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ABSTRACT

We seek to overcome limitations to code retrieval quality posed by the scarcity of
data containing pairs of code snippets and natural language queries in languages
other than English. To do so, we introduce two new datasets. First, we make a
new evaluation benchmark available, dubbed M2CRB, containing pairs of text and
code, for multiple natural and programming language pairs – namely: Spanish,
Portuguese, German, and French, each paired with code snippets for: Python, Java,
and JavaScript. The dataset is curated via an automated filtering pipeline from
source files within GITHUB followed by human verification to ensure accurate
language classification. Additionally, in order be able to train models and evaluate
on the proposed task, we pose the following hypothesis: if a model can map from
English to code, and from other natural languages to English, then the model can
directly map from those non-English languages into code. We thus build a training
corpus made of a new paired English/Code dataset we curate, and further combine
it with existing translation datasets given by pairs of English and other natural
languages. Extensive evaluations on both our new tasks as well as on existing code-
to-code search benchmarks confirm our hypothesis: models are able to generalize
to unseen language pairs they indirectly observed during training. We examine a
broad set of model classes and report the influence of different design choices on
the observed generalization capabilities.

1 INTRODUCTION

Recent work has demonstrated remarkable progress in settings where one’s goal is to obtain code
snippets conditional on natural language queries. In the generative setting for instance, code models
such as ALPHACODE (Li et al., 2022b) obtained human-level performance when generating code
from competitive programming problem statements posed in plain English, and several other suc-
cessful examples merit mention, such as CODEX (Chen et al., 2021), CODEGEN (Nijkamp et al.,
2022a), PALM (Chowdhery et al., 2022), STARCODER (Li et al., 2023), WIZARDCODER (Luo
et al., 2023), and LLAMA (Touvron et al., 2023), to name but a few. Similarly, in the retrieval
setting, CPT-CODE (Neelakantan et al., 2022) showed that contrastive training of encoders using
pairs of docstring and code results in a semantic embedding where code search from text can be
efficiently performed. Moreover, approaches such as CODEBERT (Feng et al., 2020) highlighted
that representations extracted from BERT-like models (Devlin et al., 2018; Liu et al., 2019) trained
on code succeed on code search upon fine-tuning on specific language pairs, and similarity scores
such as CODEBERTSCORE (Zhou et al., 2023), a variation of BERTSCORE (Zhang et al., 2019)
tailored for code, perform well as an automatic evaluation metric for generated code if fine-tuned on
different combinations of English with specific programming languages.

As evidenced by the examples above, the quality of code retrieval and generation from natural
language queries is rapidly increasing. However, there’s a focus on using English as the underlying
language of the source query, and multi-source-language models are still scarce. As a consequence,
in contexts where developers do not speak English as a first language or are required to write non-
English documentation, translation steps must be introduced. The focus on the use of English as
a source language is partially due to the lack of large scale paired data mapping between different
natural languages and code. While multilingual models were proposed, that has been the case on
tasks where parallel data are not required such as causal language modeling (Scao et al., 2022). In
contrast, multilingual text-to-code has only been partially addressed with English being paired with
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different programming languages. Search approaches such as both CPT-CODE and CODEBERT
for instance are evaluated on the CODESEARCHNET benchmark (Husain et al., 2019) where, given
a query in English, the model retrieves a code snippet deemed relevant among 1000 candidates.
Similarly, MBXP (Athiwaratkun et al., 2022) was built as a transpiled version of MBPP (Austin
et al., 2021) into various programming languages, but source queries are still in English.

We address the limitations posed above and enable training of models to map multi-source-natural-
language queries to multi-target-programming-language code. To do so, we first create an evaluation
dataset that follows CODESEARCHNET in style, but contains queries in multiple natural languages.
In possession of that, we carry out an extensive empirical analysis and determine efficient training
approaches that result in multilingual models without relying on intermediate translation steps. That
is, we show that combining multiple paired datasets suffices to enable mapping between languages
only indirectly linked. E.g., training to map Portuguese to English and English to Python enables
directly mapping Portuguese into Python. Our analysis focuses on the code search from text task
for two main reasons. First, it’s a highly relevant setting in practical situations where a query must
result in reliable and tested code from an existing codebase. Moreover, the search setting is less
compute-intensive relative to common language models, rendering experimentation more accessible.
Nonetheless, we remark that the data we introduce can be directly applied to evaluate text-conditional
code models, and the training approaches we evaluate can be re-used in that setting as well.

Our contributions are summarized as follows:

1. We introduce a new in-the-wild evaluation dataset dubbed M2CRB, where multiple natural
languages are used to search over a codebase containing multiple programming languages. In
particular, the data contains docstrings in Spanish, Portuguese, German, and French, all paired
with code snippets in languages such as Python, Java, and JavaScript. The dataset is filtered from
real-world data and thus reflects the challenges of real practical applications. (§ 2)

2. We substantially supplement the training partition of CODESEARCHNET with additional data for a
subset of the programming languages they consider (English to Python, Go, Java, and JavaScript). In
particular, the natural/programming languages observed in this complementary dataset are chosen to
be such that they are never seen at testing time. (§ 3.2)

3. We contribute a training recipe that enables search over unseen language pairs. I.e., we show that
indirectly paired languages at training time can be directly mapped when testing. We report effects of
different design choices and the performance of various fine-tuning schemes, and extensively evaluate
a broad set of model classes and sizes, both in our new and other two existing datasets. (§ 3.1)
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Figure 1: Training and testing data preparation workflow. A dataset is created with an automated
workflow followed by human verification of resulting data. Note that non-English docstrings are
verified by humans and samples that do no correspond to the predicted language are discarded.

2 MULTILINGUAL CODE RETRIEVAL BENCHMARK (M2CRB)

We build a new multilingual text-to-code evaluation task with a mix of automated filtering and human
verification. Specifically, we use data collected from THE STACK (Kocetkov et al., 2022), which
contains over 6TB of permissively-licensed source code files from GITHUB. The workflow used to
filter and prepare data is illustrated in Figure 1, and its steps can be summarized in the following:

1. Filtering out repositories that appear in any split of CODESEARCHNET.
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2. Keeping only the files that belong to the programming languages of interest.

3. Pre-filtering the files that likely contain text in the natural languages of interest.

4. AST parsing (we used TREE-SITTER1 for that purpose).

5. An ensemble of classifiers performs language identification of docstrings.

6. Human verification of docstrings predicted as non-English by the entire ensemble with
consensus. Humans filter out misclassifications from the language classification ensemble.

Natural Lang. Programming Lang. TotalPython Java JavaScript
Spanish 1298 598 631 2527

Portuguese 1376 694 450 2520
German 543 928 83 1554
French 779 164 199 1142
Total 3996 2384 1363 7743

Table 1: Row count of M2CRB per combination of
the underlying natural language of docstrings and pro-
gramming language of corresponding code. Preview
and download data at: https://huggingface.co/
datasets/blindsubmissions/M2CRB

In further detail, programming lan-
guage filtering is done via file exten-
sions. At step 3 on the above, for
each file, we perform what we call
a pre-filter operation and check the
fraction of overlaps between words
and the union of vocabularies on the
natural languages of interest. We keep
only the files for which that fraction is
greater than a threshold. Remaining
files are AST parsed, and we finally
perform language identification with
three independent classifiers on each
docstring, i.e., we ensemble three dif-
ferent off-the-shelf open-source lan-
guage classifiers from text2,3,4. The
pre-filtering operation is done so as to
avoid running the language identification ensemble on data that are likely to not contain text in
languages of interest. If the ensemble majority voting for a docstring is English, that function/method
is added to the training set (cf. § 3.2 for details). Otherwise, and only if the three language predictors
in the ensemble agree, we perform a further step and ask a human to verify the ensemble’s prediction.
Fluent speakers of each of the considered natural languages verified each non-English docstring to
ensure they correspond to the correct language. The resulting non-English functions are added to
M2CRB, and the final row counts per natural/programming language pair are reported in Table 1.

Natural Lang. Programming Lang. Avg.Python Java JavaScript
Spanish 0.836 0.742 0.737 0.772

Portuguese 0.823 0.743 0.737 0.768
German 0.813 0.701 0.721 0.745
French 0.827 0.723 0.722 0.757
Avg. 0.825 0.727 0.729 0.760

Table 2: Expected BERTSCORE measure between
docstrings and code in M2CRB.

In Table 2, we assess M2CRB’s docstring/-
code semantic alignment in terms of the ex-
pected BERTSCORE (Zhang et al., 2019;
Zhou et al., 2023). In other words, we mea-
sure to what extent natural docstrings match
the code they describe. To do so, we used
the multilingual STARENCODER5(Li et al.,
2023), a BERT (Devlin et al., 2018) variation
trained on multiple natural and programming
languages. High scores are observed across
all language combinations (BERTSCORE
maps a pair of sequences onto [−1, 1]), es-
pecially so for Python as verified in results
discussed in § 4.3.1 and § 4.3.2, and indicates

that naturally occurring text/code pairs resulting from our filtering pipeline is well aligned to an extent
that it can be considered for evaluation of text-to-code or code-to-text models such as retrievers and/or
conditional generators. Further qualitative analysis using what we called GPTSCORE is reported in
Table 7 where we used a GPT-3.5-TURBO as an evaluator of alignment between docstrings and code.

1https://tree-sitter.github.io/tree-sitter/
2https://github.com/saffsd/langid.py
3https://github.com/google/cld3
4https://huggingface.co/papluca/xlm-roberta-base-language-detection.
5https://huggingface.co/bigcode/starencoder
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3 MULTILINGUAL TRAINING WITHOUT FULLY PAIRED DATA

In possession of the M2CRB evaluation data provided once the pipeline described above is executed,
we studied approaches to enable generalization to its natural and programming language combinations
assuming no paired training data for those language combinations would be available. We thus
introduce a training strategy where we map multiple natural languages to English, and English to a
number of programming languages. We finally show that to enable directly mapping non-English
queries into code. In what follows, we provide a more detailed description of the setting we consider
(§3.1) and how we combine different datasets to realize the training approach we propose (§3.2).

3.1 PROBLEM SETTING

Naive supervised training of multi-language models would require | S |×| T | parallel datasets, where
S and T correspond to the sets of source natural and target programming languages, respectively. To
work around that, we leverage a language-invariant semantic embedding, where encoded data depends
only on the underlying implementation represented by programming languages or their descriptions
represented in text. In doing that, we can then elect one of the source datasets as the anchor, denoted
S∗ ∈ S , and instead train models using parallel datasets between sources and the anchor, and between
the anchor and the targets. In other words, we replace the need for parallel data between all elements
of S and T for parallel data between elements of S, which enables the use of available natural
language translation datasets. An illustration of the described training scheme is provided in Figure 2.
In this example, S = {English,Portuguese}, T = {Python}, and S∗ = English. At training time,
models observe pairs of sentences in English and Python snippets as well as Portuguese and English
pairs. At testing time, we then search Python directly from queries in Portuguese. Put simply, we test
whether models generalize to new language combinations, only indirectly paired during training.

Trai
n

Train

Test
Python

English Portuguese

Figure 2: Illustration of the scheme we consider. Hypothesis:
if a model is able to map from English (the anchor) to Python
and from Portuguese to English, then it should be able to
directly map from Portuguese to Python.

More generally, given the set S of
source data distributions along with
the set T of target data, training will
require paired data from one of the
sources, which will be referred to as
anchor and denoted S∗, and all the
targets. In addition, we further re-
quire access to paired data between
the anchor and the remaining source
domains. Our training dataset thus
corresponds to the union of finite sam-
ples observed from the following dis-
tributions: (S∗, T ) ∀ T ∈ T , (S∗, S) ∀ S ∈ S −S∗, where the parenthesis notation (P,Q) indicates
the joint over distributions P and Q. For testing on the other hand, we seek models able to map
between any combination of source and target distributions. Our test sets are then sampled from the
union of the full set of joints: (S, T ) ∀ S ∈ S, T ∈ T . Note that any data realization x observed
from any distribution x ∼ D ∈ S ∪ T indicates a sequence with length L of symbols or tokens
from a shared vocabulary V: x = [x1, ..., xL] : xi ∈ V. Moreover, we highlight that we use the terms
map/mapping in a rather general sense to mean either a generative case where one literally translates
from source to target, or a discriminative case where one retrieves from a set of candidate targets
given an instance from the source. As will be further discussed in § 4.1, both types of mappings may
be used when training models, but only the discriminative one is considered during testing.

3.2 HOW TO BUILD TRAINING DATA INDIRECTLY PAIRING LANGUAGES

We combine a mix of both existing paired datasets of different kinds and new data we in-
troduced to build a dataset with the properties described in § 3.1. We set the anchor S∗ to
English, and T to the set of programming languages represented in CODESEARCHNET, i.e.,
T = {Python, Go, Java, JavaScript, PHP, Ruby}. The pairs represented by (S∗, T ) ∀ T ∈ T are
given by the training partition of CODESEARCHNET (Husain et al., 2019) considerably augmented
with data we prepared, i.e., train data with docstrings in English as per Fig. 1. To incorporate anchor/-
source pairs, we leveraged machine translation tasks. Namely, a subset of WMT-19 (Wikimedia-
Foundation, 2019) was considered given by its English/German and English/Finnish partitions. We
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additionally included non-anchor source/source combinations to increase the amount of training data.
As such, we used the French/German subset of WMT-19 as well as the Spanish/Portuguese and
Spanish/Galician partitions of TATOEBA (Tiedemann, 2020). A single target/target case is considered
and is given by the code translation data within CODEXGLUE (Lu et al., 2021). Summary statistics
of the complete training data are shown in Table 3 including our contributed GH-X.

Dataset Row count Sampling proportion (×10−5) Epochs
CODESEARCHNET 1880853 0.0532 3.5
GH-Python (Ours) 15000002 0.0067 0.5

GH-Java (Ours) 15000014 0.0067 0.5
GH-GO (Ours) 15000078 0.0067 0.5

GH-JavaScript (Ours) 2000040 0.0500 3.3
WMT-19 (DE-EN) 1995208 0.0501 3.3
WMT-19 (FR-DE) 1999990 0.0500 3.3
WMT-19 (FI-EN) 2000000 0.0500 3.3
TATOEBA (ES-PT) 67777 1.4754 29.1
TATOEBA (ES-GL) 3132 31.9285 30.0

CODEXGLUE 10300 9.7087 30.0

Table 3: Statistics of each of the datasets used for fine-tuning. Given the variability in size of each
dataset as indicated by the row counts, we adjust sampling proportions during training so that datasets
are uniformly represented in the actual training sample. The number of epochs represented in the
rightmost column indicates the approximate number of times we iterate over the entire dataset each
time we feed approximately 30 billion tokens to a model. GH-X, the data we introduced, is hosted at:
https://huggingface.co/datasets/blindsubmissions/GH_text2code.

4 EXPERIMENTS

4.1 MODELS AND TRAINING

We leverage models that were pre-trained on CODESEARCHNET, and fine-tune them in the training
data mix summarized in Table 3. We covered a number of different methods and models classes such
that encoder-only, dual encoders, encoder-decoder, and decoder-only models were all considered.
Moreover, we covered the 60M-360M parameters range, which is rather typical for sequence-level
representation learning. Namely, we fine-tune popular models such as CODET5 (Wang et al., 2021),
CODEBERT (Feng et al., 2020), and CODEGEN (Nijkamp et al., 2022a), and further consider dual-
encoder models (Karpukhin et al., 2020). Besides those models we fine-tuned ourselves, we also
evaluated state-of-the-art embeddings not trained by us (cf. Table 9 with results from OPENAI’s and
SENTENCE TRANSFORMERS’s embeddings). However, we highlight that we have no control over
training of these embeddings and fairness of comparison is unclear. Those results were then kept in
the appendix to serve as evidence that one can indeed predict from M2CRB to good accuracy.

Training varies depending on the architecture being fine-tuned, and while all models we consider train
against a contrastive objective, models able to generate train in a multitask setting where conditional
causal language modeling is also employed. We thus evaluate models both on our new dataset and on
other two existing benchmarks to address questions such as:

1. Are models able to generalize to language combinations only indirectly paired during training?

2. What is the effect in retrieval performance given by different approaches to allocating parameters
(i.e., encoder-decoder vs. dual-encoder at a fixed parameter budget)?

3. Can generalization be expected between target languages to perform code-to-code tasks?

Our main training objective is a contrastive loss that depends on encoding input sequences into
vectors denoted zEMB , and such vectors are encouraged to match for corresponding source and
target instances. For example, docstrings and corresponding implementations should map to similar
vectors in terms of some distance measure. Similarly, matching sentences in two different natural
languages should embed into neighboring points, as should two code snippets implementing the same
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functionality but written in different programming languages. Encoders, denoted E : VL 7→ RD for
a D-dimensional embedding, will be implemented as the output at a special token (e.g., [EOS])
appended to all inputs. Given a batch of n pairs of sequences [xi, yi]

n
i=1 : xi, yi ∼ (S ∈ S, T ∈ T ),

our contrastive objective relies on the similarity matrix Sim where each entry Sim[i, j] ∈ [0, 1] is
the rescaled cosine similarity measured between embeddings of xi and yj :

Sim[i, j] = (1 + cos(E(xi), E(yj))/2. (1)
We then force Sim to be an identity matrix. That is, the objective Lcontrastive encourages that the
similarity between paired data will be greater than that between unpaired instances, i.e.:

Lcontrastive = ||Sim− In||2. (2)
Similar to CLIP (Radford et al., 2021) however, we implement a variation of Lcontrastive that shares
its minimizers since it’s easier to train against this variation, as observed empirically. The loss we
use treats Sim as a batch of logits, and places labels on the main diagonal to define a cross-entropy
objective. An implementation of Lcontrastive is shown in Figure 15.

For models able to generate, we use an additional autoregressive maximum likelihood objective:

Lgenerative =
1

n

n∑
i=1

L′∏
t=1

pD(y
t
i |y1i , ..., yt−1

i , E(xi)). (3)

We then take advantage of the fact that all training datasets are parallel, and define translation auxiliary
tasks. In cases where Lgenerative can be obtained, we further introduce a denoising objective in
which the original sequence is to be recovered from its noisy version where tokens are randomly
dropped out, and the dropping out probability is assumed to be a tunable hyperparameter.

Given the two types of losses mentioned above, we then train with their convex combination:
L = αLcontrastive + (1− α)Lgenerative, (4)

where α ∈ [0, 1] is a hyperparameter weighing the importances of the two components.

As for pre-processing, subword tokenization is performed following the same strategy as in the
pre-training of each model we fine-tune, e.g., byte-pair encoding (Sennrich et al., 2015) for CODET5.
Moreover, given a training pair (x, y), we append special tokens and use the following template:
{lang[y]} : {x}[EOS]{y}[EOS], where the operator lang(·) returns the underlying language of its
argument. Data augmentation is further performed during training so as to avoid spurious solutions,
able to retrieve by simply matching keywords present in both docstrings and actual implementations.
In early experiments, we noticed well performing models would simply retrieve code snippets for
which variable or function names would appear in the docstrings. To counter that and enforce actually
semantic retrieval, we remove this shortcut by randomly assigning meaningless function names in
codes snippets, and via randomly replacing variable names by uninformative strings.

4.2 EVALUATION METRIC

Given paired sets of n points from the source and target distributions as denoted by X,Y =

x1, ..., xn, y1, ..., yn
i.i.d.∼ (

⋃| S |
i=1 Si,

⋃| T |
i=1 T i), evaluations will require computation of the mean

reciprocal rank defined by:

MRR(X,Y ) =
1

n

n∑
i=1

1

rank(xi, yi, Y )
, (5)

where the rank corresponds to the position/index of yi in the ordered set of similarities:
rank(xi, yi, Y ) = index(Sim(xi, yi), {Sim(xi, Y )}sorted), (6)

and index(·, {·}) returns the position of its first argument in the ordered set given as the second
argument. Note that we overload Sim, defined in the same way as that used to compute entries of the
similarity matrix in (1), and compute it both for data pairs, where the output is a scalar, and between
a source data point and a set of target domain instances, in which case a set of similarities is output.
We then evaluate models under varying sizes of the underlying sets. That is, we compute the area
under the MRR curve, obtained for increasing sizes of retrieval sets, as indicated in the following:

auMRRc(X,Y ) =

∫ 1

0

MRR(X,Y1:⌊n∗t⌋)dt. (7)

To approximate (7), we discretize t so that t = {5%, 10%, 20%, 30%, 50%, 75%, 100%}.
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CODET5 CODEBERT CODEGENSmall Base Base-Encoder Base-Dual-Encoder

Python

de 60.2% 63.4% 58.1% 73.2% 91.8% 65.7%
es 74.8% 70.0% 75.5% 89.1% 93.3% 63.8%
fr 70.3% 68.1% 64.5% 78.8% 93.6% 68.2%
pt 66.9% 62.7% 70.6% 85.9% 94.0% 51.0%

Java

de 23.2% 26.5% 31.3% 19.2% 27.6% 21.7%
es 27.3% 31.8% 37.2% 18.2% 25.6% 22.0%
fr 39.3% 44.3% 47.4% 34.4% 46.3% 49.9%
pt 26.4% 31.1% 34.8% 23.6% 28.1% 26.6%

JavaScript

de 62.2% 56.1% 61.6% 56.9% 56.9% 55.7%
es 22.2% 25.1% 28.6% 18.4% 23.3% 19.6%
fr 30.5% 30.1% 30.8% 27.2% 32.6% 28.0%
pt 20.8% 22.2% 27.2% 16.6% 20.0% 14.3%

Avg. 43.7% 44.3% 47.3% 45.1% 52.7% 40.5%

Table 4: auMRRc (the higher the better) on M2CRB, i.e., code search from natural language
queries in different languages. All models are fine-tuned as described in §4.1 and further detailed in
Appendix D. Note that non-fine-tuned models yield an auMRRc close to zero.

4.3 RESULTS AND DISCUSSION

Evaluations are split into three parts where the first two evaluate to what extent models manage
to generalize to unseen language combinations. We finally carry out an in-distribution evaluation
on English-to-code tasks. Variations of CODET56 are considered such as different model sizes,
i.e., SMALL (60M params.) and BASE (200M params.), training using only its encoder, and a
dual-encoder variation, indicated as DUAL-ENCODER in tables and figures, where each encoder only
observes either natural or programming language. We further consider CODEBERT7 (124M params.)
and CODEGEN8 (350M params.). All models start from their pre-training weights publicly available,
and we fine-tune following the procedure described in § 4.1. That is, whenever possible, a multitask
approach uses both contrastive representation learning and causal language modeling to train. On the
other hand, models that are only able to encode input data are trained against the contrastive objective
only. Further training details as well as hyperparameters and information regarding model sizes can
be found in Appendix D along with extra results from general-purpose embeddings.

4.3.1 MULTI-LANGUAGE EVALUATION WITH M2CRB

We perform evaluations on M2CRB in terms of auMRRc as reported in Table 4 for different fine-tuned
models, while MRR curves as a function of t are displayed in Figure 7 in Appendix C. In particular,
we are concerned with assessing to what extent models manage to generalize to source/target pairs
unseen during training. We further seek to compare fully discriminative encoder-only models with
multitask models able to both retrieve and generate.

We first note that all models we fine-tuned are able to generalize to language pairs unobserved during
training. Non-fine-tuned models are as good as a random embedding in this task, with auMRRc close
to zero. Contrary to what is usually observed in more standard evaluation conditions (Kaplan et al.,
2020), in this multilingual setting, scaling up model size will not necessarily improve performance.
More importantly, adding a decoder won’t hurt performance significantly, and it can be done if the
generation capability is desired. That is, if generation is important downstream, using multitask
models will not hurt retrieval performance in the multi-source-language case to a very large extent. It
also suggests that retrieval-augmented language models (Borgeaud et al., 2022; Zhou et al., 2022;
Adlakha et al., 2022) can be trained without an external pre-trained retriever.

6https://huggingface.co/Salesforce/codet5-base
7https://huggingface.co/microsoft/codebert-base
8https://huggingface.co/Salesforce/codegen-350M-multi
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CODET5 CODEBERT CODEGENSmall Base Base-Encoder Base-Dual-Encoder

66.4% 80.0% 81.4% 50.2% 44.4% 19.0%

Table 5: auMRRc for code search from code queries on the Python-Java data of (Roziere et al., 2020).
All models are fine-tuned (cf. § 4.1) and non-fine-tuned models’s auMRRc is close to zero.

CODET5 CODEBERT CODEGENSmall Base Base-Encoder Base-Dual-Encoder
PHP 33.9% 31.7% 33.2% 39.3% 43.8% 39.0%
JavaScript 39.5% 39.1% 40.4% 38.6% 45.3% 41.0%
Python 71.4% 64.4% 65.6% 89.5% 89.7% 67.2%
Go 61.6% 56.8% 61.0% 73.8% 75.5% 61.1%
Java 36.3% 32.7% 37.6% 36.2% 39.3% 36.4%
Ruby 37.0% 37.7% 48.2% 47.1% 53.5% 47.9%

Avg. 46.6% 43.7% 47.7% 54.1% 57.9% 48.8%

Table 6: auMRRc for code search from English for the test set of CODESEARCHNET. All models are
fine-tuned (cf. § 4.1). Non-fine-tuned models are omitted since their auMRRc is close to zero.

We further highlight that adding a second encoder won’t improve performance to a great extent.
This is not surprising considering that each encoder in dual-encoder models trains on only half the
data as compared to a single encoder. Aligned with this observation, it has been argued in previous
work that training data diversity influences performance on testing conditions that differ from
training (Albuquerque et al., 2019). Finally, the decoder-only model doesn’t reach the performance
level of alternatives, which indicates that the strategy of concentrating the full parameter budget in a
causal decoder underperforms encoder-only models in retrieval, even under a model size advantage.

4.3.2 EXTRA EVALUATION WITH EXISTING DATA: CODE-TO-CODE RETRIEVAL

We push evaluated models further and test their ability to generalize to unseen pairs of target/target lan-
guage combinations. To do so, we use the Python-Java paired data collected from GEEKSFORGEEKS
and discussed in (Roziere et al., 2020) given by implementations in both languages of the solution
of a given problem. In other words, models are tasked with querying a codebase in Java using
Python snippets. During training however, natural-programming language or natural-natural language
combinations make it for the bulk of the training data. Results are reported in Table 5 while MRR
curves are displayed in Figure 6 for language combinations unseen to models during training. Once
more, results indicate that models are able to generalize to unseen combinations of domains, however
the gap between encoder-only and the multitask encoder-decoder models grows significantly now
that tasks shifted to programming-programming language combinations. Also, the decoder-only and
dual-encoder models observed a much bigger gap relative to the other cases in this scenario. Remov-
ing capacity or training data from the encoder seems particularly detrimental to retrieval performance
when the task shifts more relative to training. Note that the gap between the CODET5’s encoder
and CODEBERT suggest that different pre-training strategies influence downstream performance
significantly since the gap is reversed w.r.t. the text-to-code evaluations (cf. Tables 4 and 6).

4.3.3 EXTRA EVALUATION WITH EXISTING DATA: CODE SEARCH FROM QUERIES IN ENGLISH

Finally, we run a more standard English to code evaluation using the test set of CODESEARCHNET to
assess the in-distribution effect of including extra language combinations in the training set. Results
are in Table 6 and MRR curves are displayed in Figure 8. Similarly to the multi-source language
evaluation discussion in Section 4.3.1, we did not observe too large a gap between encoder-only and
encoder-decoder models, suggesting once more that evaluation tasks where source/target pairs are
closer to what was observed during training will result in a smaller gap between the two types of
models. However, contrary to the other evaluations, adding a second encoder significantly improves
performance relative to the encoder-only counterpart, and CODEBERT was the best performer on
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average in this case. The decoder-only model also observed a more favourable scenario in this
particular evaluation. This shift in results highlights that in-distribution performance will not always
correlate with performance under unseen testing conditions, and evaluation on multilingual data
such as M2CRB is required in order to reliably assess multilingual capabilities. Note that results for
Python are consistently better relative to other languages, as anticipated by scores in Tables 2 and 7.

5 RELATED WORK

The success of transformers for natural language modelling (Vaswani et al., 2017) has motivated
their use for code. CODEPARROT (Tunstall et al., 2022) was trained with data from GITHUB for
code completion on a single language. CODEGEN (Nijkamp et al., 2022b), POLYCODER (Xu et al.,
2022), CODEX (Chen et al., 2021), and CODET5 (Wang et al., 2021) were trained on additional
programming languages as well as natural language queries in English. Here, we fine-tune pre-trained
code models to support unseen additional natural and programming language combinations. Close
to our fine-tuning approach, recent work has leveraged contrastive techniques to learn a useful
sentence- or document-level embedding where retrieval can be performed efficiently. GTR (Ni
et al., 2021) for instance, showed that dual-encoder settings can benefit from scaling up model size.
SIMCSE, on the other hand, showed that simply dropping out tokens leads to effective augmentation
approaches to create positive pairs for unsupervised sentence representation learning. In settings
involving embedding both text and code, DOCCODER (Zhou et al., 2022) uses a contrastive scheme
to match representations from natural language queries to retrieve documentation later used for code
generation. Most similar to models we evaluate, CPT-CODE (Neelakantan et al., 2022) was pre-trained
with contrastive learning to learn a common space between text in English and code. Similarly,
CODERETRIEVER (Li et al., 2022a) combines contrastive objectives using an unsupervised approach
to determine similar function pairs. In both cases however, multilinguality is not tackled, nor is
code-to-code retrieval, which we show to be attainable in this contribution.

Acquiring aligned code and natural language is key to solve tasks such as code retrieval and summa-
rization. Towards this goal, Yin et al. (2018) proposed CONALA, mined from STACKOVERFLOW
containing English paired with Python and Java. MCONALA (Wang et al., 2022) extended it to
provide English, Spanish, Japanese, and Russian text to Python pairs. Similarly, other datasets were
built with data from online forums which makes it so that natural languages we consider are not
well represented (Yao et al., 2018; Hu et al., 2020), besides being based on Q&A pairs rather than
having text queries that describe a code snippet. Closer to our proposal, CODESEARCHNET (Husain
et al., 2019) leveraged English comments from GITHUB repositories. We extend CODESEARCHNET
by a factor of approximately 25, and add a new multilingual test set. An attempt towards defining
multi-programming-language translation systems was carried out in TRANSCODER (Roziere et al.,
2020; 2021) where multiple unparalleled data sources are considered. Beyond that, we address the
question of whether models can map multiple natural languages to multiple programming languages.

6 CONCLUSION

We introduced M2CRB, a new evaluation dataset where paired data are available containing source
and target data given by multiple natural languages and programming languages. Crucially, since
M2CRB comprises naturally occurring text and code from GITHUB, it then defines an in-the-wild set
of tasks, akin to a search application over a real codebase. Enabled by these testing data, an extensive
empirical evaluation in the code search/retrieval setting was carried out in order to indicate how
different design choices influence performance under an out-of-distribution generalization condition
we consider, given by new language combinations presented to models at testing time. We showed
that one can overcome the lack of multi-language paired training data by introducing indirect paths
from source to target languages. Interestingly, we verified that one can dedicate capacity to a decoder
to enable generative capabilities without affecting retrieval performance significantly. Also, results
showed that once tasks diverge more from training, then removing either capacity or training data
from encoders is detrimental to performance. We further observed that in-distribution evaluation is
not a good indicator of performance on new language pairs, and evaluation data such as M2CRB
comprising language combinations of interest is necessary. For future work, while we cover 16 scarce
combinations of programming and natural languages, M2CRB can be expanded to further improve
its coverage especially so in terms of additional programming languages.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Vaibhav Adlakha, Shehzaad Dhuliawala, Kaheer Suleman, Harm de Vries, and Siva Reddy. Topi-
ocqa: Open-domain conversational question answering with topic switching. Transactions of the
Association for Computational Linguistics, 10:468–483, 2022.

Isabela Albuquerque, João Monteiro, Mohammad Darvishi, Tiago H Falk, and Ioannis Mitliagkas.
Generalizing to unseen domains via distribution matching. arXiv preprint arXiv:1911.00804, 2019.

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, Yuchen Tian, Ming Tan,
Wasi Uddin Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, et al. Multi-lingual evaluation of
code generation models. arXiv preprint arXiv:2210.14868, 2022.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Millican,
George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al.
Improving language models by retrieving from trillions of tokens. In International conference on
machine learning, pp. 2206–2240. PMLR, 2022.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for programming and natural
languages. arXiv preprint arXiv:2002.08155, 2020.

Gang Hu, Min Peng, Yihan Zhang, Qianqian Xie, Wang Gao, and Mengting Yuan. Unsupervised
software repositories mining and its application to code search. Software: Practice and Experience,
50(3):299–322, 2020.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt. Code-
searchnet challenge: Evaluating the state of semantic code search. arXiv preprint arXiv:1909.09436,
2019.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.
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Natural Lang. Programming Lang. AVG.Python Java JavaScript
Spanish 0.80 0.62 0.38 0.60

Portuguese 0.86 0.54 0.36 0.59
German 0.80 0.16 0.30 0.42
French 0.94 0.36 0.28 0.53
AVG. 0.85 0.42 0.33 0.53

Table 7: GPTSCORE measured between docstrings and code in M2CRB.

A DATA EVALUATION WITH GPTSCORE

In Table 7, M2CRB’s qualitative analysis is performed in terms of a metric we refer to as GPTSCORE.
To compute that metric, we used a random sample of size 50 for each language combination and
prompted GPT-3.5-TURBO so that it would assess to what extent a docstring would be descriptive of
a code snippet. The model then generates 1 for good pairs and 0 otherwise. Each entry in the table
thus corresponds to the expectation of the model generations, and estimates the probability of such
an evaluator approving a docstring as a good description of the provided code snippet. The exact
prompt we used is shown in Figure 3.

We note that results align with what was observed in terms of BERTSCORE as reported in Table 2,
and indicate variability in terms of how aligned naturally occurring text is with respect to the code it
is supposed to document. Indeed, a relatively high alignment variance is not surprising given how
large a community of developers GITHUB represents. The existence and quality of documentation
is strongly dependent on common practices of sub-communities of developers, and hence strongly
dependent on both the underlying natural and programming languages. On the other hand, natural
data are reflective of what a real-world codebase would represent, and collecting data from open
repositories defines a useful in-the-wild testbed.

def make_question_prompt(docstring: str, function_str: str) -> str:
request_str = f"I’d like for you to act as an evaluator of natural

language descriptions of code snippets. Given as inputs a pair
with the form:\ncode: ’some code’\ndescription: ’some
description’\nI’d like for you to output 1 if you think that the
description clearly explains the piece of code that was given. If
you think otherwise, reply with a 0. Note that the answer must
have exactly one character, and it should be 1 for good code
descriptions and 0 for not so good descriptions of the code given
as input. Here’s the example for you to evaluate:\ncode:
{function_str}\ndescription: {docstring}. What do you think about
the goodness of that description in exactly one character, 0 for
bad or 1 for good?"

return request_str

Figure 3: Python function to make GPTSCORE’s prompt.

B MODEL AND TRAINING DETAILS

Training configuration along with model details such as parameter counts are reported in Table 8. All
models we evaluated are fine-tuned on the data mix detailed in Table 3. Fine-tuning was performed
using Adam with a cosine schedule for the learning rate. In-domain cross-validation was performed
in the validation partition of CODESEARCHNET to select hyperparameters, and batch sizes are
selected to maximize accelerator hardware’s memory usage. All models were trained on a single
node containing 8 A100 NVIDIA GPUs.

The embedding procedure used to map input sentences/code snippets is illustrated in Figures 4 and 5
for encoder-decoder (or encoder-only) and decoder-only models, respectively. In all cases, we define
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embeddings as the output at a particular special token so that contratsive training pushes models to
output a sequence-level representation of past tokens once such special token is observed.

CODET5-SMALL CODET5-BASE CODET5-BASE-ENCODER CODET5-BASE-DUAL-ENCODER CODEBERT CODEGEN

Param. Count 61M 224M 110M 220M 124M 359M
Base L.R. 0.00001 0.00003 0.00002 0.0001 0.0001 0.00001
Opt. Betas 0.9, 0.999 0.9, 0.98 0.8, 0.999 0.9, 0.95 0.9, 0.95 0.9, 0.999

Max. Grad. Norm 1.0 1.0 1.0 1.0 1.0 1.0
L2 Coeff. 0.005 0.0001 0.0001 0.04 0.001 0.005

Masking Prob. 0.3 0.3 0.0 0.0 0.0 0.0
Warmup epochs 20.0 5.0 5.0 5.0 5.0 20.0

Initial Temp. 10.0 10.0 10.0 10.0 10.0 10.0
Batch Size 10.0 6.0 12.0 24.0 36.0 3.0

α 0.5 0.5 0.0 0.0 0.0 0.5

Table 8: Fine-tuning hyperparameters and model information for the models considered in our
evaluations.

x1 x2 .... xL [EOS] [PAD] [PAD]

z1 z2 .... zL zEMB

y1 y2 .... yL′ [EOS]

y1 y2 .... yL′ [EOS]

DecoderEncoder

Figure 4: Encoder-decoder pair we consider in our experiments. Contrastive training is performed
on top of embeddings obtained at the [EOS] token output by the encoder. Generative tasks, on the
other hand, are performed with standard sequence-to-sequence maximum likelihood estimation.

C ADDITIONAL RESULTS

C.1 M2CRB EVALUATION WITH EXTERNAL EMBEDDINGS

In Table 9, we report additional results on M2CRB when external embedding models are used. We
remark that we have absolutely no control in terms of what models are used to generate external
embeddings, and how these models were trained, rendering any comparisons likely unfair. We thus
remark that results in Table 9 are not intended as to offer a comparison across different models.
Rather, it serves as a means to give insight in terms of how available embedding services behave in
these language combinations. In particular, we compared against open source embedding models
from SENTENCE TRANSFORMERS9 and closed source embedding from OPENAI’s API10. Results
from the CODEBERT model we fine-tuned are further included in the table for reference.

C.2 M2CRB EVALUATION WITH AUXILIARY TRANSLATOR

In Table 10, we report additional results on M2CRB when an external translator is used. That is,
given a textual query, we first translate it into English using some external service, and then query
the model using the result. In particular, we used the public Google translate API11 and compared
our models with a model trained with only English to code data. We further report side by side
comparisons of our models when we directly translate in the original language versus the cases
where we translate beforehand. Both the encoder-only and encoder-decoder models perform better
on average than a model trained exclusively on English to code, and that’s the case no matter whether

9https://huggingface.co/sentence-transformers
10https://platform.openai.com/docs/guides/embeddings
11https://pypi.org/project/googletrans/
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x1 .... xL [SEP]

zEMB

y1 .... yL′ [EOS]

y1 .... yL′ [EOS]

z1 .... zL′ [EOS]

FC Layer

Decoder

Figure 5: Decoder-only setting we consider in our experiments. Contrastive training is performed
on top of embeddings obtained at the separator token [SEP] prior to final fully-connected layer.
Generative tasks, on the other hand, are performed with standard sequence-to-sequence maximum
likelihood estimation.

Ours Open source (SENTENCE TRANSFORMERS) Closed source (OPENAI)
CODEBERT ALL-MINILM-L6-V2 ALL-MINILM-L12-V2 ADA-002

Python

de 91.8% 67.7% 73.3% 92.9%
es 93.3% 68.7% 75.1% 92.8%
fr 93.6% 78.7% 82.5% 94.0%
pt 94.0% 65.4% 71.1% 93.5%

Java

de 27.6% 16.0% 25.6% 43.6%
es 25.6% 26.2% 36.7% 65.8%
fr 46.3% 37.5% 46.9% 64.0%
pt 28.1% 24.6% 31.6% 64.3%

JavaScript

de 56.9% 63.1% 64.3% 69.8%
es 23.3% 26.0% 32.5% 59.2%
fr 32.6% 38.3% 43.2% 59.2%
pt 20.0% 25.1% 30.4% 49.5%

Avg. 52.7% 44.8% 51.1% 70.7%

Table 9: M2CRB’s results with external embeddings. Results correspond to the area under the MRR
curve (auMRRc, the higher the better). Note that we have no control over external models and the
trained data they employed for training. The comparisons in this table are likely unfair in that training
data of external models might have included the test data.
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CODET5-ENCODER CODET5 CODET5 (En.)Direct Translate Direct Translate

Python

de 58.1% 63.4% 60.2% 65.0% 54.2%
es 75.5% 69.4% 74.8% 66.9% 60.2%
fr 64.5% 64.5% 70.3% 66.1% 57.2%
pt 70.6% 63.5% 66.9% 61.6% 54.7%

Java

de 61.6% 36.8% 62.2% 28.5% 25.5%
es 28.6% 39.1% 22.2% 37.0% 34.5%
fr 30.8% 55.4% 30.5% 45.9% 48.8%
pt 27.2% 40.6% 20.8% 35.0% 33.7%

JavaScript

de 31.3% 60.4% 23.2% 61.9% 52.2%
es 37.2% 30.8% 27.3% 28.5% 22.9%
fr 47.4% 45.5% 39.3% 40.8% 37.3%
pt 34.8% 35.0% 26.4% 30.6% 23.8%

Avg. 47.3% 50.4% 43.7% 47.3% 42.1%

Table 10: M2CRB’s results with an auxiliary translator. Results correspond to the area under the
MRR curve (auMRRc, the higher the better).
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Figure 6: MRR curves for code to code evaluation.

or not an auxiliary translator is used. However, both our models benefited from the extra translation
component on average, though that’s not the case for every language combination.

C.3 MRR CURVES

In the following, we complement results presented in Tables 4 (Fig. 7), 5 (Fig. 6), and 6 (Fig. 8) and
plot MRR curves for various coverage levels of the search set.
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Figure 7: MRR curves for cross natural language evaluation.
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Figure 8: MRR curves for English to code evaluation.
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C.4 DATA SAMPLES

M2CRB can be previewed in the browser in https://huggingface.co/datasets/
blindsubmissions/M2CRB, and download instructions are also provided in that same page. We
further provide samples of various language combinations herein in Figures 9 to 14.

def is_prop_symbol(s):
"""Um simbolo de logica de

proposicao e uma string
inicial maiuscula."""

return is_symbol(s) and
s[0].isupper()

Figure 9: Python and Portuguese.

def exp_date(self):
"""Returne la date

d’expiration de l’accred"""
return self.renewal_date +

datetime.timedelta(days=365)

Figure 10: Python and French.

// Buscar producto por codigo id
y devuelve el producto
buscado completo

public Producto findById(String
codigo) {

int i = 0;
boolean encontrado = false;
//Mientras no hayamos llegado

al final o encontrado lo
que buscamos repetimos el
bucle

//Al encotrarlo, el bucle para
while (i < lista.length &&

!encontrado) {
Producto deLista = lista[i];
if (deLista.getCodigo()
.equalsIgnoreCase(codigo))
encontrado = true;

else
i++;
}

if (encontrado)
return lista[i];//Devolvemos

el producto buscado
else
return null;

}

Figure 11: Java and Spanish.

// Es wird getestet ob eine
Fehlermeldung ausgegeben
wird, wenn bei der Funktion:
len die laenge der
Konstanten mit der Laenge
des Textes uebereinstimmt.

public void setUpdated(String
table)

{
provider.setUpdated(table,

handle);
}

Figure 12: Java and German.

D ADDITIONAL TRAINING DETAILS

An implementation of the exact variation of Lcontrastive, similar to CLIP (Radford et al., 2021), is
shown in Figure 15. In particular, it shares its minimizers with the loss described in the text, but was
observed to be easier to train against in practice. The loss treats the similarity matrix Sim as a batch
of categorical log-probabilities, places labels on the main diagonal, and then defines a cross-entropy
objective so that entries in the main diagonal are forced to be greater than off-diagonal elements.

Finally, we remark that we found that setting α = 0.5 would work well for the encoder-decoder mod-
els we consider so that both generative and discriminative objectives are given the same importance.
The same was applied for the decoder-only case.
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\\ validacao de usuario por meio
de middleware

function checkAllFields(body) {
var keys = Object.keys(body);

for (var _i = 0, _keys = keys;
_i < _keys.length; _i++) {

var key = _keys[_i];

if (req.body[key] == "") {
return {
user: body,
error: ’Por favor,

preencha todos os
campos.’

};
}

}
}

Figure 13: JavaScript and Portuguese.

\\ donde estamos en el sistema-L
function setup() {
createCanvas(710, 400);
background(255);
stroke(0, 0, 0, 255);

// inicializar la posicion x e
y en la esquina inferior
izquierda

x = 0;
y = height - 1;

// CALCULAR EL SISTEMA-L
for (let i = 0; i < numloops;

i++) {
thestring =

lindenmayer(thestring);
}

}

Figure 14: JavaScript and Spanish.

import torch

def contrastive_loss(
x_source: torch.FloatTensor,
y_target: torch.FloatTensor) -> torch.FloatTensor:
"""Computes contrastive loss.

Args:
x_source (torch.FloatTensor): Batch of normalized source

embeddings. Expected shape is [batch_size, embedding_dim].
y_target (torch.FloatTensor): Batch of normalized source

embeddings. Expected shape is [batch_size, embedding_dim].

Returns:
torch.FloatTensor: Contrastive loss.

"""

# Compute similarity matrix.
sim = x_source @ y_target.T

# A row-wise cross-entropy criterion is used
# with labels placed on the main diagonal.
ce_labels = torch.arange(sim.size(0)).long()
contrastive_loss = torch.nn.functional.cross_entropy(

sim,
ce_labels)

return contrastive_loss

Figure 15: Pytorch implementation of the contrastive loss we consider taking as inputs normalized
representations of source/target data.
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