

000 **SAMPLE-EFFICIENT MULTICLASS CALIBRATION**
001
002
003
004

005 **Anonymous authors**
006

007 Paper under double-blind review
008
009

010 **ABSTRACT**
011
012
013
014
015
016
017
018
019
020
021
022
023
024

Calibrating a multiclass predictor, that outputs a distribution over labels, is particularly challenging due to the exponential number of possible prediction values. In this work, we propose a new definition of calibration error that interpolates between two established calibration error notions, one with known exponential sample complexity and one with polynomial sample complexity for calibrating a given predictor. Our algorithm can calibrate any given predictor for the entire range of interpolation, except for one endpoint, using only a polynomial number of samples. At the other endpoint, we achieve nearly optimal dependence on the error parameter, improving upon previous work. A key technical contribution is a novel application of adaptive data analysis with high adaptivity but only logarithmic overhead in the sample complexity.

025 **1 INTRODUCTION**
026
027
028
029
030
031
032
033
034

Trustworthiness and interpretability have become key concerns for machine learning models, especially as they are increasingly used for critical decision making. Calibration is an important tool, dating back to classical forecasting literature (Dawid, 1982; Foster & Vohra, 1998), that can be used to address some of these concerns. A predictor h for binary classification that outputs values in $[0, 1]$ is calibrated if, among the inputs x for which $h(x) = q$, exactly q fraction of them have a positive outcome. In recent years, a large body of work has focused on developing algorithms that either learn calibrated predictors or calibrate previously trained models. This notion has also been extended to multi-calibration (Hébert-Johnson et al., 2018), where the calibration guarantee holds for multiple, possibly overlapping populations. Another important extension is to the multiclass setting, which is the focus of this work.

Calibration presents two main challenges. The first is defining a notion of calibration error that quantifies how much a predictor deviates from being perfectly calibrated. This error metric must be testable (Rossellini et al., 2025), meaning that we should be able to detect that a predictor has small error using a small number of samples. While sharing common intuition, many different definitions of calibration error exist in the literature. Typically, the predicted probabilities are divided into bins and the calibration guarantee applies to conditioning on the bins rather than on the predicted values. However, some proposed error metrics are not testable. For example, the L_∞ error as defined by Gruber & Buettner (2022) measures the maximum conditional deviation between the prediction and the true probability of the class across bins. This maximum could occur in a bin containing points that appear with very small probability, making it practically undetectable due to insufficient sampling. The second challenge is developing algorithms that efficiently learn a calibrated predictor from scratch or recalibrate existing predictors, considering both the sample complexity and the computational efficiency with respect to the problem parameters.

While discretizing the prediction space results in a reasonable number of bins for binary classification, in the multiclass setting the number of bins grows exponentially with the number of classes, presenting a unique challenge. In fact, for a natural definition of the distance to calibration, testing whether a given model is perfectly calibrated requires the number of samples to be exponential in the number of classes (Gopalan et al., 2024). A consequence of this result is that estimating a commonly used calibration error metric, one that generalizes the binary classification case to multiclass classification by summing the errors over all the classes and bins, requires a number of samples exponential in the number of classes Gopalan et al. (2024). Alternatively, the

054 works of Haghtalab et al. (2023) and Dwork et al. (2023) have considered a weaker definition where
 055 the predictor is considered calibrated if the calibration error per bin is small, as opposed to measuring
 056 the total error across all bins. In this case, surprisingly, a calibrated predictor can be found using
 057 a polynomial number of samples. A natural question is whether the weakening in the definition is
 058 necessary and, if so, how much weakening is necessary to remove the exponential dependence on
 059 the number of classes.

060 Calibration is important in its own right, but it is also desirable for a predictor to be accurate.
 061 Given that most machine learning models are developed using complex pipelines that are difficult
 062 to modify, the ability to calibrate an existing model, as opposed to building a new one from
 063 scratch, is valuable. This approach would allow one to leverage the remarkable accuracy of
 064 existing models while adding calibration guarantees. Moreover, it is possible for a predictor to
 065 be calibrated yet uninformative. This underscores the importance of maintaining accuracy alongside
 066 calibration. While many works in the literature satisfy this requirement, the works with strong
 067 sample complexity bounds of Haghtalab et al. (2023) and Dwork et al. (2023) unfortunately do not.
 068 Thus, a significant challenge is to develop efficient algorithms that can calibrate a given predictor
 069 while making minimal targeted modifications. Concretely, we aim to develop calibration algorithms
 070 for a given predictor that satisfy the following two properties:

- 071 1. The resulting classifier is calibrated up to error ε .
- 072 2. The resulting classifier's accuracy remains within an additive error of ε compared to the
 073 accuracy of the given predictor to allow for discretization and estimation error.

074 In this work, we address the above questions and propose a new definition of calibration error, which
 075 we call the ℓ_p calibration error. This error notion is defined as the ℓ_p norm of the calibration errors
 076 across all bins and classes. In particular, for a fixed bin and class, we define the calibration error
 077 as the product of the absolute difference between the expected value of the prediction and the true
 078 probability of the class conditioned on the datapoint belonging to the bin, and the probability mass
 079 of the bin. The definition that adds up the errors across all bins and classes corresponds to the special
 080 case $p = 1$, also known as the expected calibration error (ECE) (Dawid, 1982), while the definition
 081 that measures the maximum error across all bins and classes in Haghtalab et al. (2023) corresponds
 082 to $p = \infty$. As our measure of accuracy, we use the squared error of the predictor. Any algorithm
 083 that calibrates a predictor to achieve small ℓ_1 calibration error (ECE) requires exponentially many
 084 samples in k Gopalan et al. (2024). Our work shows that for all $p > 1$, there exists an algorithm that
 085 uses a polynomial number of samples in the number of classes to calibrate any given predictor. For
 086 the special case $p = \infty$ and a given desired calibration error ε , the sample complexity is within a
 087 poly-logarithmic factor of $O(1/\varepsilon^2)$. This is almost as good as one could hope for since even testing
 088 if the fraction of data with positive outcome is $1/2$ or $1/2 + \varepsilon$ already requires $\Omega(1/\varepsilon^2)$ samples.

089 **Theorem 1** (Informal version of Theorem 7). *There exists an algorithm that takes as input any
 090 k -class predictor $f : \mathcal{X} \rightarrow \Delta_k$, runs in time polynomial in k and $\frac{1}{\varepsilon}$, and, using $\tilde{O}\left(\left(\frac{2^{1/(p-1)}}{\varepsilon^{p/(p-1)}}\right)^2\right)$
 091 samples, returns a k -class predictor $h : \mathcal{X} \rightarrow \Delta_k$ that has:*

- 092 1. ℓ_p calibration error at most ε , and
- 093 2. squared error within an additive term $\tilde{O}\left(\frac{\varepsilon^{p/(p-1)}}{2^{1/(p-1)}}\right)$ from the squared error of f .

094 The \tilde{O} notation hides logarithmic factors in k and $1/\varepsilon$.

100 1.1 OUR TECHNIQUES

101 When $p = \infty$, we observe that if a bin contains at most an ε fraction of the data distribution,
 102 its calibration error for any class is also bounded by ε . Thus, one only needs to care about $1/\varepsilon$
 103 bins with large probability masses. We generalize this idea to all ℓ_p norms for $p > 1$ and allow the
 104 algorithm to focus only on bins with large probability masses. This observation is sufficient to obtain
 105 a (large) polynomial sample complexity. This approach works because our calibration error notion
 106 incorporates the probability mass of the bin in the p -exponent, naturally assigning higher weights to
 107 larger bins.

108 A second observation that further improves the sample complexity is that for interpretability reasons
 109 the output of our calibrated predictor should be probability distributions over the k labels, a
 110 constraint not enforced in previous work. This constraint significantly reduces the discretized
 111 prediction space during calibration compared to λ^k in prior works (where λ is the number of discrete
 112 values per coordinate), since the predictor outputs must form valid probability distributions with
 113 coordinates summing to 1. Consequently, our set of bins approximately corresponds to the set of
 114 sparse vectors in k dimensions containing λ non-zero elements, each equal to $1/\lambda$. The crucial
 115 insight is that the number of such sparse vectors is polynomial rather than exponential in k .

116 Calibrating the predictor might require adaptively merging many high-probability bins together.
 117 Naively estimating the error of all subsets of high-probability bins to ε requires $1/\varepsilon^3$ samples
 118 (due to the number of subsets being $\Omega(\exp(1/\varepsilon))$). Adaptive data analysis has been applied in
 119 previous works to reduce the number of samples, but the overhead remains polynomial in $1/\varepsilon$.
 120 Surprisingly, our algorithm is still highly adaptive, but with a novel analysis, the overhead in the
 121 sample complexity is only logarithmic in $1/\varepsilon$. Our techniques might be applicable to other problems
 122 where adaptive data analysis is used.

123 1.2 RELATED WORK

124 The most closely related works are by Haghtalab et al. (2023) and Dwork et al. (2023). In
 125 the case where $p = \infty$, they showed that with access to an oracle for the exact probabilities,
 126 $O(\varepsilon^{-2} \ln k)$ oracle queries suffice to find an ε -calibrated predictor for k -class classification.
 127 These results construct a new model from scratch and do not aim to preserve the accuracy
 128 of a previously trained model, as our algorithm does. Furthermore, Haghtalab et al. (2023)
 129 showed that $O(\ln(k)/\varepsilon^4 (\ln(1/\varepsilon) + \ln(V)))$ samples suffice for their algorithm, where V is the
 130 number of discretized bins. In their case, $\ln(V) = O(k \ln(\lambda))$, with λ being a non-negative
 131 integer that controls the granularity of discretization. In contrast, our algorithm employs a
 132 different discretization scheme where $\ln(V) = O(\min(k, \lambda) \ln(\lambda + k))$. This alternative approach
 133 contributes to our improved sample complexity. However, it introduces additional complexity
 134 to the algorithm due to the need to project the predictions onto the probability simplex. These
 135 projections impact both the calibration and the accuracy of the predictor. For calibration, updating
 136 one coordinate of the predictor and then projecting can alter other coordinates that are already
 137 calibrated. For accuracy, we must carefully select the projection method that we use to ensure
 138 that the accuracy is preserved.

139 Many calibration algorithms are iterative and, thus, inherently present an adaptive data analysis
 140 challenge, due to the dependence of the bins whose predictions get updated on the current predictor.
 141 Most algorithms in this area, including ours, perform $\text{poly}(1/\varepsilon)$ iterations. Some works, such as
 142 Gopalan et al. (2022), address the adaptivity issue by resampling at each iteration to estimate the
 143 calibration error, which results in a $\text{poly}(1/\varepsilon)$ overhead in sample complexity. Other works use
 144 tools from adaptive data analysis to bound the sample complexity in a black-box way (Haghtalab
 145 et al., 2023; Hébert-Johnson et al., 2018). Specifically, they use the strong composition property of
 146 differential privacy, which allows answering t adaptive queries with only a $\tilde{O}(\sqrt{t})$ overhead. As a
 147 result, this method incurs a smaller $\text{poly}(1/\varepsilon)$ overhead in sample complexity. Our novel algorithm
 148 and analysis achieve a tighter bound, requiring only a $\log(1/\varepsilon)$ overhead in sample complexity. This
 149 significantly improves the overall sample complexity of the iterative calibration process.

150 Due to the challenges of calibration in the multiclass setting, several weaker error definitions have
 151 been proposed. A lot of work focuses on calibrating existing neural networks. For instance,
 152 Guo et al. (2017) introduced confidence calibration, where the conditioning is done on the highest
 153 prediction value among all classes, and explored several methods including binning methods, matrix
 154 and vector scaling, and temperature scaling. Related notions include top-label calibration (Gupta
 155 & Ramdas, 2022), which conditions on the highest prediction value and the identity of the top
 156 class, and class-wise calibration (Kull et al., 2019), which conditions on individual class predictions
 157 rather than on the entire probability vector. While extensive literature exists on ℓ_p -style calibration
 158 measures (Kumar et al., 2019; Vaicenavicius et al., 2019; Widmann et al., 2019; Zhang et al., 2020;
 159 Gruber & Buettner, 2022; Popordanoska et al., 2022), our approach differs fundamentally. We
 160 incorporate the probability mass of the bin in the p -exponent, ensuring that bins with large error have
 161 also sufficient mass for detection, resolving the limitation that previously considered ℓ_p calibration
 errors may require exponentially many samples for testing. On the theoretical front, Gopalan et al.

(2022) proposed low-degree multi-calibration as a less-expensive alternative to the full requirement and Gopalan et al. (2024) introduced projected smooth calibration as a multiclass calibration error definition for efficient algorithms with strong guarantees.

2 PRELIMINARIES

We use \mathcal{X} to denote the feature space and $[k] = \{1, \dots, k\}$ to denote the label space. We also use the k -dimensional one-hot encoding of a label as an equivalent representation. We use Δ_k to denote the probability simplex over k labels. In this work, we consider that a k -class predictor f is a function that maps feature vectors in \mathcal{X} to distributions in Δ_k .

Instead of conditioning on the exact predicted probability vector, we partition Δ_k into level sets. Previous methods partition Δ_k by mapping the prediction vectors to the closest vector in L^k , the k -ary Cartesian power of $L = \{0, 1/\lambda, 2/\lambda, \dots, 1\}$, where λ is a positive integer that determines the discretization granularity. Note that the coordinates of vectors in L^k may not sum to 1. We use an alternative partition of Δ_k via a many-to-one mapping onto V_λ^k . We define V_λ^k to be the subset of L^k such that for every member v of V_λ^k , there exists a probability distribution $u \in \Delta_k$ such that v is obtained by rounding down every coordinate of u to a multiple of $1/\lambda$. Formally,

$$V_\lambda^k = \{v \in L^k : \exists u \in \Delta_k \text{ s.t. } \lfloor u_i \lambda \rfloor / \lambda = v_i \forall i \in [k]\}.$$

Example 2. For $k = 3$ classes and $\lambda = 2$ the set of vectors V_λ^k is

$$V_2^3 = \{(0, 0, 0), (0.5, 0, 0), (0, 0.5, 0), (0, 0, 0.5), (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 0.5, 0.5), (0.5, 0, 0.5), (0.5, 0.5, 0)\}.$$

While vectors in V_λ^k are not necessarily distributions, they are close to vectors that are distributions. This property allows V_λ^k to be significantly smaller than L^k .

Lemma 3. For any $\lambda, k \in \mathbb{N}^+$, the number of level sets in V_λ^k is at most $\binom{\lambda+k}{k}$. Note that $\log(|V_\lambda^k|) = O(\min(k, \lambda) \ln(\lambda + k))$ whereas $\log(|L^k|) = O(k \ln(\lambda))$.

The proof of Lemma 3 is provided in the Appendix.

We define the rounding function $R : \Delta_k \rightarrow V_\lambda^k$, which maps a prediction vector to the corresponding level set in V_λ^k : $R(u)_i = \lfloor u_i \lambda \rfloor / \lambda \forall i \in [k]$. Conversely, we define the function ρ that maps a level set $v \in V_\lambda^k$ to the closest canonical distribution $\rho(v) = \arg \min_{u \in \Delta_k, R(u)=v} \|u - v\|_\infty$. Finally, we define the projection function $\pi : [0, 1]^k \rightarrow \Delta_k$ in ℓ_2 norm: $\pi(v) = \arg \min_{u \in \Delta_k} \|u - v\|_2$. In some cases, we abuse notation by writing $f(S)$ to denote the common value of a function $f(x)$ for all $x \in S$, when $f(x) = f(y)$ for all $x, y \in S$.

For our sample complexity results, we use the following lemmas for adaptive data analysis and concentration of measure.

Lemma 4. (Jung et al., 2020, Theorem 23) Let A be an algorithm that, having access to a dataset $S = \{x_i\}_{i \in [n]}$, interactively takes as input a stream of queries $q_1, \dots, q_t : \mathcal{X} \rightarrow [0, 1]$ and provides a stream of answers $a_1, \dots, a_t \in [0, 1]$. Suppose that A is $(\varepsilon, 0)$ -differentially private and that

$$\mathbb{P} \left[\max_{j \in [t]} \left| \frac{1}{n} \sum_{i \in [n]} q_j(x_i) - a_j \right| \geq \alpha \right] \leq \beta.$$

Then, for any $\eta > 0$, $\mathbb{P} \left[\max_{j \in [t]} |\mathbb{E}_{x \sim P} [q_j(x)] - a_j| \geq \alpha + e^\varepsilon - 1 + \sqrt{\frac{2 \ln(2/\eta)}{n}} \right] \leq \beta + \eta$.

Lemma 5. (Chung & Lu, 2006, Theorem 3.6) Suppose X_1, \dots, X_n are independent random variables with $X_i \leq M$ for all i . Let $X = \sum_{i=1}^n X_i$ and $\|X\| = \sqrt{\sum_{i=1}^n \mathbb{E}[X_i^2]}$. Then,

$$\mathbb{P}[X \geq \mathbb{E}[X] + \lambda] \leq \exp \left(-\frac{\lambda^2}{2(\|X\|^2 + M\lambda/3)} \right).$$

216 **3 MULTICLASS CALIBRATION UNDER ℓ_p ERROR**
 217

218 In this work, we consider a generalization of the expected calibration error to arbitrary ℓ_p norms.
 219

220 **Definition 6.** Fix $p \geq 1$ and $k, \lambda \in \mathbb{N}^+$. Consider a k -class predictor $f : \mathcal{X} \rightarrow \Delta_k$ and a data
 221 distribution D over features \mathcal{X} and labels $[k]$. The ℓ_p calibration error of f is defined as

$$222 \quad \text{Err}_p(f) := \left(\sum_{v \in V_\lambda^k} \sum_{j=1}^k (\text{Err}(f, v, j))^p \right)^{1/p},$$

226 where V_λ^k denotes the set of discretized bins,
 227

$$228 \quad \text{Err}(f, v, j) := \left| \mathbb{E}_{(x,y) \sim D} [(f(x)_j - y_j) \cdot \mathbb{I}[R(f(x)) = v]] \right|$$

$$229 \quad = \left| \mathbb{E}_{(x,y) \sim D} [f(x)_j - y_j \mid R(f(x)) = v] \right| \mathbb{P}[R(f(x)) = v]$$

230 measures the calibration error for bin v and class j , and y is the one-hot encoding of the label.
 231

232 The special case when $p = 1$ corresponds to the expected calibration error (ECE), while the case
 233 when $p \rightarrow \infty$ corresponds to the calibration error considered by Haghtalab et al. (2023) and Dwork
 234 et al. (2023):

$$235 \quad \max_{v \in V_\lambda^k, j \in [k]} \left| \mathbb{E}_{(x,y) \sim D} [(f(x)_j - y_j) \cdot \mathbb{I}[R(f(x)) = v]] \right|.$$

237 Our main result is a new algorithm that calibrates a given predictor f to achieve ℓ_p calibration error
 238 of at most ε , using a polynomial number of samples for any $p > 1$. Furthermore, for $p = \infty$, the
 239 dependence of the algorithm's sample complexity on ε is only $1/\varepsilon^2$ up to logarithmic factors, which
 240 is nearly optimal. The squared error of the calibrated predictor is lower than that of the original
 241 predictor, up to a small additive term introduced by discretization. Up to logarithmic factors, this
 242 additive term due to discretization is similar to the term in the previous work for binary predictors
 243 (Hébert-Johnson et al., 2018).

244 **Theorem 7.** Fix $p > 1$, $\varepsilon, \delta \in (0, 1)$ and $k \in \mathbb{N}^+$. There exists an algorithm that takes as input a
 245 k -class predictor $f : \mathcal{X} \rightarrow \Delta_k$, and with probability at least $1 - \delta$ terminates after $O\left(\frac{2^{2/(p-1)}}{\varepsilon^{2p/(p-1)}}\right)$
 246 time steps with total time polynomial in k and $\frac{1}{\varepsilon}$. Using

$$247 \quad O\left(\left(\frac{2^{1/(p-1)}}{\varepsilon^{p/(p-1)}}\right)^2 \log^3\left(\frac{2^{1/(p-1)}}{\varepsilon^{p/(p-1)}}\right) \log\left(\frac{2^{1/(p-1)}k}{\varepsilon^{p/(p-1)}\delta}\right)\right)$$

251 samples from distribution D , it returns a k -class predictor $h : \mathcal{X} \rightarrow \Delta_k$ that has calibration error
 252 $\text{Err}_p(h) \leq \varepsilon$ and squared error
 253

$$254 \quad \mathbb{E}_D \left[\|h(x) - y\|_2^2 \right] - \mathbb{E}_D \left[\|f(x) - y\|_2^2 \right] \leq O\left(\frac{\varepsilon^{p/(p-1)}}{2^{1/(p-1)}} \log\left(\frac{2^{1/(p-1)}}{\varepsilon^{p/(p-1)}}\right)\right).$$

257 We present Algorithm 2 for calibrating a given k -class predictor f . The high-level structure of the
 258 algorithm, outlined in Algorithm 1, follows a standard approach in the literature. It first assigns
 259 datapoints to bins based on the level set of their rounded prediction $f(x)$, and then iteratively
 260 identifies groups of bins and classes with large calibration error, applying corrective updates as
 261 needed. At each time step t , to correct the prediction for a group of bins $S^{(t)}$ and class $j^{(t)}$ with
 262 large calibration error, the algorithm estimates the probability that datapoints in bins $S^{(t)}$ have label
 263 $j^{(t)}$. It then uses this estimate to correct the prediction vector for $S^{(t)}$ and projects the corrected
 264 vector onto the probability simplex Δ_k to ensure valid probability outputs, using this as the new
 265 prediction for datapoints assigned to $S^{(t)}$. If at time step t , there exists another group of bins S' with
 266 prediction in the same level set as $S^{(t)}$, the algorithm merges these two groups. It assigns a single
 267 prediction vector to all the inputs in $S^{(t)} \cup S'$, selecting the prediction from whichever group has
 268 the largest estimated probability mass. However, merging bins may cause the estimation errors to
 269 accumulate, potentially leading to large calibration errors in the merged group. To mitigate this, the
 algorithm re-estimates the calibration error of each group after merging.

270 **Algorithm 1** Multiclass Calibration Outline

271 **Input:** predictor f

272 Discretize prediction space into bins and identify high-probability bins B

273 Create two parallel data structures:

274 1. Estimation structure M tracks statistics for groups of bins

275 2. Prediction structure G stores predictions and tracks calibration errors per group of bins

276 Initialize both structures, M and G , to contain one group per high-probability bin in B

277 $t \leftarrow 0$

278 While there exists a group of bins in G with large error for some class $j \in [k]$:

279 Select group $S^{(t)} \in G$ and class $j^{(t)} \in [k]$ with large error

280 Correct the prediction for $S^{(t)}$ and $j^{(t)}$

281 Merge groups in G with similar predictions to that of $S^{(t)}$

282 Update structure M

283 Estimate statistics and error for $S^{(t)}$

284 $t \leftarrow t + 1$.

285 $h(x) = \begin{cases} \text{prediction for group } S \text{ in } G \text{ that contains } f(x) & \text{if } f(x) \text{ is in a high-probability bin} \\ \text{nearest valid probability vector to } f(x) & \text{o.w.} \end{cases}$

286 **Output:** calibrated predictor h

287

288

289

290 Our algorithm differs from existing binning-based calibration algorithms in two ways. First, it
 291 identifies a set of bins B with large probability mass, because only such bins contribute significantly
 292 to the overall calibration error. The algorithm maintains a data structure G containing disjoint groups
 293 of bins that may have large error and iteratively searches through them to identify groups requiring
 294 correction. Initially, G contains a group for each high-probability bin. As the algorithm merges
 295 groups of bins, it updates G accordingly. Second, the algorithm reduces the number of samples
 296 needed to estimate the calibration error by leveraging the fact that groups of bins are only merged
 297 over time and never split, and by applying Lemma 4 for adaptive data analysis. The groups of bins
 298 $S^{(t)}$ are selected adaptively, as their error depends on the current predictions. If we were to analyze
 299 the sample complexity using standard concentration inequalities, this adaptivity would require the
 300 use of fresh samples at every time step. To avoid this inefficiency, our algorithm maintains error
 301 estimates for $O(\log |B|)$ collections of evolving disjoint groups of bins, denoted collectively as M .
 302 Note that M forms a partition of B . An interesting property of this structure is that any group of
 303 bins in G for which we need to estimate the calibration error can be expressed as a disjoint union
 304 of groups in M . As a result, the calibration error estimate of $S^{(t)}$ can be computed efficiently by
 305 summing the estimates for groups in M that are subsets of $S^{(t)}$. The sizes of the groups in M are
 306 powers of 2 and all groups of the same size that arise during the execution of the algorithm remain
 307 disjoint. For each group size 2^i and each type of estimate, we maintain a separate pool of samples.
 308 Since a group in M can contain at most $|B|$ distinct bins, we need $O(\log |B|)$ separate sample pools.
 309 We analyze the sample complexity after proving Lemma 9, which bounds the number of samples
 310 required to estimate a collection of disjoint, adaptively chosen queries.

311 We show that Algorithm 2 satisfies Theorem 7. The proof is presented step by step in the following
 312 three subsections, with key results organized into several lemmas. Lemmas 8 and 9 show that all
 313 estimated quantities are within small additive error of the true quantities. Lemmas 11, 12, and 13
 314 provide a bound on the squared error of the modified predictor. Lemma 14 proves that the algorithm
 315 terminates after $O(2^{2/(p-1)} / \varepsilon^{2p/(p-1)})$ iterations, while Lemma 16 shows that the total runtime
 316 is polynomial in $1/\varepsilon$ and k . Finally, Lemma 15 establishes that the calibration error of the final
 317 predictor when the algorithm terminates is smaller than ε . All omitted proofs are provided in the
 318 Appendix.

319 **3.1 CORRECTNESS OF ESTIMATES**

320 In Algorithm 2 we use samples to compute three types of estimates. For the algorithm to function
 321 correctly, the estimates need to be sufficiently accurate. This requirement is captured by the
 322 following three events. Event A_1 ensures that B contains bins with large probability masses. Events
 323 A_2 and A_3 , together enable the algorithm to correctly adjust predictions and merge bins as needed.

324 **Algorithm 2** Multiclass Calibration

325 **Input:** predictor f , discretization function R , parameters ε and δ .

326

327 Set $\beta \leftarrow \varepsilon^{p/(p-1)} 2^{-1/(p-1)}$ and $\lambda \leftarrow \lceil 1/\beta \rceil$.

328 For all bins $v \in V_\lambda^k$:

329 Estimate probability mass of bin v , $\hat{\mu}_v \approx \mathbb{P}[R(f(x)) = v]$

330 Select high-probability bins $B \leftarrow \{v : \hat{\mu}_v \geq \beta/6\}$

331

332 $M \leftarrow$ initialize with one group $\{v\}$ per high-probability bin v in B

333 $G \leftarrow$ initialize with one group $\{v\}$ per high-probability bin v in B

334 $t \leftarrow 0$

335 For each group $\{v\} \in M$:

336 Estimate probability $\hat{P}_{\{v\}} \approx \mathbb{P}[R(f(x)) \in \{v\}]$

337 Estimate mean label $\hat{E}_{\{v\},j} \approx \mathbb{E}_{(x,y) \sim D} [y_j \mathbb{I}[R(f(x)) \in \{v\}]]$ for all $j \in [k]$

338 For each group $\{v\} \in G$:

339 $\text{pred}(\{v\}) \leftarrow \rho(v)$

340 Compute $\hat{\text{Err}}(\{v\}, j) \leftarrow \left| \hat{P}_{\{v\}} \text{pred}(\{v\})_j - \hat{E}_{\{v\},j} \right|$ for each class $j \in [k]$

341

342 While \exists group $S \in G$ with error $\hat{\text{Err}}(S, j) > \beta/2$ for some class $j \in [k]$:

343 Select group $S^{(t)} \in G$ and class $j^{(t)} \in [k]$ with $\hat{\text{Err}}(S^{(t)}, j^{(t)}) > \beta/2$

344 $z_{j^{(t)}}^{(t)} \leftarrow \min \left(\left(\sum_{S \in M: S \subseteq S^{(t)}} \hat{E}_{S,j^{(t)}} \right) / \left(\sum_{S \in M: S \subseteq S^{(t)}} \hat{P}_S \right), 1 \right)$

345 For all other classes $j \neq j^{(t)}$: $z_j^{(t)} \leftarrow \text{pred}(S^{(t)})_j$

346 $\text{pred}(S^{(t)}) \leftarrow \pi(z^{(t)})$

347 If there exists group $S' \neq S^{(t)}$ in G such that $R(\text{pred}(S')) = R(\text{pred}(S^{(t)}))$:

348 Merge $S^{(t)}$ and S' into a single group in G

349 If $\sum_{S \in M: S \subseteq S^{(t)}} \hat{P}_S \leq \sum_{S \in M: S \subseteq S'} \hat{P}_S$:

350 $\text{pred}(S^{(t)} \cup S') \leftarrow \text{pred}(S')$

351 else:

352 $\text{pred}(S^{(t)} \cup S') \leftarrow \text{pred}(S^{(t)})$

353 $S^{(t)} \leftarrow S^{(t)} \cup S'$

354

355 While there exist groups $S_1 \neq S_2$ in M that are subsets of $S^{(t)}$ with the same cardinality:

356 Merge S_1 and S_2 in M

357 Estimate probability $\hat{P}_{S_1 \cup S_2} \approx \mathbb{P}[R(f(x)) \in S_1 \cup S_2]$

358 Estimate mean label $\hat{E}_{S_1 \cup S_2, j} \approx \mathbb{E}_{(x,y) \sim D} [y_j \mathbb{I}[R(f(x)) \in S_1 \cup S_2]]$ for all $j \in [k]$

359 Compute $\hat{\text{Err}}(S^{(t)}, j) \leftarrow \left| \left(\sum_{S \in M: S \subseteq S^{(t)}} \hat{P}_S \right) \text{pred}(S^{(t)})_j - \sum_{S \in M: S \subseteq S^{(t)}} \hat{E}_{S,j} \right|, \forall j \in [k]$

360 $t \leftarrow t + 1$.

361

362 $h(x) = \begin{cases} \text{pred}(S), \text{ where } S \text{ is the group in } G \text{ that contains } R(f(x)) & \text{if } R(f(x)) \in B \\ \rho(R(f(x))) & \text{o.w.} \end{cases}$

363 **Output:** h

364 **Important Events:**

365

- 366 Event A_1 : $|\hat{\mu}_v - \mathbb{P}[R(f(x)) = v]| \leq \frac{\beta}{12}, \forall v \in V_\lambda^k$.
- 367 Event A_2 : $|\hat{P}_S - \mathbb{P}[R(f(x)) \in S]| \leq \frac{\beta}{36(\lfloor \log_2 |B| \rfloor + 1)}$, for all groups of bins S in M that ever occur during the execution of the algorithm.
- 368 Event A_3 : $|\hat{E}_{S,j} - \mathbb{E}_{(x,y) \sim D} [y_j \mathbb{I}[R(f(x)) \in S]]| \leq \frac{\beta}{36(\lfloor \log_2 |B| \rfloor + 1)}$, for all groups of bins S in M that ever occur during the execution of the algorithm and all classes $j \in [k]$.

369 First, for every level set $v \in V_\lambda^k$ we estimate the probability that the rounded prediction of the
370 given predictor $R(f(x))$ equals v . By Lemma 8, if we set $\alpha_1 = \beta/12$ and $\delta_1 = \delta/3$, we know that

378 using $O\left(\frac{1}{\beta} \log\left(\frac{|V_\lambda^k|}{\delta}\right) + \frac{1}{\beta^2} \log\left(\frac{1}{\beta\delta}\right)\right)$ samples we get estimates such that with probability at
 379 least $1 - \delta/3$
 380

$$382 \quad |\hat{\mu}_v - \mathbb{P}[R(f(x)) = v]| \leq \frac{\beta}{12}, \quad \forall v \in V_\lambda^k.$$

383 **Lemma 8.** Fix $\delta_1, \alpha_1 \in (0, 1)$. Using $O\left(\frac{1}{\alpha_1} \log\left(\frac{|V_\lambda^k|}{\delta_1}\right) + \frac{1}{\alpha_1^2} \log\left(\frac{1}{\alpha_1\delta_1}\right)\right)$ samples, we can
 384 estimate $\hat{\mu}_v$, for all $v \in V_\lambda^k$, s.t. with probability at least $1 - \delta_1$
 385

$$386 \quad |\hat{\mu}_v - \mathbb{P}[R(f(x)) = v]| \leq \alpha_1, \quad \forall v \in V_\lambda^k.$$

387 For every group of bins S that appears in M during the execution of the algorithm, we estimate
 388 two types of quantities: the probability that the prediction $R(f(x))$ is in one of the bins in S and
 389 the expected label y_j of points (x, y) whose prediction $R(f(x))$ is in one of the bins in S , for all
 390 $j \in [k]$. The sizes of groups in M are all powers of 2 and all groups of the same size that occur
 391 during the execution of the algorithm are disjoint. For each group size 2^i and for each type of
 392 estimate, probability or expected label, we maintain a separate pool of samples. Since there can be
 393 at most $|B|$ distinct bins in a group in M , we need $O(\log |B|)$ separate sample pools. To analyze the
 394 sample complexity, we apply the adaptive data analysis result of Lemma 9 because the algorithm
 395 picks the set that needs adjustment adaptively at each time step.
 396

397 **Lemma 9.** Fix $n, k \in \mathbb{N}^+$ and $\alpha, \delta \in (0, 1)$. Consider an adaptive algorithm A , a distribution
 398 D over the domain $\mathcal{X} \times \mathcal{Y}$, and a function $\phi : \mathcal{X} \times \mathcal{Y} \rightarrow \Delta_k$. The algorithm adaptively
 399 selects a sequence of n disjoint events for D as follows. First, it selects E_1 and estimates
 400 $\mathbb{E}_{(x,y) \sim D} [\phi(x, y)_j \cdot \mathbb{I}[(x, y) \in E_1]]$, for all $j \in [k]$. Then, it selects event E_2 , disjoint from E_1 ,
 401 and estimates $\mathbb{E}_{(x,y) \sim D} [\phi(x, y)_j \cdot \mathbb{I}[(x, y) \in E_2]]$, for all $j \in [k]$, and so on. With $O\left(\frac{\log(nk/\delta)}{\alpha^2}\right)$
 402 shared samples, we can estimate all expectations up to additive error α and failure probability δ .
 403

404 By Lemma 9, we get that for a fixed group size $2^i \leq |B|$, using $O\left(\frac{\log^2(|B|) \log(|B| \log |B|/\delta)}{\beta^2}\right)$ samples
 405 we get probability estimates such that with probability at least $1 - \frac{\delta}{3(\lfloor \log_2 |B| \rfloor + 1)}$
 406

$$407 \quad \left| \hat{P}_S - \mathbb{P}[R(f(x)) \in S] \right| \leq \frac{\beta}{36(\lfloor \log_2 |B| \rfloor + 1)},$$

408 for all groups of bins S in M of size 2^i that ever occur during the execution of the
 409 algorithm. Similarly, by Lemma 9 we get that for a fixed group size $2^i \leq |B|$, using
 410 $O\left(\frac{\log^2(|B|) \log(|B|k \log |B|/\delta)}{\beta^2}\right)$, samples we get expected label estimates such that with probability
 411 at least $1 - \frac{\delta}{3(\lfloor \log_2 |B| \rfloor + 1)}$
 412

$$413 \quad \left| \hat{E}_{S,j} - \mathbb{E}_{(x,y) \sim D} [y_j \mathbb{I}[R(f(x)) \in S]] \right| \leq \frac{\beta}{36(\lfloor \log_2 |B| \rfloor + 1)},$$

414 for all groups of bins S in M of size 2^i that ever occur during the execution of the algorithm and all
 415 classes $j \in [k]$.
 416

417 The number of groups with different sizes up to $|B|$ that are powers of 2 is at most $\lfloor \log_2 |B| \rfloor + 1$.
 418 Thus, we have that
 419

$$420 \quad \begin{aligned} \mathbb{P}[\neg A_1 \text{ or } \neg A_2 \text{ or } \neg A_3] &\leq \mathbb{P}[\neg A_1] + \mathbb{P}[\neg A_2] + \mathbb{P}[\neg A_3] \\ &\leq \frac{\delta}{3} + (\lfloor \log_2 |B| \rfloor + 1) \frac{\delta}{3(\lfloor \log_2 |B| \rfloor + 1)} + (\lfloor \log_2 |B| \rfloor + 1) \frac{\delta}{3(\lfloor \log_2 |B| \rfloor + 1)} \leq \delta \end{aligned}$$

421 If event A_1 is true, then the size of $|B|$ is at most $O\left(\frac{1}{\beta}\right)$ because $B =$
 422 $\{v : v \in V_\lambda^k, \hat{\mu}_v \geq \beta/6\}$ and $\sum_{v \in V_\lambda^k} \mathbb{P}[R(f(x)) = v] = 1$. Thus, the algorithm can use
 423

432 $O\left(\frac{1}{\beta} \log\left(\frac{|V_\lambda^k|}{\delta}\right) + \frac{1}{\beta^2} \log^3\left(\frac{1}{\beta}\right) \log\left(\frac{k \log(1/\beta)}{\beta \delta}\right)\right)$ samples in total. Lemma 3 provides a bound
 433 of the size of V_λ^k .
 434

435 To estimate the probability of a group of bins $S \in G$, we compute the sum of probability estimates
 436 for all subsets $S' \subseteq S$ that are in M and use the following Lemma to bound the overall error. We
 437 estimate the expected label in a similar way.
 438

439 **Lemma 10.** *For each $S \in G$, the number of subsets $S' \in M$ such that $S' \subseteq S$ is at most $O(\log |B|)$.*
 440

441 3.2 ACCURACY OF THE CALIBRATED PREDICTOR

442 In this subsection, we show that if the estimates are accurate, then Algorithm 2 constructs a
 443 multiclass predictor whose squared error is lower than that of the given predictor, up to a small
 444 additive term introduced by discretization. At each round t before the algorithm terminates, it selects
 445 a bin $S^{(t)}$ and a coordinate $j^{(t)}$ with high calibration error. The algorithm then updates the predictor
 446 in two stages. In Stage 1, it computes an improved prediction vector $z^{(t)}$ for the selected bin and
 447 projects it to the simplex to obtain $\text{pred}(S^{(t)})$. In Stage 2, it checks if there is another group S' that
 448 gets mapped to the same level set as $S^{(t)}$ and if so it merges S' and $S^{(t)}$. We analyze the change
 449 in the squared error at each time step by examining separately the change due to Stage 1 and Stage
 450 2. Notably, in Lemma 12 we show that the squared error always decreases in Stage 1, whereas in
 451 Lemma 11 we demonstrate that Stage 2 might lead to a small increase. In both lemmas, we assume
 452 that the all the estimated quantities are accurate, meaning that events A_1, A_2 and A_3 as defined in the
 453 previous subsection hold. Lemma 13 provides an upper on the squared error due to the discretization
 454 of f .
 455

456 For the purposes of this proof we define

$$457 \quad h_t(x) = \begin{cases} \text{pred}(S), \text{where } S \text{ in } G \text{ contains } R(f(x)) \text{ at time step } t & \text{if } R(f(x)) \in B \\ 458 \quad \rho(R(f(x))) & \text{o.w.} \end{cases}$$

460 **Lemma 11.** *Assuming that A_1, A_2 and A_3 hold, after T time steps of the algorithm, the squared
 461 error of the predictor h is*

$$462 \quad \mathbb{E} \left[\|h(x) - y\|_2^2 \right] \\ 463 \quad \leq \mathbb{E} \left[\|h_0(x) - y\|_2^2 \right] + O\left(\beta \log\left(\frac{1}{\beta}\right)\right) \\ 464 \quad + \sum_{t=0}^{T-1} \mathbb{E} \left[\|\pi(z^{(t)}) - y\|_2^2 - \|h_t(x) - y\|_2^2 \mid R(f(x)) \in S^{(t)} \right] \mathbb{P} \left[R(f(x)) \in S^{(t)} \right]. \\ 465 \\ 466 \\ 467 \\ 468 \\ 469$$

470 **Lemma 12.** *Assuming that A_1, A_2 and A_3 hold, at time step t of the algorithm*

$$471 \quad \mathbb{E} \left[\|\pi(z^{(t)}) - y\|_2^2 - \|h_t(x) - y\|_2^2 \mid R(f(x)) \in S^{(t)} \right] \mathbb{P} \left[R(f(x)) \in S^{(t)} \right] \leq -\beta^2/9.$$

472 **Lemma 13.** *The squared error at time step 0 is $\mathbb{E} \left[\|h_0(x) - y\|_2^2 \right] \leq \mathbb{E} \left[\|f(x) - y\|_2^2 \right] + O(\beta)$.*
 473

474 3.3 TERMINATION OF THE ALGORITHM WITH SMALL CALIBRATION ERROR

475 In this subsection, we show that, assuming that the estimates are accurate, the algorithm terminates
 476 after $O(1/\beta^2)$ steps with ℓ_p calibration error at most $O(\beta^{(p-1)/p})$. Moreover, its total runtime is
 477 polynomial in $1/\beta$ and k .
 478

479 **Lemma 14.** *Assuming that A_1, A_2 and A_3 hold, the algorithm terminates after at most $O(1/\beta^2)$
 480 time steps.*
 481

482 **Lemma 15.** *Assuming that A_1, A_2 and A_3 hold, the ℓ_p calibration error $(\text{Err}_p(h))^p$ is bounded by
 483 $O(\beta^{p-1})$.*
 484

486 **Lemma 16.** *Assuming that A_1 , A_2 and A_3 hold, the algorithm terminates in time*
 487 *$O\left(\frac{k}{\beta^2} \log^3\left(\frac{1}{\beta}\right) \log\left(\frac{k}{\beta\delta}\right)\right)$.*
 488

489 Combining the results of Subsections 3.1, 3.2, and 3.3, we obtain the proof of Theorem 7.
 490

4 CONCLUSION

494 In this work, we introduced the ℓ_p calibration error for multiclass predictors and presented an
 495 algorithm that modifies a given predictor to achieve low calibration error while preserving its
 496 accuracy using only a polynomial number of samples in the number of classes. The algorithm
 497 can be applied to any value of $p > 1$ and improves the known sample complexity in the case of
 498 $p = \infty$.

499 Related work in this area has explored multicalibration, where the calibration guarantees hold for
 500 many, possibly overlapping, populations. While our work focuses on calibration, an interesting
 501 direction for future research is to generalize our results to obtain stronger sample complexity in that
 502 setting as well.

504 ETHICS STATEMENT

506 Our work advances the theoretical understanding of calibration for multiclass predictors. A practical
 507 implementation of the algorithm could be applied to real-world models to improve their reliability
 508 and interpretability. This could support efforts to responsibly deploy machine learning model
 509 systems in societal applications

511 REPRODUCIBILITY STATEMENT

513 Our work is theoretical. The complete proofs of the lemmas and the main theorem can be found in
 514 Section 3 and the Appendix.
 515

517 REFERENCES

518 Fan R. K. Chung and Lincoln Lu. Survey: Concentration inequalities and martingale inequalities:
 519 A survey. *Internet Math.*, 3(1):79–127, 2006. doi: 10.1080/15427951.2006.10129115. URL
 520 <https://doi.org/10.1080/15427951.2006.10129115>.
 521

522 A Philip Dawid. The well-calibrated bayesian. *Journal of the American Statistical Association*, 77
 523 (379):605–610, 1982.

524 Cynthia Dwork, Daniel Lee, Huijia Lin, and Pranay Tankala. From pseudorandomness to multi-
 525 group fairness and back. In Gergely Neu and Lorenzo Rosasco (eds.), *The Thirty Sixth Annual*
 526 *Conference on Learning Theory, COLT 2023, 12-15 July 2023, Bangalore, India*, volume 195
 527 of *Proceedings of Machine Learning Research*, pp. 3566–3614. PMLR, 2023. URL <https://proceedings.mlr.press/v195/dwork23a.html>.
 528

530 Dean P Foster and Rakesh V Vohra. Asymptotic calibration. *Biometrika*, 85(2):379–390, 1998.

531 Parikshit Gopalan, Michael P. Kim, Mihir Singhal, and Shengjia Zhao. Low-degree multicalibration.
 532 In Po-Ling Loh and Maxim Raginsky (eds.), *Conference on Learning Theory, 2-5 July 2022,*
 533 *London, UK*, volume 178 of *Proceedings of Machine Learning Research*, pp. 3193–3234. PMLR,
 534 2022. URL <https://proceedings.mlr.press/v178/gopalan22a.html>.
 535

536 Parikshit Gopalan, Lunjia Hu, and Guy N. Rothblum. On computationally efficient multi-class
 537 calibration. In Shipra Agrawal and Aaron Roth (eds.), *The Thirty Seventh Annual Conference*
 538 *on Learning Theory, June 30 - July 3, 2023, Edmonton, Canada*, volume 247 of *Proceedings of*
 539 *Machine Learning Research*, pp. 1983–2026. PMLR, 2024. URL <https://proceedings.mlr.press/v247/gopalan24a.html>.

540 Sebastian G. Gruber and Florian Buettner. Better uncertainty calibration via proper
 541 scores for classification and beyond. In Sanmi Koyejo, S. Mohamed, A. Agarwal,
 542 Danielle Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information
 543 Processing Systems 35: Annual Conference on Neural Information Processing Systems
 544 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022,
 545 2022*. URL http://papers.nips.cc/paper_files/paper/2022/hash/3915a87ddac8e8c2f23dbabbce6eec9-Abstract-Conference.html.

546

547 Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
 548 networks. In Doina Precup and Yee Whye Teh (eds.), *Proceedings of the 34th International
 549 Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017,
 550 volume 70 of Proceedings of Machine Learning Research*, pp. 1321–1330. PMLR, 2017. URL
 551 <http://proceedings.mlr.press/v70/guo17a.html>.

552

553 Chirag Gupta and Aaditya Ramdas. Top-label calibration and multiclass-to-binary reductions. In
 554 *The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event,
 555 April 25-29, 2022*. OpenReview.net, 2022. URL <https://openreview.net/forum?id=WqoBaaPHS->.

556

557 Nika Haghtalab, Michael I. Jordan, and Eric Zhao. A unifying perspective on multi-
 558 calibration: Game dynamics for multi-objective learning. In Alice Oh, Tristan Naumann,
 559 Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), *Advances in
 560 Neural Information Processing Systems 36: Annual Conference on Neural Information
 561 Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
 562 2023*. URL http://papers.nips.cc/paper_files/paper/2023/hash/e55edc01ac45c839a602f96e09fbcb-Abstract-Conference.html.

563

564 Úrsula Hébert-Johnson, Michael P. Kim, Omer Reingold, and Guy N. Rothblum. Multicalibration:
 565 Calibration for the (computationally-identifiable) masses. In Jennifer G. Dy and Andreas Krause
 566 (eds.), *Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
 567 Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018*, volume 80 of *Proceedings of Machine
 568 Learning Research*, pp. 1944–1953. PMLR, 2018. URL <http://proceedings.mlr.press/v80/hebert-johnson18a.html>.

569

570 Christopher Jung, Katrina Ligett, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, and Moshe
 571 Shenfeld. A new analysis of differential privacy’s generalization guarantees. In Thomas Vidick
 572 (ed.), *11th Innovations in Theoretical Computer Science Conference, ITCS 2020, January 12-
 573 14, 2020, Seattle, Washington, USA*, volume 151 of *LIPICS*, pp. 31:1–31:17. Schloss Dagstuhl
 574 - Leibniz-Zentrum für Informatik, 2020. doi: 10.4230/LIPICS.ITCS.2020.31. URL <https://doi.org/10.4230/LIPICS.ITCS.2020.31>.

575

576 Meelis Kull, Miquel Perelló-Nieto, Markus Kängsepp, Telmo de Menezes e Silva Filho, Hao
 577 Song, and Peter A. Flach. Beyond temperature scaling: Obtaining well-calibrated multi-
 578 class probabilities with dirichlet calibration. In Hanna M. Wallach, Hugo Larochelle, Alina
 579 Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), *Advances
 580 in Neural Information Processing Systems 32: Annual Conference on Neural Information
 581 Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
 582 pp. 12295–12305, 2019*. URL <https://proceedings.neurips.cc/paper/2019/hash/8ca01ea920679a0fe3728441494041b9-Abstract.html>.

583

584 Ananya Kumar, Percy Liang, and Tengyu Ma. Verified uncertainty calibration. In Hanna M.
 585 Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
 586 Garnett (eds.), *Advances in Neural Information Processing Systems 32: Annual Conference on
 587 Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
 588 BC, Canada*, pp. 3787–3798, 2019. URL <https://proceedings.neurips.cc/paper/2019/hash/f8c0c968632845cd133308b1a494967f-Abstract.html>.

589

590 Teodora Popordanoska, Raphael Sayer, and Matthew B. Blaschko. A consistent and
 591 differentiable lp canonical calibration error estimator. In Sanmi Koyejo, S. Mohamed,
 592 A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural
 593 Information Processing Systems 35: Annual Conference on Neural Information Processing*

594 *Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,*
 595 *2022, 2022.* URL http://papers.nips.cc/paper_files/paper/2022/hash/33d6e648ee4fb24acec3a4bbcd4f001e-Abstract-Conference.html.

598 Raphael Rossellini, Jake A. Soloff, Rina Foygel Barber, Zhimei Ren, and Rebecca Willett. Can a
 599 calibration metric be both testable and actionable? In Nika Haghtalab and Ankur Moitra (eds.),
 600 *The Thirty Eighth Annual Conference on Learning Theory, 30-4 July 2025, Lyon, France*, volume
 601 291 of *Proceedings of Machine Learning Research*, pp. 4937–4972. PMLR, 2025. URL <https://proceedings.mlr.press/v291/rossellini25a.html>.

603 Juozas Vaicenavicius, David Widmann, Carl R. Andersson, Fredrik Lindsten, Jacob Roll, and
 604 Thomas B. Schön. Evaluating model calibration in classification. In Kamalika Chaudhuri
 605 and Masashi Sugiyama (eds.), *The 22nd International Conference on Artificial Intelligence and*
 606 *Statistics, AISTATS 2019, 16-18 April 2019, Naha, Okinawa, Japan*, volume 89 of *Proceedings*
 607 *of Machine Learning Research*, pp. 3459–3467. PMLR, 2019. URL <http://proceedings.mlr.press/v89/vaicenavicius19a.html>.

609 David Widmann, Fredrik Lindsten, and Dave Zachariah. Calibration tests in multi-class
 610 classification: A unifying framework. In Hanna M. Wallach, Hugo Larochelle, Alina
 611 Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), *Advances*
 612 *in Neural Information Processing Systems 32: Annual Conference on Neural Information*
 613 *Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada*,
 614 pp. 12236–12246, 2019. URL <https://proceedings.neurips.cc/paper/2019/hash/1c336b8080f82bcc2cd2499b4c57261d-Abstract.html>.

616 Jize Zhang, Bhavya Kailkhura, and Thomas Yong-Jin Han. Mix-n-match : Ensemble and
 617 compositional methods for uncertainty calibration in deep learning. In *Proceedings of the 37th*
 618 *International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event*,
 619 volume 119 of *Proceedings of Machine Learning Research*, pp. 11117–11128. PMLR, 2020.
 620 URL <http://proceedings.mlr.press/v119/zhang20k.html>.

623 A APPENDIX

625 A.1 PROOFS FROM SECTION 2

627 **Lemma 17** (Lemma 3 restated). *For any $\lambda, k \in \mathbb{N}^+$, the number of level sets in V_λ^k is at most $\binom{\lambda+k}{k}$.*
 628 *Note that $\log(|V_\lambda^k|) = O(\min(k, \lambda) \ln(k + \lambda))$ whereas $\log(|L^k|) = O(k \ln(\lambda))$.*

630 *Proof.* Every $v \in V_\lambda^k$ corresponds to a $u \in \Delta_k$. Therefore, we have that

$$632 \sum_{i \in [k]} v_i = \sum_{i \in [k]} \frac{\lfloor u_i \lambda \rfloor}{\lambda} = 1 - \left(1 - \sum_{i \in [k]} \frac{\lfloor u_i \lambda \rfloor}{\lambda} \right).$$

636 Let $v_{k+1} = 1 - \sum_{i \in [k]} \frac{\lfloor u_i \lambda \rfloor}{\lambda}$, which is a non-negative integer multiple of $1/\lambda$. By rearranging the
 637 terms, we have that $\sum_{i \in [k+1]} v_i = 1$. The number of $k+1$ tuples of non-negative integer multiples
 638 of $1/\lambda$ that sum up to 1 is $\binom{\lambda+k}{k}$. Therefore, $|V_\lambda^k| = \binom{\lambda+k}{k}$. \square

640 A.2 PROOFS FROM SUBSECTION 3.1

642 **Lemma 18** (Lemma 8 restated). *Fix $\delta_1, \alpha_1 \in (0, 1)$. Using*
 643 *$O\left(\frac{1}{\alpha_1} \log\left(\frac{|V_\lambda^k|}{\delta_1}\right) + \frac{1}{\alpha_1^2} \log\left(\frac{1}{\alpha_1 \delta_1}\right)\right)$ samples, we can estimate $\hat{\mu}_v$, for all $v \in V_\lambda^k$, s.t. with*
 644 *probability at least $1 - \delta_1$*

$$647 |\hat{\mu}_v - \mathbb{P}[R(f(x)) = v]| \leq \alpha_1, \forall v \in V_\lambda^k.$$

648 *Proof.* There are at most $\frac{1}{\alpha_1}$ -bins such that $\mathbb{P}[R(f(x)) = v] \geq \alpha_1$. We show that using $m_1 =$
 649 $\frac{1}{2\alpha_1^2} \ln \left(\frac{4}{\alpha_1 \delta_1} \right)$ samples, we can estimate all of them up to additive error α_1 . By applying the
 650 Hoeffding inequality and a union bound we obtain that
 651

$$\begin{aligned} 654 \quad & \mathbb{P} [\exists v \text{ s.t. } \mathbb{P}[R(f(x)) = v] \geq \alpha_1 : |\hat{\mu}_v - \mathbb{P}[R(f(x)) = v]| \geq \alpha_1] \\ 655 \quad & \leq \frac{2 |\{v : \mathbb{P}[R(f(x)) = v] \geq \alpha_1\}|}{e^{2\alpha_1^2 m_1}} \\ 656 \quad & \leq \frac{2}{\alpha_1 e^{2\alpha_1^2 m_1}} \leq \frac{\delta_1}{2}. \\ 657 \end{aligned}$$

660 For the rest of the bins whose probabilities are less than α_1 , we show that using $m_2 =$
 661 $\frac{4}{3\alpha_1} \ln \left(2|V_\lambda^k| / \delta_1 \right)$ samples is enough to estimate all of them up to additive error α_1 . In this case,
 662 we have that for all v such that $\mathbb{P}[R(f(x)) = v] < \alpha_1$, $\mathbb{P}[R(f(x)) = v] - \hat{\mu}_v < \alpha_1$. By applying
 663 Lemma 5 we also get that
 664

$$\begin{aligned} 665 \quad & \mathbb{P} [\exists v \text{ s.t. } \mathbb{P}[R(f(x)) = v] < \alpha_1 : \hat{\mu}_v - \mathbb{P}[R(f(x)) = v] \geq \alpha_1] \\ 666 \quad & \leq |V_\lambda^k| \cdot \exp \left(-\frac{m_2 \alpha_1^2}{2(\alpha_1 + \alpha_1/3)} \right) \leq \frac{\delta_1}{2}. \\ 667 \end{aligned}$$

669 By union bound we obtain that if we use $O \left(\frac{1}{\alpha_1} \log \left(\frac{|V_\lambda^k|}{\delta_1} \right) + \frac{1}{\alpha_1^2} \log \left(\frac{1}{\alpha_1 \delta_1} \right) \right)$ samples, then
 670

$$\mathbb{P} [\exists v \in V_\lambda^k : |\hat{\mu}_v - \mathbb{P}[R(f(x)) = v]| \geq \alpha_1] \leq \delta_1. \quad \square$$

674 **Lemma 19** (Lemma 9 restated). *Fix $n, k \in \mathbb{N}^+$ and $\alpha, \delta \in (0, 1)$. Consider an adaptive algorithm
 675 A , a distribution D over the domain $\mathcal{X} \times \mathcal{Y}$, and a function $\phi : \mathcal{X} \times \mathcal{Y} \rightarrow \Delta_k$. The algorithm
 676 adaptively selects a sequence of n disjoint events for D as follows. First, it selects E_1 and estimates
 677 $\mathbb{E}_{(x,y) \sim D} [\phi(x, y)_j \cdot \mathbb{I}[(x, y) \in E_1]]$, for all $j \in [k]$. Then, it selects event E_2 , disjoint from E_1 , and
 678 estimates $\mathbb{E}_{(x,y) \sim D} [\phi(x, y)_j \cdot \mathbb{I}[(x, y) \in E_2]]$, for all $j \in [k]$, and so on. With $O \left(\frac{\log(nk/\delta)}{\alpha^2} \right)$ shared
 679 samples, we can estimate all expectations up to additive error α and failure probability δ .*
 680

681 *Proof.* There are many ways to achieve this. Here, we describe one approach using differential
 682 privacy and a transfer theorem to adaptive analysis. The algorithm uses a set S of $m = \frac{32 \ln(4nk/\delta)}{\alpha^2}$
 683 samples and for each event E_i and coordinate $j \in [k]$, it reports $\hat{e}_{i,j} = \frac{1}{m} \sum_{u \in S} \phi(u)_j \cdot$
 684 $\mathbb{I}[u \in E_i] + \varepsilon_{i,j}$, where $\varepsilon_{i,j} \sim \text{Lap}(8/(m\alpha))$. Because the events are disjoint and each sample
 685 contributes to at most one event, the ℓ_1 global sensitivity of the $k \times n$ -dimensional vector
 686 $(e_{1,1}, \dots, e_{1,k}, \dots, e_{n,1}, \dots, e_{n,k})$, where $e_{i,j} = \frac{1}{m} \sum_{u \in S} \phi(u)_j \cdot \mathbb{I}[u \in E_i]$, is at most $2/m$.
 687 Hence, algorithm A is $(\alpha/4, 0)$ -differentially private. Since $\varepsilon_{1,1}, \dots, \varepsilon_{n,k}$ are i.i.d. Laplace random
 688 variables with $\lambda = \frac{8}{m\alpha}$, we know that for any $t > 0$, $\mathbb{P} [\max_{i \in [n], j \in [k]} |\varepsilon_{i,j}| > t\lambda] \leq nde^{-t}$. For
 689 $t = \ln(2nk/\delta)$, we get that with probability at least $1 - \frac{\delta}{2}$, the maximum additive error $|\varepsilon_{i,j}|$ is at
 690 most $\frac{8 \ln(2nk/\delta)}{m\alpha}$. By Lemma 4, with probability at least $1 - \delta$, we have that
 691

$$\begin{aligned} 694 \quad & \max_{i \in [n], j \in [d]} |\mathbb{E}_{(x,y) \sim D} [\phi(x, y)_j \cdot \mathbb{I}[(x, y) \in E_i]] - \hat{e}_{i,j}| \leq \frac{8 \ln \left(\frac{2nk}{\delta} \right)}{m\alpha} + e^{\alpha/4} - 1 + \sqrt{\frac{2 \ln \left(\frac{4}{\delta} \right)}{m}} \\ 695 \quad & \leq \frac{\alpha}{4} + \frac{\alpha}{2} + \frac{\alpha}{4} = \alpha. \\ 696 \end{aligned}$$

697 **Lemma 20** (Lemma 10 restated). *For each $S \in G$, the number of subsets $S' \in M$ such that $S' \subseteq S$
 698 is at most $O(\log |B|)$.*
 699

702 *Proof.* For a fixed $S \in G$, all $S' \in M$ such that $S' \subseteq S$ are of different sizes. This holds because if
 703 there were two subsets $S_1, S_2 \in M$ such that $S_1, S_2 \subseteq S$ and $|S_1| = |S_2|$, we would have already
 704 merged them. Additionally, the sizes of all $S' \in M$ are powers of 2. The number of sets with
 705 different sizes up to $|B|$ that are powers of 2 is at most $\lfloor \log_2 |B| \rfloor + 1$. \square
 706
 707

708 A.3 PROOFS FROM SUBSECTION 3.2
 709

710 **Lemma 21** (Lemma 11 restated). *Assuming that A_1, A_2 and A_3 hold, after T time steps of the
 711 algorithm, the squared error of the predictor h is*

$$\begin{aligned} 714 & \mathbb{E} [\|h(x) - y\|_2^2] \\ 715 & \leq \mathbb{E} [\|h_0(x) - y\|_2^2] + O\left(\beta \log\left(\frac{1}{\beta}\right)\right) \\ 716 & + \sum_{t=0}^{T-1} \mathbb{E} [\|\pi(z^{(t)}) - y\|_2^2 - \|h_t(x) - y\|_2^2 \mid R(f(x)) \in S^{(t)}] \mathbb{P}[R(f(x)) \in S^{(t)}]. \\ 717 & \\ 718 & \\ 719 & \\ 720 & \\ 721 & \\ 722 & \\ 723 & \\ 724 & \\ 725 & \\ 726 & \end{aligned}$$

727 *Proof.* At each time step $t \leq T - 1$ there are three possible cases depending on whether and how
 728 the algorithm merges bins after updating the prediction for $S^{(t)}$.
 729

730 Case 1: there is no S' such that $R(\pi(z^{(t)})) = R(\text{pred}(S'))$. Then,

$$\begin{aligned} 731 & \\ 732 & \\ 733 & \mathbb{E} [\|h_{t+1}(x) - y\|_2^2] - \mathbb{E} [\|h_t(x) - y\|_2^2] \\ 734 & = \mathbb{E} [\|h_{t+1}(x) - y\|_2^2 - \|h_t(x) - y\|_2^2 \mid R(f(x)) \in S^{(t)}] \mathbb{P}[R(f(x)) \in S^{(t)}] \\ 735 & = \mathbb{E} [\|\pi(z^{(t)}) - y\|_2^2 - \|h_t(x) - y\|_2^2 \mid R(f(x)) \in S^{(t)}] \mathbb{P}[R(f(x)) \in S^{(t)}]. \\ 736 & \\ 737 & \\ 738 & \\ 739 & \end{aligned}$$

740
 741 Case 2: there is a S' such that $R(\pi(z^{(t)})) = R(\text{pred}(S'))$ and $\sum_{S \in M: S \subseteq S^{(t)}} \hat{P}_S >$
 742 $\sum_{S \in M: S \subseteq S'} \hat{P}_S$. Then,
 743

$$\begin{aligned} 744 & \mathbb{E} [\|h_{t+1}(x) - y\|_2^2] - \mathbb{E} [\|h_t(x) - y\|_2^2] \\ 745 & = \mathbb{E} [\|\pi(z^{(t)}) - y\|_2^2 - \|h_t(x) - y\|_2^2 \mid R(f(x)) \in S^{(t)}] \mathbb{P}[R(f(x)) \in S^{(t)}] \\ 746 & + \mathbb{E} [\|\pi(z^{(t)}) - y\|_2^2 - \|h_t(x) - y\|_2^2 \mid R(f(x)) \in S'] \mathbb{P}[R(f(x)) \in S'] \\ 747 & \leq \mathbb{E} [\|\pi(z^{(t)}) - y\|_2^2 - \|h_t(x) - y\|_2^2 \mid R(f(x)) \in S^{(t)}] \mathbb{P}[R(f(x)) \in S^{(t)}] \\ 748 & + \frac{4}{\lambda} \mathbb{P}[R(f(x)) \in S']. \\ 749 & \\ 750 & \\ 751 & \\ 752 & \\ 753 & \\ 754 & \\ 755 & \end{aligned}$$

756 The last inequality holds because if $R(f(x)) \in S'$, we have that
 757

$$\begin{aligned}
 758 & \mathbb{E} \left[\left\| \pi(z^{(t)}) - y \right\|_2^2 - \|h_t(x) - y\|_2^2 \mid R(f(x)) \in S' \right] \\
 759 & = \mathbb{E} \left[\left\| \pi(z^{(t)}) - y \right\|_2^2 - \|\text{pred}(S') - y\|_2^2 \mid R(f(x)) \in S' \right] \\
 760 & \leq \left\| \pi(z^{(t)}) \right\|_2^2 - \|\text{pred}(S')\|_2^2 + 2 \max_{j \in [k]} \left| \pi(z^{(t)})_j - \text{pred}(S')_j \right| \\
 761 & \leq \left(\max_{j \in [k]} \left| \pi(z^{(t)})_j - \text{pred}(S')_j \right| \right) \sum_{j \in [k]} \left(\left| \pi(z^{(t)})_j \right| + \left| \text{pred}(S')_j \right| \right) \\
 762 & \quad + 2 \max_{j \in [k]} \left| \pi(z^{(t)})_j - \text{pred}(S')_j \right|. \\
 763 & \\
 764 & \\
 765 & \\
 766 & \\
 767 & \\
 768 & \\
 769 &
 \end{aligned}$$

770 Since both $\pi(z^{(t)})$ and $\text{pred}(S')$ are in the same level set when rounded by R , for each coordinate
 771 $j \in [k]$, $\left| \pi(z^{(t)})_j - \text{pred}(S')_j \right| \leq 1/\lambda$. Furthermore, both $\pi(z^{(t)})$ and $\text{pred}(S')$ are probability
 772 distributions and, hence, their coordinates sum to 1. Therefore,
 773

$$\left(\max_{j \in [k]} \left| \pi(z^{(t)})_j - \text{pred}(S')_j \right| \right) \sum_{j \in [k]} \left(\left| \pi(z^{(t)})_j \right| + \left| \text{pred}(S')_j \right| \right) \leq \frac{2}{\lambda}.$$

774 Case 3: there is a S' such that $R(\pi(z^{(t)})) = R(\text{pred}(S'))$ and $\sum_{S \in M: S \subseteq S^{(t)}} \hat{P}_S \leq$
 775 $\sum_{S \in M: S \subseteq S'} \hat{P}_S$. Then,
 776

$$\begin{aligned}
 777 & \mathbb{E} \left[\|h_{t+1}(x) - y\|_2^2 \right] - \mathbb{E} \left[\|h_t(x) - y\|_2^2 \right] \\
 778 & = \mathbb{E} \left[\|\text{pred}(S') - y\|_2^2 - \|h_t(x) - y\|_2^2 \mid R(f(x)) \in S^{(t)} \right] \mathbb{P} \left[R(f(x)) \in S^{(t)} \right] \\
 779 & = \mathbb{E} \left[\left\| \pi(z^{(t)}) - y \right\|_2^2 - \|h_t(x) - y\|_2^2 \mid R(f(x)) \in S^{(t)} \right] \mathbb{P} \left[R(f(x)) \in S^{(t)} \right] \\
 780 & \quad + \mathbb{E} \left[\|\text{pred}(S') - y\|_2^2 - \left\| \pi(z^{(t)}) - y \right\|_2^2 \mid R(f(x)) \in S^{(t)} \right] \mathbb{P} \left[R(f(x)) \in S^{(t)} \right] \\
 781 & \leq \mathbb{E} \left[\left\| \pi(z^{(t)}) - y \right\|_2^2 - \|h_t(x) - y\|_2^2 \mid R(f(x)) \in S^{(t)} \right] \mathbb{P} \left[R(f(x)) \in S^{(t)} \right] \\
 782 & \quad + \frac{4}{\lambda} \mathbb{P} \left[R(f(x)) \in S^{(t)} \right]. \\
 783 & \\
 784 & \\
 785 & \\
 786 & \\
 787 & \\
 788 & \\
 789 & \\
 790 & \\
 791 & \\
 792 & \\
 793 &
 \end{aligned}$$

794 Similary to the previous case, the last inequality holds because we have that
 795

$$\begin{aligned}
 796 & \mathbb{E} \left[\|\text{pred}(S') - y\|_2^2 - \left\| \pi(z^{(t)}) - y \right\|_2^2 \mid R(f(x)) \in S^{(t)} \right] \\
 797 & \leq \|\text{pred}(S')\|_2^2 - \left\| \pi(z^{(t)}) \right\|_2^2 + 2 \max_{j \in [k]} \left| \pi(z^{(t)})_j - \text{pred}(S')_j \right| \\
 798 & \leq \left(\max_{j \in [k]} \left| \text{pred}(S')_j - \pi(z^{(t)})_j \right| \right) \sum_{j \in [k]} \left(\left| \text{pred}(S')_j \right| + \left| \pi(z^{(t)})_j \right| \right) \\
 799 & \quad + 2 \max_{j \in [k]} \left| \pi(z^{(t)})_j - \text{pred}(S')_j \right| \\
 800 & \leq \frac{4}{\lambda}. \\
 801 & \\
 802 & \\
 803 & \\
 804 & \\
 805 & \\
 806 & \\
 807 &
 \end{aligned}$$

808 In all three cases discussed above, the upper bound includes the term
 809

$$\mathbb{E} \left[\left\| \pi(z^{(t)}) - y \right\|_2^2 - \|h_t(x) - y\|_2^2 \mid R(f(x)) \in S^{(t)} \right] \mathbb{P} \left[R(f(x)) \in S^{(t)} \right].$$

We can interpret the merge in Stage 2 in two ways depending on the case. In Case 2, the algorithm moves the prediction of S' from $\text{pred}(S')$ to $\pi(z^{(t)})$. In Case 3, it moves the prediction of $S^{(t)}$ from $\pi(z^{(t)})$ to $\text{pred}(S')$. By summing the squared error differences over all time steps $t = 0$ to T , we get that

$$\begin{aligned} & \mathbb{E} \left[\|h_T(x) - y\|_2^2 \right] - \mathbb{E} \left[\|h_0(x) - y\|_2^2 \right] \\ & \leq \sum_{t=0}^{T-1} \mathbb{E} \left[\left\| \pi(z^{(t)}) - y \right\|_2^2 - \|h_t(x) - y\|_2^2 \middle| R(f(x)) \in S^{(t)} \right] \mathbb{P} \left[R(f(x)) \in S^{(t)} \right] \\ & \quad + \frac{4}{\lambda} \sum_{t=0}^{T-1} \mathbb{P} \left[R(f(x)) \text{ is in the bin moved in Stage 2 of round } t \right]. \end{aligned}$$

Let $\tau(v)$ denote the number of times the level set v is in the bin whose prediction gets moved in Stage 2. Then, $\sum_{t=0}^{T-1} \mathbb{P} \left[R(f(x)) \text{ is in the bin moved in Stage 2 of round } t \right] = \sum_{v \in B} \mathbb{P} \left[R(f(x)) = v \right] \cdot \tau(v)$.

We now establish an upper bound on $\tau(v)$ for $v \in B$. Suppose that v is in the bin that gets moved in Stage 2 of some time step t , during the merge bins S_a and S_b . Without loss of generality, assume that S_a is the bin being moved. This implies that $v \in S_a$ and $\sum_{S \in M: S \subseteq S_a} \hat{P}_S \leq \sum_{S \in M: S \subseteq S_b} \hat{P}_S$. By the accuracy of the probability estimates, we have that $\mathbb{P} \left[R(f(x)) \in S_a \right] \leq \mathbb{P} \left[R(f(x)) \in S_b \right] + \beta/18$. Since S_a and S_b are disjoint, $\mathbb{P} \left[R(f(x)) \in S_a \cup S_b \right] \geq \mathbb{P} \left[R(f(x)) \in S_a \right] - \beta/18$. Since each merge involving moving the bin with v (almost) doubles the size of the bin containing it, we have that

$$2^{\tau(v)} \mathbb{P} \left[R(f(x)) = v \right] - \frac{\beta}{36} \sum_{i=1}^{\tau(v)} 2^i \leq 1.$$

Hence,

$$\tau(v) \leq \log_2 \left(\frac{1 - \beta/18}{\mathbb{P} \left[R(f(x)) = v \right] - \beta/18} \right).$$

Since $\varepsilon < 1$, we have $\beta = \varepsilon^{p/(p-1)} \cdot 2^{-1/(p-1)} < 1$. Additionally, $\mathbb{P} \left[R(f(x)) = v \right] \geq \beta/6 - \beta/12 = \beta/12$ because $v \in B$. Therefore, $\tau(v) \leq \log_2(36/\beta)$. Since $\lambda = \lceil 1/\beta \rceil$, we conclude that

$$\begin{aligned} & \mathbb{E} \left[\|h_T(x) - y\|_2^2 \right] - \mathbb{E} \left[\|h_0(x) - y\|_2^2 \right] \\ & \leq \sum_{t=0}^{T-1} \mathbb{E} \left[\left\| \pi(z^{(t)}) - y \right\|_2^2 - \|h_t(x) - y\|_2^2 \middle| R(f(x)) \in S^{(t)} \right] \mathbb{P} \left[R(f(x)) \in S^{(t)} \right] \\ & \quad + \frac{4}{\lceil 1/\beta \rceil} \log_2 \left(\frac{36}{\beta} \right). \end{aligned}$$

□

Lemma 22 (Lemma 12 restated). *Assuming that A_1, A_2 and A_3 hold, at time step t of the algorithm*

$$\mathbb{E} \left[\left\| \pi(z^{(t)}) - y \right\|_2^2 - \|h_t(x) - y\|_2^2 \middle| R(f(x)) \in S^{(t)} \right] \mathbb{P} \left[R(f(x)) \in S^{(t)} \right] \leq -\beta^2/9.$$

Proof. At each time step $t \leq T-1$, before the algorithm terminates we observe the following. Since $\pi(z^{(t)}) = \arg \min_{v \in \Delta_k} \|v - z^{(t)}\|_2$ and $y \in \Delta_k$, we have that $\|\pi(z^{(t)}) - y\|_2 \leq \|z^{(t)} - y\|_2$. Therefore, it suffices to find an upper bound for the following quantity:

$$\mathbb{E} \left[\left\| z^{(t)} - y \right\|_2^2 - \|h_t(x) - y\|_2^2 \middle| R(f(x)) \in S^{(t)} \right] \mathbb{P} \left[R(f(x)) \in S^{(t)} \right].$$

864 For simplicity, let $u^{(t)} = \text{pred}(S^{(t)})$ denote the previous prediction for group $S^{(t)}$. Then we have
 865 that

$$\begin{aligned}
 867 \mathbb{E} & \left[\left\| z^{(t)} - y \right\|_2^2 - \left\| u^{(t)} - y \right\|_2^2 \middle| R(f(x)) \in S^{(t)} \right] \mathbb{P} \left[R(f(x)) \in S^{(t)} \right] \\
 868 & = \mathbb{E} \left[\left(z_{j^{(t)}}^{(t)} - y_{j^{(t)}} \right)^2 - \left(u_{j^{(t)}}^{(t)} - y_{j^{(t)}} \right)^2 \middle| R(f(x)) \in S^{(t)} \right] \mathbb{P} \left[R(f(x)) \in S^{(t)} \right] \\
 869 & = \left(\left(z_{j^{(t)}}^{(t)} \right)^2 - \left(u_{j^{(t)}}^{(t)} \right)^2 \right) \mathbb{P} \left[R(f(x)) \in S^{(t)} \right] + \left(2u_{j^{(t)}}^{(t)} - 2z_{j^{(t)}}^{(t)} \right) \mathbb{E} \left[y_{j^{(t)}} \mathbb{I} \left[R(f(x)) \in S^{(t)} \right] \right] \\
 870 & = \left(z_{j^{(t)}}^{(t)} - u_{j^{(t)}}^{(t)} \right) \left(\left(z_{j^{(t)}}^{(t)} + u_{j^{(t)}}^{(t)} \right) \mathbb{P} \left[R(f(x)) \in S^{(t)} \right] - 2\mathbb{E} \left[y_{j^{(t)}} \mathbb{I} \left[R(f(x)) \in S^{(t)} \right] \right] \right).
 \end{aligned}$$

871
 872
 873
 874
 875
 876 The value of $z_{j^{(t)}}$, as assigned by the algorithm, falls into one of two cases. Simultaneously, we
 877 have bounds on the value of $u_{j^{(t)}}$, since the algorithm has selected a bin $S^{(t)}$ with large error. These
 878 bounds play a crucial role in analyzing
 879

$$\left(z_{j^{(t)}}^{(t)} - u_{j^{(t)}}^{(t)} \right)$$

880 and
 881
 882

$$\left(\left(z_{j^{(t)}}^{(t)} + u_{j^{(t)}}^{(t)} \right) \mathbb{P} \left[R(f(x)) \in S^{(t)} \right] - 2\mathbb{E} \left[y_{j^{(t)}} \mathbb{I} \left[R(f(x)) \in S^{(t)} \right] \right] \right).$$

883
 884 Case 1: $z_{j^{(t)}}^{(t)} = 1$. Then, $\sum_{S \in M: S \subseteq S^{(t)}} \hat{E}_{S,j^{(t)}} \geq \sum_{S \in M: S \subseteq S^{(t)}} \hat{P}_S$ and
 885 $\left(\sum_{S \in M: S \subseteq S^{(t)}} \hat{P}_S \right) u_{j^{(t)}}^{(t)} - \sum_{S \in M: S \subseteq S^{(t)}} \hat{E}_{S,j^{(t)}} < -\beta/2$. Therefore,

$$\begin{aligned}
 886 \mathbb{E} & \left[\left\| z^{(t)} - y \right\|_2^2 - \left\| u^{(t)} - y \right\|_2^2 \middle| R(f(x)) \in S^{(t)} \right] \mathbb{P} \left[R(f(x)) \in S^{(t)} \right] \\
 887 & = \left(1 - u_{j^{(t)}}^{(t)} \right) \left(\left(1 + u_{j^{(t)}}^{(t)} \right) \mathbb{P} \left[R(f(x)) \in S^{(t)} \right] - 2\mathbb{E} \left[y_{j^{(t)}} \mathbb{I} \left[R(f(x)) \in S^{(t)} \right] \right] \right).
 \end{aligned}$$

888
 889
 890
 891
 892
 893
 894 We analyze the two factors separately. Since the error associated with bin $S^{(t)}$ and coordinate $j^{(t)}$
 895 is large, we have that
 896

$$\begin{aligned}
 897 & \left(\sum_{S \in M: S \subseteq S^{(t)}} \hat{P}_S \right) u_{j^{(t)}}^{(t)} \\
 898 & < \sum_{S \in M: S \subseteq S^{(t)}} \hat{E}_{S,j^{(t)}} - \frac{\beta}{2} \\
 899 & < \mathbb{E} \left[y_{j^{(t)}} \mathbb{I} \left[R(f(x)) \in S^{(t)} \right] \right] + \frac{\beta}{36(\lfloor \log_2 |B| \rfloor + 1)} \left| \left\{ S \in M : S \subseteq S^{(t)} \right\} \right| - \frac{\beta}{2} \\
 900 & \leq \mathbb{P} \left[R(f(x)) \in S^{(t)} \right] - \frac{17\beta}{36}.
 \end{aligned}$$

901 Furthermore, we have a lower on the estimated probability of $S^{(t)}$ $\sum_{S \in M: S \subseteq S^{(t)}} \hat{P}_S \geq$
 902 $\mathbb{P} \left[R(f(x)) \in S^{(t)} \right] - \frac{\beta}{36(\lfloor \log_2 |B| \rfloor + 1)} \left| \left\{ S \in M : S \subseteq S^{(t)} \right\} \right| \geq \frac{\beta}{6} - \frac{\beta}{12} - \frac{\beta}{36} > 0$ because $S^{(t)} \in G$,
 903 which implies that it contains bins from set B .

904 Combining the two inequalities above, we obtain that
 905

$$\begin{aligned}
 906 1 - u_{j^{(t)}}^{(t)} & > 1 - \frac{\mathbb{P} \left[R(f(x)) \in S^{(t)} \right] - 17\beta/36}{\mathbb{P} \left[R(f(x)) \in S^{(t)} \right] - \beta/36} \\
 907 & = \frac{\beta/2 - \beta/18}{\mathbb{P} \left[R(f(x)) \in S^{(t)} \right] - \beta/36} > \frac{4\beta}{9}.
 \end{aligned}$$

918 We now bound the second factor.
 919

$$\begin{aligned}
 & \left(1 + u_{j^{(t)}}^{(t)}\right) \mathbb{P}\left[R(f(x)) \in S^{(t)}\right] - 2\mathbb{E}\left[y_{j^{(t)}} \mathbb{I}\left[R(f(x)) \in S^{(t)}\right]\right] \\
 & \leq \left(1 + u_{j^{(t)}}^{(t)}\right) \left(\sum_{S \in M: S \subseteq S^{(t)}} \hat{P}_S + \frac{\beta}{36(\lfloor \log_2 |B| \rfloor + 1)} \left| \left\{S \in M : S \subseteq S^{(t)}\right\} \right| \right) \\
 & \quad - 2 \left(\sum_{S \in M: S \subseteq S^{(t)}} \hat{E}_{S, j^{(t)}} - \frac{\beta}{36(\lfloor \log_2 |B| \rfloor + 1)} \left| \left\{S \in M : S \subseteq S^{(t)}\right\} \right| \right) \\
 & \leq u_{j^{(t)}}^{(t)} \left(\sum_{S \in M: S \subseteq S^{(t)}} \hat{P}_S \right) - \sum_{S \in M: S \subseteq S^{(t)}} \hat{E}_{S, j^{(t)}} + \sum_{S \in M: S \subseteq S^{(t)}} \hat{P}_S - \sum_{S \in M: S \subseteq S^{(t)}} \hat{E}_{S, j^{(t)}} + \frac{\beta}{9} \\
 & < -\frac{7\beta}{18}.
 \end{aligned}$$

934 Multiplying the two factors, we see that
 935

$$\mathbb{E} \left[\left\| z^{(t)} - y \right\|_2^2 - \left\| u^{(t)} - y \right\|_2^2 \middle| R(f(x)) \in S^{(t)} \right] \mathbb{P}\left[R(f(x)) \in S^{(t)}\right] < -\frac{14\beta^2}{81}.$$

939 At a high level, we have shown that the expected difference in squared error is strictly negative in
 940 this case.

941 Case 2: $z_{j^{(t)}}^{(t)} = \left(\sum_{S \in M: S \subseteq S^{(t)}} \hat{E}_{S, j^{(t)}} \right) / \left(\sum_{S \in M: S \subseteq S^{(t)}} \hat{P}_S \right) \leq 1$. We consider two subcases
 942 based on the behavior of $u_{j^{(t)}}^{(t)}$.
 943

944 Subcase 1: $\sum_{S \in M: S \subseteq S^{(t)}} \hat{E}_{S, j^{(t)}} - \left(\sum_{S \in M: S \subseteq S^{(t)}} \hat{P}_S \right) u_{j^{(t)}}^{(t)} > \beta/2$. Then, it follows that
 945

$$z_{j^{(t)}}^{(t)} - u_{j^{(t)}}^{(t)} = \frac{\sum_{S \in M: S \subseteq S^{(t)}} \hat{E}_{S, j^{(t)}} - u_{j^{(t)}}^{(t)}}{\sum_{S \in M: S \subseteq S^{(t)}} \hat{P}_S} > \frac{\beta}{2 \left(\sum_{S \in M: S \subseteq S^{(t)}} \hat{P}_S \right)}$$

946 and
 947

$$\begin{aligned}
 & \left(z_{j^{(t)}}^{(t)} + u_{j^{(t)}}^{(t)} \right) \mathbb{P}\left[R(f(x)) \in S^{(t)}\right] - 2\mathbb{E}\left[y_{j^{(t)}} \mathbb{I}\left[R(f(x)) \in S^{(t)}\right]\right] \\
 & = \left(\frac{\sum_{S \in M: S \subseteq S^{(t)}} \hat{E}_{S, j^{(t)}} + u_{j^{(t)}}^{(t)}}{\sum_{S \in M: S \subseteq S^{(t)}} \hat{P}_S} \right) \mathbb{P}\left[R(f(x)) \in S^{(t)}\right] - 2\mathbb{E}\left[y_{j^{(t)}} \mathbb{I}\left[R(f(x)) \in S^{(t)}\right]\right] \\
 & < \left(2 \frac{\sum_{S \in M: S \subseteq S^{(t)}} \hat{E}_{S, j^{(t)}}}{\sum_{S \in M: S \subseteq S^{(t)}} \hat{P}_S} - \frac{\beta}{2 \sum_{S \in M: S \subseteq S^{(t)}} \hat{P}_S} \right) \mathbb{P}\left[R(f(x)) \in S^{(t)}\right] - 2\mathbb{E}\left[y_{j^{(t)}} \mathbb{I}\left[R(f(x)) \in S^{(t)}\right]\right] \\
 & \leq \left(2 \frac{\sum_{S \in M: S \subseteq S^{(t)}} \hat{E}_{S, j^{(t)}}}{\sum_{S \in M: S \subseteq S^{(t)}} \hat{P}_S} - \frac{\beta}{2 \sum_{S \in M: S \subseteq S^{(t)}} \hat{P}_S} \right) \\
 & \quad \cdot \left(\sum_{S \in M: S \subseteq S^{(t)}} \hat{P}_S + \frac{\beta}{36(\lfloor \log_2 |B| \rfloor + 1)} \left| \left\{S \in M : S \subseteq S^{(t)}\right\} \right| \right) \\
 & \quad - 2 \left(\sum_{S \in M: S \subseteq S^{(t)}} \hat{E}_{S, j^{(t)}} - \frac{\beta}{36(\lfloor \log_2 |B| \rfloor + 1)} \left| \left\{S \in M : S \subseteq S^{(t)}\right\} \right| \right) \\
 & \leq -\frac{\beta}{2} - \frac{\beta^2}{2 \cdot 36(\lfloor \log_2 |B| \rfloor + 1) \sum_{S \in M: S \subseteq S^{(t)}} \hat{P}_S} \left| \left\{S \in M : S \subseteq S^{(t)}\right\} \right| + \frac{\beta}{18} < -\frac{4\beta}{9}.
 \end{aligned}$$

972 Subcase 2: $\sum_{S \in M: S \subseteq S^{(t)}} \hat{E}_{S, j^{(t)}} - \left(\sum_{S \in M: S \subseteq S^{(t)}} \hat{P}_S \right) u_{j^{(t)}}^{(t)} < -\beta/2$. Then, it follows that
 973

974
 975
$$z_{j^{(t)}}^{(t)} - u_{j^{(t)}}^{(t)} = \frac{\sum_{S \in M: S \subseteq S^{(t)}} \hat{E}_{S, j^{(t)}}}{\sum_{S \in M: S \subseteq S^{(t)}} \hat{P}_S} - u_{j^{(t)}}^{(t)} < -\frac{\beta}{2 \left(\sum_{S \in M: S \subseteq S^{(t)}} \hat{P}_S \right)}$$

 976
 977

978 and
 979

980
 981
$$\left(z_{j^{(t)}}^{(t)} + u_{j^{(t)}}^{(t)} \right) \mathbb{P} \left[R(f(x)) \in S^{(t)} \right] - 2\mathbb{E} \left[y_{j^{(t)}} \mathbb{I} \left[R(f(x)) \in S^{(t)} \right] \right]$$

 982
 983
$$= \left(\frac{\sum_{S \in M: S \subseteq S^{(t)}} \hat{E}_{S, j^{(t)}}}{\sum_{S \in M: S \subseteq S^{(t)}} \hat{P}_S} + u_{j^{(t)}}^{(t)} \right) \mathbb{P} \left[R(f(x)) \in S^{(t)} \right] - 2\mathbb{E} \left[y_{j^{(t)}} \mathbb{I} \left[R(f(x)) \in S^{(t)} \right] \right]$$

 984
 985
$$> \left(2 \frac{\sum_{S \in M: S \subseteq S^{(t)}} \hat{E}_{S, j^{(t)}}}{\sum_{S \in M: S \subseteq S^{(t)}} \hat{P}_S} + \frac{\beta}{2 \sum_{S \in M: S \subseteq S^{(t)}} \hat{P}_S} \right)$$

 986
 987
$$\cdot \left(\sum_{S \in M: S \subseteq S^{(t)}} \hat{P}_S - \frac{\beta}{36(\lfloor \log_2 |B| \rfloor + 1)} \left| \left\{ S \in M : S \subseteq S^{(t)} \right\} \right| \right)$$

 988
 989
 990
$$- 2 \left(\sum_{S \in M: S \subseteq S^{(t)}} \hat{E}_{S, j^{(t)}} + \frac{\beta}{36(\lfloor \log_2 |B| \rfloor + 1)} \left| \left\{ S \in M : S \subseteq S^{(t)} \right\} \right| \right)$$

 991
 992
$$\geq \frac{\beta}{2} - \frac{\beta^2}{2 \cdot 36(\lfloor \log_2 |B| \rfloor + 1) \sum_{S \in M: S \subseteq S^{(t)}} \hat{P}_S} \left| \left\{ S \in M : S \subseteq S^{(t)} \right\} \right| - \frac{\beta}{18} > \frac{4\beta}{9}.$$

 993
 994
 995
 996
 997

998 Therefore, in both subcases the expected difference in squared error is also strictly negative.
 999 Specifically, we have
 1000

1001
 1002
$$\mathbb{E} \left[\left\| z^{(t)} - y \right\|_2^2 - \left\| u^{(t)} - y \right\|_2^2 \middle| R(f(x)) \in S^{(t)} \right] \mathbb{P} \left[R(f(x)) \in S^{(t)} \right]$$

 1003
 1004
$$< - \left(\frac{4\beta}{9} \right) \frac{\beta}{2 \left(\sum_{S \in M: S \subseteq S^{(t)}} \hat{P}_S \right)}$$

 1005
 1006
 1007
$$< -\frac{\beta^2}{9}.$$

 1008

1009 because $\sum_{S \in M: S \subseteq S^{(t)}} \hat{P}_S \leq \mathbb{P} \left[R(f(x)) \in S^{(t)} \right] + \frac{\beta}{36} \leq 2$.
 1010

1011 We notice that in both cases
 1012

1013
$$\mathbb{E} \left[\left\| z^{(t)} - y \right\|_2^2 - \left\| u^{(t)} - y \right\|_2^2 \middle| R(f(x)) \in S^{(t)} \right] \mathbb{P} \left[R(f(x)) \in S^{(t)} \right] < -\frac{\beta^2}{9}.$$

 1014
 1015
 1016
 1017

□

1018
 1019 **Lemma 23** (Lemma 13 restated). *The squared error at time step 0 is $\mathbb{E} \left[\|h_0(x) - y\|_2^2 \right] \leq$*
 1020
$$\mathbb{E} \left[\|f(x) - y\|_2^2 \right] + O(\beta).$$

 1021
 1022
 1023

1024 *Proof.* By the definition of ρ , $h_0(x) = \rho(R(f(x)))$ and $f(x)$ correspond to the same level set
 1025 when they get rounded by R . Therefore, they are at most $1/\lambda$ apart in every coordinate. Additionally,
 the coordinates of $f(x)$ and $h_0(x)$ add up to 1. Since y is the one-hot encoding of a label, we obtain

1026 that

$$\begin{aligned}
 1028 \quad & \|h_0(x) - y\|_2^2 \\
 1029 \quad & = \|h_0(x) - y\|_2^2 - \|f(x) - y\|_2^2 + \|f(x) - y\|_2^2 \\
 1030 \quad & \leq \|h_0(x)\|_2^2 - \|f(x)\|_2^2 + 2 \max_{j \in [k]} |h_0(x)_j - f(x)_j| + \|f(x) - y\|_2^2 \\
 1031 \quad & \leq \left(\max_{j \in [k]} |h_0(x)_j - f(x)_j| \right) \sum_{j \in [k]} (|h_0(x)_j| + |f(x)_j|) + 2 \max_{j \in [k]} |h_0(x)_j - f(x)_j| + \|f(x) - y\|_2^2 \\
 1032 \quad & \leq \frac{1}{\lambda} \cdot 4 + \|f(x) - y\|_2^2 = \frac{4}{\lceil 1/\beta \rceil} + \|f(x) - y\|_2^2.
 \end{aligned}$$

□

1038
1039
1040 A.4 PROOFS FROM SUBSECTION 3.3
1041

1042 **Lemma 24** (Lemma 14 restated). *Assuming that A_1 , A_2 and A_3 hold, the algorithm terminates
1043 after at most $O(1/\beta^2)$ time steps.*

1044
1045 *Proof.* Assuming that events A_1 , A_2 and A_3 hold, we apply Lemmata 11 and 12 to obtain the
1046 following bound

$$\mathbb{E} \left[\|h(x) - y\|_2^2 \right] - \mathbb{E} \left[\|\rho(R(f(x))) - y\|_2^2 \right] \leq -\frac{\beta^2}{9} T + \frac{4}{\lceil 1/\beta \rceil} \log_2 \left(\frac{36}{\beta} \right).$$

1047 Moreover, since the squared loss is always bounded between 0 and 1 we have

$$-1 \leq -\frac{\beta^2}{9} T + \frac{4}{\lceil 1/\beta \rceil} \log_2 \left(\frac{36}{\beta} \right)$$

1048 which implies that the algorithm must terminate after
1049

$$T \leq \frac{9 + \frac{36}{\lceil 1/\beta \rceil} \log_2 \left(\frac{36}{\beta} \right)}{\beta^2}$$

1050 time steps. □

1051
1052 **Lemma 25** (Lemma 15 restated). *Assuming that A_1 , A_2 and A_3 hold, the ℓ_p calibration error
1053 $(\text{Err}_p(h))^p$ is bounded by $O(\beta^{p-1})$.*

1054
1055 *Proof.* Let T be the time step when the algorithm terminates. We analyze the error under the
1056 assumption that A_1 , A_2 and A_3 hold. We show that for all $v \in V_\lambda^k$ and all $j \in [k]$, $\text{Err}(h, v, j) \leq \beta$.

1057 A point x gets a prediction $h(x)$ that gets rounded to level set v in one of two ways:

- 1058 1. if v is not a high-probability bin, then the initial prediction $f(x)$ gets rounded to v , or
- 1059 2. if there exists a group of bins $S \in G$ such that $R(\text{pred}(S)) = v$, then the initial prediction $f(x)$
1060 is in a high-probability bin that, through the calibration algorithm gets mapped to group S .

1061 Note that both cases can be true simultaneously for a fixed v . In the second case, due to the
1062 termination criterion of the algorithm, $\forall j \in [k]$,

$$\hat{\text{Err}}(S, j) = \left| \left(\sum_{S' \in M: S' \subseteq S} \hat{P}_{S'} \right) \text{pred}(S)_j - \sum_{S' \in M: S' \subseteq S} \hat{E}_{S', j} \right| \leq \frac{\beta}{2}.$$

1080 For the true error of $v \in V_\lambda^k$ and $j \in [k]$, we have that
1081
1082 $\text{Err}(h, v, j)$
1083 $= |\mathbb{E}_{(x,y) \sim D} [(h(x)_j - y_j) \mathbb{I}[R(h(x)) = v]]|$
1084 $\leq |\mathbb{E}_{(x,y) \sim D} [(h(x)_j - y_j) \mathbb{I}[R(h(x)) = v \text{ and } R(f(x)) \in B]]|$
1085 $\quad + |\mathbb{E}_{(x,y) \sim D} [(h(x)_j - y_j) \mathbb{I}[R(h(x)) = v \text{ and } R(f(x)) \notin B]]|$
1086 $\leq |\mathbb{P}[R(f(x)) \in S] \cdot \text{pred}(S)_j - \mathbb{E}_{(x,y) \sim D} [y_j \mathbb{I}[R(f(x)) \in S]]|$
1087 $\mathbb{I}[\exists S \in G : R(\text{pred}(S)) = v] + \mathbb{P}[R(f(x)) = v] \mathbb{I}[v \notin B]$
1088
1089 $\leq \left(\left| \left(\sum_{S' \in M : S' \subseteq S} \hat{P}_{S'} \right) \text{pred}(S)_j - \sum_{S' \in M : S' \subseteq S} \hat{E}_{S',j} \right| \right.$
1090 $\quad + \frac{2\beta}{36(\lfloor \log_2 |B| \rfloor + 1)} |\{S' \in M : S' \subseteq S\}| \mathbb{I}[\exists S \in G : R(\text{pred}(S)) = v] + \left(\frac{\beta}{6} + \frac{\beta}{12} \right) \mathbb{I}[v \notin B]$
1091
1092 $\leq \left(\frac{\beta}{2} + \frac{\beta}{18} \right) \mathbb{I}[\exists S \in G : R(\text{pred}(S)) = v] + \frac{\beta}{4} \mathbb{I}[v \notin B]$
1093
1094 $\leq \beta$
1095
1096
1097 Therefore,

$$\begin{aligned}
& \sum_{v \in V_\lambda^k} \sum_{j=1}^k (\text{Err}(h, v, j))^p \\
& \leq \left(\sum_{v \in V_\lambda^k} \sum_{j=1}^k \text{Err}(h, v, j) \right) \max_{v \in V_\lambda^k, j \in [k]} (\text{Err}(h, v, j))^{p-1} \\
& \leq \left(\sum_{v \in V_\lambda^k} \sum_{j=1}^k \left(\mathbb{E}_{(x,y) \sim D} [h(x)_j \mid R(h(x)) = v] \right. \right. \\
& \quad \left. \left. + \mathbb{E}_{(x,y) \sim D} [y_j \mid R(h(x)) = v] \right) \mathbb{P}[R(h(x)) = v] \right) \beta^{p-1} \\
& \leq 2\beta^{p-1}
\end{aligned}$$

1100 This holds because for all $v \in V_\lambda^k$, $\sum_{j=1}^k \mathbb{E}_{(x,y) \sim D} [h(x)_j \mid R(h(x)) = v] = 1$. As a result we get
1101 that $\mathbb{P}[\text{Err}_p(h) > (2\beta^{p-1})^{1/p} \mid A_1, A_2, A_3] = 0$. \square
1102

1103 **Lemma 26** (Lemma 16 restated). *Assuming that A_1 , A_2 and A_3 hold, the algorithm terminates in
1104 time $O\left(\frac{k}{\beta^2} \log^3\left(\frac{1}{\beta}\right) \log\left(\frac{k}{\beta\delta}\right)\right)$.*
1105

1106 *Proof.* Assuming that A_1 , A_2 and A_3 hold, Algorithm 2 has time complexity $O\left(\text{poly}\left(\frac{1}{\beta}, k\right)\right)$,
1107 where poly denotes a polynomial function. We analyze the time complexity of each phase of the
1108 algorithm.

1109 Phase 1: Identifying high-probability bins. This phase requires $O(n)$ time, where n is the number of
1110 samples used to estimate $\hat{\mu}_v$. According to the analysis in Subsection 3.1, $n = O\left(\frac{1}{\beta^2} \log\left(\frac{k}{\beta\delta}\right)\right)$.
1111 Notably, this step avoids iterating over all bins in V_λ^k by examining only bins containing input
1112 samples. This can be efficiently implemented using a dictionary/hash table where keys represent
1113 bins and values are lists of samples in each bin. The dictionary size equals the number of non-empty
1114 bins. From this point forward the algorithm operates exclusively on the high probability bins in B ,
1115 whose cardinality is linear in $\frac{1}{\beta}$.

1116 Phase 2: Initializing data structures M and G . The initialization requires time linear in $|B|k = O\left(\frac{1}{\beta}k\right)$. For the computation of the error, the algorithm first estimates \hat{P} and \hat{E} . Similarly to
1117 Phase 1, this part requires $O(mk)$ time, where m is the number of samples used to estimate \hat{P} and
1118

1134 \hat{E} . By the analysis in Subsection 3.1, the number of these samples is $O\left(\frac{1}{\beta^2} \log^3\left(\frac{1}{\beta}\right) \log\left(\frac{k}{\beta\delta}\right)\right)$.
 1135 Then, the algorithm projects every vector in G using ρ to get the values of pred , which takes time
 1136 $O(k)$. More specifically, $r(v)$ is of the form $r(v)_i = v_i + z$, where $z = \frac{1 - \sum_{i \in [k]} v_i}{k}$. Finally, the
 1137 computation of the estimated errors takes $O(k|B|) = O\left(\frac{k}{\beta}\right)$ time.
 1138

1140 Phase 3: Calibration. The algorithm calibrates predictions for bins in B by executing at most
 1141 $O\left(\frac{1}{\beta^2}\right)$ iterations. Each iteration performs a polynomial number of operations in k and $\frac{1}{\beta}$. More
 1142 specifically, searching in G for the large-error group can take at most $O(\log(|B|k))$ time if we
 1143 store the errors of the groups in G in a priority queue. The computation of $z^{(t)}$ takes time at most
 1144 $O(|S^{(t)}| + k)$. By Lemma 10 we know that $|S^{(t)}| = O(\log |B|)$. After the algorithm computes
 1145 $z^{(t)}$, it projects it to the simplex using π , which can be done in time $O(k \log(k))$. The search for
 1146 groups to merge can be implemented using a hash table whose keys are $R(\text{pred}(S))$ for S in G and
 1147 values are the groups corresponding to each key and, hence, takes constant time. The total number
 1148 of merges in G and M throughout the entire algorithm is bounded by $|B|$, since we begin with $|B|$
 1149 groups and only merge. Therefore, the parts of the algorithm that perform the merges get executed
 1150 at most $O(\frac{1}{\beta})$ times in total. Merging two groups in G takes time $O(|B|k)$ since we only update
 1151 the predictions for the affected bins. The merge in M takes time $O(k)$ since we only adjust the
 1152 estimates for S_1 and S_2 . The error computation step runs in time linear in $k \log |B|$ since by Lemma
 1153 10 the sum used to estimate the probability of $S^{(t)}$ consists of at most $O(\log |B|)$ terms.
 1154

1155 Combining the analyses of the three phases, we conclude that the algorithm's time complexity is
 1156 $O\left(\frac{k}{\beta^2} \log^3\left(\frac{1}{\beta}\right) \log\left(\frac{k}{\beta\delta}\right)\right)$. □
 1157

1158 USE OF LLMs

1159 We used Claude Opus 4.1 by Anthropic for grammar and spell checking.
 1160

1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187