input 𝑥 and
the reconstruction 𝑥 :

𝐿𝑝𝑖𝑥𝑒𝑙_𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 = 𝑤1 ∗ 𝐿1(𝑥, 𝑥) +𝑤2 ∗ 𝐿𝑝𝑒𝑟𝑐𝑒𝑝𝑢𝑡𝑎𝑙 (𝑥, 𝑥), (2)

𝑤𝑖 being the loss weights, 𝐿1 being the L1_loss and 𝐿𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙
being the perceptual loss generated by AlexNet. The VQ-Decoder
from the pre-trained VQGAN model [11] were kept frozen so that
the pixel-level loss enabled the duplicate decoder to refine pixel
fidelity without excessively compromising the perceptual quality
obtained by the codebook-based representation.

4 EXPERIMENT RESULTS
4.1 Experiment Settings
Datasets.We trained our method using ImageNet, with over one
million diverse images to fully utilize the modeling capability of our
dual-stream system. For performance evaluation and fair compar-
ison with several existing methods [5, 6, 9, 23, 35], we conducted
tests on the Kodak [1], CLIC 2020 test set [12] and Tecnick [2]
dataset that were used by the previous methods.
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ModelConfigurations.As described in Section 3.3, for continuous-
feature-based data stream, the pre-trained MLIC model with the
lowest quality (𝜆 = 0.0018 as described in [19]) was used. For the
codebook-based data stream, we used the pre-trained VQGAN [11]
with transformer mask predictor from MAGE [30]. The parame-
ters of the proposed bridging modules in decoder were trained
according to the training strategy of Section 3.3.

In detail, to match the default 256-length token indices input of
the pre-trained MAGE model, we fed the 256x256x3 image patches
into our system. This ensured that the length of the flattened indices
map was 256. The additional complexity-aware module used three
complexity score thresholds to select from threemask schedules: the
1_9 mask schedule for easy regions with complexity score < 0.24,
the 1_2 mask schedule for complicated regions with complexity
score > 0.77, and the 1_4 mask schedule for medium regions in
between. These thresholds were empirically determined based on
the training data as described in Section 3.2.

Mask Prediction Inference. Unlike prior token-based trans-
formers using random sampling to create novel content, our de-
coding relied on max logits to remove the randomness for stable
generation to serve the compression purpose. Additionally, differ-
ent from iterative decoding used by MAGE [31] and MaskGIT [7],
our inserted cross-attention module allowed accurate predictions in
a single forward pass during testing, eliminating the need for mul-
tiple step-by-step recoveries. These changes reduced randomness
in mask token prediction and improved decoding efficiency.

4.2 Effectiveness of Bridging Mechanism
We first validated the effectiveness of the proposed bridging mech-
anism in two aspects: Using the continuous-domain hyperprior
information to assist the transformer predictor in recovering the
original indices map, and using the fidelity information from the
continuous latent feature to help the pixel decoding through the
duplicate decoder.

Continuity-assisted Mask Predictor.We compared our pro-
posed transformer predictor and the original pre-trained MAGE on
the ability to recover the original indicesmap based on just a portion
of the ground-truth indices. Several mask schedules were tested,
and the recovered indices map was directly fed into the pre-trained
VQGAN decoder for image restoration. As shown in Figure 4, com-
pared to the ground truth, the predictions of the original MAGE
exhibited increasing deviation as the mask ratio grows. In contrast,
our transformer predictor achieved highly stable predictions that
remained faithful to the features of the original image, thanks to
the global visual cues from the continuous stream introduced by
the cross-attention module.

Continuity-assisted Pixel Decoder. We compared the pro-
posed continuity-fused pixel decoder and the original pre-trained
VQGAN decoder. The indices map was unmasked in this test and
was directly fed into the pixel decoders to solely evaluate the ef-
fectiveness of the proposed pixel decoder. As shown in Figure 5,
decoding pixels based on codebook-based latent feature alonemight
not align well with the general pixel distribution, especially in sensi-
tive areas like faces or texts, due to the limited amount of codeword
features. The continuous features carried important fidelity infor-
mation about the original distribution, which provided to the pixel

Figure 4: Effectiveness of our mask predictor. The first to last
row separately have a mask schedule of 1_4, 1_9, 1_16.

Figure 5: Effectiveness of continuity-assisted pixel decoder.
The red boxes emphasize specific regions where the dupli-
cate decoder leverages continuous-domain information to
effectively correct codebook-based deviation.

decoder fidelity-preserving rectifications in difference-sensitive re-
gions. As a result, the generated images could better match the
original image content, while maintaining high perceptual quality
at the same time.

4.3 Effectivness of Complexity-aware Masking
As mentioned in Section 3.2, different mask schedules were applied
to modules with varying complexities. That is, while maintaining
a similar image quality, more transmission bits were allocated to
high-complexity (often perception-sensitive) regions, and fewer
bits were used for low-complexity areas. As shown in Figure 6,



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

based on the complexity of image patches obtained through parti-
tioning, a large number of blocks with simple features were defined
as “easy", while regions sensitive to features, such as faces and
intricate clothing patterns, were categorized as “tough" (“compli-
cated"). The complexity-aware module offered a straightforward
yet effective way to further reduce transmission bits, e.g., with an
additional 12.5% bpp reduction on average compared to the uniform
1_4 masking schedule, enabling our framework to better serve the
extreme low-bitrate image compression scenario.

4.4 General Performance Comparison
Compared methods. To demonstrate the advantages of our pro-
posed dual-stream HybirdFlow image compression framework in
extremely low-bitrate scenarios, we compared our work with single-
stream VQGAN [11] and single-stream MLIC [23] (as SOTA conti-
nuous-feature-based LIC). This comparison effectively showed the
balanced overall performance improvement obtained by the fusion
of the dual streams. Additionally, we compared our method with
finetuned VQGAN compression [35], another codebook-based LIC
approach, and the SOTA traditional compression method VVC [6].

Evaluation Metrics. In terms of evaluating image compression
models with low bitrates, prior works often either measure pixel-
level differences (PSNR) or measure perceptual differences (LPIPS),
while seldom both. Actually PSNR accentuates visual resemblance
when viewed by human eyes, while LPIPS tends to emphasize local
image quality, including clarity and specific details. Both metrics
are practically crucial for image compression tasks.

In this experiment, we showed that even in the context of extreme
low-bitrate image compression, our proposed dual-stream structure
could achieve a good balance between both metrics. We could
maintain image clarity and expressive details without significant
deviation from the original image.

Qualitative Comparison. In this experiment, our mask mod-
ule adopted a fixed 1_4 mask schedule to maintain a consistent
relationship between model compression quality and bitrate for
fair comparison. As illustrated in Figure 8, our approach exhibited
significant advantages in image reconstruction quality over single-
stream MLIC and VQGAN in extremely low-bitrate scenarios. The
reconstruction results of MLIC presented notable oil-painting-like
blurs with regular occurrences of abnormal noise. Although recon-
structions based on VQGAN were clear overall, they showed signif-
icant pixel deviations in detail-sensitive regions, especially around
edges of image patches, leading to noticeable pixel discontinuities
that severely affected visual perception. Moreover, for images con-
taining textual information, the limited features of VQGAN caused
local distortions in text content. In contrast, our approach visu-
ally balanced clarity and fidelity by ensuring image reconstruction
clarity while largely reducing blur and noise, and by correcting
pixel distortions in VQGAN through the complementary structural
information from the continuous stream.

Quantitative Comparison. Our method provides different
compression rates ranging from approximately 0.025 to 0.065 bpp
through a variable mask schedule. The lowest quality corresponds
to masking out all codebook indices, and the highest quality corre-
sponds to no mask at all. As shown in Figure 7, traditional methods
such as VVC [6], as well as single-stream continuous-feature-based

LIC like Cheng2020 [9] and MLIC [23], usually performed better
than single-stream codebook-based LIC methods like [11] in terms
of pixel-level PSNR. However, their performance in terms of percep-
tual quality like LPIPS was poor. They tended to prioritize the over-
all pixel similarity by generating large, detail-less, blurry patches,
thereby sacrificing image clarity and fine details. In comparison,
the single-stream codebook-based LIC methods had poor PSNR
performance in general (about 4.5 dB lower than traditional meth-
ods at the same bitrate). This confirmed that reconstruction solely
based on learned codebook introduced significant pixel-level distor-
tions. However, due to the pixel decoder’s reliance on high-quality
codebook features, the reconstruction was quite stable, resulting in
much better LPIPS. Our method combined the advantages of both
approaches, and achieved a good balance between perceptual LPIPS
and pixel-level PSNR. Compared to single-stream codebook-based
LIC, our PSNR curve closely resembled traditional methods, enhanc-
ing the average PSNR by 3.5 dB with even further improvement
on LPIPS. Compared to traditional methods that solely focused on
PSNR performance, although our PSNR is lower, the reconstructed
image had significantly better perceptual quality and clarity with
an average LPIPS increase of 55.7% across three testsets . These
results demonstrated that for extreme low-bitrate image compres-
sion scenarios, our HybridFlow approach provided a good balanced
image reconstruction quality for practical applications.

Boundary Effects on Image Partitioning. To reduce memory
and computation requirements of the image compression pipeline,
it is a common practice to partition large images into smaller blocks,
e.g., 256 × 256 for efficient individual processing. This strategy usu-
ally causes discrepancy in pixel continuity, leading to discrepancy
in latent feature continuity that results in explicit block boundaries
in reconstructed images. Traditionally, additional post-processing
module such as a smoothing network is needed to alleviate this prob-
lem. However, with extreme low bitrates, solely codebook-based
compression methods like VQGAN [11] presents severe bound-
ary effects due to dramatic quantization effects in the visual space
using the limited number of codewords, which is difficult to be triv-
ially solved by post-processing (as shown in the zoomed-in image
patches in Figure 8). In contrast, by using continuous latent features
to correct the pixel decoding process, our method adaptively adjusts
for saturation biases and rectifies structural latent features within
the image, and substantially reduces the boundary effects without
using any explicit post-processing modules.

4.5 Conclusion
In this paper, we propose a dual-stream HybridFlow framework,
tailored for ultra-low-bitrate image compression. By integrating
continuous-domain features into the discrete-domain representa-
tion, we provide high perceptual quality and high fidelity in re-
constructed images simultaneously with extreme low bitrates. We
also selectively mask the indices map to further reduce information
rates. Specifically, we introduce a token-based transformer with
cross-attention modules to incorporate guidance from the contin-
uous domain efficiently, enabling us to predict full indices maps
based on partial masked indices and maintain fidelity to the original
distribution. We also infuse continuous-domain features into the
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Figure 6: Effectiveness of the complexity-aware dynamic masking scheduling. The red, green, and blue color represent “easy",
“medium", and “tough", respectively. The rightmost column depicts the image quality in PSNR of the outputs with dynamic
masking and the percentage of reduction in bpp compared to 1_4 uniform masking.

Figure 7: Quantitative results on Kodak, CLIC2020, Tecnick datasets. (PSNR the higher the better, LPIPS the lower the better)

pixel decoder through a correction network, which reduces pixel-
level distortions in reconstruction, achieving both high perceptual
quality and high fidelity. Finally, we offer an optional complexity-
aware module to select different mask schedules for different image
patches, allocating limited bits more efficiently. Experimental re-
sults demonstrate the robustness of our method across various

datasets, with significantly improved PSNR and similar or even bet-
ter LPIPS compared to existing codebook-based LIC methods, and
with significantly improved LPIPS compared to continuous-feature-
based LIC methods. Our approach provides a general dual-stream
LIC framework for building bridges between the continuous and
the codebook-based feature domains, further advancing research
in ultra-low-bitrate image compression.
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Figure 8: Qualitative visualization of single-stream-based VQGAN, MLIC and our proposed dual-stream results. (Zoom-in for
better visual comparison)
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