
Eliciting Numerical Predictive Distributions of LLMs Without Auto-Regression

Julianna Piskorz * 1 Katarzyna Kobalczyk * 1 Mihaela van der Schaar 1

Abstract
Large Language Models (LLMs) have re-
cently been successfully applied to regression
tasks—such as time series forecasting and tabular
prediction—by leveraging their in-context learn-
ing abilities. However, their autoregressive de-
coding process is ill-suited to continuous-valued
outputs, and obtaining numerical predictive dis-
tributions typically requires repeated sampling,
leading to high computational cost. In this work,
we investigate whether distributional properties of
LLM predictions (e.g., mean, median, quantiles)
can be recovered directly from LLM’s internal
representations, without explicit autoregressive
generation. Our results suggest that LLM embed-
dings carry informative signals about numerical
uncertainty, and that summary statistics of their
predictive distributions can be approximated with
reduced computational overhead.

1. Introduction
LLMs are increasingly used for structured prediction tasks
such as tabular regression and time series forecasting (e.g.
Requeima et al., 2024; Hegselmann et al., 2023; Gruver
et al., 2024). However, issuing numerical predictions with
LLMs remains computationally expensive due to their au-
toregressive nature: real-valued numbers typically span mul-
tiple tokens, and decoding them requires sequential auto-
regressive generation. This is particularly problematic when
one would like to quantify the prediction uncertainty, which
requires repeated sampling from the model’s output distribu-
tion or auto-regressive computation of token logits (Gruver
et al., 2024; Requeima et al., 2024).

This motivates our central question: Do the LLM’s hid-
den states already encode the full numerical prediction,

*Equal contribution 1Department of Applied Mathematics
and Theoretical Physics, University of Cambridge, Cambridge,
UK. Correspondence to: Julianna Piskorz <jp2048@cam.ac.uk>,
Katarzyna Kobalczyk <knk25@cam.ac.uk>.

Proceedings of the 1 st ICML Workshop on Foundation Models for
Structured Data, Vancouver, Canada. 2025. Copyright 2025 by
the author(s).

including its uncertainty, before any decoding occurs?
While predicting a complete number requires resolving its
magnitude—a decision typically made late in decoding—we
investigate whether this information is recoverable directly
from the model’s internal representations. Focusing on time
series forecasting, we probe the LLM’s predictive distribu-
tion from the frozen embeddings from a pre-trained model.
Specifically, we ask:

Do LLMs encode the next number they intend to gen-
erate? (Section 2) We train magnitude-aware regression
probes to recover the greedy output, mean, and median of
the LLM’s predictive distribution. We show that our probe
accurately predicts numerical targets across data with vary-
ing orders of magnitude.

Can we elicit the uncertainty of the LLM’s predictive
distribution? (Section 3) We then ask whether uncertainty
information is also captured in LLM’s hidden states. Using
quantile regression, we show that probes can accurately
recover distributional properties such as the interquartile
range and calibrated confidence intervals.

Do these results generalise to other settings? (Section 4)
We test whether a single probe generalises beyond the spe-
cific conditions under which they were trained. Specifically,
we investigate whether probes trained on real-world data
generalise across different sub-domains and whether probes
trained on synthetic data generalise to real-world data. Our
results show strong generalisation, with only modest degra-
dation in out-of-distribution settings (Section 4).

Taken together, these findings suggest that much of the com-
putation behind numerical prediction is already embedded
in LLM representations—offering a path toward efficient,
sampling-free regression with uncertainty estimation.1

2. Do LLMs Encode the Next Number They
Intend to Generate?

2.1. Method of Investigation

We provide an overview of our methodology below. For
more details, see Appendix.

1Code to reproduce our experiments: https://github.
com/kasia-kobalczyk/guess_llm_official.

1

https://github.com/kasia-kobalczyk/guess_llm_official
https://github.com/kasia-kobalczyk/guess_llm_official

Eliciting Numerical Predictive Distributions of LLMs Without Auto-Regression

Objective. We ask: To what extent is the full predicted
number already encoded in the LLM’s internal representa-
tion, prior to decoding? Let x = [x1, . . . , xn] be a sequence
of numbers. Given x, a language model induces a predic-
tive distribution pLLM(· | x) over the next value xn+1. In
this section, we aim to train independent probing models
to recover: (a) the LLM’s greedy prediction, (b) the mean
of pLLM, and (c) the median of pLLM. We approximate the
mean and median using 100 samples yj ∼ pLLM(· | x).
LLM Representation. Following Gruver et al. (2024), we
serialise x to text as “x1, x2, x3, . . . , xn,”. We then extract
the final token’s hidden state (denoted hℓ[−1]) from a pre-
selected set of N layers H. We concatenate these vectors to
form a single input embedding for the probe:

e := concat (hℓ[−1])ℓ∈H ∈ Rdinput , (1)

where dinput = dℓ × |H|. We use LLama-2-8B model for
generating the embeddings (dℓ = 4096).

Datasets. We construct synthetic time series sequences from
diverse function classes (e.g., sinusoids, Gaussians, noise)
with varying length, noise, and scale. To probe magnitude
robustness, we rescale each sequence across several ranges
([−1, 1] to [−104, 104]), and aggregate these into a dataset
of ≈ 80k sequences. Each training example includes xi,
its embedding ei, the greedy prediction ygreedy

i , and 100
samples yji from the model’s predictive distribution.

Probing Model. The primary challenge in training regres-
sion probes for LLM numerical predictions lies in the wide
spread of target magnitudes. Standard regression losses
such as MSE or transformation techniques like log-scaling
fail to provide stable gradients across this scale variability.
To address this, we introduce a magnitude-factorised regres-
sion model that decomposes the prediction into a magnitude
classification and a scale-invariant regression.

Let y∗ be a target scalar (greedy, mean, or median predic-
tion). We define its order of magnitude as:

m(y∗) := ⌊log10 (|y∗|)⌋ . (2)

Our model architecture consists of the following modules:

• g : Rdinput → Rdhidden : an encoder mapping the input e to a
latent representation.

• forder : Rdhidden → RM : a classifier predicting logits over
M magnitude bins.

• fval : Rdhidden → R: a regressor predicting the scaled value.

The final prediction is reconstructed by taking the expecta-
tion over the top-K predicted orders:

ŷi = r̂i · 10m̂i , where r̂i = fval(g(ei)), (3)

m̂i := 10
∑

k∈Ki
k·pk(g(ei)), (4)

where Ki is a set of K exponents with the largest logit values
as predicted by forder(g(ei)) and pk(g(ei)) is derived from
forder(g(ei)) using the softmax over the top-K logits.

Training Objective. To decouple magnitude errors from
value regression during early training, we use the ground-
truth magnitude m(y∗) to compute ŷ and define the training
objective as:

L = Lorder + β · Lval, where (5)

Lorder =
1

Nb

Nb∑
i=1

CrossEntropyLoss(m̂i,m(y∗i)), (6)

Lval =
1

Nb

Nb∑
i=1

(
r̂i −

y∗i
10m(y∗

i)

)2

. (7)

In the above Nb is the batch size and the hyperparameter β
balances the magnitude and value objectives. This formu-
lation of the loss allows the model to learn scale-invariant
value predictions and as we found out, it improves stability
during optimization.

2.2. Results

We train three separate models, for each of the mean, median
and greedy predictions. As visualised on Figure 1, we find
strong correlation between the log10 of the predicted number
and log10 of the true value, for all three statistics. Further,
the bar chart on the right hand side of Figure 1 visualises
that our model achieves above 80% accuracy in predicting
the exponent of the generated number. To further assess
whether the LLM’s internal representations encode fine-
grained information beyond the order of magnitude, in the
Appendix we show results on the dataset with time series
values in the interval [−1, 1].

� The internal representations of a pre-trained LLM
encode detailed information about its intended numeri-
cal output–even before any tokens are generated. This
demonstrates that much of the numerical reasoning per-
formed by the LLM is already present in its hidden
states, and may not require the autoregressive decoding
process.

3. Can We Elicit the Uncertainty of the LLM’s
Predictive Distribution?

Encouraged by the above findings, we now investigate
whether we can go beyond point estimates to recover the un-
certainty of pLLM by approximating its distributional shape.
Specifically, we attempt to recover multiple quantiles of
pLLM, enabling a coarse-grained reconstruction of its distri-
bution function as an easy way of estimating the confidence
intervals for the LLM’s predictions.

2

Eliciting Numerical Predictive Distributions of LLMs Without Auto-Regression

−2 0 2 4

True value (log10 scale)

−2

0

2

4

P
re

d
ic

te
d

va
lu

e
(l

og
1
0

sc
al

e)

Pearson R: 0.98

Target: mean

y = x

−2 0 2 4

True value (log10 scale)

−2

0

2

4

P
re

d
ic

te
d

va
lu

e
(l

og
1
0

sc
al

e)

Pearson R: 0.98

Target: median

y = x

−2 0 2 4

True value (log10 scale)

−2

0

2

4

P
re

d
ic

te
d

va
lu

e
(l

og
1
0

sc
al

e)

Pearson R: 0.90

Target: greedy

y = x

-2 -1 0 1 2 3

True exponent

0.0

0.2

0.4

0.6

0.8

1.0

P
re

d
ic

ti
on

A
cc

u
ra

cy

Accuracy by exponent across targets

Figure 1. Predicted vs. true values of mean, median and greedy prediction, presented on log10 scale. The probing model accurately
recovers the number that the LLM intends to predict, indicating that the internal representations encode the order of magnitude of
prediction.

Table 1. Coverage of the predicted confidence intervals. Values
denote empirical coverage (%) ± standard error.

α 50% 90% 95%

1.0 49.2 ± 0.4 89.2 ± 0.3 94.1 ± 0.3
10.0 49.8 ± 0.4 90.2 ± 0.3 94.1 ± 0.3
1000.0 50.4 ± 0.5 89.0 ± 0.3 93.7 ± 0.3
10000.0 51.2 ± 0.5 88.2 ± 0.4 92.7 ± 0.3

3.1. Method of Investigation

Quantile Regression. We adopt a quantile regression (QR)
model, which enables direct estimation of the distributional
shape without strong parametric assumptions. We train the
quantile predictor using the pinball loss (Koenker & Hal-
lock, 2001), computed with respect to LLM samples. As in
Section 2, for each quantile predictor we use a magnitude-
factorised model to address the challenge of scale variance
in numerical outputs. For a detailed formulation, see Ap-
pendix. To train the QR models, we use the same datasets as
in section 2, considered separately rather than concatenated.

3.2. Results

IQR Prediction. To investigate whether the LLM’s internal
representations encode information about the spread of its
predictive distribution, we estimate the interquartile range
(IQR) using the predicted 25th and 75th percentiles. As
shown in Figure 2, we find a strong correlation between
predicted and sample-based IQRs, suggesting that the model
is able to infer distributional spread from internal LLM
activations.

Confidence Interval Coverage. We next evaluate whether
the predicted quantiles yield calibrated confidence intervals.
Given a desired confidence level α and its associated interval
C(α) predicted by the probe, we compute the empirical
coverage by checking what fraction of LLM samples fall
within the predicted interval. We expect that:

α = Ey∼p(·|x) [1{y ∈ C(α)}]

≈ 1

Nsa

Nsa∑
j=1

1{yj ∈ C(α)}, where yj ∼ pLLM(·|x).

Table 1 reports the empirical coverage for 50%, 90%, and

95% intervals across datasets with different scaling ℓ. In all
cases, empirical coverage closely matches the target level,
indicating that the quantile probe is well-calibrated.

� Key Insights. Our findings provide strong evidence
that the uncertainty of an LLM’s predictive distribution
is encoded in its internal activations and can be effec-
tively elicited using a quantile regression probe.

4. Generalisation Properties
In this section, we assess the generalisation of our approach
to real-world data and across datasets. Since training probes
can be costly, generalisation properties are key for practi-
cal use—allowing pre-trained probes to replace repeated
autoregressive sampling on new data with differing distri-
butions. Throughout this section, we use the same quantile
regression model as used in Section 3.

4.1. Method of Investigation

Datasets. We construct a real-world dataset using time
series from the Darts (Herzen et al., 2022) and Monash
(Godahewa et al., 2021) collections. Following the same
format as in our synthetic experiments, we generate LLM
embeddings and samples from their predictive distribution
for ≈ 45k distinct sequences across 32 sub-datasets (e.g.,
US Births, Bitcoin, Air Passengers). Furthermore, we also
investigate an even stronger form of generalisation: from a
model trained on synthetic data only to testing on real-world
data. Thus, we train the following models:

• Real (all): Trained on a random 80% of all sequences
across all sub-datasets. The remaining 20% is held out
for testing.

• Real (5 fold): We partition the dataset into 5 folds such
that, in each fold, one model is trained on 80% of the
sub-datasets and evaluated on the remaining 20%. This
ensures that each sub-dataset appears in the test fold of
exactly one out of 5 models trained.

• Synth: A model trained on the combination of the 4
synthetic dataset from the previous sections with scales
1.0, 10.0, 1000.0 and 10000.0.

3

Eliciting Numerical Predictive Distributions of LLMs Without Auto-Regression

10−3 10−2 10−1 100 101 102 10310−3

10−2

10−1

100

101

102

103

Pearson R: 0.65
Spearman R: 0.93

Dataset scale: 1.0

y=x

10−3 10−2 10−1 100 101 102 103

Pearson R: 0.64
Spearman R: 0.95

Dataset scale: 10.0

10−3 10−2 10−1 100 101 102 103

Pearson R: 0.60
Spearman R: 0.93

Dataset scale: 1000.0

10−3 10−2 10−1 100 101 102 103

Pearson R: 0.63
Spearman R: 0.93

Dataset scale: 10000.0

P
re

di
ct

ed
IQ

R

Sample IQR

Figure 2. Predicted vs. sample-based IQR (median-normalised). The model accurately tracks the spread of the LLM’s output distribution.

so
lar

10
m

inute
s (0

.0e+
00)

tra
ffi

c
hourly

(5
.0e-0

2)

so
lar

4
se

co
nds (1

.0e+
00)

co
vid

dea
th

s (2
.0e+

00)

GasR
ate

CO2Data
se

t (2
.0e+

00)

oiko
lab

wea
th

er
(9

.0e+
00)

tra
ffi

c
wee

kly
(9

.5e+
00)

wea
th

er
(1

.3e+
01)

nn5
daily

(1
.7e+

01)

sa
ugee

nday
(2

.5e+
01)

kdd
cu

p
(3

.5e+
01)

wind
4

se
co

nds (3
.5e+

01)

hosp
ita

l (4
.0e+

01)

Sunsp
otsD

ata
se

t (4
.2e+

01)

fre
d

m
d

(8
.9e+

01)

Hea
rtR

ate
Data

se
t (9

.2e+
01)

su
nsp

ot (1
.1e+

02)

nn5
wee

kly
(1

.2e+
02)

ped
es

tri
an

co
unts

(2
.4e+

02)

AirP
asse

nger
sD

ata
se

t (2
.5e+

02)

AusB
ee

rD
ata

se
t (4

.3e+
02)

to
uris

m
m

onth
ly

(6
.5e+

02)

M
onth

lyM
ilk

Data
se

t (7
.4e+

02)

cif
2016

(8
.0e+

02)

ka
ggle

web
tra

ffi
c

wee
kly

(1
.7e+

03)

bitc
oin

(2
.9e+

03)

austr
alia

n
ele

ct
ric

ity
dem

and
(4

.1e+
03)

to
uris

m
quar

te
rly

(4
.6e+

03)

W
oolyD

ata
se

t (5
.6e+

03)

so
lar

wee
kly

(6
.1e+

03)

us birt
hs (9

.9e+
03)

to
uris

m
ye

ar
ly

(1
.5e+

04)

W
ineD

ata
se

t (2
.6e+

04)

Sub-Dataset (Avg. Median of LLM predictions)

10−8

10−5

10−2

101

104

A
b

so
lu

te
E

rr
or

on
th

e
M

ed
ia

n

Training Type

real (all)

real (5 fold)

synth

Figure 3. Absolute Error on the Median across different sub-dataset. Comparison of generalisation across models trained on different data.

At test time, the above models face increasingly stronger
distribution shifts. In terms of generalisation performance to
previously unseen data distributions, we can view the Real
(all) model as a baseline for Real (5 fold) and Synth.

4.2. Results

Figure 3 shows the distribution of the Absolute Error of
the predicted vs. sample median across all sub-datasets.
The x-axis is sorted by increasing order of magnitude of
the datasets. We note that the sub-datasets in our collection
cover widely varying ranges of values (with the magnitudes
varying from 10−3 to 1013). We suspect that this is the
main reason for our probing model struggling to generalise
across some datasets. Interestingly, while the Synth model
underperforms, it still demonstrates good generalisation for
some of the sub-datasets.

� Key Insights. When applied to real-world datasets,
the model achieves accurate empirical coverage and
demonstrates partial transferability to unseen data dis-
tributions. Cross-dataset generalisation is possible, but
challenged by large variation in scale and distribution.

5. Discussion, Limitations and Further Work
Discussion. Our findings demonstrate that LLMs internally
encode rich numerical information about their intended pre-

dictions, well before any autoregressive decoding occurs.
This suggests that much of the LLM’s “reasoning” over nu-
meric outputs is already complete at the point of processing
the input sequence, and that decoding primarily serves as a
mechanism for surfacing the LLM’s predictions. Beyond
shedding light on the internal mechanics of LLMs in re-
gression settings, these results open up a practical direction:
enabling uncertainty-aware numerical prediction without
incurring the high cost of repeated sampling.

Limitations. Despite these promising findings, several lim-
itations remain. While our probing models exhibit some
generalisation abilities, they are still trained per-LLM and
require retraining for new architectures or tokenization
schemes. Further, for training and evaluation purposes, we
approximate the LLM’s predictive distribution using empir-
ical sampling, which is itself a noisy and computationally
costly proxy.

Further Work. Future research could explore extending
this framework to more diverse prediction tasks. A deeper
investigation into the mechanistic basis of numerical encod-
ing could also reveal connections to known computational
circuits or arithmetic operations within the model. Finally,
motivated by our generalisation results, an important next
step is the development of universal probing models which
could be applied off-the-shelf across diverse tasks and data
domains, eliminating the need for costly retraining.

4

Eliciting Numerical Predictive Distributions of LLMs Without Auto-Regression

References
Akhtar, M., Shankarampeta, A., Gupta, V., Patil, A.,

Cocarascu, O., and Simperl, E. Exploring the Nu-
merical Reasoning Capabilities of Language Mod-
els: A Comprehensive Analysis on Tabular Data.
In Bouamor, H., Pino, J., and Bali, K. (eds.),
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pp. 15391–15405, Singa-
pore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.findings-emnlp.
1028. URL https://aclanthology.org/2023.
findings-emnlp.1028/.

Godahewa, R., Bergmeir, C., Webb, G. I., Hyndman, R. J.,
and Montero-Manso, P. Monash Time Series Forecast-
ing Archive, May 2021. URL http://arxiv.org/
abs/2105.06643. arXiv:2105.06643 [cs].

Golkar, S., Pettee, M., Eickenberg, M., Bietti, A., Cran-
mer, M., Krawezik, G., Lanusse, F., McCabe, M.,
Ohana, R., Parker, L., Blancard, B. R.-S., Tesileanu, T.,
Cho, K., and Ho, S. xVal: A Continuous Numerical
Tokenization for Scientific Language Models, Decem-
ber 2024. URL http://arxiv.org/abs/2310.
02989. arXiv:2310.02989 [stat].

Gruver, N., Finzi, M., Qiu, S., and Wilson, A. G. Large
Language Models Are Zero-Shot Time Series Forecast-
ers, August 2024. URL http://arxiv.org/abs/
2310.07820. arXiv:2310.07820 [cs].

Hegselmann, S., Buendia, A., Lang, H., Agrawal, M.,
Jiang, X., and Sontag, D. TabLLM: Few-shot Clas-
sification of Tabular Data with Large Language Mod-
els, March 2023. URL http://arxiv.org/abs/
2210.10723. arXiv:2210.10723 [cs].

Herzen, J., Lässig, F., Piazzetta, S. G., Neuer, T., Tafti,
L., Raille, G., Pottelbergh, T. V., Pasieka, M., Skrodzki,
A., Huguenin, N., Dumonal, M., Kościsz, J., Bader,
D., Gusset, F., Benheddi, M., Williamson, C., Kosin-
ski, M., Petrik, M., and Grosch, G. Darts: User-
Friendly Modern Machine Learning for Time Series.
Journal of Machine Learning Research, 23(124):1–6,
2022. ISSN 1533-7928. URL http://jmlr.org/
papers/v23/21-1177.html.

Koenker, R. and Hallock, K. F. Quantile Regression.
Journal of Economic Perspectives, 15(4):143–156, De-
cember 2001. ISSN 0895-3309. doi: 10.1257/
jep.15.4.143. URL https://www.aeaweb.org/
articles?id=10.1257/jep.15.4.143.

Koloski, B., Margeloiu, A., Jiang, X., Škrlj, B., Simidjievski,
N., and Jamnik, M. LLM Embeddings for Deep Learn-
ing on Tabular Data, February 2025. URL http://

arxiv.org/abs/2502.11596. arXiv:2502.11596
[cs] version: 1.

Lindsey, J., Gurnee, W., Ameisen, E., Chen, B., Pearce,
A., Turner, N. L., Citro, C., Abrahams, D., Carter,
S., Hosmer, B., Marcus, J., Sklar, M., Templeton, A.,
Bricken, T., McDougall, C., Cunningham, H., Henighan,
T., Jermyn, A., Jones, A., Persic, A., Qi, Z., Thomp-
son, T. B., Zimmerman, S., Rivoire, K., Conerly, T.,
Olah, C., and Batson, J. On the Biology of a Large
Language Model. Transformer Circuits Thread, 2025.
URL https://transformer-circuits.pub/
2025/attribution-graphs/biology.html.

Requeima, J., Bronskill, J., Choi, D., Turner, R. E., and
Duvenaud, D. LLM Processes: Numerical Predictive
Distributions Conditioned on Natural Language, Decem-
ber 2024. URL http://arxiv.org/abs/2405.
12856. arXiv:2405.12856 [stat].

Schwartz, E., Choshen, L., Shtok, J., Doveh, S., Kar-
linsky, L., and Arbelle, A. NumeroLogic: Num-
ber Encoding for Enhanced LLMs’ Numerical Reason-
ing, March 2024. URL http://arxiv.org/abs/
2404.00459. arXiv:2404.00459 [cs] version: 1.

Singh, A. K. and Strouse, D. J. Tokenization counts: the
impact of tokenization on arithmetic in frontier LLMs,
February 2024. URL http://arxiv.org/abs/
2402.14903. arXiv:2402.14903 [cs].

Stolfo, A., Belinkov, Y., and Sachan, M. A Mecha-
nistic Interpretation of Arithmetic Reasoning in Lan-
guage Models using Causal Mediation Analysis, Oc-
tober 2023. URL http://arxiv.org/abs/2305.
15054. arXiv:2305.15054 [cs].

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen,
M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,
Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,
A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez,
V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P. S.,
Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y.,
Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog,
I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi,
K., Schelten, A., Silva, R., Smith, E. M., Subramanian, R.,
Tan, X. E., Tang, B., Taylor, R., Williams, A., Kuan, J. X.,
Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur,
M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S.,
and Scialom, T. Llama 2: Open Foundation and Fine-
Tuned Chat Models, July 2023. URL http://arxiv.
org/abs/2307.09288. arXiv:2307.09288 [cs].

Wallace, E., Wang, Y., Li, S., Singh, S., and Gardner, M.
Do NLP Models Know Numbers? Probing Numeracy in

5

https://aclanthology.org/2023.findings-emnlp.1028/
https://aclanthology.org/2023.findings-emnlp.1028/
http://arxiv.org/abs/2105.06643
http://arxiv.org/abs/2105.06643
http://arxiv.org/abs/2310.02989
http://arxiv.org/abs/2310.02989
http://arxiv.org/abs/2310.07820
http://arxiv.org/abs/2310.07820
http://arxiv.org/abs/2210.10723
http://arxiv.org/abs/2210.10723
http://jmlr.org/papers/v23/21-1177.html
http://jmlr.org/papers/v23/21-1177.html
https://www.aeaweb.org/articles?id=10.1257/jep.15.4.143
https://www.aeaweb.org/articles?id=10.1257/jep.15.4.143
http://arxiv.org/abs/2502.11596
http://arxiv.org/abs/2502.11596
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
http://arxiv.org/abs/2405.12856
http://arxiv.org/abs/2405.12856
http://arxiv.org/abs/2404.00459
http://arxiv.org/abs/2404.00459
http://arxiv.org/abs/2402.14903
http://arxiv.org/abs/2402.14903
http://arxiv.org/abs/2305.15054
http://arxiv.org/abs/2305.15054
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288

Eliciting Numerical Predictive Distributions of LLMs Without Auto-Regression

Embeddings, September 2019. URL http://arxiv.
org/abs/1909.07940. arXiv:1909.07940 [cs].

Yang, S., Wang, L., and Ding, P. Causal infer-
ence with confounders missing not at random, Febru-
ary 2019. URL http://arxiv.org/abs/1702.
03951. arXiv:1702.03951 [stat].

Zhou, Y., Alon, U., Chen, X., Wang, X., Agarwal, R., and
Zhou, D. Transformers Can Achieve Length Generaliza-
tion But Not Robustly, February 2024. URL http://
arxiv.org/abs/2402.09371. arXiv:2402.09371
[cs].

Zhu, A. Y., Mitra, N., and Roy, J. Addressing positivity
violations in causal effect estimation using Gaussian
process priors. Statistics in Medicine, 42(1):33–51,
2023. ISSN 1097-0258. doi: 10.1002/sim.9600.
URL https://onlinelibrary.wiley.
com/doi/abs/10.1002/sim.9600. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sim.9600.

6

http://arxiv.org/abs/1909.07940
http://arxiv.org/abs/1909.07940
http://arxiv.org/abs/1702.03951
http://arxiv.org/abs/1702.03951
http://arxiv.org/abs/2402.09371
http://arxiv.org/abs/2402.09371
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.9600
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.9600

Eliciting Numerical Predictive Distributions of LLMs Without Auto-Regression

A. Related Works
Numerical Predictive Distributions of LLMs. When used as regressors, LLMs can provide not only point estimates
but also full predictive distributions, reflecting their stochastic nature. To elicit continuous distributions over numerical
outputs, Gruver et al. (2024) and Requeima et al. (2024) propose an autoregressive approach that generates logit values
over discretised numeric bins, which are then scaled to form a valid probability distribution. Access to such distributions is
crucial for downstream tasks requiring uncertainty quantification, including decision-making under uncertainty and Bayesian
optimisation. However, these methods are computationally intensive, as they require multiple sequential queries to the
LLM to construct a single distribution (e.g., p(123.4) = p(1)p(2|1)p(3|12)p(.|123)p(4|123.)). This motivates us to explore
alternative approaches to eliciting numerical predictive distributions from LLMs.

Discrepancy between number generation and auto-regression. As next-token predictors, LLMs are not explicitly
trained to understand the value of numbers. Due to their autoregressive nature, early tokens encode digits before key
decisions like decimal placement (that determine a number’s magnitude) are made. This can lead to surprisingly poor
performance on simple numerical tasks (Yang et al., 2019; Akhtar et al., 2023; Zhou et al., 2024; Schwartz et al., 2024).
To address these limitations, several works have proposed alternatives to standard autoregressive decoding for numerical
predictions. For instance, Golkar et al. (2024) introduce a special [NUM] token, replaced post-hoc with a continuous value
predicted by a learned regression head–though this requires retraining the model. Others (Singh & Strouse, 2024; Schwartz
et al., 2024) investigate number-specific tokenizations to improve numerical accuracy of LLMs. In contrast, we ask whether
one can bypass autoregressive decoding in pre-trained LLMs by directly reading out the predictive distribution from the
internal representations.

Probing numeracy in LLM embeddings. A number of prior works give evidence that simple probing models can be
used to learn numerical values encoded in the LLM embeddings. Wallace et al. (2019) has shown that the value of a number
can be successfully decoded from its encoded word embedding (e.g., “71” → 71.0.). Stolfo et al. (2023) identified specific
layers in LLMs that store numerical content, recoverable via simple linear probes, while Zhu et al. (2023) demonstrated that
intervening on these layers alters generated outputs. More recently, Koloski et al. (2025) showed that LLM embeddings can
serve as effective covariates in downstream regression models. Complementary findings from mechanistic interpretability
suggest that, even in purely textual settings, LLM hidden states encode representations of tokens that the model is most
likely to generate (Lindsey et al., 2025). Taken together, these results support the hypothesis that it should be possible to
train probes that approximate the numerical predictive distribution of the LLM, motivating our work.

B. Additional Experimental Results
B.1. Precision in the generated digits of the point estimates

−1.0 −0.5 0.0 0.5 1.0

True value

−1.0

−0.5

0.0

0.5

1.0

P
re

d
ic

te
d

va
lu

e

Pearson R: 0.98

Target: mean

y = x

−1.0 −0.5 0.0 0.5 1.0

True value

Pearson R: 0.98

Target: median

y = x

−1.0 −0.5 0.0 0.5 1.0

True value

Pearson R: 0.96

Target: greedy

y = x

Figure 4. Predicted vs. true values of mean, median and greedy prediction. The probing model accurately recovers the number the LLM
intends to predict, with the precision surpassing just order of magnitude estimation.

Figure 5. MSE of the predicted values (no scaling).
target ŷ (ours) x̄ x̄i xi,n

mean 0.009 0.256 0.035 0.085
median 0.009 0.260 0.041 0.087
greedy 0.024 0.273 0.065 0.109

Precision in generated digits. To further assess whether the LLM’s
internal representations encode fine-grained information beyond the
order of magnitude of the mean, median and greedy prediction, we
focus on the dataset with time series values in the interval [−1, 1]. We
report the mean squared error (MSE) of our predictions in Figure 5
and compare them against three baselines: x̄ (predicting the average value in the whole training dataset), x̄i (predicting

7

Eliciting Numerical Predictive Distributions of LLMs Without Auto-Regression

the average of each time series) and xi,n (predicting the last value from each time series). We further plot the obtained
predictions in Figure 4. Interestingly, among the three targets considered (mean, median, greedy), the model performs worst
when predicting the greedy output. As shown in Figure 4, the probe captures the sign of the greedy prediction reliably
but exhibits larger errors in the decimal digits. We hypothesise that this is because the greedy prediction is not an explicit
function of the model’s predictive distribution, but rather a byproduct of the autoregressive decoding process, making it
harder to recover precisely from internal states.

B.2. Sample efficiency of the median estimates

5 10

Number of LLM Samples

0.001

0.002

0.003

0.004

0.005

0.006

0.007

M
ea

n
S

q
u

ar
ed

E
rr

or

Sample Efficiency of Median Estimation

Probe Error

LLM Sample Error

Figure 6. The probe (horizontal
line) achieves lower MSE than
sampling for n ≤ 5.

Sample Efficiency. We further examine whether the probe can outperform direct
sampling from the LLM in terms of sample efficiency. Let S denote a target statistic
(e.g., median or a quantile). We define S(n) as the estimate from n < 100 samples and
we let S∗ := S(100) as a proxy for the ground-truth. We compute the LLM sample error
as MSE(S(n), S∗) and compare it to the probe error MSE(Ŝ, S∗).

Figure 6 illustrates this comparison for the median on a dataset with scale 1.0. The probe
outperforms empirical sampling for all n ≤ 5, demonstrating that our approach can
be more sample-efficient. Results for additional quantiles and larger-scale datasets are
reported in the Appendix. A probe of this kind can serve as a computationally efficient
surrogate for estimating statistics of the LLM output distribution which can help in cost
and compute time reduction.

C. Details of the Quantile Regression Model
Architecture. As in Section 2, we use a magnitude-factorised model to address the challenge of scale variance in numerical
outputs. The model is defined as follows:

• g : Rdinput → Rdhidden : a shared encoder that maps the input representation e to a latent space.

• For each quantile index s ∈ {1, . . . , S}:

– fs
order : Rdhidden → RM : a classifier predicting the order of magnitude ms of quantile qs.

– fs
val : Rdhidden → R: a regressor predicting a scale-invariant value r̂s.

Similarly as before, each quantile is reconstructed from the predicted components as:

q̂si = r̂si · 10m̂
s

, where r̂si = fs
val(g(ei)), m̂s

i = 10
∑

k∈Ks k·ps
k(g(ei)). (8)

where Ks
i is a set of K exponents with the largest logit values as predicted by fs

order(g(ei)) and psk(g(ei)) is derived from
fs

order(g(ei)) using the softmax over the top-K logits.

Training Objective. As before, we use the true order of magnitude m(yji) for each target value during training to enable
stable learning. The total loss is the sum of the cross-entropy losses for magnitude prediction and pinball losses for quantile
regression:

L =

S∑
s=1

ws (Ls
order + β · Ls

val) , (9)

Ls
order =

1

Nb

Nb∑
i=1

CrossEntropyLoss(fs
order(g(ei)),m(y∗i)), (10)

Ls
val =

1

NbNsa

Nb∑
i=1

PinballLoss

(
τs, r̂si ,

yji

10m(yj
i)

)
, (11)

8

Eliciting Numerical Predictive Distributions of LLMs Without Auto-Regression

where Nb is the batch size, Nsa is the number of LLM samples per input, S is the number of quantiles, and [w1, . . . , wS]
a set of weights per each quantile, which is a hyperparameter of our model. In our experiments we have Nsa = 100 and
S = 7, with the corresponding quantile list Q = [0.025, 0.05, 0.25, 0.5, 0.75, 0.95, 0.975]. This choice of quantiles allows
us to estimate: the median, the interquartile range (IQR), as well as the 90% and 95% confidence intervals.

D. Details of the Experimental Setup
D.0.1. ASSETS AND LICENSING INFORMATION

The following existing assets were used to produce the experimental results:

• Monash dataset (Godahewa et al., 2021)

• Darts dataset (Herzen et al., 2022)

• Llama-2-7B model (Touvron et al., 2023)

D.1. Computer infrastructure used

Hardware. All experiments were conducted using 2 separate NC24rs v3 instances and one NC80adis H100 v5 instance on
the Microsoft Azure cloud platform. This instances are a part of Azure’s GPU-optimised virtual machine series, with their
hardware specifications summarised in Table 2.

Table 2. Azure Virtual Machine Specifications
Specification NC24rs v3 NC80adis H100 v5
vCPUs 24 80
System Memory (GiB) 448 640
GPU Model 4× NVIDIA Tesla V100 2× NVIDIA H100 NVL
GPU Memory (per GPU) 16 GiB 94 GiB
Total GPU Memory 64 GiB 188 GiB
GPU Architecture Volta Hopper
CUDA Version 11.x 12.x
CPU Model Intel Xeon E5-2690 v4 AMD EPYC Genoa
Local Storage 2.9 TB 7.1 TB

Generating the synthetic dataset for one scaling factor ℓ ∈ {1, 10, 1000, 10000} took no more than 10h. Training one probe
model took no more than 4h.

D.2. Details of the datasets

D.2.1. DETAILS OF THE SYNTHETIC TIME SERIES DATASET

We generate a synthetic dataset comprising time series derived from a family of parametric functions, each evaluated over a
fixed domain and perturbed with controlled noise. The purpose is to simulate diverse temporal patterns, inducing varying
levels of uncertainty in the LLM’s predictions.

We use a set of base functions defined over the interval x ∈ [0, 60], discretized into 120 equidistant points. The functions are
summarised in Table 3. For each function and value of a, we generate a clean series y = f(a · x), and then apply:

• Additive Gaussian noise with variance σ2 ∈ {0.0, 0.01, 0.05, 0.1}.

• Vertical scaling by b ∼ U(0, ℓ)

• Vertical translation by d ∼ U(−ℓ, ℓ)

From each transformed series, we sample 10 different subsequences for each of the lengths n ∈
{3, 5, 7, 10, 13, 15, 17, 20, 25, 30, 35, 40}, with each subsequence starting at a random offset. Each sequence becomes

9

Eliciting Numerical Predictive Distributions of LLMs Without Auto-Regression

a training input. Inputs are serialized as floating-point strings with a user-defined number of decimal places p (we use p = 4
for ℓ = 1.0, p = 3 for ℓ = 10.0, p = 2 for ℓ = 1000.0 and p = 1 for ℓ = 10000.0). This results in 33600 generated time
series for each value of ℓ.

Concatenated dataset. Having constructed the individual dataset for each scaling factor ℓ ∈ {1, 10, 1000, 10000}, we
also construct one concatenated dataset. In doing that, we limit the number of datapoints to 80000 and ensure that the ytest
values of the generated time series are equally distributed on the log scale, from 10−2 to 104. This is to ensure a balanced
distribution of the train and test examples.

Dataset filtering. Before using the generated datasets for training the probing models, we apply dataset filtering to exclude
any potential outliers. Namely, we ensure that the mean, median and greedy LLM prediction lie in [−ℓ, ℓ].

Function name Formula a-range

sin sin(x) [0.5, 6.0]
linear sin 0.2 · sin(x) + x

450 [0.5, 6.0]
sinc sinc(x) [0.05, 0.2]
xsine x−30

50 · sin(x− 30) [0.5, 1.3]
beat sin(x) · sin

(
x
2

)
[0.1, 6.0]

gaussian wave e−
(x−2)2

2 · cos(10π(x− 2)) [0.01, 0.1]
random U(−1, 1) [0.0, 1.0]

Table 3. Functions used to generate time series data, their mathematical forms, and the range of the time-scaling parameter a.

D.2.2. MONASH DATASET

• Data Loading: We use the data from the Monash dataset, preprocessed by (Gruver et al., 2024) and avail-
able from https://drive.google.com/file/d/1sKrpWbD3LvLQ_e5lWgX3wJqT50sTd1aZ/view?
usp=sharing. Each sub-dataset file contains tuples of the form (train,test), which are concatenated to form
full univariate time series.

• Resampling: To ensure computational tractability, each series is subsampled (via strided slicing) to contain at most
1000 time steps.

• Series Selection: For each dataset, a maximum of 50 time series are selected at random to control the number of
examples used during training.

• Subsequence Generation: From each selected series, we extract multiple training subsequences of varying lengths
n ∈ {3, 5, 7, 10, 13, 15, 17, 20, 25, 30, 35, 40}. For each length, we generate up to 10 training subsequences, sampled
at different offsets.

D.2.3. DARTS DATASET

• Data Loading: We use the data from the Darts dataset, available from the darts python package. We use the following
sub-datasets: AirPassengersDataset, AusBeerDataset, GasRateCO2Dataset, MonthlyMilkDataset, SunspotsDataset,
WineDataset, WoolyDataset, HeartRateDataset.

• Resampling: To ensure computational tractability, the series for the datasets SunspotsDataset and HeartRateDataset
are subsampled (via strided slicing).

• Series Selection: For each dataset, all available time series are selected.

• Subsequence Generation: From each selected series, we extract multiple training subsequences of varying lengths
n ∈ {3, 5, 7, 10, 13, 15, 17, 20, 25, 30, 35, 40}. For each length, we generate up to 10 training subsequences, sampled
at different offsets.

10

https://drive.google.com/file/d/1sKrpWbD3LvLQ_e5lWgX3wJqT50sTd1aZ/view?usp=sharing
https://drive.google.com/file/d/1sKrpWbD3LvLQ_e5lWgX3wJqT50sTd1aZ/view?usp=sharing

Eliciting Numerical Predictive Distributions of LLMs Without Auto-Regression

D.2.4. LLM GENERATION SETTINGS

We generate the LLM hidden states from a Llama-2-7B model, available through the huggingface library. Each of the
generated time series, we obtain 100 samples from the LLM, generated auto-regressively, as well as the greedy generation.
As the Llama-2 tokenizer encodes each digit separately, during generation we narrow down the generated tokens to digits,
decimal point and +/− signs. For obtaining the random samples, we use temperature=1.0 and top p=0.95. We
exclude from the final dataset samples for which generation failed at least once (i.e. the obtained generation was not a valid
number), such that each time series in the final dataset has exactly 100 LLM samples.

D.2.5. TRAIN-VALIDATION-TEST SPLIT

Before training, we split each of the datasets in 80% training dataset, 10% validation dataset and 10% test dataset. Unless
otherwise stated (in the generalisation experiments), these splits are random. We do not apply any scaling or transformation
to either the LLM embeddings (which are inputs to our model) or the outputs.

D.3. Details of the magnitude-factorised regression model

Our magnitude-factorised regression models, used both for the purpose of point prediction and for the purpose of quantile
regression, has the following hyperparameters. We report the default values of the hyperparameters used in Table 4 and
Table 5, and then report any deviations from these values for specific experiments below. We train the model using the
ADAM optimiser. For a detailed implementation of the magnitude-factorised regression models, see the provided code.

Hyperparameter Description Default Value

min mag Minimum exponent for base-10 magnitude scaling (as used by forder) −3
max mag Maximum exponent for base-10 magnitude scaling log10 ℓ
use arctan Apply 10 · arctan(0.5 · x) to bound output of fval True
beta Weight for regression loss component 10.0
K Top-K exponents taken into consideration (see Equation 4) 3
hidden layers Number of hidden layers in feature extractor 1
hidden dim Dimensionality of hidden feature representation 512
hidden states list A list of the hidden states H to use as input [25, . . . , 32]
quantile weights Weights of each of the quantiles in the quantile regression loss function [1, 1, 2, 5, 2, 1, 1]

Table 4. Model-specific hyperparameters for the magnitude-factorised regression model.

Hyperparameter Description Default Value

learning rate Learning rate for the optimizer 10−4

weight decay L2 regularization weight 0.1
scheduler step size Learning rate scheduler step size 100
scheduler gamma Learning rate scheduler step size 0.5
batch size Number of samples per training batch 1024
max epochs Number of training epochs 500
patience Patience for the early stopping 200

Table 5. Optimizer and training-related hyperparameters.

D.3.1. EXPERIMENT-SPECIFIC HYPERPARAMETER SETTINGS

Figure 1. We use max mag = 4.

Figure 4 and Figure 5. We use lr = 10−4, max epochs = 2000.

Figure 2 and Table 1. We use max mag = 13.

Figure 3. We use batch size = 2048, lr = 10−5 and max mag = 13.

11

