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Abstract. In the past, general medical image models attracted con-
siderable research interest. However, since medical imaging modalities
vary widely and often fundamentally differ from RGB images, applying
a general segmentation framework to specific tasks usually requires fur-
ther optimization to achieve satisfactory performance. Cone-beam com-
puted tomography (CBCT) is a commonly used medical imaging tech-
nique in dentistry. Optimizing the segmentation process for CBCT im-
ages can greatly enhance the effectiveness of computer-aided diagnostic
systems in dental applications. In this work, we analyzed the Tooth-
Fairy3 dataset and proposed improvements to the nnU-Net framework.
While preserving the auto-configuration capabilities of nnU-Net, we in-
troduced targeted optimizations across the data preprocessing pipeline,
network architecture, inference process, and postprocessing strategies to
enhance performance for the CBCT multi-class segmentation task. Fur-
thermore, the trained multi-class segmentation model can be integrated
with user click prompts to train an interactive segmentation model.
These modifications collectively reduced inference time, improved model
effectiveness, and increased practical applicability. Code is available at
https://github.com /kaoquanyu-for/formedseg.git.
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1 Introduction

Over the past decade, digital dentistry has advanced rapidly, with its key focus
being the acquisition and segmentation of complete three-dimensional dental
models and related structures. Currently, the mainstream technologies for ob-
taining 3D dental models mainly include intraoral scanning (IOS) or desktop
scanning, and CBCT. Among these, intraoral or desktop scanning can conve-
niently capture the geometric morphology of the teeth crown surface but is lim-
ited to recording the external structure of teeth [6, 8]. In contrast, CBCT not only
provides teeth surface information but also acquires internal 3D data such as jaw-
bones, dental roots, and surrounding bone structures, offering greater advantages
in clinical diagnosis and complex treatment planning [3]. As a result, it is widely
used in oral and maxillofacial examinations and dental diagnostics [10]. However,
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manual segmentation of CBCT images is time-consuming and demands special-
ized expertise and experience. Therefore, training deep learning-based models to
automatically segment structures such as the maxillofacial bones and teeth in
CBCT images can significantly streamline the process of diagnosis, evaluation,
and surgical planning for dentists, while also providing critical references for ap-
plications such as dental crown design and the fabrication of surgical guides [11,
9].

However, current segmentation methods still face challenges due to variations
in oral cavity opening states caused by different examination purposes, as well
as considerable variations in morphological characteristics across different struc-
tures, which adversely affect segmentation accuracy and robustness. Examples of
images with different oral cavity states from the public dataset ToothFairy3 |2,
1,7] are illustrated in Fig. 1. Furthermore, the practical application of these
models is limited by computational resources and time constraints, underscoring
the gap that remains between theoretical research and clinical deployment.

Fig. 1. The CBCT images and annotations in the Toothfairy3 dataset are shown in
the figure. The top row displays the images under different oral cavity opening states,
and the bottom row shows the corresponding annotated label images.

To address these issues, we re-examined the fundamental differences between
CBCT images and RGB images. Inspired by human perceptual intuition for
segmentation, we developed a novel processing pipeline for CBCT volume seg-
mentation based on the nnU-Net [4] framework.

The main contributions of our work can be summarized as follows:

— Based on the nnU-Net framework, we introduced several modifications to
enhance segmentation accuracy. These include adjusting the type and depth
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of deep supervision loss computation, and adding category prediction heads
to supervise the encoding process, thereby encouraging the extraction of
more discriminative features.

— Furthermore, the trained multi-class segmentation model can be integrated
with user click prompts to train a single-class segmentation model, enabling
interactive prompt-based segmentation.

— The rules for constraining flip augmentation were adjusted to mitigate mis-
segmentation caused by symmetrically similar structures in the images. And
a novel augmentation method termed "tooth eraser" was introduced to in-
crease data diversity.

— New designed post-processing workflow was optimized to align with the
structural features of the segmentation output, balancing trade-offs between
accuracy and inference time. And to enable large-patch inference, we opti-
mized the inference process.

2 Methods

2.1 Overview
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Fig. 2. Overview of the segmentation processing pipeline, illustrating the key stages
and components of both the training and inference processes.

We have revisited the entire training and inference pipeline for medical image
segmentation. Building upon the nnU-Net framework, we further improved a
multi-class segmentation pipeline tailored for CBCT images, as illustrated in
Fig. 2.

For the segmentation task on the ToothFairy3 dataset, the network utilized
the architecture configuration derived from nnU-Net’s automated parameter con-
figuration, including the network depth and feature dimensionality across differ-
ent layers. Building on this foundation, we introduced modifications to the data
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preprocessing pipeline, network architecture, postprocessing strategies, and in-
ference procedure to enhance its performance specifically for the ToothFairy3
segmentation task.

2.2 Dataset

The ToothFairy3 dataset comprises a large collection of 3D-annotated CBCT
scans covering 77 anatomical structures that are highly relevant to orthodontics.
In addition, the associated challenge not only focuses on segmentation accuracy
but also incorporates inference efficiency as an evaluation metric and introduces
an interactive segmentation task for the Inferior Alveolar Canal, addressing both
automation and clinical needs. These features make ToothFairy3 particularly
suitable for developing and evaluating segmentation models with strong clinical
applicability.

The dataset contains 532 images, each with an isotropic resolution of 0.3
along all axes, but we manually selected 507 samples, discarding some extreme
cases. The dataset contains three different sets, and their corresponding images
are shown in Fig. 1.

2.3 Data Preprocessing

Tooth Eraser. Based on image characteristics, given that missing teeth are
always present in the images, we randomly remove complete lower teeth without
crowns in the images to enhance image diversity. Its effects are shown in Fig. 3.

Fig. 3. The visualization shows the processing effects of manually removing teeth ac-
cording to image features.
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Logical Consistency Flip Augment. Flipping augmentation of 3D images
is commonly employed as a standard processing step to enhance data diver-
sity. However, as noted in the article [5], when the segmentation targets include
symmetrically similar structures, applying flipping augmentation without ap-
propriate restrictions may cause confusion between these symmetrical parts in
the images. This issue is particularly prominent in CBCT data, where multiple
anatomical structures such as teeth and the inferior alveolar canal (IAC) display
inherent symmetry. Moreover, when working with small patches, it becomes dif-
ficult to distinguish between upper and lower teeth based on structural features
alone.

This issue is seldom encountered when processing images of other body parts,
primarily for two reasons. First, most anatomical regions possess sufficient struc-
tural features with low morphological similarity between distinct structure. Sec-
ond, in many cases there is no clinical need to differentiate between symmetric
categories.

Intuitively, to mitigate the mis-segmentation caused by symmetrical struc-
tures, we diverged from the experimental setup described in article by retaining
the flipping augmentation operation but imposing a key constraint: the number
of flipping operations must always be even. When allowing flips along the x,
y, and z axes, this means either performing no flips or flipping across an even
number of axes.

The intuition behind this is straightforward: an odd number of flips results
in a completely symmetrical version of the image, which can disrupt the per-
ception of anatomical orientation. When the model is sufficiently complex, it
may still learn to distinguish such flipped samples. However, both the model
and human observers are likely to struggle when dealing with inherently sym-
metrical anatomical regions. The effects of applying different numbers of flipping
operations are illustrated in Fig. 4.

Fig. 4. The left figure shows the results of an even number of flipping operations, while
the right figure displays the visualizations generated by an odd number of flipping
operations.
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Dimension Expansion. The imaging principle of CBCT differs significantly
from that of RGB images, as its pixel values carry specific physical meanings.
Since the ToothFairy3 dataset used in this study extends ToothFairy2 with ad-
ditional annotation categories, we randomly sampled points across each category
and recorded their Hounsfield Unit (HU) values in the ToothFairy2 dataset and
visualized the statistics in Fig. 5. Based on this analysis, we divided the in-
tensity values into multiple channels using the following intervals: [-600, 0], [0,
1000], [0, 2000], [1000, 3000], and [3000, maximum]|. Different HU values may
correspond to different tissue types, and in clinical practice, different intensity
ranges are commonly used to capture images of specific tissues. Therefore, we
analyzed the data ranges for each anatomical label and established the divisions
described above. Given that teeth generally exhibit high HU values, the low-HU
regions that are challenging to distinguish were split into multiple channels to
provide the model with more detailed information. To enhance edge informa-
tion, we computed a boundary channel by applying the Laplacian operator to
the image restricted to the intensity range [-600, 3000], and incorporated it as
an additional channel. At this stage, each channel is individually normalized to
[0,1]. This multi-channel partitioning strategy constitutes one key component of
our data preprocessing pipeline.

Scatter Plot of Different Categories
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Fig. 5. The figure shows the Hounsfield Unit (HU) value ranges for different anatomical
structures.
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2.4 Network Architecture.

To enable accurate identification of different segmentation categories, we refined
the deep supervision mechanism in the nnU-Net by reducing the number of su-
pervised decoding layers from supervision at each stage to only the final three
layers. Additionally, a category prediction head was added to the final encoder
layer to perform 77-class prediction for each input image patch in the Tooth-
Fairy3 segmentation task. This design enhances discriminative feature learning
through explicit category-wise supervision.

For this task, we employed a composite loss function consisting of cross-
entropy loss, Dice loss, and focal cross-entropy loss. The i denotes the outputs
at different levels of deep supervision. The formulation is as follows:

2
1, . )
o= (325 e 1)) o

i=0

Dice loss and focal cross-entropy loss are computed for the outputs of the decod-
ing stages at different levels, and cross-entropy loss is computed for the output
of the category prediction head.

When training a single-class segmentation model with user click prompts,
we froze the pretrained multi-class segmentation model and stacked the user
click information with the multi-class inference outputs as an additional input
channel to train a dedicated single-class segmentation head. When organizing
the user click information, we only assign a value of 1 to the positions that the
user clicked, and set all other positions to 0. At this stage, the model outputs
predictions for only one class.

2.5 Model training

All experiments were conducted on 4 NVIDIA V100 GPUs (32 GB). During
training, 20% of each set was used for validation. The models were trained for
30 epochs, with each epoch corresponding to a full traversal of all training data
rather than random patch sampling. The training patch size was set to [160, 192,
192] and the batch size was set to 1. The model achieving the best performance
on the validation set was retained.

For nnU-Net, we adopted the defaultUNet L configuration and further cus-
tomized it. In addition to the preprocessing enhancements described above,
RandAffine augmentation was applied. The model was optimized using AdamW
with an initial learning rate of 1 x 10~* and a ReduceLROnPlateau learning rate
scheduler. We use a learning rate scheduler with a reduction factor of 0.8. The
learning rate will not decrease below 1 x 107¢, and the scheduler monitors the
validation metric at every epoch.

2.6 Inference.

Due to the substantial computational requirements of training 3D data and the
constraints on inference time and computing resources imposed by the Tooth-
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Fairy3 challenge, we intuitively reasoned that increasing the patch size, dur-
ing training and inference, could serve as an effective way to mitigate mis-
segmentation in symmetrically similar structures. Although limited computa-
tional resources restricted the training patch size to [160, 192, 192|, we re-
examined the inference functions in both nnU-Net and MONAI and implemented
strict memory management on the GPU during inference. This approach allowed
the use of patch sizes consistent with those used in training, reduced the number
of patches requiring inference under the same overlap ratio setting, shortened
inference time, and ultimately improved the practical usability of the model.

Table 1. Inference time for different image sizes.

Image size Inference Patch Num Inference time(s)
Repeat (%) (without argmax and Post-processing)
262, 512, 512(F_001)| 25 32 a1
170, 352, 370(P_001) 25 18 19
188, 385, 462(S_0001)| 25 18 17

Table 1 shows the inference time required on an RTX 4060 GPU(8GB). By
keeping only one patch and the model in GPU memory at a time, memory
consumption is relatively low. This enables the use of a larger patch size and
significantly reduces the number of patches needed for inference. As tested, the
patch size can be increased to [192, 192, 192].

Post-processing and the argmax operation are configured to run on the CPU.
As their execution time is strongly affected by system RAM, these steps are
excluded from the reported runtime.

2.7 Data Post-processing.

Determining the optimal post-processing strategy in nnU-Net requires repeated
inference across the entire dataset to evaluate the retention of the largest con-
nected component for each category, which is a highly time-consuming pro-
cess. Based on the structural characteristics of the data, we employed a hy-
brid strategy combining projection-based connected region preservation with
3D connected-component labeling.

Compared to nnU-Net’s automated strategy, our method requires configu-
ration based on observational analysis of the dataset, but it reduces inference
time and avoids repeated post-processing selection across different combination
schemes. The specific procedure is shown in Fig. 6.

It can be observed that most segmentation errors in the model’s output occur
in the maxilla, mandible, and pharyngeal regions. During multi-class segmenta-
tion, we first retain the largest 3D connected components of the pharynx and
mandible. The labels are then projected along the z-axis, and the two largest con-
nected regions in the projection are preserved. These are back-projected into 3D
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to remove erroneous segmentation areas outside the main anatomical structures,
yielding the final segmentation result after post-processing.

When processing the output of a single-class segmentation, we assign labels
to the results based on user prompts, as also illustrated in Fig. 6.
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- assign labels \/ e
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Fig. 6. The figure illustrates the post-processing pipeline for both multi-class and
single-class segmentation. KLCC stands for "Keeping the Largest Connected Com-
ponent".
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3 Results

3.1 Validate the effectiveness of the flip constraint

We used a portion of the data as a validation set. For each patch, we performed
inference to validate the Dice coefficient, then averaged the results. During train-
ing, all models were trained for the same duration, and the best performance
results on the test set were recorded. The outcomes are presented in Table 2.
Demonstrates the effectiveness of the constraint rules.

Table 2. Results of different constraint rules.

Model | Dice
default [0.9288
constraint|0.9409

3.2 Validation Results

The inference results for the three different sets are presented in Fig. 7.

On the current challenge leaderboard, the results from my final submission
show that in the multi-instance segmentation task, the maximum Dice score
reached 0.82, while the minimum was 0.14.
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Similarly, for the interactive segmentation task, the highest Dice score achieved
was 0.92, although several cases completely failed, producing no segmentation

output whatsoever.

The best results of both tasks in the test phase are summarized in Table 3.
The overlap ratio in the inference function was set to 25% for the multi-instance
segmentation task and 50% for the interactive segmentation task. And our in-
ference speed was ranked second in the interactive segmentation task.

Table 3. Evaluation results of both tasks in test phase. Dice similarity coefficient and

HD95 are reported.

W
i

Fig. 7. The top row shows the labels, and the bottom row shows the model’s inference
results, corresponding from left to right to F_ 001, P_ 001, and S_ 0001 in ToothFairy3.

T
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Metric Statistic Multi-class Interactive
Min 0.149 0.0
25% 0.516 0.66
50% 0.652 0.83
Dice Average 75% 0.718 0.88
Max 0.820 0.92
Mean 0.594 0.72
Std 0.185 0.25
Min 78.40 1.0
25% 107.09 1.73
50% 142.38 2.80
HD95 Average 75% 185.98 45.11
Max 358.28 607.86
Mean 163.31 76.82

Std

69.14

159.13
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Inspection of the inference results shows that certain data setup errors remain
to be resolved, since the model identify the implants and the maxillary sinus.
It remains a challenge for the model to accurately distinguish between dental
crowns and bridges. In addition, in interactive segmentation tasks, the model
may fail when processing certain images. This failure is possibly caused by vari-
ations in oral cavity opening states across images or by overfitting, which pre-
vents the model from generalizing to different conditions. However, preliminary
experiments have already achieved promising progress in both multi-class seg-
mentation and interactive segmentation, providing valuable insights and ideas
for further studies.
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