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ABSTRACT

Imaging genetics is one of the foremost emerging fields in neuroscience research
that aims to combine neuroimaging and genetic information with phenotypes to
shed light on inherent underlying mechanisms. While significant progress has been
made in integrating brain imaging, like functional magnetic resonance imaging
(fMRI), with genetic data, such as single nucleotide polymorphisms (SNPs), little
progress has been made in studying them jointly using graph structures. To raise a
new perspective and overcome challenges in analyzing data with high dimensional-
ity and inherently complex relationships, we developed a graphical neural network
model (BIG-Graph) that jointly learns to effectively represent both neuroimaging
and genetic data in a nonlinear manner without any prior knowledge. Here, we
demonstrate that joint learning of imaging-genetics using BIG-Graph largely out-
performs existing state-of-the-art Imaging genetics models and networks trained
separately on neuroimaging or genetic data in predicting a variety of phenotypes.

1 INTRODUCTION

Imaging genetics has attracted considerable interest in recent years. Linking genetics and brain
phenotypes as they relate to biomarkers or clinical phenotypes is vital in advancing our understanding
of biological associations and fundamental mechanisms (Shen & Thompson, 2019). Recent data-
driven insights have investigated how the brain manages cognition (Kong et al., 2021), how neural
connectivity affects typical and disordered brain function and behavior (Fornito et al., 2013), and the
contribution of genomics to brain features and behavior (Bassett & Sporns, 2017; Bassett et al., 2008;
Lydon-Staley & Bassett, 2018; Hao et al., 2018).

Although studying imaging genetics has the potential to make significant contributions to biomedical
discoveries, there are computational and statistical challenges that must be overcome to achieve the
full benefits of these valuable data. The challenge lies in the unprecedented scale, dimensionality, and
complexity of brain imaging genetics data, including evaluating and testing over a million SNPs in the
genome for associations and analyzing hundreds or thousands of MRI images, which require effective
models to unlock shared genetic and molecular underpinnings of neural systems. An additional
difficulty is the relatively small effect size of genetic variance (SNPs) on neurobiological systems,
with most SNPs accounting for less than 1% of variance in brain function/phenotypes. Even common
genetic variants with large effects on brain functioning have been difficult to detect (Ansarifar &
Wang, 2019). Hence, studies have been expanded to tens of thousands of subjects to build an effective
framework with adequate detection power to decipher imaging genetics associations and to develop
effective diagnostic, therapeutic, and preventive processes for complex brain disorders.

Existing imaging genetic datasets have widely included behavioral or cognitive phenotypes, a number
of genotypes, such as SNPs, and MRI images modalities (structural and functional MR) or brain
phenotypes (Consortium, 2009). In recent years, imaging genetics research has become increasingly
focused on studying the brain via resting-state fMRI (rs-fMRI) because this acquisition can capture
the brain’s spontaneous functional brain architecture that occurs in a task-negative or resting state
when an explicit task is not being performed. Then, using rs-fMRI, functional connectivity (FC) has
been computed using correlations or covariance between spatially distant regions across rs-fMRI data
(Van Den Heuvel & Pol, 2010; Rogers et al., 2007). Accordingly, the functional activation patterns
of the brain can be used to investigate associations of particular behavioral or cognitive phenotypes
with neural networks encompassing multiple related brain regions (Birnbaum & Weinberger, 2022)
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and explore interactions between the resultant neuroimaging components and genetic features. To
this end, several models have been applied mainly for imaging genetic studies approaches, such as
correlation analysis (Sheng et al., 2014), partial least squares (Le Floch et al., 2012), reduced-rank
regression (Vounou et al., 2010), and machine learning models (Sebenius et al., 2021; Hu et al.,
2021). Among these techniques, as deep learning models, especially Graph Neural Network (GNN),
have notably achieved promising and acceptable results in many applications, this paper focuses on
developing a framework through GNNs for joint learning/modeling of genetic and imaging.

Figure 1: The overview of the proposed BIG-Graph model. FMRI and gene graphs are inputs to
the model. Graphs are sent parallelly into the two GNNs with batch normalization and residual
connections. Convolutional feature maps of the last layers from two networks are fed into average
pooling layers, followed by a deep neural network transformation. The latent representation vectors
of two graphs’ nodes are combined via the element-wise product, followed by a linear transformation.
Also, they are fed into MLP to apply multilayer. Then, the output of MLP is used to calculate the
generalized distance function between all two graphs’ nodes. The general form of imaging and
genetics interactions is computed by multiplying the distance function’s results and their transformed
element-wise product. Ultimately, the final prediction was achieved using a linear classification or
regression of average pooling of general form interactions and transformed latent representations of
genes and fMRI.

This paper proposes a new graph convolution network called Brain Imaging Genetics by Graph
Neural Network (BIG-Graph) to simultaneously model associations between imaging and genetics
data to predict cognitive and behavioral phenotypes. Instead of starting from one brain graph where
nodes represent the anatomical brain regions, BIG-Graph jointly models gene and brain graphs.
Figure 1 summarizes the overview of the proposed BIG-Graph model. The contributions of this paper
can be summarized as follows:

• We describe a new algorithm that jointly learns from structural and functional brain networks
and genetic data by quantifying the contributions of neuroimaging and the genetic data and
their interactions in the prediction of phenotypes.

• We use an interaction detection framework equipped with generalized metric learning
techniques to properly formulate the fine-grained feature interactions of high-dimensional
neuroimaging and genetic data.

• We construct graph-based genetic data utilizing GWAS analysis and random forest and
build a brain graph using analysis of functional connectivity of rs-fMRI and structural MRI
images.

• We benchmark different GNNs structures such as Vanilla Graph ConvNets (GCN) (Kipf &
Welling, 2016), GraphSage (Hamilton et al., 2017), and Graph Attention Network (GAT)
(Veličković et al., 2017) on the proposed model and benchmark coupling neuroimaging and
the genetic data versus neuroimaging and the genetic data. Also, we benchmark various
complex levels of fMRI and gene graphs to investigate dense graphs’ prediction power
versus more sparse graphs.

• We demonstrate the proposed framework’s performance in the prediction of sex, heights, and
age from the Philadelphia Neurodevelopmental Cohort (PNC) (Satterthwaite et al., 2016).
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2 RELATED WORKS AND BACKGROUND

Targeted reviews of the literature in neuroimaging genetics include statistical and machine learning
approaches (Shen & Thompson, 2019; Nathoo et al., 2019), multivariate methods (Liu & Calhoun,
2014), and multimodal analysis strategies (Liu et al., 2018).

A number of statistical and machine learning models have been developed to investigate associations
between genetic variations and brain imaging quantitative traits (QTs) in connection with other
clinical and cognitive biomarkers and behavioral phenotypes. Early imaging genetics studies largely
focused on estimating genetic contributions to phenotypic variation. One class of approaches uses
a GWAS analysis, for instance, a fast voxel-wise GWAS framework (Huang et al., 2015), a kernel
machine method (Ge et al., 2015), gene-environment mixed effect model (Wang et al., 2017), brain
imaging GWAS (Hua et al., 2015), multivariate regression methods (Hao et al., 2018; Wang et al.,
2012; Vounou et al., 2012), regularized sparse canonical correlation analysis (Du et al., 2014; Yan
et al., 2014), and Bayesian methods (Smeland et al., 2018; Wang et al., 2012). Pairwise analyses
represent a major computational challenge and requires numerous univariate SNP–QT association
tests. To overcome these challenges, neural network models have been employed in (Wang et al.,
2018; Schmidt et al., 1992).

Another active research field in imaging genetics is to predict cognitive and behavioral phenotypes
using imaging and genomics to better understand the relationship between these data and behavioral,
cognitive, and clinical outcomes. Besides conventional prediction methods such as naive Bayes
classifiers (Dukart et al., 2016) and support vector machines (Fan et al., 2006), more recent machine
learning models have also been employed, such as multiple kernel learning (Rakotomamonjy et al.,
2008; Peng et al., 2016), sparse multi-model learning (Wang et al., 2013), cascaded multi-view
canonical correlation (Morris et al., 2017), a multi-task collaborative regression Zille et al. (2017),
a neural network (Ning et al., 2018; Zhou et al., 2019b; Venugopalan et al., 2021; Yu et al., 2021;
Zhou et al., 2019b), latent representation learning method for multi-modality Zhou et al. (2019a), and
robust reduced rank graph regression (Zhu et al., 2018).

Even with recent advances in deep learning models (especially GNNs) and their methodological
and practical impact on prediction problems, few studies in imaging genetics have taken advantage
of jointly assessing brain imaging and genetics using graphs. Existing graph-based works in neu-
roimaging mainly focus on discovering a brain network from MRI images alone, including: single
modality multi-view brain network GCN classifier (Zhang et al., 2018b;a), joint GCN model (Liu
et al., 2019; Kawahara et al., 2017), multi-view GCN (Wen et al., 2022), graph attention network
(Huang et al., 2022; Hu et al., 2021; Yang et al., 2019; Filip et al., 2020), pooling regularized GCN
for fMRI biomarker analysis (Li et al., 2020; 2021), hierarchical GCN framework (Sebenius et al.,
2021), multiplex GCN (Kong et al., 2021), and dynamic GCN (Zhao et al., 2022).

Deviating from the large body of previous works on imaging genetics, the most related study to this
research is from Ko et al. (2022) in which authors built a novel deep generative and discriminative
learning framework that jointly analyzes phenotypic and genotypic data for Alzheimer’s disease
diagnosis and cognitive score prediction. While our methodology as a novel GNN framework
addresses relevant data integration challenges and introduces a generalized metric learning technique
to not only identify associations between neuroimaging and genetic data but also to predict phenotypes
accurately. By achieving valuable insights into outcome-relevant neurobiological mechanisms at the
genetic level, this study represents the first attempt to our knowledge to predict phenotypes from the
PNC cohort (Satterthwaite et al., 2016) using a GNN framework.

3 METHODS

3.1 PRELIMINARIES

Graph Neural Networks. In this paper, we used message passing-based graph neural networks,
which iteratively update node representations locally from one layer to another using neighborhood
nodes. The updating formula is independent of graph size and is defined as hℓ+1

i = f(hℓ
i , {hℓ

j}j∈Ni
),

where Ni denotes the set of nodes connected to node i on the graph, hℓ
i is the d-dimensional

embedding representation of node i at layer ℓ, and f is a mapping function defined in various forms
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such as GCN (Kipf & Welling, 2016), GraphSage (Hamilton et al., 2017), and GAT (Veličković et al.,
2017).

Modeling Interaction with Metric Learning. Factorization Machines (FMs), as the most promising
interaction-based models to estimate target, can be formulated as

ŷ(x) = w0 +

n∑
i=1

wixi +

n∑
i=1

n∑
j=i+1

⟨vi,vj⟩xixj , (1)

where x ∈ Rn is feature vector, w0 denotes the global bias, wi represents the strength of the i-th
feature xi, vi and vj are embedded features corresponding to i-th and j-th features, and ⟨vi,vj⟩
computes interactions between the i-th and j-th features. In the original FMs paper (Rendle, 2010),
vi ∈ Rk denotes the factorized feature vector for feature xi, and ⟨vi,vj⟩ is inner product of vi and
vj . To consider feature correlations in interaction term of FMs, Guo et al. (2020) proposed to use
generalized metric learning with deep neural network (DNN) based distance function in FMs as

ŷ(x) = w0 +

n∑
i=1

wixi +

n∑
i=1

n∑
j=i+1

wijD(vi,vj)xixj , (2)

where wij denotes a transformation weight, and D is known as dissimilar pairs in metric learning. We
use element-wise product of embedded features vi and vj and trainable vector W 1 ∈ Rk to compute
transformation weight. This presentation of wij increases the representation ability of prediction
by enabling FMs to overcome the distance function limitations (non-negativity of distances). Also,
instead of using a linear correlations function, we model this function by applying DNN to capture
the nonlinear or more complex correlations and interactions between features. Therefore, the distance
function becomes

wij = w1T (vi ⊙ vj), D(vi,vj) = (v̂i − v̂j)
T (v̂i − v̂j), (3)

where both v̂i and v̂j are non-linear transformations of vi and vj via a deep neural network. Conse-
quently, FMs with generalized metric distance with DNN can be presented as

ŷ(x) = w0 +

n∑
i=1

wixi +

n∑
i=1

n∑
j=i+1

w1T (vi ⊙ vj)(v̂i − v̂j)
T (v̂i − v̂j)xixj (4)

3.2 PROPOSED MODEL FRAMEWORK

Figure 2: Overview of the proposed approach for constructing gene (top) and brain (bottom) graphs.
For the gene graph, we use GWAS analysis of single-SNP–single-phenotype and random forest
model. The brain graph is constructed using functional connectivity of fMRI and structural MRI.

Graph construction. As we focus on the development of a new GNN, we start a model presentation
by definition of graph G with node features αi ∈ Ra×1 for each node i ∈ V and (optionally) edge
features βij ∈ Rb×1 for each adjacent nodes i and j. Here, V is a set of nodes within the graph, and
a and b denote feature dimensions of nodes and edges. Fig. 2 illustrates the construction process of
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graphs. The gene graph is constructed using GWAS analysis and random forest (Ho, 1995) model
sequentially to identify nodes and determine edges, respectively. First, a linear regression analysis is
conducted at each SNP-by-phenotype pair to examine its genetic effect on each phenotype to measure
the contribution of each SNP on phenotype and then filter SNPs based on the p-value. We choose
SNPs with the minimum p-value (p-value ≤ 1− e6) (Meng et al., 2020). Each gene graph’s node
represents one selected SNP with a one-hot representation of SNPs as feature nodes. Then, a random
forest is employed to predict phenotypes by one-hot coding of selected SNPs. Then, we interpret
branches of trained trees as gene graph’s edges. The power of this type of graph creation is that
variation in random forest’s hyperparameters leads to different graph complexity. In the experiment,
we demonstrate these hyperparameters’ impact on a model’s performance in predicting phenotype.

For constructing a brain graph, the brain is parcellated into brain regions by the atlas. All parcellated
ROIs were considered as graph nodes in this graph. Then, functional connectivity as the pairwise
sparse inverse covariance of the mean blood-oxygen-level-dependent (BOLD) time series activity
of each ROI is computed. In this research, we use sparse inverse covariance instead of Pearson’s
correlation as Liégeois et al. (2020) showed precision-based functional connectivity yields a better
match to brain structural connectivity than correlation-based functional connectivity. Therefore, a
covariance matrix was constructed for each subject, containing covariance coefficients of pairwise
ROIs. A sparsity threshold can be applied on top of this matrix to define edges between ROIs. FMRI
and structural MRI (sMRI) of each subject are stacked together to specify the feature nodes in a brain
graph. Feature nodes are Freesurfer (Fischl, 2012) derivatives of sMRI, such as cortical thickness,
volume, surface area, and subcortical volume.

Model. This paper jointly passes neuroimaging and genetic data after transformation to graph
representation to BIG-Graph architecture (shown in Fig. 1). Before feeding gene and brain graphs
to the graph neural network, their input features αi and βij for both graphs are embedded to
d-dimensional hidden features hℓ=0

i and eℓ=0
ij by a simple linear transformation h0

i = U0αi +

u0 ; e0ij = V 0βij + v0, where U0 ∈ Rd×a, V 0 ∈ Rd×b and u0, v0 ∈ Rd.

Then, d-dimensional representations of the nodes/edges are passed parallelly to the two GNNs
with batch normalization and residual connections. Message-passing GNN layer updates feature
representations through recursive neighborhood diffusion, where each graph node inherits features
from its adjacent nodes. Stacking L GNN layers enables models to gather node representations
from each node’s L-hop neighborhood. We augment each GNN layer with batch normalization (BN)
(Ioffe & Szegedy, 2015) and residual connections (He et al., 2016). GNN layer can be replaced
with any GNN structures, such as GCN (Kipf & Welling, 2016), GraphSage (Hamilton et al., 2017),
and GAT (Veličković et al., 2017). Then, convolutional feature maps of the last layer from two
networks are fed into the aggregation layer by applying average pooling over graph nodes to compute
latent representations of all nodes, followed by passing them to the multilayer perceptron (MLP).
Additionally, the last convolutional feature maps of both gene and brain networks are passed into FMs
with generalized metric distance and a deep neural network to quantify and formulate interactions
between latent representations of SNPs and brain ROIs. As a final step, the resultant of FMs network
and MLP of two graphs’ latent representations are concatenated and connected to a linear classifier
or regressor.

4 EXPERIMENT

4.1 DATASET

This study was conducted on the PNC cohort (Satterthwaite et al., 2016) by assessing 2304815
SNPs, 1071 participants with rs-fMRI and sMRI acquisitions, and 104 psychiatric and cognitive
traits. Genotypes and phenotypes were acquired through the database of dbGaP (Satterthwaite et al.,
2016; 2014), and bed, bim, and fam files were used to extract individualized genotyping data. This
research considers age, sex, and height in inches as targets for prediction purposes. Demographics
of the subjects in each target are presented in Table 1. The performance of the proposed model was
tested over 1071 subjects (including 649 females) with ages ranging from 8 to 21 years (mean age
14.6 years).
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Table 1: Demographics of the subjects included from PNC cohort.
Dataset Number Mean age (SD) Age range Mean height (SD)

in inches
height range

in inches
PNC 1071 14.61 (3.45) (8-21) 62.63 (6.33) (40-76)

Female 649 14.82 (3.49) (8-21) 61.97 (5.37) (43-74)
Male 547 14.36 (3.40) (8-21) 63.43 (7.25) (40-76)

4.2 BASELINE METHODS AND EXPERIMENTAL SETTINGS

For generating a brain graph, the brain was parcellated into brain regions by the Destrieux atlas (Fischl
et al., 2004; Destrieux et al., 2009) with spherical 148 ROIs for cortical regions and Harvard-Oxford
parcellations from FSL (Makris et al., 2006; Frazier et al., 2005; Desikan et al., 2006; Goldstein et al.,
2007) with 21 spherical ROIs for subcortical regions. The time series of rs-fMRI acquisition for each
ROI was extracted from the preprocessing data using a robust preprocessing pipeline (fMRIPrep)
Esteban et al. (2019) to construct the functional networks. Therefore, a 169*169 covariance matrix
for each subject was computed using the GraphLassoCV function of nilearn package (Abraham et al.,
2014) on pairwise blood-oxygen-level-dependent (BOLD) time series activity of ROIs. To define
edges between ROIs, four sparsity thresholds, including ±0.2,±0.3,±0.4, and ±0.5 were applied
on top of these matrices to generate four brain graphs with different complexity levels. Freesurfer
(Fischl, 2012) derivatives of sMRI, such as cortical thickness, volume, surface area, and subcortical
volume, were considered as feature nodes of graphs. Thickness, volume, surface area were normalized
globally over all participants.

To construct a gene graph, we ran 2,304,815 linear models to measure the contribution of each SNP
from the PNC cohort on three phenotypes (sex, age, and height). Genomic variants with minor
allele frequency (MAF) ≤ 0.01% and p-value less than 1e− 6 were filtered out. Then, the random
forest model identified the gene graph’s edges using these selected SNPs. Each node in the gene
graph represented one selected SNP with a one-hot representation of SNPs as feature nodes. As the
random forest model’s hyperparameters influence the generating graph, we considered four levels for
the maximum depth of tree in the random forest model, including 5, 10, 15, and 20, to build four
different graphs for genes with different complexity levels. Linear regression and random forest were
implemented in Python using the Sklearn package (Pedregosa et al., 2011).

Table 2: Summary statistics of gene graphs (brain graphs) in different complexity levels included in
the experiment.

Phenotype
(Task) #Graphs #Nodes Total #Nodes #Edges Total #Edges

Age
(Regression) 1K (1K) 8-490 (169) 311K (181K)

53-580 (1-1K)
56-4.4K (2-3.4K)
56-8.8K (2-5.9K)
56-12K(2-8.6K)

407K (5.8K)
2.7M (53K)

5.4M (303K)
7.6M (1.3M)

Height
(Regression) 725 (725) 6-1.2K (169) 272K (122K)

27-969 (2-1K)
30-5K (2-3.4K)

30-9.9K (2-5.9K)
30-14K (2-8.6K)

379K (4.3K)
1.9M (38K)

3.9M (216K)
5.8M (968K)

Sex
(Classification) 1K (1K) 76-2.5k (169) 483K (181K)

107-682 (2-1K)
451-3K (2-3.4K)

569-4.7K (2-5.9K)
616-4.9K (2-8.6K)

466K (5.8K)
2.1M (53K)

3.4M (303K)
3.6M (1.3M)

To assess the models’ performance and benchmark them, we used a 10-fold cross-validation scheme.
The training set is divided into 90% for updating weights and 10% for stopping criteria and reducing
the learning rate when a metric has stopped improving on a validation set. To evaluate the effect of
the complexity of graphs on prediction efficiency, we stacked four gene graphs with four brain graphs
in terms of the level of complexity. The summary statistics of graphs included in the experiment
are reported in Table 2. We benchmarked the prediction performance of the proposed GNN method
with state-of-the-art message passing-based networks such as GCN, GraphSage, and GAT trained
separately on neuroimaging or genetic data to illustrate the impact of the new framework in enhancing
the model’s performance. We carried out the experiments with Pytorch (Paszke et al., 2019) and deep
graph library (DGL) (Wang et al., 2019) in Python. Adam optimizer was used to train a model with
adaptive learning rates (Kingma & Ba, 2014). Stepwise learning rate decay was also applied if the
validation loss stopped decreasing, with the smallest learning rate of 1e− 6. For all GNNs models in
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the benchmark, we applied 32 convolutional layers followed by 2 fully connected layers, with 128
features graph convolutional and embedding layers.

5 RESULTS

To evaluate the effectiveness of the proposed framework, we conducted experiments on the prediction
of age (regression problem), height (regression problem), and sex (classification problem) using the
PNC cohort to answer the following three questions: Q1: The performance of BIG-Graph compared
with state-of-the-art methods. Q2: The effectiveness of graph complexity in prediction outcomes. Q3:
The explainable insights of combining gene and brain graphs in the BIG-graph framework.

Table 3: Benchmarking results for the BIG-graph and GNN models separately using gene and brain
graphs. Mean/std of metrics are reported over test sets of 10-fold cross-validation.

Model Complexity Age Height Sex
MAE RRMSE% MAE RRMSE% ACC AUC

BIG-graph
GAT

Sparse 2.5 / 0.14 20.41 / 0.7 4.53 / 0.46 11.71 / 0.9 87.31 / 0.8 0.874 / 0.008
Semi-sparse 2.36 / 0.08 19.38 / 0.7 4.3 / 0.24 10.99 / 0.6 88.13 / 0.8 0.887 / 0.044
Semi-dense 2.33 / 0.09 19.33 / 0.4 4.18 / 0.32 10.77 / 0.2 88.69 / 0.4 0.891 / 0.048

Dense 2.35 / 0.08 19.38 / 0.7 4.21 / 0.39 10.79 / 0.3 88.9 / 0.6 0.889 / 0.028

BIG-graph
GraphSage

Sparse 2.55 / 0.11 20.57 / 0.6 4.56 / 0.13 11.81 / 0.2 87.14 / 0.2 0.87 / 0.018
Semi-sparse 2.4 / 0.12 19.48 / 0.6 4.2 / 0.14 10.84 / 0.2 88.43 / 0.1 0.871 / 0.017
Semi-dense 2.29 / 0.18 19.08 / 0.4 4.14 / 0.33 10.71 / 0.7 88.58 / 0.7 0.889 / 0.035

Dense 2.39 / 0.08 19.42 / 0.9 4.23 / 0.34 10.85 / 0.5 88.79 / 0.5 0.894 / 0.038

BIG-graph
GCN

Sparse 2.47 / 0.14 19.98 / 0.5 4.42 / 0.48 11.35 / 0.4 88.04 / 0.6 0.884 / 0.04
Semi-sparse 2.24 / 0.2 18.96 / 0.7 4.27 / 0.26 10.93 / 0.8 90.5 / 0.6 0.899 / 0.012
Semi-dense 2.22 / 0.14 18.62 / 0.3 4.1 / 0.2 10.21 / 0.5 90.82 / 0.4 0.899 / 0.047

Dense 2.31 / 0.11 19.27 / 0.7 4.13 / 0.23 10.6 / 0.4 91.05 / 0.1 0.91 / 0.027

GAT
Gene

Sparse 3.78 / 0.19 30.76 / 0.9 6 / 0.12 15.37 / 0.4 74.06 / 0.7 0.745 / 0.022
Semi-sparse 3.54 / 0.13 29.06 / 0.4 5.71 / 0.16 14.39 / 0.9 75.09 / 0.6 0.758 / 0.01
Semi-dense 3.55 / 0.16 29.02 / 0.4 5.57 / 0.16 14.17 / 0.2 75.45 / 0.7 0.743 / 0.034

Dense 3.67 / 0.13 29.57 / 0.2 5.53 / 0.34 14.14 / 0.8 75.21 / 0.8 0.755 / 0.032

GAT
MRI

Sparse 3.45 / 0.13 28.34 / 0.3 5.04 / 0.39 13.07 / 0.6 78.32 / 0.3 0.785 / 0.035
Semi-sparse 3.06 / 0.08 24.24 / 0.4 4.9 / 0.13 12.46 / 0.6 79.4 / 0.3 0.79 / 0.03
Semi-dense 3.07 / 0.15 24.14 / 0.3 4.75 / 0.34 12.52 / 0.8 79.65 / 0.9 0.791 / 0.023

Dense 3.2 / 0.15 25.36 / 0.3 4.69 / 0.12 12.37 / 0.8 79.81 / 0.1 0.782 / 0.022

GraphSage
Gene

Sparse 3.84 / 0.14 30.86 / 0.6 6.06 / 0.52 15.49 / 0.3 74.17 / 0.4 0.743 / 0.008
Semi-sparse 3.62 / 0.13 29.31 / 0.7 5.62 / 0.33 14.76 / 0.8 74.71 / 0.8 0.745 / 0.044
Semi-dense 3.45 / 0.14 28.13 / 0.6 5.57 / 0.5 14.19 / 0.2 75.37 / 0.2 0.755 / 0.005

Dense 3.64 / 0.16 29.2 / 0.4 5.65 / 0.39 14.52 / 0.5 75.42 / 0.8 0.768 / 0.02

GraphSage
MRI

Sparse 3.38 / 0.2 27.05 / 0.5 5.16 / 0.37 13.33 / 0.4 78.53 / 0.3 0.792 / 0.027
Semi-sparse 3.29 / 0.16 26.79 / 0.5 4.68 / 0.39 12.08 / 0.2 79.11 / 0.7 0.782 / 0.035
Semi-dense 3.06 / 0.14 24.37 / 0.5 4.74 / 0.26 11.83 / 0.4 79.83 / 0.3 0.8 / 0.049

Dense 3.16 / 0.14 24.97 / 0.4 4.74 / 0.21 11.96 / 0.3 79.78 / 0.5 0.79 / 0.022

GCN
Gene

Sparse 3.76 / 0.19 30.09 / 0.2 5.82 / 0.96 14.95 / 0.5 74.74 / 0.6 0.75 / 0.013
Semi-sparse 3.4 / 0.11 28.08 / 0.8 5.68 / 0.61 14.79 / 0.2 76.85 / 0.4 0.76 / 0.011
Semi-dense 3.47 / 0.18 27.95 / 0.3 5.35 / 0.37 13.92 / 0.5 77.19 / 0.2 0.771 / 0.03

Dense 3.59 / 0.19 28.94 / 0.5 5.37 / 0.18 13.83 / 0.3 77.23 / 0.3 0.782 / 0.041

GCN
MRI

Sparse 3.25 / 0.19 26.31 / 0.7 4.86 / 0.38 12.52 / 0.7 79.13 / 0.8 0.79 / 0.004
Semi-sparse 2.99 / 0.11 24 / 0.7 4.76 / 0.13 12.1 / 0.4 81.25 / 0.3 0.815 / 0.009
Semi-dense 2.94 / 0.16 23.84 / 0.6 4.59 / 0.51 11.85 / 0.9 81.72 / 0.1 0.81 / 0.038

Dense 3.1 / 0.18 24.85 / 0.6 4.63 / 0.42 12.01 / 0.9 81.89 / 0.2 0.821 / 0.011

Table 4: Benchmarking results for the proposed model and State-of-the-art. Mean/std of metrics are
reported over test sets of 10-fold cross-validation.

Model Age Height Sex
MAE RRMSE% MAE RRMSE% ACC AUC

BIG-graph GCN (Semi-dense) 2.22/0.14 18.62 / 0.3 4.1 / 0.2 10.21 / 0.5 90.82 / 0.4 0.899 / 0.047
Ko et al. (2022) 3.82 / 0.4 30.05 / 0.5 6.16 / 0.37 16.33 / 0.4 71.38 / 0.4 0.703 / 0.09

Venugopalan et al. (2021) 4.19 / 0.27 32.75 / 0.3 6.2 / 0.85 17.54 / 0.6 70.14 / 0.9 0.706 / 0.012
Zhou et al. (2019b) 4.23 /0.21 33.20 / 0.4 6.84 / 0.7 17.89 / 0.3 71.02 / 0.3 0.711 / 0.02

Prediction errors for three prediction tasks over test sets of 10-fold cross-validation using three
algorithms with three different GNN structures are summarized in Table 3. Comparison in terms of
the relative root mean square error (RRMSE), the mean absolute error (MAE) for regression and
accuracy, and the area under the receiver operator characteristic curve (AUC-ROC) for classification
reveals that the proposed model outperformed these two GNNs trained separately on large-scale
neuroimaging or genetic data over gene graph and brain graph specifically for all graph configurations.
As such, the different performances of our model and others can be attributed to how our model could
better capture the complicated graph features from brain and genetics data and formulate feature
interactions. The GCN layer yields better performance compared to GAT and GraphSage layers in
terms of the graph convolution layer. Models’ performances over various graph complexities suggest
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that models performed better using semi-dense graphs in regression and dense in classification
problems. Therefore, it highlights the role of a model’s structure in prediction rather than the
complexity of graphs. Based on our comparison of the performance of GNNs using gene and brain
graphs separately, we can see that the brain graph was more successful at predicting age, height, and
sex.

The proposed model provided more accurate predictions than most alternative methods because
of its architecture. Although the proposed model inherently uses more information (genetics and
neuroimaging) compared to other models trained separately on neuroimaging or genetic data, it could
help better understand the complex and interactive relationship between genetics and neuroimaging.
One advantage of the proposed model is to quantify the contribution of genetic information, brain
features, and their interaction on targets. We define contributions as the multiplication of the feature
vector and its weight in the last linear classifier or regressor in the proposed model. We visualized
percentage contribution from the best-trained model (BIG-graph with GCN layer) as violin plots in
Fig 3 for three feature groups. The size of the violin plot is denoted as the contribution of features to
our three targets, and each point refers to one participant. Although their contributions are changed
from participant to participant, high-impact features are brain features. Although the performances of
GNNs using gene and brain graphs are close to each other, the joined GNN structure’s performance
indicates that genetic information is insufficient to contribute considerably to prediction due to the
limited available genetic markers. Table 3 also hints that MRI-based GNN performed way better than
gene-based GNN for sex.

Figure 3: Violin plots of estimated percentage contributions of brain graph, gene graph, and their
interaction on age (left), height (middle), and sex (right). Each dot on a violin plot represents one
participant.

To quantify the importance of features, we used a game theoretical approach called SHAP (SHapley
Additive exPlanation) (Lundberg & Lee, 2017). This method estimates the contribution of each
feature towards a specific prediction by generating perturbations of a given instance in the dataset
and estimating the impact of these perturbations on the predicted output as SHAP values, which are
averaged over all possible conditions. Figures 4-6 indicate the measure of feature importance for the
top 10 features in predicting age, height, and sex. The higher the SHAP value of a feature, the higher
contribution to the target phenotype. Every instance in the dataset is run through the BIG-graph
model and illustrated by a dot. The colors of dots are associated with the feature’s value. The density
of violin plots for each feature shows how different contributions for this feature were observed in
the dataset.

Figure 4: Summary plot of contributions of SNPs, the volume of sub-cortical ROIs, and the thick-
ness/volume/area of cortical ROIs on age prediction from left to right, respectively. Every participant
is run through the model, creating a dot for each feature attribution value. The colors of dots for each
feature are associated with the magnitude of feature values.
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Figure 4 shows the contributions of features on estimated age. SHAP values indicate increased
volume of sub-cortical ROIs is associated with older age. In contrast, decreased thickness, volume,
and surface area in specific cortical ROIs are positively impact age estimation. Genetic markers
(SNPs) values were 0, 1, and 2 (where 0 is homozygous for the first allele, 1 indicates heterozygosity,
and 2 represents being homozygous for the second allele ). Here, the results show heterozygous SNPs
at these locations contributed most to the prediction of higher age.

Figure 5 reveals feature contributions to estimated height. Subcortical and cortical contributions to
height mirror similar findings as in the age models. The observed trend of long tails reaching to the
left of cortical ROIs reveals that greater thickness, volume, and area of cortical ROIs greatly impact
the estimation of individuals’ height compared with decreased thickness, volume, and area of cortical
ROIs, and height is more sensitive to the greater thickness, volume, and area of cortical. Moreover,
the results show homozygous SNP with having the second allele can push the instances to a greater
height.

According to Figure 6, the extremely high and low volume of sub-cortical ROIs explicitly contributes
to sex. Bigger sub-cortical ROIs tend to be male. Higher volume of sub-cortical leads to more
chance of males. Lower volume leads to a higher chance of females. Hence, sub-cortical ROIs are
stronger predictors of sex because of the disordering of cortical ROIs’ values. SNP contribution to sex
classification indicates that some genetic markers play an important role in some data points because
the SHAP value is not very robust against the perturbations. Also, the results show homozygous SNP
with having the second allele leads to a higher chance of being female.

Figure 5: Summary plot of contributions of SNPs, the volume of sub-cortical ROIs, and the thick-
ness/volume/area of cortical ROIs on height prediction from left to right, respectively. Every
participant is run through the model, creating a dot for each feature attribution value. The colors of
dots for each feature are associated with the magnitude of feature values.

Figure 6: Summary plot of contributions of SNPs, the volume of sub-cortical ROIs, and the thick-
ness/volume/area of cortical ROIs on sex classification from left to right, respectively. Every
participant is run through the model, creating a dot for each feature attribution value. The colors of
dots for each feature are associated with the magnitude of feature values.

Several challenges remain in network analysis of brain imaging genetics for future work. First, the
proposed network is limited by the coverage and quality of graph definition and interaction between
features. Because of variability in functional connectivity matrices and gene networks, future work
must adopt a dynamic framework for updating across convolutional layers. Second, using multimodal
MRI acquisition jointly in the network design increases the complexity of models and running time
at least two times more than traditional models. With these limitations, our proposed model can be
used in various prediction applications such as disorder and cancer studies and drug discovery. For
example, cancer studies deal with multi-omics data (e.g., epigenomics, metabolomics, proteomics,
and transcriptomics) from the tumor tissues. The proposed model can reveal biological insights from
multi-omics data by quantifying their contribution and identifying their interaction. Incorporating
prior knowledge and structure into model development is another future direction.
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neuroimaging with scikit-learn. Frontiers in neuroinformatics, 8:14, 2014.

Javad Ansarifar and Lizhi Wang. New algorithms for detecting multi-effect and multi-way epistatic
interactions. Bioinformatics, 35(24):5078–5085, 2019.

Danielle S Bassett and Olaf Sporns. Network neuroscience. Nature neuroscience, 20(3):353–364,
2017.

Danielle S Bassett, Edward Bullmore, Beth A Verchinski, Venkata S Mattay, Daniel R Weinberger,
and Andreas Meyer-Lindenberg. Hierarchical organization of human cortical networks in health
and schizophrenia. Journal of Neuroscience, 28(37):9239–9248, 2008.

Rebecca Birnbaum and Daniel R Weinberger. Functional neuroimaging and schizophrenia: a view
towards effective connectivity modeling and polygenic risk. Dialogues in clinical neuroscience,
2022.

International Schizophrenia Consortium. Common polygenic variation contributes to risk of
schizophrenia that overlaps with bipolar disorder. Nature, 460(7256):748, 2009.

Rahul S Desikan, Florent Ségonne, Bruce Fischl, Brian T Quinn, Bradford C Dickerson, Deborah
Blacker, Randy L Buckner, Anders M Dale, R Paul Maguire, Bradley T Hyman, et al. An automated
labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of
interest. Neuroimage, 31(3):968–980, 2006.

C Destrieux, B Fischl, AM Dale, and E Halgren. A sulcal depth-based anatomical parcellation of the
cerebral cortex. NeuroImage, (47):S151, 2009.

Lei Du, Jingwen Yan, Sungeun Kim, Shannon L Risacher, Heng Huang, Mark Inlow, Jason H
Moore, Andrew J Saykin, and Li Shen. A novel structure-aware sparse learning algorithm for
brain imaging genetics. In International Conference on Medical Image Computing and Computer-
Assisted Intervention, pp. 329–336. Springer, 2014.

Juergen Dukart, Fabio Sambataro, Alessandro Bertolino, Alzheimer’s Disease Neuroimaging Initia-
tive, et al. Accurate prediction of conversion to alzheimer’s disease using imaging, genetic, and
neuropsychological biomarkers. Journal of Alzheimer’s Disease, 49(4):1143–1159, 2016.

Oscar Esteban, Christopher J Markiewicz, Ross W Blair, Craig A Moodie, A Ilkay Isik, Asier
Erramuzpe, James D Kent, Mathias Goncalves, Elizabeth DuPre, Madeleine Snyder, et al. fmriprep:
a robust preprocessing pipeline for functional mri. Nature methods, 16(1):111–116, 2019.

Yong Fan, Dinggang Shen, Ruben C Gur, Raquel E Gur, and Christos Davatzikos. Compare:
classification of morphological patterns using adaptive regional elements. IEEE transactions on
medical imaging, 26(1):93–105, 2006.

Alexandru-Catalin Filip, Tiago Azevedo, Luca Passamonti, Nicola Toschi, and Pietro Lio. A novel
graph attention network architecture for modeling multimodal brain connectivity. In 2020 42nd
Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC),
pp. 1071–1074. IEEE, 2020.

Bruce Fischl. Freesurfer. Neuroimage, 62(2):774–781, 2012.
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Raphael Liégeois, Augusto Santos, Vincenzo Matta, Dimitri Van De Ville, and Ali H Sayed. Revisiting
correlation-based functional connectivity and its relationship with structural connectivity. Network
Neuroscience, 4(4):1235–1251, 2020.

Jiahao Liu, Guixiang Ma, Fei Jiang, Chun-Ta Lu, S Yu Philip, and Ann B Ragin. Community-
preserving graph convolutions for structural and functional joint embedding of brain networks. In
2019 IEEE International Conference on Big Data (Big Data), pp. 1163–1168. IEEE, 2019.

Jingyu Liu and Vince D Calhoun. A review of multivariate analyses in imaging genetics. Frontiers in
neuroinformatics, pp. 29, 2014.

Jingyu Liu, Jiayu Chen, Nora Perrone-Bizzozero, and Vince D Calhoun. A perspective of the
cross-tissue interplay of genetics, epigenetics, and transcriptomics, and their relation to brain based
phenotypes in schizophrenia. Frontiers in genetics, pp. 343, 2018.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. Advances in
neural information processing systems, 30, 2017.

David M Lydon-Staley and Danielle S Bassett. Network neuroscience: a framework for developing
biomarkers in psychiatry. Biomarkers in Psychiatry, pp. 79–109, 2018.

Nikos Makris, Jill M Goldstein, David Kennedy, Steven M Hodge, Verne S Caviness, Stephen V
Faraone, Ming T Tsuang, and Larry J Seidman. Decreased volume of left and total anterior insular
lobule in schizophrenia. Schizophrenia research, 83(2-3):155–171, 2006.

Xianglian Meng, Jin Li, Qiushi Zhang, Feng Chen, Chenyuan Bian, Xiaohui Yao, Jingwen Yan,
Zhe Xu, Shannon L Risacher, Andrew J Saykin, et al. Multivariate genome wide association and
network analysis of subcortical imaging phenotypes in alzheimer’s disease. BMC genomics, 21
(11):1–12, 2020.

John Morris, Leslie Shaw, Beau Ances, Maria Carroll, Erin Franklin, Mark Mintun, Stacy Schneider,
Angela Oliver, et al. Cascaded multi-view canonical correlation (camcco) for early diagnosis of
alzheimer’s disease via fusion of clinical, imaging and omic features. 2017.

Farouk S Nathoo, Linglong Kong, Hongtu Zhu, and Alzheimer’s Disease Neuroimaging Initiative. A
review of statistical methods in imaging genetics. Canadian Journal of Statistics, 47(1):108–131,
2019.

Kaida Ning, Bo Chen, Fengzhu Sun, Zachary Hobel, Lu Zhao, Will Matloff, Arthur W Toga,
Alzheimer’s Disease Neuroimaging Initiative, et al. Classifying alzheimer’s disease with brain
imaging and genetic data using a neural network framework. Neurobiology of aging, 68:151–158,
2018.

12



Under review as a conference paper at ICLR 2023

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.
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