
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SAMPLE-EFFICIENT MULTICLASS CALIBRATION
UNDER ℓp ERROR

Anonymous authors
Paper under double-blind review

ABSTRACT

Calibrating a multiclass predictor, that outputs a distribution over labels, is
particularly challenging due to the exponential number of possible prediction
values. In this work, we propose a new definition of calibration error that
interpolates between two established calibration error notions, one with known
exponential sample complexity and one with polynomial sample complexity for
calibrating a given predictor. Our algorithm can calibrate any given predictor
for the entire range of interpolation, except for one endpoint, using only a
polynomial number of samples. At the other endpoint, we achieve nearly optimal
dependence on the error parameter, improving upon previous work. A key
technical contribution is a novel application of adaptive data analysis with high
adaptivity but only logarithmic overhead in the sample complexity.

1 INTRODUCTION

Trustworthiness and interpretability have become key concerns for machine learning models,
especially as they are increasingly used for critical decision making. Calibration is an important
tool, dating back to classical forecasting literature (Dawid, 1982; Foster & Vohra, 1998), that can be
used to address some of these concerns. A predictor h for binary classification that outputs values
in [0, 1] is calibrated if, among the inputs x for which h(x) = q, exactly q fraction of them have a
positive outcome. In recent years, a large body of work has focused on developing algorithms that
either learn calibrated predictors or calibrate previously trained models. This notion has also been
extended to multi-calibration (Hébert-Johnson et al., 2018), where the calibration guarantee holds
for multiple, possibly overlapping populations. Another important extension is to the multiclass
setting, which is the focus of this work.

Calibration presents two main challenges. The first is defining a notion of calibration error that
quantifies how much a predictor deviates from being perfectly calibrated. This error metric must be
testable (Rossellini et al., 2025), meaning that we should be able to detect that a predictor has small
error using a small number of samples. While sharing common intuition, many different definitions
of calibration error exist in the literature. Typically, the predicted probabilities are divided into bins
and the calibration guarantee applies to conditioning on the bins rather than on the predicted values.
However, some proposed error metrics are not testable. For example, the L∞ error as defined by
Gruber & Buettner (2022) measures the maximum conditional deviation between the prediction
and the true probability of the class across bins. This maximum could occur in a bin containing
points that appear with very small probability, making it practically undetectable due to insufficient
sampling. The second challenge is developing algorithms that efficiently learn a calibrated predictor
from scratch or recalibrate existing predictors, considering both the sample complexity and the
computational efficiency with respect to the problem parameters.

While discretizing the prediction space results in a reasonable number of bins for binary
classification, in the multiclass setting the number of bins grows exponentially with the number
of classes, presenting a unique challenge. In fact, for a natural definition of the distance to
calibration, testing whether a given model is perfectly calibrated requires the number of samples to
be exponential in the number of classes (Gopalan et al., 2024). A consequence of this result is that
estimating a commonly used calibration error metric, one that generalizes the binary classification
case to multiclass classification by summing the errors over all the classes and bins, requires a
number of samples exponential in the number of classes Gopalan et al. (2024). Alternatively, the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

works of Haghtalab et al. (2023) and Dwork et al. (2023) have considered a weaker definition where
the predictor is considered calibrated if the calibration error per bin is small, as opposed to measuring
the total error across all bins. In this case, surprisingly, a calibrated predictor can be found using
a polynomial number of samples. A natural question is whether the weakening in the definition is
necessary and, if so, how much weakening is necessary to remove the exponential dependence on
the number of classes.

Calibration is important in its own right, but it is also desirable for a predictor to be accurate.
Given that most machine learning models are developed using complex pipelines that are difficult
to modify, the ability to calibrate an existing model, as opposed to building a new one from
scratch, is valuable. This approach would allow one to leverage the remarkable accuracy of
existing models while adding calibration guarantees. Moreover, it is possible for a predictor to
be calibrated yet uninformative. This underscores the importance of maintaining accuracy alongside
calibration. While many works in the literature satisfy this requirement, the works with strong
sample complexity bounds of Haghtalab et al. (2023) and Dwork et al. (2023) unfortunately do not.
Thus, a significant challenge is to develop efficient algorithms that can calibrate a given predictor
while making minimal targeted modifications. Concretely, we aim to develop calibration algorithms
for a given predictor that satisfy the following two properties:

1. The resulting classifier is calibrated up to error ε.

2. The resulting classifier’s accuracy remains within an additive error of ε compared to the
accuracy of the given predictor to allow for discretization and estimation error.

In this work, we address the above questions and propose a new definition of calibration error, which
we call the ℓp calibration error. This error notion is defined as the ℓp norm of the calibration errors
across all bins and classes. In particular, for a fixed bin and class, we define the calibration error
as the product of the absolute difference between the expected value of the prediction and the true
probability of the class conditioned on the datapoint belonging to the bin, and the probability mass
of the bin. The definition that adds up the errors across all bins and classes corresponds to the special
case p = 1, also known as the expected calibration error (ECE) (Dawid, 1982), while the definition
that measures the maximum error across all bins and classes in Haghtalab et al. (2023) corresponds
to p = ∞. As our measure of accuracy, we use the squared error of the predictor. Any algorithm
that calibrates a predictor to achieve small ℓ1 calibration error (ECE) requires exponentially many
samples in k Gopalan et al. (2024). Our work shows that for all p > 1, there exists an algorithm that
uses a polynomial number of samples in the number of classes to calibrate any given predictor. For
the special case p = ∞ and a given desired calibration error ε, the sample complexity is within a
poly-logarithmic factor of O

(
1/ε2

)
. This is almost as good as one could hope for since even testing

if the fraction of data with positive outcome is 1/2 or 1/2 + ε already requires Ω
(
1/ε2

)
samples.

Theorem 1 (Informal version of Theorem 7). There exists an algorithm that takes as input any

k-class predictor f : X → ∆k, runs in time polynomial in k and 1
ε , and, using Õ

((
21/(p−1)

εp/(p−1)

)2)
samples, returns a k-class predictor h : X → ∆k that has:

1. ℓp calibration error at most ε, and

2. squared error within an additive term Õ
(

εp/(p−1)

21/(p−1)

)
from the squared error of f .

The Õ notation hides logarithmic factors in k and 1/ε.

1.1 OUR TECHNIQUES

When p = ∞, we observe that if a bin contains at most an ε fraction of the data distribution,
its calibration error for any class is also bounded by ε. Thus, one only needs to care about 1/ε
bins with large probability masses. We generalize this idea to all ℓp norms for p > 1 and allow the
algorithm to focus only on bins with large probability masses. This observation is sufficient to obtain
a (large) polynomial sample complexity. This approach works because our calibration error notion
incorporates the probability mass of the bin in the p-exponent, naturally assigning higher weights to
larger bins.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

A second observation that further improves the sample complexity is that for interpretability reasons
the outpust of our calibrated predictor should be probability distributions over the k labels, a
constraint not enforced in previous work. This constraint significantly reduces the discretized
prediction space during calibration compared to λk in prior works (where λ is the number of discrete
values per coordinate), since the predictor outputs must form valid probability distributions with
coordinates summing to 1. Consequently, our set of bins approximately corresponds to the set of
sparse vectors in k dimensions containing λ non-zero elements, each equal to 1/λ. The crucial
insight is that the number of such sparse vectors is polynomial rather than exponential in k.

Calibrating the predictor might require adaptively merging many high-probability bins together.
Naively estimating the error of all subsets of high-probability bins to ε requires 1/ε3 samples
(due to the number of subsets being Ω (exp (1/ε))). Adaptive data analysis has been applied in
previous works to reduce the number of samples, but the overhead remains polynomial in 1/ε.
Surprisingly, our algorithm is still highly adaptive, but with a novel analysis, the overhead in the
sample complexity is only logarithmic in 1/ε. Our techniques might be applicable to other problems
where adaptive data analysis is used.

1.2 RELATED WORK

The most closely related works are by Haghtalab et al. (2023) and Dwork et al. (2023). In
the case where p = ∞, they showed that with access to an oracle for the exact probabilities,
O
(
ε−2 ln k

)
oracle queries suffice to find an ε-calibrated predictor for k-class classification.

These results construct a new model from scratch and do not aim to preserve the accuracy
of a previously trained model, as our algorithm does. Furthermore, Haghtalab et al. (2023)
showed that O (ln(k)/ε4 (ln(1/(ε)) + ln(V))) samples suffice for their algorithm, where V is the
number of discretized bins. In their case, ln(V) = O (k ln(λ)), with λ being a non-negative
integer that controls the granularity of discretization. In contrast, our algorithm employs a
different discretization scheme where ln(V) = O (min (k, λ) ln (λ+ k)). This alternative approach
contributes to our improved sample complexity. However, it introduces additional complexity
to the algorithm due to the need to project the predictions onto the probability simplex. These
projections impact both the calibration and the accuracy of the predictor. For calibration, updating
one coordinate of the predictor and then projecting can alter other coordinates that are already
calibrated. For accuracy, we must carefully select the projection method that we use to ensure
that the accuracy is preserved.

Many calibration algorithms are iterative and, thus, inherently present an adaptive data analysis
challenge, due to the dependence of the bins whose predictions get updated on the current predictor.
Most algorithms in this area, including ours, perform poly (1/ε) iterations. Some works, such as
Gopalan et al. (2022), address the adaptivity issue by resampling at each iteration to estimate the
calibration error, which results in a poly (1/ε) overhead in sample complexity. Other works use
tools from adaptive data analysis to bound the sample complexity in a black-box way (Haghtalab
et al., 2023; Hébert-Johnson et al., 2018). Specifically, they use the strong composition property of
differential privacy, which allows answering t adaptive queries with only a Õ

(√
t
)

overhead. As a
result, this method incurs a smaller poly(1/ε) overhead in sample complexity. Our novel algorithm
and analysis achieve a tighter bound, requiring only a log(1/ε) overhead in sample complexity. This
significantly improves the overall sample complexity of the iterative calibration process.

Due to the challenges of calibration in the multiclass setting, several weaker error definitions have
been proposed. A lot of work focuses on calibrating existing neural networks. For instance,
Guo et al. (2017) introduced confidence calibration, where the conditioning is done on the highest
prediction value among all classes, and explored several methods including binning methods, matrix
and vector scaling, and temperature scaling. Related notions include top-label calibration (Gupta
& Ramdas, 2022), which conditions on the highest prediction value and the identity of the top
class, and class-wise calibration (Kull et al., 2019), which conditions on individual class predictions
rather than on the entire probability vector. While extensive literature exists on ℓp-style calibration
measures (Kumar et al., 2019; Vaicenavicius et al., 2019; Widmann et al., 2019; Zhang et al., 2020;
Gruber & Buettner, 2022; Popordanoska et al., 2022), our approach differs fundamentally. We
incorporate the probability mass of the bin in the p-exponent, ensuring that bins with large error have
also sufficient mass for detection, resolving the limitation that previously considered ℓp calibration
errors may require exponentially many samples for testing. On the theoretical front, Gopalan et al.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(2022) proposed low-degree multi-calibration as a less-expensive alternative to the full requirement
and Gopalan et al. (2024) introduced projected smooth calibration as a multiclass calibration error
definition for efficient algorithms with strong guarantees.

2 PRELIMINARIES

We useX to denote the feature space and [k] = {1, . . . , k} to denote the label space. We also use the
k-dimensional one-hot encoding of a label as an equivalent representation. We use ∆k to denote the
probability simplex over k labels. In this work, we consider that a k-class predictor f is a function
that maps feature vectors in X to distributions in ∆k.

Instead of conditioning on the exact predicted probability vector, we partition ∆k into level sets.
Previous methods partition ∆k by mapping the prediction vectors to the closest vector in Lk, the
k-ary Cartesian power of L = {0, 1/λ, 2/λ, . . . , 1}, where λ is a positive integer that determines
the discretization granularity. Note that the coordinates of vectors in Lk may not sum to 1. We use
an alternative partition of ∆k via a many-to-one mapping onto V k

λ . We define V k
λ to be the subset

of Lk such that for every member v of V k
λ , there exists a probability distribution u ∈ ∆k such that

v is obtained by rounding down every coordinate of u to a multiple of 1/λ. Formally,

V k
λ =

{
v ∈ Lk : ∃u ∈ ∆k s.t. ⌊uiλ⌋ /λ = vi ∀i ∈ [k]

}
.

Example 2. For k = 3 classes and λ = 2 the set of vectors V k
λ is

V 3
2 ={(0, 0, 0), (0.5, 0, 0), (0, 0.5, 0), (0, 0, 0.5), (0, 0, 1),

(0, 1, 0), (1, 0, 0), (0, 0.5, 0.5), (0.5, 0, 0.5), (0.5, 0.5, 0)}.

While vectors in V k
λ are not necessarily distributions, they are close to vectors that are distributions.

This property allows V k
λ to be significantly smaller than Lk.

Lemma 3. For any λ, k ∈ N+, the number of level sets in V k
λ is at most

(
λ+k
k

)
. Note that

log
(∣∣V k

λ

∣∣) = O (min (k, λ) ln (λ+ k)) whereas log
(∣∣Lk

∣∣) = O (k ln (λ)).

The proof of Lemma 3 is provided in the Appendix.

We define the rounding function R : ∆k → V k
λ , which maps a prediction vector to the corresponding

level set in V k
λ : R(u)i = ⌊uiλ⌋ /λ ∀i ∈ [k]. Conversely, we define the function ρ that maps a level

set v ∈ V k
λ to the closest canonical distribution ρ(v) = argminu∈∆k,R(u)=v ∥u− v∥∞. Finally, we

define the projection function π : [0, 1]k → ∆k in ℓ2 norm : π(v) = argminu∈∆k
∥u− v∥2. In

some cases, we abuse notation by writing f(S) to denote the common value of a function f(x) for
all x ∈ S, when f(x) = f(y) for all x, y ∈ S .

For our sample complexity results, we use the following lemmas for adaptive data analysis and
concentration of measure.
Lemma 4. (Jung et al., 2020, Theorem 23) Let A be an algorithm that, having access to a dataset
S = {xi}i∈[n], interactively takes as input a stream of queries q1, . . . , qt : X→ [0, 1]and provides a
stream of answers a1, . . . , at ∈ [0, 1]. Suppose that A is (ε, 0)-differentially private and that

P

max
j∈[t]

∣∣∣∣∣∣ 1n
∑
i∈[n]

qj(xi)− aj

∣∣∣∣∣∣ ≥ α

 ≤ β.

Then, for any η > 0, P
[
maxj∈[t] |Ex∼P [qj(x)]− aj | ≥ α+ eε − 1 +

√
2 ln(2/η)

n

]
≤ β + η.

Lemma 5. (Chung & Lu, 2006, Theorem 3.6) Suppose X1, . . . , Xn are independent random
variables with Xi ≤M for all i. Let X =

∑n
i=1 Xi and ∥X∥ =

√∑n
i=1 E[X2

i]. Then,

P [X ≥ E[X] + λ] ≤ exp

− λ2

2
(
∥X∥2 +Mλ/3

)
 .

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3 MULTICLASS CALIBRATION UNDER ℓp ERROR

In this work, we consider a generalization of the expected calibration error to arbitrary ℓp norms.
Definition 6. Fix p ≥ 1 and k, λ ∈ N+. Consider a k-class predictor f : X → ∆k and a data
distribution D over features X and labels [k]. The ℓp calibration error of f is defined as

Errp(f) :=

∑
v∈V k

λ

k∑
j=1

(Err(f, v, j))p

1/p

,

where V k
λ denotes the set of discretized bins,

Err(f, v, j) :=
∣∣E(x,y)∼D [(f(x)j − yj) · I [R(f(x)) = v]]

∣∣
=
∣∣E(x,y)∼D [f(x)j − yj | R(f(x)) = v]

∣∣P [R(f(x)) = v]

measures the calibration error for bin v and class j, and y is the one-hot encoding of the label.

The special case when p = 1 corresponds to the expected calibration error (ECE), while the case
when p→∞ corresponds to the calibration error considered by Haghtalab et al. (2023) and Dwork
et al. (2023):

max
v∈V k

λ ,j∈[k]

∣∣E(x,y)∼D [(f(x)j − yj) · I [R(f(x)) = v]]
∣∣ .

Our main result is a new algorithm that calibrates a given predictor f to achieve ℓp calibration error
of at most ε, using a polynomial number of samples for any p > 1. Furthermore, for p = ∞, the
dependence of the algorithm’s sample complexity on ε is only 1/ε2 up to logarithmic factors, which
is nearly optimal. The squared error of the calibrated predictor is lower than that of the original
predictor, up to a small additive term introduced by discretization. Up to logarithmic factors, this
additive term due to discretization is similar to the term in the previous work for binary predictors
(Hébert-Johnson et al., 2018).
Theorem 7. Fix p > 1, ε, δ ∈ (0, 1) and k ∈ N+. There exists an algorithm that takes as input a

k-class predictor f : X → ∆k, and with probability at least 1 − δ terminates after O
(

22/(p−1)

ε2p/(p−1)

)
time steps with total time polynomial in k and 1

ε . Using

O

((
21/(p−1)

εp/(p−1)

)2

log3
(
21/(p−1)

εp/(p−1)

)
log

(
21/(p−1)k

εp/(p−1)δ

))
samples from distribution D, it returns a k-class predictor h : X → ∆k that has calibration error
Errp(h) ≤ ε and squared error

ED

[
∥h(x)− y∥22

]
− ED

[
∥f (x)− y∥22

]
≤ O

(
εp/(p−1)

21/(p−1)
log

(
21/(p−1)

εp/(p−1)

))
.

We present Algorithm 2 for calibrating a given k-class predictor f . The high-level structure of the
algorithm, outlined in Algorithm 1, follows a standard approach in the literature. It first assigns
datapoints to bins based on the level set of their rounded prediction f(x), and then iteratively
identifies groups of bins and classes with large calibration error, applying corrective updates as
needed. At each time step t, to correct the prediction for a group of bins S(t) and class j(t) with
large calibration error, the algorithm estimates the probability that datapoints in bins S(t) have label
j(t). It then uses this estimate to correct the prediction vector for S(t) and projects the corrected
vector onto the probability simplex ∆k to ensure valid probability outputs, using this as the new
prediction for datapoints assigned to S(t). If at time step t, there exists another group of bins S′ with
prediction in the same level set as S(t), the algorithm merges these two groups. It assigns a single
prediction vector to all the inputs in S(t) ∪ S′, selecting the prediction from whichever group has
the largest estimated probability mass. However, merging bins may cause the estimation errors to
accumulate, potentially leading to large calibration errors in the merged group. To mitigate this, the
algorithm re-estimates the calibration error of each group after merging.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Multiclass Calibration Outline
Input: predictor f
Discretize prediction space into bins and identify high-probability bins B
Create two parallel data structures:

1. Estimation structure M tracks statistics for groups of bins
2. Prediction structure G stores predictions and tracks calibration errors per group of bins

Initialize both structures, M and G, to contain one group per high-probability bin in B
t← 0
While there exists a group of bins in G with large error for some class j ∈ [k]:

Select group S(t) ∈ G and class j(t) ∈ [k] with large error
Correct the prediction for S(t)and j(t)

Merge groups in G with similar predictions to that of S(t)

Update structure M
Estimate statistics and error for S(t)

t← t+ 1.

h(x) =

{
prediction for group S in G that contains f(x) if f(x) is in a high-probability bin
nearest valid probability vector to f(x) o.w.

Output: calibrated predictor h

Our algorithm differs from existing binning-based calibration algorithms in two ways. First, it
identifies a set of bins B with large probability mass, because only such bins contribute significantly
to the overall calibration error. The algorithm maintains a data structure G containing disjoint groups
of bins that may have large error and iteratively searches through them to identify groups requiring
correction. Initially, G contains a group for each high-probability bin. As the algorithm merges
groups of bins, it updates G accordingly. Second, the algorithm reduces the number of samples
needed to estimate the calibration error by leveraging the fact that groups of bins are only merged
over time and never split, and by applying Lemma 4 for adaptive data analysis. The groups of bins
S(t)are selected adaptively, as their error depends on the current predictions. If we were to analyze
the sample complexity using standard concentration inequalities, this adaptivity would require the
use of fresh samples at every time step. To avoid this inefficiency, our algorithm maintains error
estimates for O(log |B|) collections of evolving disjoint groups of bins, denoted collectively as M .
Note that M forms a partition of B. An interesting property of this structure is that any group of
bins in G for which we need to estimate the calibration error can be expressed as a disjoint union
of groups in M . As a result, the calibration error estimate of S(t) can be computed efficiently by
summing the estimates for groups in M that are subsets of S(t). The sizes of the groups in M are
powers of 2 and all groups of the same size that arise during the execution of the algorithm remain
disjoint. For each group size 2i and each type of estimate, we maintain a separate pool of samples.
Since a group in M can contain at most |B| distinct bins, we need O(log |B|) separate sample pools.
We analyze the sample complexity after proving Lemma 9, which bounds the number of samples
required to estimate a collection of disjoint, adaptively chosen queries.

We show that Algorithm 2 satisfies Theorem 7. The proof is presented step by step in the following
three subsections, with key results organized into several lemmas. Lemmas 8 and 9 show that all
estimated quantities are within small additive error of the true quantities. Lemmas 11, 12, and 13
provide a bound on the squared error of the modified predictor. Lemma 14 proves that the algorithm
terminates after O(22/(p−1)/ε2p/(p−1)) iterations, while Lemma 16 shows that the total runtime
is polynomial in 1/ε and k. Finally, Lemma 15 establishes that the calibration error of the final
predictor when the algorithm terminates is smaller than ε. All omitted proofs are provided in the
Appendix.

3.1 CORRECTNESS OF ESTIMATES

In Algorithm 2 we use samples to compute three types of estimates. For the algorithm to function
correctly, the estimates need to be sufficiently accurate. This requirement is captured by the
following three events. Event A1 ensures that B contains bins with large probability masses. Events
A2 and A3, together enable the algorithm to correctly adjust predictions and merge bins as needed.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 2 Multiclass Calibration
Input: predictor f , discretization function R, parameters ε and δ.

Set β ← εp/(p−1)2−1/(p−1)and λ← ⌈1/β⌉.
For all bins v ∈ V k

λ :
Estimate probability mass of bin v, µ̂v ≈ P[R(f(x)) = v]

Select high-probability bins B ← {v : µ̂v ≥ β/6}

M ←initialize with one group {v} per high-probability bin v in B
G← initialize with one group {v} per high-probability bin v in B
t← 0
For each group {v} ∈M :

Estimate probability P̂{v} ≈ P[R(f(x)) ∈ {v}]
Estimate mean label Ê{v},j ≈ E(x,y)∼D [yjI [R(f(x)) ∈ {v}]] for all j ∈ [k]

For each group {v} ∈ G:
pred({v})← ρ(v)

Compute Êrr({v}, j)←
∣∣∣P̂{v}pred({v})j − Ê{v},j

∣∣∣ for each class j ∈ [k]

While ∃ group S ∈G with error Êrr(S, j) > β/2 for some class j ∈ [k]:
Select group S(t) ∈ G and class j(t) ∈ [k] with Êrr(S(t), j(t)) > β/2

z
(t)

j(t)
← min

((∑
S∈M:S⊆S(t) Ê

S,j(t)

)
/
(∑

S∈M:S⊆S(t) P̂S

)
, 1
)

For all other classes j ̸= j(t): z(t)j ←pred
(
S(t)

)
j

pred
(
S(t)

)
← π

(
z(t)
)

If there exists group S′ ̸= S(t) in G such that R (pred (S′)) = R
(
pred

(
S(t)

))
:

Merge S(t)and S′ into a single group in G

If
∑

S∈M :S⊆S(t) P̂S ≤
∑

S∈M :S⊆S′ P̂S :
pred

(
S(t) ∪ S′)← pred (S′)

else:
pred

(
S(t) ∪ S′)← pred

(
S(t)

)
S(t) ← S(t) ∪ S′

While there exist groups S1 ̸= S2 in M that are subsets of S(t) with the same cardinality:
Merge S1 and S2 in M

Estimate probability P̂S1∪S2 ≈ P[R(f(x)) ∈ S1 ∪ S2]

Estimate mean label ÊS1∪S2,j ≈ E(x,y)∼D [yjI [R(f(x)) ∈ S1 ∪ S2]] for all j ∈ [k]

Compute Êrr(S(t), j)←
∣∣∣(∑S∈M :S⊆S(t) P̂S

)
pred

(
S(t)

)
j
−
∑

S∈M :S⊆S(t) ÊS,j

∣∣∣, ∀j ∈ [k]

t← t+ 1.

h(x) =

{
pred(S), where S is the group in G that contains R (f(x)) if R (f(x)) ∈ B

ρ (R (f(x))) o.w.
Output: h

Important Events:

1. Event A1: |µ̂v − P [R(f(x)) = v]| ≤ β
12 , ∀v ∈ V k

λ .

2. Event A2:
∣∣∣P̂S − P [R(f(x)) ∈ S]

∣∣∣ ≤ β
36(⌊log2 |B|⌋+1) , for all groups of bins S in M that

ever occur during the execution of the algorithm.

3. Event A3:
∣∣∣ÊS,j − E(x,y)∼D [yjI [R(f(x)) ∈ S]]

∣∣∣ ≤ β
36(⌊log2 |B|⌋+1) , for all groups of bins

S in M that ever occur during the execution of the algorithm and all classes j ∈ [k].

First, for every level set v ∈ V k
λ we estimate the probability that the rounded prediction of the

given predictor R(f(x)) equals v. By Lemma 8, if we set α1 = β/12 and δ1 = δ/3, we know that

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

using O

(
1
β log

(
|V k

λ |
δ

)
+ 1

β2 log
(

1
βδ

))
samples we get estimates such that with probability at

least 1− δ/3

|µ̂v − P [R(f(x)) = v]| ≤ β

12
, ∀v ∈ V k

λ .

Lemma 8. Fix δ1, α1 ∈ (0, 1). Using O

(
1
α1

log

(
|V k

λ |
δ1

)
+ 1

α2
1
log
(

1
α1δ1

))
samples, we can

estimate µ̂v , for all v ∈ V k
λ , s.t. with probability at least 1− δ1

|µ̂v − P [R(f(x)) = v]| ≤ α1, ∀v ∈ V k
λ .

For every group of bins S that appears in M during the execution of the algorithm, we estimate
two types of quantities: the probability that the prediction R(f(x)) is in one of the bins in S and
the expected label yj of points (x, y) whose prediction R(f(x)) is in one of the bins in S, for all
j ∈ [k]. The sizes of groups in M are all powers of 2 and all groups of the same size that occur
during the execution of the algorithm are disjoint. For each group size 2i and for each type of
estimate, probability or expected label, we maintain a separate pool of samples. Since there can be
at most |B| distinct bins in a group in M , we need O(log |B|) separate sample pools. To analyze the
sample complexity, we apply the adaptive data analysis result of Lemma 9 because the algorithm
picks the set that needs adjustment adaptively at each time step.

Lemma 9. Fix n, k ∈ N+and α, δ ∈ (0, 1). Consider an adaptive algorithm A, a distribution
D over the domain X × Y , and a function ϕ : X × Y → ∆k. The algorithm adaptively
selects a sequence of n disjoint events for D as follows. First, it selects E1 and estimates
E(x,y)∼D [ϕ(x, y)j · I [(x, y) ∈ E1]], for all j ∈ [k]. Then, it selects event E2, disjoint from E1,

and estimates E(x,y)∼D [ϕ(x, y)j · I [(x, y) ∈ E2]], for all j ∈ [k], and so on. With O
(

log(nk/δ)
α2

)
shared samples, we can estimate all expectations up to additive error α and failure probability δ.

By Lemma 9, we get that for a fixed group size 2i ≤ |B|, using O
(

log2(|B|) log(|B| log |B|/δ)
β2

)
samples

we get probability estimates such that with probability at least 1− δ
3(⌊log2 |B|⌋+1)∣∣∣P̂S − P [R(f(x)) ∈ S]

∣∣∣ ≤ β

36(⌊log2 |B|⌋+ 1)
,

for all groups of bins S in M of size 2i that ever occur during the execution of the
algorithm. Similarly, by Lemma 9 we get that for a fixed group size 2i ≤ |B|, using
O
(

log2(|B|) log(|B|k log |B|/δ)
β2

)
, samples we get expected label estimates such that with probability

at least 1− δ
3(⌊log2 |B|⌋+1)∣∣∣ÊS,j − E(x,y)∼D [yjI [R(f(x)) ∈ S]]

∣∣∣ ≤ β

36(⌊log2 |B|⌋+ 1)
,

for all groups of bins S in M of size 2i that ever occur during the execution of the algorithm and all
classes j ∈ [k].

The number of groups with different sizes up to |B| that are powers of 2 is at most ⌊log2 |B|⌋ + 1.
Thus, we have that

P [¬A1 or ¬A2 or ¬A3] ≤ P[¬A1] + P[¬A2] + P[¬A3]

≤ δ

3
+ (⌊log2 |B|⌋+ 1)

δ

3 (⌊log2 |B|⌋+ 1)
+ (⌊log2 |B|⌋+ 1)

δ

3 (⌊log2 |B|⌋+ 1)
≤ δ

If event A1 is true, then the size of |B| is at most O
(

1
β

)
because B ={

v : v ∈ V k
λ , µ̂v ≥ β/6

}
and

∑
v∈V k

λ
P [R (f (x)) = v] = 1. Thus, the algorithm can use

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

O

(
1
β log

(
|V k

λ |
δ

)
+ 1

β2 log
3
(

1
β

)
log
(

k log(1/β)
βδ

))
samples in total. Lemma 3 provides a bound

of the size of V k
λ .

To estimate the probability of a group of bins S ∈ G, we compute the sum of probability estimates
for all subsets S′ ⊆ S that are in M and use the following Lemma to bound the overall error. We
estimate the expected label in a similar way.

Lemma 10. For each S ∈ G, the number of subsets S′ ∈M such that S′ ⊆ S is at most O (log |B|).

3.2 ACCURACY OF THE CALIBRATED PREDICTOR

In this subsection, we show that if the estimates are accurate, then Algorithm 2 constructs a
multiclass predictor whose squared error is lower than that of the given predictor, up to a small
additive term introduced by discretization. At each round t before the algorithm terminates, it selects
a bin S(t)and a coordinate j(t) with high calibration error. The algorithm then updates the predictor
in two stages. In Stage 1, it computes an improved prediction vector z(t) for the selected bin and
projects it to the simplex to obtain pred

(
S(t)

)
. In Stage 2, it checks if there is another group S′ that

gets mapped to the same level set as S(t) and if so it merges S′ and S(t). We analyze the change
in the squared error at each time step by examining separately the change due to Stage 1 and Stage
2. Notably, in Lemma 12 we show that the squared error always decreases in Stage 1, whereas in
Lemma 11 we demonstrate that Stage 2 might lead to a small increase. In both lemmas, we assume
that the all the estimated quantities are accurate, meaning that events A1, A2 and A3 as defined in the
previous subsection hold. Lemma 13 provides an upper on the squared error due to the discretization
of f .

For the purposes of this proof we define

ht(x) =

{
pred(S),where S in G contains R (f(x)) at time step t if R (f(x)) ∈ B

ρ (R (f(x))) o.w.

Lemma 11. Assuming that A1, A2 and A3 hold, after T time steps of the algorithm, the squared
error of the predictor h is

E
[
∥h(x)− y∥22

]
≤ E

[
∥h0 (x)− y∥22

]
+O

(
β log

(
1

β

))
+

T−1∑
t=0

E
[
∥π(z(t))− y∥22 − ∥ht (x)− y∥22

∣∣∣R (f (x)) ∈ S(t)
]
P
[
R (f (x)) ∈ S(t)

]
.

Lemma 12. Assuming that A1, A2 and A3 hold, at time step t of the algorithm

E
[
∥π(z(t))− y∥22 − ∥ht (x)− y∥22

∣∣∣R (f (x)) ∈ S(t)
]
P
[
R (f (x)) ∈ S(t)

]
≤ −β2

/9.

Lemma 13. The squared error at time step 0 is E
[
∥h0(x)− y∥22

]
≤ E

[
∥f (x)− y∥22

]
+O (β).

3.3 TERMINATION OF THE ALGORITHM WITH SMALL CALIBRATION ERROR

In this subsection, we show that, assuming that the estimates are accurate, the algorithm terminates
after O (1/β2) steps with ℓp calibration error at most O

(
β(p−1)/p

)
. Moreover, its total runtime is

polynomial in 1/β and k.

Lemma 14. Assuming that A1, A2 and A3 hold, the algorithm terminates after at most O (1/β2)
time steps.

Lemma 15. Assuming that A1, A2 and A3 hold, the ℓp calibration error (Errp(h))
p is bounded by

O(βp−1).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Lemma 16. Assuming that A1, A2 and A3 hold, the algorithm terminates in time
O
(

k
β2 log

3
(

1
β

)
log
(

k
βδ

))
.

Combining the results of Subsections 3.1, 3.2, and 3.3, we obtain the proof of Theorem 7.

4 CONCLUSION

In this work, we introduced the ℓp calibration error for multiclass predictors and presented an
algorithm that modifies a given predictor to achieve low calibration error while preserving its
accuracy using only a polynomial number of samples in the number of classes. The algorithm
can be applied to any value of p > 1 and improves the known sample complexity in the case of
p =∞.

Related work in this area has explored multicalibration, where the calibration guarantees hold for
many, possibly overlapping, populations. While our work focuses on calibration, an interesting
direction for future research is to generalize our results to obtain stronger sample complexity in that
setting as well.

ETHICS STATEMENT

Our work advances the theoretical understanding of calibration for multiclass predictors. A practical
implementation of the algorithm could be applied to real-world models to improve their reliability
and interpretability. This could support efforts to responsibly deploy machine learning model
systems in societal applications

REPRODUCIBILITY STATEMENT

Our work is theoretical. The complete proofs of the lemmas and the main theorem can be found in
Section 3 and the Appendix.

REFERENCES

Fan R. K. Chung and Lincoln Lu. Survey: Concentration inequalities and martingale inequalities:
A survey. Internet Math., 3(1):79–127, 2006. doi: 10.1080/15427951.2006.10129115. URL
https://doi.org/10.1080/15427951.2006.10129115.

A Philip Dawid. The well-calibrated bayesian. Journal of the American Statistical Association, 77
(379):605–610, 1982.

Cynthia Dwork, Daniel Lee, Huijia Lin, and Pranay Tankala. From pseudorandomness to multi-
group fairness and back. In Gergely Neu and Lorenzo Rosasco (eds.), The Thirty Sixth Annual
Conference on Learning Theory, COLT 2023, 12-15 July 2023, Bangalore, India, volume 195
of Proceedings of Machine Learning Research, pp. 3566–3614. PMLR, 2023. URL https:
//proceedings.mlr.press/v195/dwork23a.html.

Dean P Foster and Rakesh V Vohra. Asymptotic calibration. Biometrika, 85(2):379–390, 1998.

Parikshit Gopalan, Michael P. Kim, Mihir Singhal, and Shengjia Zhao. Low-degree multicalibration.
In Po-Ling Loh and Maxim Raginsky (eds.), Conference on Learning Theory, 2-5 July 2022,
London, UK, volume 178 of Proceedings of Machine Learning Research, pp. 3193–3234. PMLR,
2022. URL https://proceedings.mlr.press/v178/gopalan22a.html.

Parikshit Gopalan, Lunjia Hu, and Guy N. Rothblum. On computationally efficient multi-class
calibration. In Shipra Agrawal and Aaron Roth (eds.), The Thirty Seventh Annual Conference
on Learning Theory, June 30 - July 3, 2023, Edmonton, Canada, volume 247 of Proceedings of
Machine Learning Research, pp. 1983–2026. PMLR, 2024. URL https://proceedings.
mlr.press/v247/gopalan24a.html.

10

https://doi.org/10.1080/15427951.2006.10129115
https://proceedings.mlr.press/v195/dwork23a.html
https://proceedings.mlr.press/v195/dwork23a.html
https://proceedings.mlr.press/v178/gopalan22a.html
https://proceedings.mlr.press/v247/gopalan24a.html
https://proceedings.mlr.press/v247/gopalan24a.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Sebastian G. Gruber and Florian Buettner. Better uncertainty calibration via proper
scores for classification and beyond. In Sanmi Koyejo, S. Mohamed, A. Agarwal,
Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information
Processing Systems 35: Annual Conference on Neural Information Processing Systems
2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022,
2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
3915a87ddac8e8c2f23dbabbcee6eec9-Abstract-Conference.html.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017,
volume 70 of Proceedings of Machine Learning Research, pp. 1321–1330. PMLR, 2017. URL
http://proceedings.mlr.press/v70/guo17a.html.

Chirag Gupta and Aaditya Ramdas. Top-label calibration and multiclass-to-binary reductions. In
The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/forum?id=
WqoBaaPHS-.

Nika Haghtalab, Michael I. Jordan, and Eric Zhao. A unifying perspective on multi-
calibration: Game dynamics for multi-objective learning. In Alice Oh, Tristan Naumann,
Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in
Neural Information Processing Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
e55edcdb01ac45c839a602f96e09fbcb-Abstract-Conference.html.

Úrsula Hébert-Johnson, Michael P. Kim, Omer Reingold, and Guy N. Rothblum. Multicalibration:
Calibration for the (computationally-identifiable) masses. In Jennifer G. Dy and Andreas Krause
(eds.), Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine
Learning Research, pp. 1944–1953. PMLR, 2018. URL http://proceedings.mlr.
press/v80/hebert-johnson18a.html.

Christopher Jung, Katrina Ligett, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, and Moshe
Shenfeld. A new analysis of differential privacy’s generalization guarantees. In Thomas Vidick
(ed.), 11th Innovations in Theoretical Computer Science Conference, ITCS 2020, January 12-
14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs, pp. 31:1–31:17. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2020. doi: 10.4230/LIPICS.ITCS.2020.31. URL https:
//doi.org/10.4230/LIPIcs.ITCS.2020.31.

Meelis Kull, Miquel Perelló-Nieto, Markus Kängsepp, Telmo de Menezes e Silva Filho, Hao
Song, and Peter A. Flach. Beyond temperature scaling: Obtaining well-calibrated multi-
class probabilities with dirichlet calibration. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances
in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pp. 12295–12305, 2019. URL https://proceedings.neurips.cc/paper/2019/
hash/8ca01ea920679a0fe3728441494041b9-Abstract.html.

Ananya Kumar, Percy Liang, and Tengyu Ma. Verified uncertainty calibration. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pp. 3787–3798, 2019. URL https://proceedings.neurips.cc/paper/
2019/hash/f8c0c968632845cd133308b1a494967f-Abstract.html.

Teodora Popordanoska, Raphael Sayer, and Matthew B. Blaschko. A consistent and
differentiable lp canonical calibration error estimator. In Sanmi Koyejo, S. Mohamed,
A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information Processing

11

http://papers.nips.cc/paper_files/paper/2022/hash/3915a87ddac8e8c2f23dbabbcee6eec9-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/3915a87ddac8e8c2f23dbabbcee6eec9-Abstract-Conference.html
http://proceedings.mlr.press/v70/guo17a.html
https://openreview.net/forum?id=WqoBaaPHS-
https://openreview.net/forum?id=WqoBaaPHS-
http://papers.nips.cc/paper_files/paper/2023/hash/e55edcdb01ac45c839a602f96e09fbcb-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/e55edcdb01ac45c839a602f96e09fbcb-Abstract-Conference.html
http://proceedings.mlr.press/v80/hebert-johnson18a.html
http://proceedings.mlr.press/v80/hebert-johnson18a.html
https://doi.org/10.4230/LIPIcs.ITCS.2020.31
https://doi.org/10.4230/LIPIcs.ITCS.2020.31
https://proceedings.neurips.cc/paper/2019/hash/8ca01ea920679a0fe3728441494041b9-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/8ca01ea920679a0fe3728441494041b9-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/f8c0c968632845cd133308b1a494967f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/f8c0c968632845cd133308b1a494967f-Abstract.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
33d6e648ee4fb24acec3a4bbcd4f001e-Abstract-Conference.html.

Raphael Rossellini, Jake A. Soloff, Rina Foygel Barber, Zhimei Ren, and Rebecca Willett. Can a
calibration metric be both testable and actionable? In Nika Haghtalab and Ankur Moitra (eds.),
The Thirty Eighth Annual Conference on Learning Theory, 30-4 July 2025, Lyon, France, volume
291 of Proceedings of Machine Learning Research, pp. 4937–4972. PMLR, 2025. URL https:
//proceedings.mlr.press/v291/rossellini25a.html.

Juozas Vaicenavicius, David Widmann, Carl R. Andersson, Fredrik Lindsten, Jacob Roll, and
Thomas B. Schön. Evaluating model calibration in classification. In Kamalika Chaudhuri
and Masashi Sugiyama (eds.), The 22nd International Conference on Artificial Intelligence and
Statistics, AISTATS 2019, 16-18 April 2019, Naha, Okinawa, Japan, volume 89 of Proceedings
of Machine Learning Research, pp. 3459–3467. PMLR, 2019. URL http://proceedings.
mlr.press/v89/vaicenavicius19a.html.

David Widmann, Fredrik Lindsten, and Dave Zachariah. Calibration tests in multi-class
classification: A unifying framework. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances
in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pp. 12236–12246, 2019. URL https://proceedings.neurips.cc/paper/2019/
hash/1c336b8080f82bcc2cd2499b4c57261d-Abstract.html.

Jize Zhang, Bhavya Kailkhura, and Thomas Yong-Jin Han. Mix-n-match : Ensemble and
compositional methods for uncertainty calibration in deep learning. In Proceedings of the 37th
International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event,
volume 119 of Proceedings of Machine Learning Research, pp. 11117–11128. PMLR, 2020.
URL http://proceedings.mlr.press/v119/zhang20k.html.

A APPENDIX

A.1 PROOFS FROM SECTION 2

Lemma 17 (Lemma 3 restated). For any λ, k ∈ N+, the number of level sets in V k
λ is at most

(
λ+k
k

)
.

Note that log
(∣∣V k

λ

∣∣) = O (min (k, λ) ln (k + λ)) whereas log
(∣∣Lk

∣∣) = O (k ln (λ)).

Proof. Every v ∈ V k
λ corresponds to a u ∈ ∆k. Therefore, we have that

∑
i∈[k]

vi =
∑
i∈[k]

⌊uiλ⌋
λ

= 1−

1−
∑
i∈[k]

⌊uiλ⌋
λ

 .

Let vk+1 = 1 −
∑

i∈[k]
⌊uiλ⌋

λ , which is a non-negative integer multiple of 1/λ. By rearranging the
terms, we have that

∑
i∈[k+1] vi = 1. The number of k + 1 tuples of non-negative integer multiples

of 1/λthat sum up to 1is
(
λ+k
k

)
. Therefore,

∣∣V k
λ

∣∣ = (λ+k
k

)
.

A.2 PROOFS FROM SUBSECTION 3.1

Lemma 18 (Lemma 8 restated). Fix δ1, α1 ∈ (0, 1). Using

O

(
1
α1

log

(
|V k

λ |
δ1

)
+ 1

α2
1
log
(

1
α1δ1

))
samples, we can estimate µ̂v , for all v ∈ V k

λ , s.t. with

probability at least 1− δ1

|µ̂v − P [R(f(x)) = v]| ≤ α1, ∀v ∈ V k
λ .

12

http://papers.nips.cc/paper_files/paper/2022/hash/33d6e648ee4fb24acec3a4bbcd4f001e-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/33d6e648ee4fb24acec3a4bbcd4f001e-Abstract-Conference.html
https://proceedings.mlr.press/v291/rossellini25a.html
https://proceedings.mlr.press/v291/rossellini25a.html
http://proceedings.mlr.press/v89/vaicenavicius19a.html
http://proceedings.mlr.press/v89/vaicenavicius19a.html
https://proceedings.neurips.cc/paper/2019/hash/1c336b8080f82bcc2cd2499b4c57261d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/1c336b8080f82bcc2cd2499b4c57261d-Abstract.html
http://proceedings.mlr.press/v119/zhang20k.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Proof. There are at most 1
α1

bins such that P[R(f(x)) = v] ≥ α1. We show that using m1 =

1
2α2

1
ln
(

4
α1δ1

)
samples, we can estimate all of them up to additive error α1. By applying the

Hoeffding inequality and a union bound we obtain that

P [∃v s.t. P[R(f(x)) = v] ≥ α1 : |µ̂v − P [R(f(x)) = v]| ≥ α1]

≤ 2| {v : P[R(f(x)) = v] ≥ α1} |
e2α

2
1m1

≤ 2

α1e2α
2
1m1
≤ δ1

2
.

For the rest of the bins whose probabilities are less than α1, we show that using m2 =
4

3α1
ln
(
2|V k

λ |/δ1
)

samples is enough to estimate all of them up to additive error α1. In this case,
we have that for all v such that P [R(f(x)) = v] < α1, P [R(f(x)) = v] − µ̂v < α1. By applying
Lemma 5 we also get that

P [∃v s.t. P[R(f(x)) = v] < α1 : µ̂v − P [R(f(x)) = v] ≥ α1]

≤
∣∣V k

λ

∣∣ · exp(− m2α
2
1

2 (α1 + α1/3)

)
≤ δ1

2
.

By union bound we obtain that if we use O

(
1
α1

log

(
|V k

λ |
δ1

)
+ 1

α2
1
log
(

1
α1δ1

))
samples, then

P
[
∃v ∈ V k

λ : |µ̂v − P [R(f(x)) = v]| ≥ α1

]
≤ δ1.

Lemma 19 (Lemma 9 restated). Fix n, k ∈ N+and α, δ ∈ (0, 1). Consider an adaptive algorithm
A, a distribution D over the domain X × Y , and a function ϕ : X × Y → ∆k. The algorithm
adaptively selects a sequence of n disjoint events for D as follows. First, it selects E1 and estimates
E(x,y)∼D [ϕ(x, y)j · I [(x, y) ∈ E1]], for all j ∈ [k]. Then, it selects event E2, disjoint from E1, and

estimates E(x,y)∼D [ϕ(x, y)j · I [(x, y) ∈ E2]], for all j ∈ [k], and so on. With O
(

log(nk/δ)
α2

)
shared

samples, we can estimate all expectations up to additive error α and failure probability δ.

Proof. There are many ways to achieve this. Here, we describe one approach using differential
privacy and a transfer theorem to adaptive analysis. The algorithm uses a set S of m = 32 ln(4nk/δ)

α2

samples and for each event Ei and coordinate j ∈ [k], it reports êi,j = 1
m

∑
u∈S ϕ(u)j ·

I [u ∈ Ei] + εi,j , where εi,j ∼ Lap(8/(mα)). Because the events are disjoint and each sample
contributes to at most one event, the ℓ1 global sensitivity of the k × n-dimensional vector
(e1,1, . . . , e1,k, . . . , en,1, . . . , en,k), where ei,j = 1

m

∑
u∈S ϕ(u)j · I [u ∈ Ei], is at most 2/m.

Hence, algorithm A is (α/4, 0)-differentially private. Since ε1,1, . . . , εn,k are i.i.d. Laplace random
variables with λ = 8

mα , we know that for any t > 0, P
[
maxi∈[n],j∈[k] |εi,j | > tλ

]
≤ nde−t. For

t = ln(2nk/δ), we get that with probability at least 1 − δ
2 , the maximum additive error |εi,j | is at

most 8 ln(2nk/δ)
mα . By Lemma 4, with probability at least 1− δ, we have that

max
i∈[n],j∈[d]

∣∣E(x,y)∼D [ϕ(x, y)j · I [(x, y) ∈ Ei]]− êi,j
∣∣ ≤ 8 ln

(
2nk
δ

)
mα

+ eα/4 − 1 +

√
2 ln

(
4
δ

)
m

≤ α

4
+

α

2
+

α

4
= α.

Lemma 20 (Lemma 10 restated). For each S ∈ G, the number of subsets S′ ∈M such that S′ ⊆ S
is at most O (log |B|).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Proof. For a fixed S ∈ G, all S′ ∈M such that S′ ⊆ S are of different sizes. This holds because if
there were two subsets S1, S2 ∈ M such that S1, S2 ⊆ S and |S1| = |S2|, we would have already
merged them. Additionally, the sizes of all S′ ∈ M are powers of 2. The number of sets with
different sizes up to |B| that are powers of 2 is at most ⌊log2 |B|⌋+ 1.

A.3 PROOFS FROM SUBSECTION 3.2

Lemma 21 (Lemma 11 restated). Assuming that A1, A2 and A3 hold, after T time steps of the
algorithm, the squared error of the predictor h is

E
[
∥h(x)− y∥22

]
≤ E

[
∥h0 (x)− y∥22

]
+O

(
β log

(
1

β

))
+

T−1∑
t=0

E
[
∥π(z(t))− y∥22 − ∥ht (x)− y∥22

∣∣∣R (f (x)) ∈ S(t)
]
P
[
R (f (x)) ∈ S(t)

]
.

Proof. At each time step t ≤ T − 1 there are three possible cases depending on whether and how
the algorithm merges bins after updating the prediction for S(t).

Case 1: there is no S′ such that R
(
π
(
z(t)
))

= R (pred (S′)). Then,

E
[
∥ht+1 (x)− y∥22

]
− E

[
∥ht (x)− y∥2

]
= E

[
∥ht+1 (x)− y∥22 − ∥ht (x)− y∥22

∣∣∣R (f (x)) ∈ S(t)
]
P
[
R (f (x)) ∈ S(t)

]
= E

[∥∥∥π(z(t))− y
∥∥∥2
2
− ∥ht (x)− y∥22

∣∣∣R (f (x)) ∈ S(t)

]
P
[
R (f (x)) ∈ S(t)

]
.

Case 2: there is a S′ such that R
(
π
(
z(t)
))

= R (pred (S′)) and
∑

S∈M :S⊆S(t) P̂S >∑
S∈M :S⊆S′ P̂S . Then,

E
[
∥ht+1 (x)− y∥22

]
− E

[
∥ht (x)− y∥22

]
= E

[∥∥∥π (z(t))− y
∥∥∥2
2
− ∥ht (x)− y∥22

∣∣∣R (f (x)) ∈ S(t)

]
P
[
R (f (x)) ∈ S(t)

]
+ E

[∥∥∥π (z(t))− y
∥∥∥2
2
− ∥ht (x)− y∥22 |R (f (x)) ∈ S′

]
P [R (f (x)) ∈ S′]

≤ E
[∥∥∥π (z(t))− y

∥∥∥2
2
− ∥ht (x)− y∥22

∣∣∣R (f (x)) ∈ S(t)

]
P
[
R (f (x)) ∈ S(t)

]
+

4

λ
P [R (f (x)) ∈ S′] .

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

The last inequality holds because if R (f (x)) ∈ S′, we have that

E
[∥∥∥π (z(t))− y

∥∥∥2
2
− ∥ht (x)− y∥22 |R (f (x)) ∈ S′

]
= E

[∥∥∥π (z(t))− y
∥∥∥2
2
− ∥pred (S′)− y∥22 |R (f (x)) ∈ S′

]
≤
∥∥∥π (z(t))∥∥∥2

2
− ∥pred (S′)∥22 + 2max

j∈[k]

∣∣∣∣π (z(t))
j
− pred (S′)j

∣∣∣∣
≤
(
max
j∈[k]

∣∣∣∣π (z(t))
j
− pred (S′)j

∣∣∣∣) ∑
j∈[k]

(∣∣∣∣π (z(t))
j

∣∣∣∣+ ∣∣∣pred (S′)j

∣∣∣)

+ 2max
j∈[k]

∣∣∣∣π (z(t))
j
− pred (S′)j

∣∣∣∣ .
Since both π

(
z(t)
)

and pred (S′) are in the same level set when rounded by R, for each coordinate

j ∈ [k],
∣∣∣π (z(t))

j
− pred (S′)j

∣∣∣ ≤ 1/λ. Furthermore, both π
(
z(t)
)

and pred (S′) are probability
distributions and, hence, their coordinates sum to 1. Therefore,(

max
j∈[k]

∣∣∣∣π (z(t))
j
− pred (S′)j

∣∣∣∣) ∑
j∈[k]

(∣∣∣∣π (z(t))
j

∣∣∣∣+ ∣∣∣pred (S′)j

∣∣∣) ≤ 2

λ
.

Case 3: there is a S′ such that R
(
π
(
z(t)
))

= R (pred (S′)) and
∑

S∈M :S⊆S(t) P̂S ≤∑
S∈M :S⊆S′ P̂S . Then,

E
[
∥ht+1 (x)− y∥22

]
− E

[
∥ht (x)− y∥22

]
= E

[
∥pred (S′)− y∥22 − ∥ht (x)− y∥22

∣∣∣R (f (x)) ∈ S(t)
]
P
[
R (f (x)) ∈ S(t)

]
= E

[∥∥∥π (z(t))− y
∥∥∥2
2
− ∥ht (x)− y∥22

∣∣∣R (f (x)) ∈ S(t)

]
P
[
R (f (x)) ∈ S(t)

]
+ E

[
∥pred (S′)− y∥22 −

∥∥∥π (z(t))− y
∥∥∥2
2

∣∣∣R (f (x)) ∈ S(t)

]
P
[
R (f (x)) ∈ S(t)

]
≤ E

[∥∥∥π (z(t))− y
∥∥∥2
2
− ∥ht (x)− y∥22

∣∣∣R (f (x)) ∈ S(t)

]
P
[
R (f (x)) ∈ S(t)

]
+

4

λ
P
[
R (f (x)) ∈ S(t)

]
.

Similary to the previous case, the last inequality holds because we have that

E
[
∥pred (S′)− y∥22 −

∥∥∥π (z(t))− y
∥∥∥2
2

∣∣∣R (f (x)) ∈ S(t)

]
≤ ∥pred (S′)∥22 −

∥∥∥π (z(t))∥∥∥2
2
+ 2max

j∈[k]

∣∣∣∣π (z(t))
j
− pred (S′)j

∣∣∣∣
≤
(
max
j∈[k]

∣∣∣∣pred (S′)j − π
(
z(t)
)
j

∣∣∣∣) ∑
j∈[k]

(∣∣∣pred (S′)j

∣∣∣+ ∣∣∣∣π (z(t))
j

∣∣∣∣)

+ 2max
j∈[k]

∣∣∣∣π (z(t))
j
− pred (S′)j

∣∣∣∣
≤ 4

λ
.

In all three cases discussed above, the upper bound includes the term

E
[∥∥∥π (z(t))− y

∥∥∥2
2
− ∥ht (x)− y∥22

∣∣∣R (f (x)) ∈ S(t)

]
P
[
R (f (x)) ∈ S(t)

]
.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

We can interpret the merge in Stage 2 in two ways depending on the case. In Case 2, the algorithm
moves the prediction of S′ from pred (S′) to π

(
z(t)
)
. In Case 3, it moves the prediction of S(t)

from π
(
z(t)
)

to pred (S′). By summing the squared error differences over all time steps t = 0 to T ,
we get that

E
[
∥hT (x)− y∥22

]
− E

[
∥h0(x)− y∥22

]
≤

T−1∑
t=0

E
[∥∥∥π (z(t))− y

∥∥∥2
2
− ∥ht(x)− y∥22

∣∣∣R (f (x)) ∈ S(t)

]
P
[
R (f (x)) ∈ S(t)

]
+

4

λ

T−1∑
t=0

P [R (f (x)) is in the bin moved in Stage 2 of round t] .

Let τ(v) denote the number of times the level set v is in the bin whose prediction gets moved in Stage
2. Then,

∑T−1
t=0 P [R (f (x)) is in the bin moved in Stage 2 of round t] =

∑
v∈B P [R (f (x)) = v] ·

τ(v).

We now establish an upper bound on τ(v) for v ∈ B. Suppose that v is in the bin that gets moved in
Stage 2 of some time step t, during the merge bins Sa and Sb. Without loss of generality, assume that
Sa is the bin being moved. This implies that v ∈ Sa and

∑
S∈M :S⊆Sa

P̂S ≤
∑

S∈M :S⊆Sb
P̂S . By

the accuracy of the probability estimates, we have that P [R (f (x)) ∈ Sa] ≤ P [R (f (x)) ∈ Sb] +
β/18. Since Saand Sb are disjoint, P [R (f (x)) ∈ Sa ∪ Sb] ≥ P [R (f (x)) ∈ Sa]− β/18. Since each
merge involving moving the bin with v (almost) doubles the size of the bin containing it, we have
that

2τ(v)P [R (f (x)) = v]− β

36

τ(v)∑
i=1

2i ≤ 1.

Hence,

τ(v) ≤ log2

(
1− β/18

P [R (f (x)) = v]− β/18

)
.

Since ε < 1, we have β = εp/(p−1) ·2−1/(p−1) < 1. Additionally, P [R (f (x)) = v] ≥ β/6−β/12 =
β/12because v ∈ B. Therefore, τ(v) ≤ log2(36/β). Since λ = ⌈1/β⌉ ,we conclude that

E
[
∥hT (x)− y∥22

]
− E

[
∥h0 (x)− y∥22

]
≤

T−1∑
t=0

E
[∥∥∥π (z(t))− y

∥∥∥2
2
− ∥ht (x)− y∥22

∣∣∣R (f (x)) ∈ S(t)

]
P
[
R (f (x)) ∈ S(t)

]
+

4

⌈1/β⌉
log2

(
36

β

)
.

Lemma 22 (Lemma 12 restated). Assuming that A1, A2 and A3 hold, at time step t of the algorithm

E
[
∥π(z(t))− y∥22 − ∥ht (x)− y∥22

∣∣∣R (f (x)) ∈ S(t)
]
P
[
R (f (x)) ∈ S(t)

]
≤ −β2

/9.

Proof. At each time step t ≤ T−1, before the algorithm terminates we observe the following. Since
π
(
z(t)
)
= argminv∈∆k

∥∥v − z(t)
∥∥
2

and y ∈ ∆k, we have that
∥∥π (z(t))− y

∥∥
2
≤
∥∥z(t) − y

∥∥
2
.

Therefore, it suffices to find an upper bound for the following quantity:

E
[∥∥∥z(t) − y

∥∥∥2
2
− ∥ht (x)− y∥22

∣∣∣R (f (x)) ∈ S(t)

]
P
[
R (f (x)) ∈ S(t)

]
.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

For simplicity, let u(t) = pred
(
S(t)

)
denote the previous prediction for group S(t). Then we have

that

E
[∥∥∥z(t) − y

∥∥∥2
2
−
∥∥∥u(t) − y

∥∥∥2
2

∣∣∣R (f (x)) ∈ S(t)

]
P
[
R (f (x)) ∈ S(t)

]
= E

[(
z
(t)

j(t)
− yj(t)

)2
−
(
u
(t)

j(t)
− yj(t)

)2 ∣∣∣R (f (x)) ∈ S(t)

]
P
[
R (f (x)) ∈ S(t)

]
=

((
z
(t)

j(t)

)2
−
(
u
(t)

j(t)

)2)
P
[
R (f (x)) ∈ S(t)

]
+
(
2u

(t)

j(t)
− 2z

(t)

j(t)

)
E
[
yj(t)I

[
R (f (x)) ∈ S(t)

]]
=
(
z
(t)

j(t)
− u

(t)

j(t)

)((
z
(t)

j(t)
+ u

(t)

j(t)

)
P
[
R (f (x)) ∈ S(t)

]
− 2E

[
yj(t)I

[
R (f (x)) ∈ S(t)

]])
.

The value of z(t)
j(t)

, as assigned by the algorithm, falls into one of two cases. Simultaneously, we

have bounds on the value of u(t)

j(t)
, since the algorithm has selected a bin S(t) with large error. These

bounds play a crucial role in analyzing (
z
(t)

j(t)
− u

(t)

j(t)

)
and ((

z
(t)

j(t)
+ u

(t)

j(t)

)
P
[
R (f (x)) ∈ S(t)

]
− 2E

[
yj(t)I

[
R (f (x)) ∈ S(t)

]])
.

Case 1: z
(t)

j(t)
= 1. Then,

∑
S∈M :S⊆S(t) ÊS,j(t) ≥

∑
S∈M :S⊆S(t) P̂S and(∑

S∈M :S⊆S(t) P̂S

)
u
(t)

j(t)
−
∑

S∈M :S⊆S(t) ÊS,j(t) < −β/2. Therefore,

E
[∥∥∥z(t) − y

∥∥∥2
2
−
∥∥∥u(t) − y

∥∥∥2
2

∣∣∣R (f (x)) ∈ S(t)

]
P
[
R (f (x)) ∈ S(t)

]
=
(
1− u

(t)

j(t)

)((
1 + u

(t)

j(t)

)
P
[
R (f (x)) ∈ S(t)

]
− 2E

[
yj(t)I

[
R (f (x)) ∈ S(t)

]])
.

We analyze the two factors separately. Since the error associated with bin S(t) and coordinate j(t)

is large, we have that ∑
S∈M :S⊆S(t)

P̂S

u
(t)

j(t)

<
∑

S∈M :S⊆S(t)

ÊS,j(t) −
β

2

< E
[
yj(t)I

[
R (f (x)) ∈ S(t)

]]
+

β

36(⌊log2 |B|⌋+ 1)

∣∣∣{S ∈M : S ⊆ S(t)
}∣∣∣− β

2

≤ P
[
R (f (x)) ∈ S(t)

]
− 17β

36
.

Furthermore, we have a lower on the estimated probability of S(t)
∑

S∈M :S⊆S(t) P̂S ≥
P
[
R (f (x)) ∈ S(t)

]
− β

36(⌊log2 |B|⌋+1)

∣∣{S ∈M : S ⊆ S(t)
}∣∣ ≥ β

6−
β
12−

β
36 > 0 because S(t) ∈ G,

which implies that it contains bins from set B.

Combining the two inequalities above, we obtain that

1− u
(t)

j(t)
> 1−

P
[
R (f (x)) ∈ S(t)

]
− 17β/36

P
[
R (f (x)) ∈ S(t)

]
− β/36

=
β/2− β/18

P
[
R (f (x)) ∈ S(t)

]
− β/36

>
4β

9
.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

We now bound the second factor.(
1 + u

(t)

j(t)

)
P
[
R (f (x)) ∈ S(t)

]
− 2E

[
yj(t)I

[
R (f (x)) ∈ S(t)

]]
≤
(
1 + u

(t)

j(t)

) ∑
S∈M :S⊆S(t)

P̂S +
β

36(⌊log2 |B|⌋+ 1)

∣∣∣{S ∈M : S ⊆ S(t)
}∣∣∣


− 2

 ∑
S∈M :S⊆S(t)

ÊS,j(t) −
β

36(⌊log2 |B|⌋+ 1)

∣∣∣{S ∈M : S ⊆ S(t)
}∣∣∣


≤ u
(t)

j(t)

 ∑
S∈M :S⊆S(t)

P̂S

− ∑
S∈M :S⊆S(t)

ÊS,j(t) +
∑

S∈M :S⊆S(t)

P̂S −
∑

S∈M :S⊆S(t)

ÊS,j(t) +
β

9

< −7β

18
.

Multiplying the two factors, we see that

E
[∥∥∥z(t) − y

∥∥∥2
2
−
∥∥∥u(t) − y

∥∥∥2
2

∣∣∣R (f (x)) ∈ S(t)

]
P
[
R (f (x)) ∈ S(t)

]
< −14β2

81
.

At a high level, we have shown that the expected difference in squared error is strictly negative in
this case.

Case 2: z
(t)

j(t)
=
(∑

S∈M :S⊆S(t) ÊS,j(t)

)
/
(∑

S∈M :S⊆S(t) P̂S

)
≤ 1. We consider two subcases

based on the behavior of u(t)

j(t)
.

Subcase 1:
∑

S∈M :S⊆S(t) ÊS,j(t) −
(∑

S∈M :S⊆S(t) P̂S

)
u
(t)

j(t)
> β/2. Then, it follows that

z
(t)

j(t)
− u

(t)

j(t)
=

∑
S∈M :S⊆S(t) ÊS,j(t)∑

S∈M :S⊆S(t) P̂S

− u
(t)

j(t)
>

β

2
(∑

S∈M :S⊆S(t) P̂S

)
and

(
z
(t)

j(t)
+ u

(t)

j(t)

)
P
[
R (f (x)) ∈ S(t)

]
− 2E

[
yj(t)I

[
R (f (x)) ∈ S(t)

]]
=

(∑
S∈M :S⊆S(t) ÊS,j(t)∑

S∈M :S⊆S(t) P̂S

+ u
(t)

j(t)

)
P
[
R (f (x)) ∈ S(t)

]
− 2E

[
yj(t)I

[
R (f (x)) ∈ S(t)

]]
<

(
2

∑
S∈M :S⊆S(t) ÊS,j(t)∑

S∈M :S⊆S(t) P̂S

− β

2
∑

S∈M :S⊆S(t) P̂S

)
P
[
R (f (x)) ∈ S(t)

]
− 2E

[
yj(t)I

[
R (f (x)) ∈ S(t)

]]
≤

(
2

∑
S∈M :S⊆S(t) ÊS,j(t)∑

S∈M :S⊆S(t) P̂S

− β

2
∑

S∈M :S⊆S(t) P̂S

)

·

 ∑
S∈M :S⊆S(t)

P̂S +
β

36(⌊log2 |B|⌋+ 1)

∣∣∣{S ∈M : S ⊆ S(t)
}∣∣∣


− 2

 ∑
S∈M :S⊆S(t)

ÊS,j(t) −
β

36(⌊log2 |B|⌋+ 1)

∣∣∣{S ∈M : S ⊆ S(t)
}∣∣∣


≤ −β

2
− β2

2 · 36(⌊log2 |B|⌋+ 1)
∑

S∈M :S⊆S(t) P̂S

∣∣∣{S ∈M : S ⊆ S(t)
}∣∣∣+ β

18
< −4β

9
.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Subcase 2:
∑

S∈M :S⊆S(t) ÊS,j(t) −
(∑

S∈M :S⊆S(t) P̂S

)
u
(t)

j(t)
< −β/2. Then, it follows that

z
(t)

j(t)
− u

(t)

j(t)
=

∑
S∈M :S⊆S(t) ÊS,j(t)∑

S∈M :S⊆S(t) P̂S

− u
(t)

j(t)
< − β

2
(∑

S∈M :S⊆S(t) P̂S

)
and(

z
(t)

j(t)
+ u

(t)

j(t)

)
P
[
R (f (x)) ∈ S(t)

]
− 2E

[
yj(t)I

[
R (f (x)) ∈ S(t)

]]
=

(∑
S∈M :S⊆S(t) ÊS,j(t)∑

S∈M :S⊆S(t) P̂S

+ u
(t)

j(t)

)
P
[
R (f (x)) ∈ S(t)

]
− 2E

[
yj(t)I

[
R (f (x)) ∈ S(t)

]]
>

(
2

∑
S∈M :S⊆S(t) ÊS,j(t)∑

S∈M :S⊆S(t) P̂S

+
β

2
∑

S∈M :S⊆S(t) P̂S

)

·

 ∑
S∈M :S⊆S(t)

P̂S −
β

36(⌊log2 |B|⌋+ 1)

∣∣∣{S ∈M : S ⊆ S(t)
}∣∣∣


− 2

 ∑
S∈M :S⊆S(t)

ÊS,j(t) +
β

36(⌊log2 |B|⌋+ 1)

∣∣∣{S ∈M : S ⊆ S(t)
}∣∣∣


≥ β

2
− β2

2 · 36(⌊log2 |B|⌋+ 1)
∑

S∈M :S⊆S(t) P̂S

∣∣∣{S ∈M : S ⊆ S(t)
}∣∣∣− β

18
>

4β

9
.

Therefore, in both subcases the expected difference in squared error is also strictly negative.
Specifically, we have

E
[∥∥∥z(t) − y

∥∥∥2
2
−
∥∥∥u(t) − y

∥∥∥2
2

∣∣∣R (f (x)) ∈ S(t)

]
P
[
R (f (x)) ∈ S(t)

]
< −

(
4β

9

)
β

2
(∑

S∈M :S⊆S(t) P̂S

)
< −β2

9
.

because
∑

S∈M :S⊆S(t) P̂S ≤ P
[
R (f (x)) ∈ S(t)

]
+ β

36 ≤ 2.

We notice that in both cases

E
[∥∥∥z(t) − y

∥∥∥2
2
−
∥∥∥u(t) − y

∥∥∥2
2

∣∣∣R (f (x)) ∈ S(t)

]
P
[
R (f (x)) ∈ S(t)

]
< −β2

9
.

Lemma 23 (Lemma 13 restated). The squared error at time step 0 is E
[
∥h0(x)− y∥22

]
≤

E
[
∥f (x)− y∥22

]
+O (β).

Proof. By the definition of ρ , h0(x) = ρ (R (f (x))) and f(x) correspond to the same level set
when they get rounded by R. Therefore, they are at most 1/λ apart in every coordinate. Additionally,
the coordinates of f(x) and h0(x) add up to 1. Since y is the one-hot encoding of a label, we obtain

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

that

∥h0(x)− y∥22
= ∥h0(x)− y∥22 − ∥f(x)− y∥22 + ∥f(x)− y∥22
≤ ∥h0(x)∥22 − ∥f(x)∥22 + 2max

j∈[k]
|h0(x)j − f(x)j |+ ∥f(x)− y∥22

≤
(
max
j∈[k]
|h0(x)j − f(x)j |

) ∑
j∈[k]

(|h0(x)j |+ |f(x)j |) + 2max
j∈[k]
|h0(x)j − f(x)j |+ ∥f(x)− y∥22

≤ 1

λ
· 4 + ∥f(x)− y∥22 =

4

⌈1/β⌉
+ ∥f(x)− y∥22 .

A.4 PROOFS FROM SUBSECTION 3.3

Lemma 24 (Lemma 14 restated). Assuming that A1, A2 and A3 hold, the algorithm terminates
after at most O (1/β2) time steps.

Proof. Assuming that events A1, A2 and A3 hold, we apply Lemmata 11 and 12 to obtain the
following bound

E
[
∥h(x)− y∥22

]
− E

[
∥ρ (R (f (x)))− y∥22

]
≤ −β2

9
T +

4

⌈1/β⌉
log2

(
36

β

)
.

Moreover , since the squared loss is always bounded between 0 and 1 we have

−1 ≤ −β2

9
T +

4

⌈1/β⌉
log2

(
36

β

)
which implies that the algorithm must terminate after

T ≤
9 + 36

⌈1/β⌉ log2

(
36
β

)
β2

time steps.

Lemma 25 (Lemma 15 restated). Assuming that A1, A2 and A3 hold, the ℓp calibration error
(Errp(h))

p is bounded by O(βp−1).

Proof. Let T be the time step when the algorithm terminates. We analyze the error under the
assumption that A1, A2 and A3 hold. We show that for all v ∈ V k

λ and all j ∈ [k], Err(h, v, j) ≤ β.

A point x gets a prediction h(x) that gets rounded to level set v in one of two ways:

1. if v is not a high-probability bin, then the initial prediction f(x) gets rounded to v, or

2. if there exists a group of bins S ∈ G such that R (pred(S)) = v, then the initial prediction f(x)
is in a high-probability bin that, through the calibration algorithm gets mapped to group S.

Note that both cases can be true simultaneously for a fixed v. In the second case, due to the
termination criterion of the algorithm, ∀j ∈ [k],

Êrr(S, j) =

∣∣∣∣∣∣(
∑

S′∈M :S′⊆S

P̂S′)pred (S)j −
∑

S′∈M :S′⊆S

ÊS′,j

∣∣∣∣∣∣ ≤ β

2
.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

For the true error of v ∈ V k
λ and j ∈ [k], we have that

Err(h, v, j)

=
∣∣E(x,y)∼D [(h(x)j − yj) I [R (h (x)) = v]]

∣∣
≤
∣∣E(x,y)∼D [(h(x)j − yj) I [R (h (x)) = v and R(f(x)) ∈ B]]

∣∣
+
∣∣E(x,y)∼D [(h(x)j − yj) I [R (h (x)) = v and R(f(x)) /∈ B]]

∣∣
≤
∣∣P [R(f(x)) ∈ S] · pred(S)j − E(x,y)∼D [yjI [R(f(x)) ∈ S]]

∣∣ ·
I [∃S ∈ G : R (pred(S)) = v] + P [R(f(x)) = v] I [v /∈ B]

≤ (|(
∑

S′∈M :S′⊆S

P̂S′)pred(S)j −
∑

S′∈M :S′⊆S

ÊS′,j |

+
2β

36(⌊log2 |B|⌋+ 1)
|{S′ ∈M : S′ ⊆ S}|)I [∃S ∈ G : R (pred(S)) = v] +

(
β

6
+

β

12

)
I[v /∈ B]

≤
(
β

2
+

β

18

)
I [∃S ∈ G : R (pred(S)) = v] +

β

4
I[v /∈ B]

≤ β

Therefore, ∑
v∈V k

λ

k∑
j=1

(Err(h, v, j))p

≤ (
∑
v∈V k

λ

k∑
j=1

Err(h, v, j)) max
v∈V k

λ ,j∈[k]
(Err(h, v, j))p−1

≤ (
∑
v∈V k

λ

k∑
j=1

(
E(x,y)∼D [h(x)j | R(h(x)) = v]

+E(x,y)∼D [yj | R(h(x)) = v]
)
P [R(h(x)) = v])βp−1

≤ 2βp−1

This holds because for all v ∈ V k
λ ,
∑k

j=1 E(x,y)∼D [h(x)j | R(h(x)) = v] = 1. As a result we get

that P
[
Errp(h) >

(
2βp−1

)1/p |A1, A2, A3

]
= 0.

Lemma 26 (Lemma 16 restated). Assuming that A1, A2 and A3 hold, the algorithm terminates in
time O

(
k
β2 log

3
(

1
β

)
log
(

k
βδ

))
.

Proof. Assuming that A1, A2 and A3 hold, Algorithm 2 has time complexity O
(

poly
(

1
β , k

))
,

where poly denotes a polynomial function. We analyze the time complexity of each phase of the
algorithm.

Phase 1: Identifying high-probability bins. This phase requires O(n) time, where n is the number of
samples used to estimate µ̂v . According to the analysis in Subsection 3.1, n = O

(
1
β2 log

(
k
βδ

))
.

Notably, this step avoids iterating over all bins in V k
λ by examining only bins containing input

samples. This can be efficiently implemented using a dictionary/hash table where keys represent
bins and values are lists of samples in each bin. The dictionary size equals the number of non-empty
bins. From this point forward the algorithm operates exclusively on the high probability bins in B,
whose cardinality is linear in 1

β .

Phase 2: Initializing data structures M and G. The initialization requires time linear in |B|k =

O
(

1
βk
)

. For the computation of the error, the algorithm first estimates P̂ and Ê. Similarly to

Phase 1, this part requires O(mk) time, where m is the number of samples used to estimate P̂ and

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Ê. By the analysis in Subsection 3.1, the number of these samples is O
(

1
β2 log

3
(

1
β

)
log
(

k
βδ

))
.

Then, the algorithm projects every vector in G using ρ to get the values of pred, which takes time
O(k). More specifically, r(v) is of the form r(v)i = vi + z, where z =

1−
∑

i∈[k] vi

k . Finally, the

computation of the estimated errors takes O(k|B|) = O
(

k
β

)
time.

Phase 3: Calibration. The algorithm calibrates predictions for bins in B by executing at most
O
(

1
β2

)
iterations. Each iteration performs a polynomial number of operations in k and 1

β . More
specifically, searching in G for the large-error group can take at most O(log(|B|k)) time if we
store the errors of the groups in G in a priority queue. The computation of z(t) takes time at most
O(|S(t)| + k). By Lemma 10 we know that |S(t)| = O(log |B|). After the algorithm computes
z(t), it projects it to the simplex using π, which can be done in time O(k log(k)). The search for
groups to merge can be implemented using a hash table whose keys are R(pred(S)) for S in G and
values are the groups corresponding to each key and, hence, takes constant time. The total number
of merges in G and M throughout the entire algorithm is bounded by |B|, since we begin with |B|
groups and only merge. Therefore, the parts of the algorithm that perform the merges get executed
at most O(1β) times in total. Merging two groups in G takes time O(|B|k) since we only update
the predictions for the affected bins. The merge in M takes time O(k) since we only adjust the
estimates for S1 and S2. The error computation step runs in time linear in k log |B| since by Lemma
10 the sum used to estimate the probability of S(t) consists of at most O(log |B|) terms.

Combining the analyses of the three phases, we conclude that the algorithm’s time complexity is
O
(

k
β2 log

3
(

1
β

)
log
(

k
βδ

))
.

USE OF LLMS

We used Claude Opus 4.1 by Anthropic for grammar and spell checking.

22

	Introduction
	Our techniques
	Related work

	Preliminaries
	Multiclass calibration under p error
	Correctness of estimates
	Accuracy of the calibrated predictor
	Termination of the algorithm with small calibration error

	Conclusion
	Appendix
	Proofs from Section 2
	Proofs from Subsection 3.1
	Proofs from Subsection 3.2
	Proofs from Subsection 3.3

