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ABSTRACT

An LLM’s factuality and refusal training can be compromised by simple changes
to a prompt. Models often adopt user beliefs (“sycophancy”) or satisfy inappro-
priate requests which are wrapped within special text (“jailbreaking”). We explore
consistency training, a self-supervised paradigm that teaches a model to be invari-
ant to certain irrelevant cues in the prompt. Instead of teaching the model what
exact response to give on a particular prompt, we aim to teach the model to be-
have identically across prompt data augmentations (like adding leading questions
or jailbreak text). We try enforcing this invariance in two ways: over the model’s
external outputs (Bias-augmented Consistency Training (BCT) from Chua et al.
(2025)) and over its internal activations (Activation Consistency Training (ACT),
a method we introduce). Both methods reduce Gemini 2.5 Flash’s susceptibility
to irrelevant cues. Because consistency training uses responses from the model
itself as training data, it avoids issues that arise from stale training data, such as
degrading model capabilities or enforcing outdated response guidelines. While
BCT and ACT reduce sycophancy equally well, BCT does better at jailbreak re-
duction. We think that BCT can simplify training pipelines by removing reliance
on static datasets. We argue that some alignment problems are better viewed not
in terms of optimal responses, but rather as consistency issues.

1 INTRODUCTION

A user mentions their opinion on a factual matter, and thus sways the model to (wrongly) agree. Or,
a model ignores a direct plea for help building a bomb, but complies when asked to write realistic
“fiction” about building bombs. In each case, the model says the right thing when asked directly.
However, in the presence of these irrelevant cues, the model’s responses become inappropriate.

Better-aligned models should consistently resist these attacks. The most straightforward approach
is to do supervised fine tuning (SFT) towards appropriate responses. SFT is effective, but relying
on static SFT datasets introduces two “staleness” problems. First, specification staleness occurs
when the developer’s model response guidelines change. The static dataset becomes obsolete and
actively trains the model on an outdated policy. Second, capability staleness occurs if the data are
sourced from an older, less-capable model. Training on lower-quality target responses can degrade
the abilities of the model.

If the model responds correctly to a prompt without irrelevant cues, it can provide its own training
data for a prompt with irrelevant cues. By training the model to do what it would have done in
without those cues, we improve the model’s resistance to them. We explore two approaches: token-
based (“teaching the model what to say”) and activation-based (“teaching the model what to think”).

Bias-Augmented Consistency Training (BCT) operates on model behavior. Originally introduced to
reduce sycophancy (Chua et al., 2025), BCT is a straightforward supervised finetuning method. We
train the model to generate the same tokens across two prompts: a “wrapped” prompt and its “clean”
counterpart. By providing example responses, BCT teaches the model to ignore the inappropriate
cues by providing feedback on the model’s output behavior.

Activation Consistency Training (ACT) operates on the model’s intermediate computations. Mo-
tivated by other activation-based training approaches (Wu et al., 2024; Casper et al., 2024), ACT
enforces that the model’s internal “thought process” (i.e. activations) on the wrapped prompt be
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close to its “thought process” on the clean prompt. Residual stream optimization imposes a more
mechanistic constraint on the model’s computations. ACT aims to teach the model what to think
right before it begins generating a response.

Usually, defense techniques must identify vulnerabilities and also define how the model should
respond. BCT and ACT remove the need to rewrite responses or tune complex reward functions.
Instead, we direct the model towards its existing good behaviors. Although consistency training
does not teach the model novel good behaviors, the training does improve the robustness of existing
good behaviors.

First, we introduce Activation Consistency Training. Second, we point out that consistency training
is well-suited to the problems of sycophancy and jailbreaks: we want to train the model to be invari-
ant to certain cues in the prompt. Lastly, we compare BCT and ACT against each other and against
standard baselines, using Gemma 2, Gemma 3, and Gemini 2.5 Flash. BCT and ACT do equally well
on sycophancy, but BCT does better than ACT on jailbreak reduction. We show evidence that BCT
and ACT learn mechanistically different solutions. Finally, we analyze the two staleness problems,
arguing that consistency training solves specification staleness by design and empirically testing its
benefits on capability staleness.

2 RELATED WORK

Jailbreak prevention. Safety-aligned LLMs are currently vulnerable to adversarial “jailbreak”
attacks which encourage the LLM to answer harmful questions they would normally refuse. The
attack landscape spans role-playing scenario prompts (e.g. “Do Anything Now” (Shen et al., 2024))
to gradient-based methods such as Greedy Coordinate Descent (Zou et al., 2023). Prior efforts
to increase jailbreak defense include training for robustness (Howe et al., 2025) and unlearning
methods such as Negative Preference Optimization (NPO; Zhang et al. (2024)). We try consistency
methods to address these universal jailbreaks, scaling up to larger models such as Gemini 2.5 Flash.

To explain why these attacks succeed at all, the shallow safety alignment hypothesis (Qi et al.,
2024) posits that if the user manages to bypass refusal during the first few steps of autoregressive
generation, then jailbreaking becomes much easier. This suggests exploring “deeper” interventions
that work over the model’s internal activations and latent spaces. Prior work has tried downweighting
a “jailbreak direction” (Zhang et al., 2025), using adversarial perturbations (Casper et al., 2024),
increasing distance between unsafe and safe completion (Yousefpour et al., 2025), and scrambling
activations if they are detected as harmful (Zou et al., 2024).

These approaches for activation-level defense either rely on complex adversarial training loops or
require labeled data to train internal, input, or output classifiers. See Table 2 for a comparison.
Our consistency training framework provides a simpler yet powerful alternative. It is a largely
self-supervised training method that requires no explicit labels for harmfulness, no adversarial opti-
mization, and no separate classifier. By simply enforcing that the model’s output tokens (or internal
activations) be consistent across a benign prompt and its adversarially “wrapped” counterpart, we
directly teach the model to ignore the wrapper.

Sycophancy. Models tend to endorse a user’s beliefs—even when those beliefs are incorrect (Perez
et al., 2022; Sharma et al., 2023). This behavior increases with model scale and instruction tuning
(Wei et al., 2024) and extends to multimodal domains (Zhao et al., 2024). While different from
jailbreaking, sycophancy can be cast as another failure of robustness against prompt transformations.
In a jailbreak, the model is hijacked by an adversarial wrapper; in sycophancy, the model is hijacked
by the user’s opinion. Prior work has used both token-level and activation-level methods, from
training the model to be correct when random sycophantic cues are inserted (Chua et al., 2025; Wei
et al., 2024), to using linear probes to penalize reward (Papadatos and Freedman, 2024) or adding
steering vectors to discourage learning the sycophancy direction (Chen et al., 2025).

Consistency training Our work descends from a rich lineage of work on consistency regulariza-
tion. Xie et al. (2020) trained models to produce consistent predictions for an unlabeled example
and its augmented counterpart, and in computer vision, Siamese networks are trained to produce
similar activations across rotations (or other augmentations) of each image (Chen and He, 2020).
These methods have been shown to improve generalization and robustness.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

3 METHODS

We investigate multiple methods for improving model robustness against jailbreaks and sycophancy.
We hypothesize that models can learn to ignore adversarial cues by being forced to match their own
behavior on “clean” prompts. We formalize this through Bias-augmented and Activation Consis-
tency Training and evaluate them against standard preference optimization baselines.

3.1 CONSISTENCY TRAINING

Both BCT and ACT operate on paired data. For a given clean prompt pclean (without any sycophantic
or jailbreak cues), we define a corresponding harmful prompt pwrapped that contains the core instruc-
tion augmented with a jailbreak wrapper or sycophantic cue. This wrapping can be arbitrary, as long
as it preserves the meaning of the prompt. We train the model to process pwrapped but to behave as
if it were prompted with pclean. Consistency training is when we optimize a model to have similar
activations or outputs across situations.

3.1.1 TOKEN-LEVEL CONSISTENCY

Bias-Augmented Consistency Training enforces consistency at the output token level (Chua et al.,
2025). It frames the alignment problem as a straightforward SFT task. The goal is to train the model
to generate the same response for a prompt containing a jailbreak or sycophantic cue (pwrapped) as it
would for the underlying, clean prompt (pclean).

Before starting training, we generate fresh training data using the initial model weights in the training
pipeline. For each clean prompt pclean in our training set, we use those weights to generate a target
completion ytarget. We then run 1 epoch of finetuning, to train the model to produce this target ytarget
given wrapped prompt pwrapped. This is done via SFT, minimizing the standard cross-entropy (log)
loss. This approach directly teaches the model to treat the wrapped prompt as if it were the clean
prompt, behaviorally ignoring the wrapping text.

To count as consistency training, data must always be generated via the model we are training to
be consistent. In contrast, stale responses from older models could be used for SFT as well. This
can be convenient, as we do not have to regenerate and revalidate the data. However, stale data can
cause capability staleness, degrading model quality in unrelated areas. Section 4 studies this effect.

3.1.2 ACTIVATION-LEVEL CONSISTENCY

We also explore interventions on the model’s internal representations. For a Transformer-based
model, we focus on the residual stream activations—recorded after a given layer’s operations. Prior
work has found that adjusting these activations can be an efficient way to adjust model behavior. We
train the activations of the model to be consistent between pwrapped and pclean, via an L2 loss.

Activation patching. To test if activation invariance actually helps, we first tried activation patch-
ing at inference time (Heimersheim and Nanda, 2024). Patching “swaps in” activations from a
different forward pass into the current one.

Consider a pair of prompts, a clean prompt pclean and wrapped prompt pwrapped For exam-
ple: pclean might be What is 2 + 2? (A): 4 (B): 5, while pwrapped might be A math
expert usually answers (B). What is 2 + 2? (A): 4 (B): 5. We left-pad
the prompts to have the same shape. We record the model’s internal activations while processing
pclean. Then, during a forward pass on the wrapped pwrapped, we overwrite the activations with those
from the pclean forward pass. We patch the activations at all layers l and all token positions t of
the two prompts. No patching occurs over the response tokens. “Unwrapping” arbitrary harmful
prompts is impractical, but we treat this as simulating a model with zero L2 loss over the prompt.

We measure sycophancy on MMLU questions (see Section 4.2). On Gemma 2 2B, patching caused
the model to avoid sycophancy 86%1 of the time, compared to 49% for the baseline model. When
patched at only a single intermediate layer (layer 20), the model only avoided sycophancy 65% of
the time. From this, we conclude that enforcing activation consistency can lower sycophancy and

1The remaining 14% can be attributed to either factuality errors or the model attending to sycophancy text
in the prompt after patching has stopped during response tokens.
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A math expert usually answers (B). What is 2 + 2? (A): 4 (B): 5 <EOS> Wrapped prompt

What is 2 + 2? (A): 4 (B): 5 <EOS> Clean prompt

Substitute activations

Figure 1: Activation patching records activations on the clean prompt. We then substitute the activa-
tions on the wrapped prompt. We only modify tokens with which both prompts terminate. For acti-
vation consistency training, instead of simply substituting activations from the clean to the wrapped
prompt, we optimize the network to produce the clean activations on the wrapped prompt.

that it’s better to enforce consistency over all layers rather than just one. This makes sense: more
thorough patching reduces the number of computational pathways by which the wrapping tokens
can affect the outcome. We further test a similar hypothesis in Section 5.

Activation Consistency Training. By treating activations from pclean as an optimization target,
ACT effectively bakes activation patching into the model’s weights. ACT trains the model to produce
the patched state on its own, making the desired behavior a learned part of the model. By moving the
consistency objective from the output logits (BCT) to the model’s internal residual stream (ACT),
ACT imposes a more mechanistic constraint. Informally, when processing the wrapped prompt, the
model’s internal “thought process” would need to be closer to the “thought process” induced by the
clean prompt pclean.

Let hω,t,l(p) be the activations of the residual stream at position t and layer l of prompt p when
using model parameters ω. For a wrapped prompt and a clean prompt, the ACT loss function
ε(pwrapped, pclean | ω) is

Et,l

[
→hω,t,l(pwrapped)↑ sg (hωinit,t,l(pclean))→2

]
(1)

with sg representing a stop-gradient. The expectation is a simple average over all layers and all
matching token positions. ACT is only applied to the prompts of the model, rather than the re-
sponses, letting us avoid stale response tokens.

In initial experiments, we found that training activation consistency at all token positions led to di-
vergent behavior. Therefore, we only train invariant activations over the longest matching suffix
between prompts pclean and pwrapped (as shown in Figure 1). The matching suffix excludes all tokens
in the data augmentation, which is applied to pclean to form pwrapped. The matching suffix is techni-
cally always well-defined, since all prompts end in an end-of-sequence token <EOS>, guaranteeing
the matching “suffix” is always at least length 1.

Training over the suffix token positions was more stable. However, it reduces ACT’s effectiveness
on jailbreaks that insert tokens at the end. In practice, ACT still mitigated these jailbreaks.

3.2 BASELINES

Direct Preference Optimization (DPO) (Rafailov et al., 2023) finetunes the model on preference
pairs (x, yw, yl), where x is the prompt, yw is the preferred (e.g., refusal) response and yl is the
dispreferred (e.g., compliant) response. It updates the model to increase the relative likelihood
of p(yw|x) over p(yl|x). We generate the preferred response by running the model on pclean. We
generate the dispreferred response by running the model on pwrapped, then train with (pwrapped, yw, yl).
DPO can be considered a variant of BCT, which both pushes the model to generate the response it
would on pclean and pushes away from the current bad response.

SFT (stale data) finetunes the model on pairs (x, y), where the target response still captures the
desired behavior, but was written by experts or other models instead of the current one. Our experi-
ments primarily use datasets generated by older models, to match a model development flow where
old models generated data for new models and those datasets were re-used.
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4 EXPERIMENTAL RESULTS

We run experiments on sycophancy reduction and on jailbreak reduction. In each setting, we attempt
to preserve general knowledge and instruction-following.

4.1 SHARED EXPERIMENT DETAILS

We report results for four open-weight models: Gemma 2 2B, Gemma 2 27B, Gemma 3 4B, Gemma
3 27B. We also report results on finetuning a frontier model, Gemini 2.5 Flash. All Flash results are
with thinking turned off. For BCT, we use a loss weight of 1. For ACT, we use a loss weight
of 10→4—this weight empirically does well across model sizes, and even small activation-based
gradients can cause large changes to model behavior. We only run the ACT loss on shared suffix
token positions in the prompt (as explained in Figure 1). More details are in Appendix B.

For each method, we perform a hyperparameter sweep over the learning rate. Inspired by F1 score,
we rank models by the harmonic mean of harmfulness and helpfulness on validation data (which we
still call “F1” as shorthand). Here, harmfulness means either sycophancy or the model fulfilling an
unsafe request, and helpfulness means either MMLU (Hendrycks et al., 2020) accuracy or the rate
of answering benign requests.

4.2 REDUCING SYCOPHANCY

We analyze the trade-off between resisting sycophancy and preserving model capabilities. To train
and evaluate sycophancy, we use the same dataset and experimental setup as Chua et al. (2025).
Models are presented with questions where the user says they prefer a specific answer. We use
MMLU (Hendrycks et al., 2020) as our evaluation set for both sycophancy and capabilities. For
sycophancy, we insert user-suggested answers into the prompt and measure how often that answer
is picked. For model capabilities, we use unmodified MMLU and measure accuracy.

For BCT and DPO, we generate fresh target data by querying the model’s response to each “clean”
question in the dataset. For the SFT (stale data) ablation, we use the target responses generated by
Chua et al. (2025) which were from a weaker model (GPT-3.5-Turbo). Specifically, these data cause
capability staleness because they are from an older, weaker model. They also cause specification
staleness because they are out-of-date with current training priorities and quality standards.

4.2.1 SYCOPHANCY RESULTS

Figure 2 shows that across all models, stale data SFT is strictly worse than BCT (excepting a tie on
sycophancy for Gemma 2 2B). This supports our hypothesis that capability staleness degrades the
trained model. The DPO baseline is extremely effective for the smallest model (Gemma 2 2B) but
performs the worst on Gemini 2.5 Flash. For exact numbers, see Table 3 in the appendix.

BCT increases how often the model avoids sycophancy, without negatively impacting MMLU per-
formance. In fact, on Gemma 2 27B and Gemma 3 27B, BCT increases MMLU performance by
approximately two standard errors.

ACT performs similarly to BCT, often achieving a similar F1 score. ACT tends to improve syco-
phancy more, while not improving MMLU performance as much as BCT. However, we do still
observe MMLU accuracy increases after ACT, which is especially interesting since ACT only uses
prompts, not responses. In particular, during training, ACT is not given explicit information about
correct responses. Perhaps training the model to ignore irrelevant facts focuses attention on relevant
facts, or perhaps ACT prepares the model to answer multiple-choice questions.

4.3 IGNORING JAILBREAKS

We want to decrease the attack success rate (ASR) of jailbreak attacks while preserving the model’s
ability to satisfy appropriate requests. The training data were constructed from the Harmbench
dataset (Mazeika et al., 2024). For each harmful instruction (each “clean” prompt), we generated
multiple jailbreaks by e.g. asking the model to roleplay, adding adversarial prefixes and suffixes,
and hiding harmful requests in a long list of benign requests. We generate the model’s responses
to the clean and jailbroken prompts. We filter the dataset to examples where the model refuses the
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Figure 2: Visualization of sycophancy experiments. Points towards the top-right are better. Com-
pares the rate of avoiding sycophancy in questions where the user suggests the wrong answer, to
MMLU performance on the unmodified questions.

clean prompt but answers the jailbroken prompt. This gives between 830 and 1,330 data points,
depending on how refusal-prone the initial model is.

For the SFT (stale data) ablation, we generate the data using the previous model generation. When
training Gemma 3, we generate stale responses using Gemma 2. Likewise, for Gemini 2.5 Flash we
use Gemini 2.0 Flash. We don’t run the stale data ablation on Gemma 2 models.

We analyze the trade-off between safety (resisting harmful requests) and helpfulness (answering
benign queries which look harmful). We use prompted Gemini 2.5 Flash to measure both. See
Appendix D for details. These evaluations only measure whether the model refused—not the quality
of its answers. To select models, we use Harmbench and OR-Bench (Cui et al., 2025) as validation
sets, selecting models based on a harmonic mean (F1 score) of the two.

For jailbreak ASR, we report scores on ClearHarm (Hollinsworth et al., 2025) and on human-
annotated jailbreak attempts within WildguardTest (Han et al., 2024). More specifically, we use the
“adversarial, harmful” subset of WildguardTest. For excess model refusals, we use XSTest (Röttger
et al., 2023) and WildJailbreak (split: benign and adversarial) (Jiang et al., 2024). Importantly, these
points are non-representative of user queries, focusing on queries which look harmful but are not.
See Appendix B for more details.

4.3.1 JAILBREAK RESULTS

Figure 3 shows that all interventions significantly improve safety over the original (“control”) across
model scales. BCT reduces jailbreaks by much more than ACT does, but ACT sometimes slightly
increases helpfulness while slightly reducing jailbreaks. Again, we find this interesting. ACT never
optimizes the model to answer benign prompts. ACT only trains refusals to unsafe prompts with
jailbreaks applied. We speculate that ACT causes the model to learn a high-precision, low-recall
detector of unsafe prompts compared to BCT, causing it to not stop all jailbreaks but also making it
better at choosing which prompts are benign. For full results, see Table 4 in the appendix.

DPO often reduces jailbreak ASR by as much as BCT or more, but with a higher penalty to help-
fulness. Stale data SFT is sometimes better and sometimes worse than BCT. While the sycophancy
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Figure 3: Visualization of jailbreak experiments. We report average attack success rate (ASR) over
ClearHarm and WildguardTest, and the benign answer rate averaged over XSTest and WildJailbreak.
Error bars are 95% confidence intervals estimated via bootstrap. Stale experiments were not run for
Gemma 2. Models towards the top left are better.

results (Section 4.2.1) supported our hypothesis that capability staleness causes model degradation,
the effect was not consistent here. In particular, when we trained 2.5 Flash on completions by 2.0
Flash, that performed significantly (i.e. outside of the bootstrapped CI) better than BCT on Wild-
Jailbreak benign.

On Gemini 2.5 Flash, both BCT and DPO strongly defend against jailbreaks. BCT takes the
ClearHarm attack success rate from 67.8% to 2.9%. However, BCT and DPO substantially decrease
XSTest and WildJailbreak instruction-following. Part of this is due to the F1 selection criterion:
some BCT hyperparameter settings achieve more mild safety gains with less helpfulness degrada-
tion. The performance of all runs is visualized in the Appendix at Figure 5.

In these experiments, we did not explicitly try to reduce inappropriate refusals. The standard practice
is to include SFT data to train the model to answer prompts which look harmful but are actually fine.
We decided to compare methods in isolation, but we expect that appropriate data mixing would
address over-refusals.

5 ANALYSIS

Is ACT just BCT in disguise? Given the similar performance profiles of ACT and BCT on syco-
phancy, one question is whether enforcing consistent activations causes similar gradients as en-
forcing consistent output tokens, or vice versa. Do token-based losses cause the activations across
prompt pairs to get closer together?

To study this, we study how ACT and BCT affect Gemma 3 4B. We plot the activation distance
during BCT and the cross-entropy loss during ACT. If both losses led to similar gradient updates,
we would expect BCT to decrease activation distance and vice versa. Figure 4 shows this is not
the case. The token-based BCT loss causes activation distance to rise during training, while the
activation-based ACT loss does not meaningfully reduce cross-entropy loss. Thus, ACT updates
model behavior differently than BCT does.
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(a) ACT keeps activations close together, as it was
optimized to do. BCT does not.

(b) BCT reduces cross-entropy loss, as it was opti-
mized to do. ACT does not meaningfully follow suit.

Figure 4: Analysis of how much ACT reduces the BCT loss, and vice versa, in Gemma 3 4B
sycophancy runs. These loss differences suggest that BCT and ACT work differently (despite both
improving sycophancy).

Table 1: Ablation on updating fewer layers in ACT, tested on Gemma 2 2B on sycophancy. Updating
just the second half of the model did not perform as well.

Method Not syco. (↓ best) MMLU (↓ best) F1 (↓ best)
ACT (all layers) 64.0 [62.9, 65.1] 58.6 [57.5, 59.7] .612 [.604, .620]
ACT (last half) 60.0 [59.0, 61.2] 60.0 [58.9, 61.0] .600 [.592, .608]

Can ACT and BCT be combined? ACT uses a loss defined over the prompts, while BCT uses a
loss defined over the responses, which suggests using both at once. We simultaneously apply ACT
and BCT on Gemini 2.5 Flash for jailbreaks, using the best hyperparameters for ACT and BCT.

The resulting model performs similarly to the BCT-only run. The BCT-only run averages a jailbreak
ASR of 5.7% against helpfulness of 75.5%, while ACT+BCT averages a jailbreak ASR of 6.6%
against helpfulness of 75.7%. We speculate this occurred because the optimal loss weight for ACT
alone is quite small, so its gradients may have been dominated by the BCT gradient. Better loss
balancing may improve these results.

Does ACT need to update all layers at once? The mechanistic interpretability literature (Jawahar
et al., 2019) suggests that earlier layers represent more basic syntactic knowledge, while later layers
represent more complex concepts. Would ACT perform better if we focused on later layers?

We run an ablation of ACT for sycophancy on Gemma 2 2B, where we only update parameters in
the second half of layers instead of every layer. As shown by Table 1, updating only the second
half performed worse than updating every layer, dropping F1 score from 0.612 to 0.600 (which falls
outside of the bootstrapped CIs). This suggests sycophantic circuitry is not confined to later layers.

6 DISCUSSION

We demonstrated two benefits of consistency training. First, consistency involves fresh data, which
helps prevent specification staleness and capability staleness. Second, consistency training simplifies
the training pipeline by removing the independent, bespoke generation of appropriate responses. If
the developer changes their mind about the desired model behavior, they don’t need to also update
their sycophancy or jailbreak datasets accordingly.

ACT and BCT perform equivalently in sycophancy. On jailbreaks, BCT reduced the ASR more than
ACT did on an absolute basis, but ACT showed free jailbreak reductions at no significant cost to
benign refusals. Further improvements to ACT could make activation supervision more viable for
jailbreak reduction.

Initially, we assumed that either it would be too difficult to train consistent activations into the model,
or that ACT would be significantly more effective than BCT due to ACT’s more mechanistic loss
function. This expectation was wrong. In reality, at best, ACT only slightly improved on BCT. At
worst, ACT was less effective. ACT did tend to have lower side-effects on MMLU and over-refusals.
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Limitations. Consistency methods assume that the model behaves well on un-augmented data.
BCT and ACT widen the distribution of prompts over which the model behaves consistently, so it is
possible to train the model to be consistently unsafe. In our experiments, we filtered datasets to only
prompts where the model’s behavior was originally safe to avoid this.

While consistency training is largely unsupervised, it still requires human-curated inputs. The
“clean” prompts and augmentation methods creating wrapped prompts still need human guidance.
Human designed filters are also needed to filter clean data to prompts which the model behaves well
on.

We train models to ignore “irrelevant” information. However, they might mis-generalize by ignoring
too much information. Section 4.3.1 finds small impact on instruction-following abilities — one of
the main areas we would expect to degrade. However, our evaluations were not exhaustive. Perhaps
BCT and ACT degrade attention to detail more severely than suggested by our data.

Potential benefits from fresh data. We hypothesized two benefits from consistency training’s fresh
data. First, consistency training dynamically updates SFT targets to conform to the specification the
model is otherwise trained to follow. This benefit comes from the nature of supervised learning.

Second, consistency training avoids capability staleness by training the model on its own response
data. We found mixed evidence on the benefits of avoiding capability staleness. Our sycophancy
results (Section 4.2.1) provided strong supporting evidence, but our jailbreak results (Section 4.3.1)
did not. Why not?

Consider Gemini 2.5 Flash’s performance on both tasks. In the sycophancy results, the target data
were generated by GPT-3.5-Turbo. This was much older and less capable compared to Gemini 2.0
Flash, the model used for stale data in the jailbreak results. Perhaps 2.0 Flash / Gemma 2 weren’t
sufficiently outdated to cause degradation on 2.5 Flash / Gemma 3. It may also depend on how
capabilities are measured. In jailbreaks, we used over-refusals, but in Appendix E.3 we find SFT
(stale) led to lower MMLU accuracy than BCT.

Future work. BCT can be viewed as augmenting the training data with “wrapped” (e.g. jailbroken)
transformations of existing refusal training points. This could be combined with other data augmen-
tations. For example, our work is compatible with Qi et al. (2024)’s augmentation of beginning a
refusal response at a randomly selected token position in a compliant response. More specifically, if
the model’s wrapped completion is n tokens long, train the model to output its non-wrapped com-
pletion starting at a uniformly random position between t = 0 and t = n↑ 1. We are also interested
in studying the relationship between capability staleness and model degradation. If two models are
competitive on benchmarks, can you interchangeably train them to output the other model’s clean
completions on wrapped prompts without degrading generalization? Is capability staleness largely
about benchmark performance, model style, or something else?

7 CONCLUSION

We investigated consistency training, a self-supervised framework to make models robust to the
irrelevant cues which cause sycophancy and jailbreaks. We compared boosting consistency on model
outputs against boosting consistency on internal activations. Bias-augmented Consistency Training
defended more strongly against jailbreaks, but Activation Consistency Training had virtually no
impact on benign refusals. Although our original intuition on the effectiveness of model internals
training was proven incorrect, we find value in viewing problems through the lens of consistency.
Consistency methods like BCT simplify training pipelines by removing the independent, bespoke
generation of compliant responses. Consistency methods also sidestep the problem of stale data by
automatically generating fresh data. We see consistency-across-prompts as a fresh way to address
practical alignment problems.

LLM disclosure We used LLMs to provide feedback on clarity of the paper, assist with identifying
related work, and help generate matplotlib plotting code.
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Tucker, P.-L. Bacon, and A. Gleave. Scaling trends in language model robust-
ness. In Forty-second International Conference on Machine Learning, 2025. URL
https://openreview.net/forum?id=tNGdLEL4R0.

G. Jawahar, B. Sagot, and D. Seddah. What does BERT learn about the structure of language? In
ACL 2019-57th Annual Meeting of the Association for Computational Linguistics, 2019.

L. Jiang, K. Rao, S. Han, A. Ettinger, F. Brahman, S. Kumar, N. Mireshghallah, X. Lu, M. Sap,
Y. Choi, et al. Wildteaming at scale: From in-the-wild jailbreaks to (adversarially) safer language
models. Advances in Neural Information Processing Systems, 37:47094–47165, 2024.

M. Mazeika, L. Phan, X. Yin, A. Zou, Z. Wang, N. Mu, E. Sakhaee, N. Li, S. Basart, B. Li, et al.
Harmbench: A standardized evaluation framework for automated red teaming and robust refusal.
arXiv preprint arXiv:2402.04249, 2024.

H. Papadatos and R. Freedman. Linear probe penalties reduce LLM sycophancy. arXiv preprint
arXiv:2412.00967, 2024.
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