
Under review as a conference paper at ICLR 2022

EVALUATING DEEP GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) have already been widely applied in various graph
mining tasks. However, most GNNs only have shallow architectures, which limits
performance improvement. In this paper, we conduct a systematic experimental
evaluation on the fundamental limitations of current architecture designs. Based
on the experimental results, we answer the following two essential questions: (1)
what actually leads to the compromised performance of deep GNNs; (2) how to
build deep GNNs. The answers to the above questions provide empirical insights
and guidelines for researchers to design deep GNNs. Further, we present Deep
Graph Multi-Layer Perceptron (DGMLP), a powerful approach implementing
our proposed guidelines. Experimental results demonstrate three advantages
of DGMLP: 1) high accuracy – it achieves state-of-the-art node classification
performance on various datasets; 2) high flexibility – it can flexibly choose different
propagation and transformation depths according to certain graph properties; 3)
high scalability and efficiency – it supports fast training on large-scale graphs.

1 INTRODUCTION

The recent success of Graph Neural Networks (GNNs) (Zhang et al., 2020) has boosted researches
on knowledge discovery and data mining on graph data. Designed for graph-structured data, GNNs
provide a universal way to tackle node-level, edge-level, and graph-level tasks, including social
network analysis (Qiu et al., 2018; Fan et al., 2019; Huang et al., 2021), chemistry and biology (Dai
et al., 2019; Bradshaw et al., 2019; Do et al., 2019), recommendation (Monti et al., 2017; Wu et al.,
2020; Yin et al., 2019), natural language processing (Bastings et al., 2017; Wu et al., 2021; Vashishth
et al., 2020), and computer vision (Qi et al., 2018; Shi et al., 2019; Sarlin et al., 2020).

The key to the success of most GNNs lies in the graph convolution operation, which propagates
neighbor information to the center node in an iterative manner (Wu et al., 2019). The graph
convolution operation can be further decomposed into two sequential operations: embedding
propagation (EP) and embedding transformation (ET). The EP operation can be viewed as a special
form of Laplacian smoothing (NT & Maehara, 2019), which combines the embeddings of a node
itself and its one-hop neighbors. The embeddings of nodes within the same connected component
would become similar after applying the smoothing operation, which greatly eases the downstream
tasks. The ET operation applies neural networks and transforms the node embeddings to target
dimensions. Taking the widely-used Graph Convolutional Network (GCN) (Kipf & Welling, 2016)
as an example, through stacking k convolution operations (i.e., layers), each node in GCN can utilize
the information from nodes within its k-hop neighborhood, and thus improve the predictive accuracy
by getting more unlabeled nodes involved in the training process.

Despite the remarkable success, simply stacking many graph convolution operations leads to massive
performance degradation. As a result, most GNNs today only have shallow architectures (e.g., 2
or 3 layers), which limits their exploitation of deep structural information. Concretely, under the
semi-supervised setting where only a few labels are given, shallow GNNs can utilize only a small
percentage of nodes during model training, leading to sub-optimal node classification accuracy.

To alleviate the problem that GNNs cannot go deep, many researches have been proposed, and
they attribute the performance degradation of deep GNNs to several reasons. Among the suggested
reasons, most existing works (Feng et al., 2020; Chen et al., 2020a; Zhao & Akoglu, 2020; Godwin
et al., 2021; Rong et al., 2019; Zeng et al., 2020a; Min et al., 2020; Chamberlain et al., 2021; Chien
et al., 2021; Zhou et al., 2020a; Hou et al., 2019; Beaini et al., 2021; Yan et al., 2021; Cai & Wang,

1

Under review as a conference paper at ICLR 2022

2020) consider the over-smoothing issue as the major cause of performance degradation of deep
GNNs. Notice that the EP operation smooths the node embeddings, i.e., making nodes within the
same connected component similar. If a GNN is stacked with a large number of graph convolution
operations, the output embeddings might be over-smoothed, i.e., nodes within the same connected
component become indistinguishable.

Questions Investigated. In this paper, we dive deep into the problem of why most existing GNNs
cannot go deep and try to present answers to the following two key questions:

Q1: What actually limits the deep stacking of convolution operations in GNN designs?

Q2: How can we design deep GNNs with the help of the findings from the experimental analysis
and outperform the state-of-the-art GNNs?

Contributions. To answer the above research questions, we first conduct a comprehensive evaluation
to revise the over-smoothing issue and identify the root cause of performance degradation of most
existing GNNs when they go deep. Based on the above analysis, we obtain helpful insights and
guidelines to design deep GNNs. Our main contributions are summarized as follows.

C1: We clarify the concept of model depth by separating and considering the two different
depths when designing deep GNNs: the propagation depth Dp and the transformation depth
Dt. Through experimental evaluations, we find that large Dp leads to the over-smoothing
issue whereas large Dt leads to the model degradation issue in the current GNN models.
Moreover, we observed that the latter usually happens much earlier than the former as Dp

and Dt increase at the same speed. Thus, the model degradation issue introduced by large
Dt is the true root cause for the failure of deep GNNs.

C2: To design models that support largeDp, we propose a node-adaptive combination mechanism
for combining propagated features under EP operations of different steps. To support large
Dt, we add residual connections between ET operations to alleviate the model degradation
issue. Further, we present Deep Graph Multi-Layer Perceptron (DGMLP), a novel approach
that adopts the composition of the above mentioned two mechanisms to successfully support
both large Dp and large Dt based on our findings from the experimental analysis. We
validate the effectiveness of DGMLP on six public datasets and the Industry dataset from
the real industrial environment. Experimental results demonstrate that DGMLP outperforms
the SOTA GNNs while maintaining high scalability and efficiency.

To the best of our knowledge, this paper is the first to conduct an experimental evaluation that
identifies the major reason why most existing GNNs cannot go deep. Our findings and the derived
guidelines open up a new perspective on designing deep GNNs for graph-structured data.

2 PRELIMINARY

In this section, we first explain the problem formulation. Then we introduce Embedding Propagation
(EP) and Embedding Transformation (ET) in the graph convolution operation in detail.

2.1 PROBLEM FORMALIZATION

In this paper, we consider an undirected graph G = (V , E) with |V| = N nodes and |E| =M edges.
A is the adjacency matrix of G, weighted or not. Each node possibly has a feature vector of size d,
stacked up to an N × d matrix X. D = diag (d1, d2, · · · , dn) ∈ RN×N denotes the degree matrix
of A, where di =

∑
j∈V Aij is the degree of node i. In this paper, we focus on the semi-supervised

node classification task. Suppose Vl is the labeled node set, the goal is to predict the labels for nodes
in the unlabeled set Vu under the limited supervision of labels for nodes in Vl.

2.2 CONVOLUTION ON GRAPHS

Graph Convolution. Based on the intuitive assumption that locally connected nodes are likely to
have the same label (McPherson et al., 2001), GNN iteratively propagates the information of each

2

Under review as a conference paper at ICLR 2022

Feature Matrix X 0

X 1

Fully connected layer

Output
X 2

GCN

Normalized adjacent matrix

MLP

Propagation
X 0 = �AX 0 �AX 1 = �AX 1

Figure 1: The relationship between GCN and MLP.

node to its adjacent nodes. For example, each graph convolution operation in GCN firstly propagates
the node embeddings to their neighborhoods and then transforms their propagated node embeddings:

X(k+1) = σ
(
ÂX(k)W(k)), Â = D̃

1
2 ÃD̃−

1
2 , (1)

where X(k) and X(k+1) are the node embedding matrices at layer k and k + 1, respectively. Ã =
A + IN is the adjacency matrix of the undirected graph G with self loops added, where IN is the
identity matrix. Â is the normalized adjacency matrix, and D̃ is its corresponding degree matrix.

By setting different r in Â = D̃r−1ÃD̃−r, different normalization strategies can be employed, such
as the symmetric normalized matrix D̃−

1
2 ÃD̃−

1
2 (Kipf & Welling, 2016), the random walk transition

probability matrix D̃−1Ã (Xu et al., 2018), and the reverse random walk transition probability matrix
ÃD̃−1 (Zeng et al., 2020b). We adopt Â = D̃−

1
2 ÃD̃−

1
2 in this work.

EP and ET Operations. Each graph convolution operation in GNNs can be decomposed into
two sequential operations: Embedding Propagation (EP) and Embedding Transformation (ET).
This decomposition naturally leads to two corresponding GNN depths: propagation depth Dp and
transformation depth Dt. Concretely, GNN first executes EP, which generates smoothed features by
multiplying the normalized adjacency matrix Â with the node embedding matrix X:

EP(X) = ÂX. (2)

Then, the smoothed features X̂ = EP(X) will be transformed with the learnable transformation
matrix W and the activation function σ(·):

ET(X̂) = σ(X̂W). (3)

Fig. 1 shows the framework of a two-layer GCN. To note that, GCN will degrade to MLP if Â is
the identity matrix, which is equal to removing the EP operation in all GCN layers. More detailed
analysis and classification of current GNN approaches can be found in Appendix A.

3 SMOOTHNESS MEASUREMENT

In Eq. 2, each time Â multiplies with X, information one more hop away can be acquired for each
node. Thus, in order to fully leverage high-order neighborhood information, a series of multiplications
of ÂX, i.e., the EP operation, have to be carried out, which means stacking multiple GNN layers.
However, if we execute ÂX numerous times, the node embeddings within the same connected
component would reach a stationary state, leading to indistinguishable node embeddings (i.e., over-
smoothing issue). Concretely, when adopting Â = D̃r−1ÃD̃−r, Â∞ follows

Â∞i,j =
(di + 1)r(dj + 1)1−r

2m+ n
, (4)

which shows that after infinite times of multiplication, the influence from node i to j is only
determined by the degrees of them. Under this scenario, the neighborhood information is fully
corrupted, resulting in catastrophic node classification accuracy.

As the over-smoothing issue is only introduced by the EP operation rather than the ET operation,
here we introduce a new metric, “Node Smoothness Level (NSL)”, to evaluate the smoothness of
a node after k steps of EP operation. Suppose X(0) = X is the original node feature matrix, and
X(k) = ÂkX(0) is the smoothed features after k times of EP operation.

3

Under review as a conference paper at ICLR 2022

2 4 6 8 10
Number of Transformation Depth Dt

65

70

75

T
es

t
A

cc
ur

ac
y

vanilla GCN with Dp = Dt

GCN with Dp = 2Dt

(a) The influence of Dp to model
performance.

2 4 6 8 10
Number of Propagation Depth Dp

70

75

80

T
es

t
A

cc
ur

ac
y

Test Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

G
ra

ph
S

m
oo

th
in

g
L

ev
el

Graph Smoothing Level

(b) The influence of GSL to
model performance.

2 4 6 8 10
Number of Propagation Depth Dp

65

70

75

80

T
es

t
A

cc
ur

ac
y

vanilla GCN with Dt = Dp

GCN with Dt = 2

(c) The influence of Dt to model
performance.

Figure 2: Over-smoothing is not the main contributor who hurts the performance of deep GNNs.

Definition 3.1 (Node Smoothing Level). The Node Smoothing Level NSLv(k) parameterized by
node v and the EP steps, k, is defined as:

α = Sim(xk
v ,x

0
v), β = Sim(xk

v ,x
∞
v), NSLv(k) = α ∗ (1− β), (5)

where xk
v is the smoothed feature of node v after k steps of EP operation, x0

v represents node v’s
original feature, and x∞v represents node v’s feature at stationary state. Sim(·) is a similarity
function, being the cosine similarity in the following discussion.

Further, the “Graph Smoothing Level” (GSL) parameterized by the EP steps, k, is defined as:

GSL(k) =
1

N

∑
v∈V

NSLv(k). (6)

Smaller GSL(k) means that X(k) is more likely to forget the original node feature information X(0)

after k steps of EP operation and has a higher risk of the over-smoothing issue.

4 MISCONCEPTIONS AND THE TRUE ROOT CAUSE

Most previous works (Li et al., 2018; Zhang et al., 2019) claim that the over-smoothing issue is
main cause for the failure of deep GNNs. There have been lines of works that aim at designing deep
GNNs. For example, DropEdge (Rong et al., 2019) randomly removes edges during training, and
Grand (Feng et al., 2020) randomly drops raw features of nodes before propagation. Despite their
ability to go deeper while maintaining or even getting better predictive accuracy, the explanations for
their effectiveness are misleading in some instances. The experimental analysis about misconceptions
other than the over-smoothing issue can be found in Appendix C.

4.1 IS OVER-SMOOTHING REALLY THE ROOT CAUSE?

Enlarging Dp in Vanilla GCN. To investigate the relations between smoothness and node
classification accuracy, we increase the number of graph convolutional layers in vanilla GCN
(Dp = Dt) and a modified GCN with Â2 being the normalized adjacency matrix (Dp = 2Dt)
on the PubMed dataset (Sen et al., 2008). Supposing that the over-smoothing issue is the main cause
for the failure of deep GNNs, the predictive accuracy of the GCN with Dp = 2Dt should be way
lower than the one of vanilla GCN. The experimental results are shown in Fig. 2(a).

From Fig. 2(a), we can see that even with a higher level of smoothness, GCN with Dp = 2Dt always
has similar predictive accuracy with vanilla GCN (Dp = Dt) when Dt ranges from 1 to 8, and the
over-smoothing issue seems to begin dominating the performance decline only when Dp exceeds
16 (2 × 8). The performance of vanilla GCN does decrease sharply when Dp exceeds 2, which is
precisely the situation the over-smoothing issue suggests. However, even with relatively large Dp

(e.g., 12), the predictive accuracy of the model with larger smoothness (GCN with Dp = 2Dt) is
similar to the vanilla GCN, which on the contrary implies that the over-smoothing issue may not be
the major cause for performance degradation of deep GNNs until the graph smoothness achieves an
extremely high level (e.g., Dp > 16 on the PubMed dataset).

Enlarging Dp in SGC. To further validate our guess, we increase the number of propagation depth
Dp of SGC and then evaluate the corresponding predictive accuracy and the value of GSL defined

4

Under review as a conference paper at ICLR 2022

1 2 3 4 5 6 7
Number of Transformation Depth Dt

66

68

70

72

T
es

t
A

cc
ur

ac
y

MLP

MLP+Res

MLP+Dense

(a) The skip connection to MLP.

1 2 3 4 5 6 7
Number of Transformation Depth Dt

74

76

78

T
es

t
A

cc
ur

ac
y

GCN

ResGCN

DenseGCN

(b) The skip connection to GCN.

Figure 3: Performance comparison when adding Residual and Dense connection.

in Sec. 3. We present the evaluation results in Fig. 2(b). By increasing Dp from 1 to 10, the value
of GSL has decreased by more than 60%, but the corresponding predictive accuracy decline is less
than 1%. This sharp contrast strongly illustrates that low GSL, i.e., the over-smoothing issue, is not
the main cause for the performance degradation of deep GNNs. Moreover, compared with 10-layer
vanilla GCN in Fig. 2(a), the corresponding predictive accuracy of 10-layer SGC is still quite high
even with the same Dp as vanilla GCN. Therefore, we further guess that the large Dt may be the root
cause for the performance degradation of deep vanilla GCNs.

Large Dt Dominates Performance Degradation. To dig out the true limitation of deep GCNs, we
fix the number of transformation depth Dt to 2 and set the normalized adjacency matrix to ÂDp/2

(when Dp is odd, use ÂbDp/2c+1 in the first layer and ÂbDp/2c in the second layer), and then report
the accuracy along with the increased propagation depth Dp. The experimental results in Fig. 2(c)
shows that the accuracy of GCN with Dt = 2 does not drop quickly when Dp becomes large, while it
faces a sharp decline in vanilla GCN, which fixes Dp = Dt. Individually enlarging Dp will increase
the risk of the over-smoothing issue, but the accuracy is only slightly influenced. However, the
performance of vanilla GCN experiences a drastic drop if we simultaneously increase Dt.

Findings 1: LargeDp will harm the predictive accuracy of deep GNN, yet the accuracy decline
is relatively small. On the contrary, large Dt is the root cause for the failure of deep GNNs.

4.2 WHAT’S BEHIND LARGE Dt?

To learn what is the fundamental problem caused by largeDt, we first evaluate the predictive accuracy
of deep MLP on the PubMed dataset and then move the research object to deep GNN.

Deep MLP Also Performs Bad. We evaluate the predictive accuracy of MLP along with Dt, i.e.,
the number of MLP layers, on the PubMed dataset, and the black line in Fig. 3(a) shows the evaluation
results. It can be easily drawn from the results that the predictive accuracy of MLP also decreases
sharply when Dt increases. Thus, the performance degradation caused by large Dt also exists in
MLP. It reminds us that the approaches easing the training of deep MLP might also help alleviate the
performance degradation caused by large Dt in GNN.

Skip Connections Can Help. The widely-used approach that eases the training of deep MLP is to
add skip connections between layers (He et al., 2016; Huang et al., 2017). Here, we add residual
and dense connections to MLP and generate two MLP variants: “MLP+Res” and “MLP+Dense”,
respectively. The accuracy of these two models with increasing Dt is shown in Fig. 3(a). Compared
with plain deep MLP, the accuracy of both “MLP+Res” and “MLP+Dense” does not encounter huge
degradation when Dt increases. The results illustrate that adding residual or dense connections can
effectively alleviate the performance degradation issue cause by large Dt.

Model Degradation. The skip connections are first introduced in (He et al., 2016) to alleviate
the model degradation issue, which is a phenomenon that the accuracy firstly increases and then
decreases rapidly when increasing the number of layers in one model. Surprisingly, the degradation is
not caused by overfitting as the training error becomes higher when adding more layers in the model.
Adopting the same approach to alleviate the model degradation issue, we add residual and dense
connections to GCN and generate two GCN variants: “ResGCN” and “DenseGCN”, respectively.
The accuracy results in Fig. 3(b) illustrate that the performance decline of both “ResGCN” and
“DenseGCN” can be ignored compared to the huge accuracy decline of vanilla GCN.

5

Under review as a conference paper at ICLR 2022

1 2 3 4 5 6 7 8 9 10 11 12
Randomly Sampled Nodes

2

3

4

5

P
ro

pa
ga

ti
on

0.0

0.2

0.4

0.6

0.8

1.0

D
ep

th
 D
p

Figure 4: Different nodes reach their optimal performance at varied propagation depth Dp.
Findings 2: The model degradation issue behind large Dt is the true root cause for the failure
of deep GNNs. And adding skip connections between layers can effectively alleviate the
performance degradation issue of deep GNNs.

5 GUIDELINES ON CONSTRUCTING DEEP GNNS

In this section, we propose several guidelines on how to construct deep GNNs that support large
propagation depth Dp and large transformation depth Dt based on the experimental analysis in Sec. 4.
Further Discussions about when to adopt deep GNNs can be found in Appendix B.

5.1 A MORE FLEXIBLE FRAMEWORK

Many recent GNN works follow the framework design proposed by SGC (Wu et al., 2019) which
decouples the EP and ET operations inside each GNN layer. The decoupled design split the framework
into two components. In the most popular decoupled GNN design, the first component executes
the EP operation in a certain manner to generated propagated node features. Then the propagated
features are then fed into the second component to execute ET operations. The second component is
usually a plain MLP. There are several other methods (Klicpera et al., 2018; Liu et al., 2020) that
exchange the order of the two components mentioned above. Under the decoupled framework, the
choices of Dp and Dt are more flexible as it breaks the limit that Dp = Dt. Thus, for different kinds
of graph-structured data, the decoupled framework is able to adopt different values of Dp and Dt

for optimal predictive accuracy. For example, S2GC (Zhu & Koniusz, 2021) and GBP (Chen et al.,
2020b) first execute the EP operations to generate propagated features at different Dp. Then they
adopt a heuristic weighting mechanism to combine these propagated features. Finally, the combined
features are fed into a plain MLP to get the prediction results.

Guidelines 1: The decoupled framework should be adopted to free the choices of Dp and Dt

from the restraint that Dp = Dt in order to adapt to the characteristics of different datasets.

5.2 HOW TO CONSTRUCT GNNS WITH LARGE Dp?

Despite the effectiveness of previous works, a problem still exists: when combining propagated
features, the weighting mechanism works at the graph level rather than at the node level. For
example, the weighting mechanism in S2GC (Zhu & Koniusz, 2021) and GBP (Chen et al., 2020b) is
sub-optimal as it assigns the same weight distribution to all the nodes when combining propagated
features at different propagation steps. As a result, the individual properties of each node are ignored.
To verify our claim, we apply SGC for the node classification task with different propagation depths
on 12 randomly selected nodes in the Cora dataset. We run SGC 100 times and report the average
accuracy of the selected nodes. We observe from Fig. 4 that the optimal propagation depths for the
selected nodes are highly diverse. The results demonstrate that different nodes should have different
weight distributions along with Dp to get the optimal predictive accuracy.

Guidelines 2: A node-adaptive weighting mechanism should be adopted to satisfy each node’s
diverse needs for the propagation depth Dp when constructing deep GNNs.

5.3 HOW TO CONSTRUCT GNNS WITH LARGE Dt?

Recently, lines of works have been proposed to support large Dt, and many of them add skip
connections between GNN layers motivated by ResNet (He et al., 2016) and DenseNet (Huang
et al., 2017). For example, JK-Net (Xu et al., 2018) proposes a new transformation scheme for node
embeddings that combines all node embeddings at previous layers in the final layer. GCNII (Chen

6

Under review as a conference paper at ICLR 2022

et al., 2020c) addresses small Dt via initial residual connections and identity mappings. Besides, as
shown in Fig. 3(b), vanilla GCN with residual or dense connections is also able to support large Dt.

Guidelines 3: Adding skip connections between GNN layers is an effective way for GNN
models to support large Dt.

6 ONE ALTERNATIVE SOLUTION

Under the guidance of the above guidelines, we propose a scalable and flexible model termed Deep
Graph Multi-Layer Perceptron (DGMLP), which contains a node-adaptive weighting mechanism for
large Dp and the residual connections for large Dt. Following the decoupled framework, DGMLP
first calculates the propagated features at different Dp using the EP operation. Then a novel node-
adaptive weighting mechanism is proposed to combine the propagated features at different Dp

effectively. Finally, the combined feature is fed into an MLP with added skip connections to support
large Dt. The remainder of this section will introduce the node-adaptive weighting mechanism and
the skip connections adopted in DGMLP in detail.

6.1 NODE-ADAPTIVE WEIGHTING MECHANISM

After generating the propagated features X(k) = ÂkX for propagation depth k ranges from 1 to K
using the EP operation, we further calculate the NSLv(k) parameterized by node v and propagation
depth k defined in Def. 3.1. Remember that smaller NSLv(k) means that the node embedding at
propagation step k is more likely to forget the original node feature information and has a higher
risk of the over-smoothing issue. Thus, in this case, propagated feature at propagation step k, xk

v
should be intuitively assigned with smaller weights. To restrain the weights in between 0 and 1, the
propagation weight wv(k) parameterized by node v and propagation step k is defined as the softmax
output of {NSLv(0), NSLv(1), · · · , NSLv(K)}:

wv(k) =
eNSLv(k)/T

K∑
l=0

eNSLv(l)/T

. (7)

Similar to Knowledge Distillation (Hinton et al., 2015; Lan et al., 2018), the temperature T is adopted
here to soften or harden the probability distributions. Smaller T will harden the distributions, and
thus the model will focus more on the local graph information.

Finally, the propagated features at different Dp are combined using the weight wv(k) in Eq. 7 to

generate the combined feature x̂v =
K∑

k=0

wv(k)x
k
v . By adaptively assigning different propagation

weights for different nodes, we can simply increase Dp on the graph level and get more powerful
node embeddings with personalized smoothing levels for each node.

6.2 SKIP CONNECTIONS

Following guidelines 3, we choose to add residual connections (He et al., 2016) between the layers in
the MLP of our DGMLP. We refer to the layers in the MLP of our DGMLP as the following format:

h(l+1)
v = σ(h(l)

v W(l)) + h(l)
v , (8)

where W(l) is the learnable parameter matrix, h(0)
v = x̂v is the original combined node feature vector,

and h
(l)
v is the transformed node embeddings at the l-th layer of the MLP with residual connections.

7 DGMLP EVALUATION

In this section, we conduct extensive experiments to evaluate our proposed DGMLP. We first
introduce the utilized datasets and experiment setup. Then, we compare DGMLP with state-of-the-
art baselines in predictive accuracy, scalability, and model depth. More experimental results about
efficiency, graph sparsity, and interpretability of DGMLP can be found in Appendix E.

7

Under review as a conference paper at ICLR 2022

Table 1: Test accuracy on the node classification task. “OOM” means “out of memory”.

Methods Cora Citeseer PubMed Industry ogbn-arxiv ogbn-products ogbn-papers100M
GCN 81.8±0.5 70.8±0.5 79.3±0.7 45.9±0.4 71.7±0.3 OOM OOM

GraphSAGE 79.2±0.6 71.6±0.5 77.4±0.5 45.7±0.6 71.5±0.3 78.3±0.2 64.8±0.4

JK-Net 81.8±0.5 70.7±0.7 78.8±0.7 47.2±0.3 72.2±0.2 OOM OOM
ResGCN 81.2±0.5 70.8±0.4 78.6±0.6 45.8±0.5 72.6±0.4 OOM OOM

APPNP 83.3±0.5 71.8±0.5 80.1±0.2 46.7±0.6 72.0±0.3 OOM OOM
AP-GCN 83.4±0.3 71.3±0.5 79.7±0.3 46.9±0.7 71.9±0.2 OOM OOM
DAGNN 84.4±0.5 73.3±0.6 80.5±0.5 47.1±0.6 72.1±0.3 OOM OOM

SGC 81.0±0.2 71.3±0.5 78.9±0.5 45.2±0.3 71.2±0.3 75.9±0.2 63.2±0.2
SIGN 82.1±0.3 72.4±0.8 79.5±0.5 46.3±0.5 71.9±0.1 76.8±0.2 64.2±0.2
S2GC 82.7±0.3 73.0±0.2 79.9±0.3 46.6±0.6 71.8±0.3 77.1±0.1 64.7±0.3
GBP 83.9±0.7 72.9±0.5 80.6±0.4 46.9±0.7 72.2±0.2 77.7±0.2 65.2±0.3

DGMLP 84.6±0.6 73.4±0.5 81.2±0.6 47.6±0.7 72.8±0.2 78.5±0.2 65.7±0.2

7.1 EXPERIMENTAL SETTINGS

Datasets. We adopt the three popular citation network datasets (Cora, Citeseer, PubMed) (Sen et al.,
2008), three large OGB datasets (ogbn-arxiv, ogbn-products, ogbn-papers100M) (Hu et al., 2020),
and one Industry dataset from our industrial cooperative enterprise in our evaluation. Table 7 in
Appendix D.1 presents an overview of these seven datasets.

Baselines. We choose the following baselines: GCN (Kipf & Welling, 2016), GraphSAGE (Hamilton
et al., 2017), JK-Net (Xu et al., 2018), ResGCN (Li et al., 2019), APPNP (Klicpera et al., 2018),
AP-GCN (Spinelli et al., 2020), DAGNN (Liu et al., 2020), SGC (Wu et al., 2019), SIGN (Frasca
et al., 2020), S2GC (Zhu & Koniusz, 2021), and GBP (Chen et al., 2020b). The hyperparameter
details for our DGMLP and all the baseline methods can be found in Appendix D.2.

7.2 END-TO-END COMPARISON

The classification results on three citation networks are shown in Table 1. We observe that DGMLP
outperforms all the compared baseline methods. Notably, the predictive accuracy of DGMLP exceeds
the one of current state-of-the-art method GBP by a margin of 0.6% on the largest citation networks
dataset, PubMed. Compared with coupled methods (e.g., GCN, JK-Net), the decoupled methods
(e.g., DAGNN, GBP) get better predictive accuracy. It is due to the fact that the disentanglement of
EP and ET operations enables Dp to go extremely deep, exploiting more deep structural information.

We further evaluate DGMLP on the three large OGB datasets and one Industry dataset, and the results
are also summarized in Table 1.

As shown in Table 1, DGMLP consistently achieves the best performance across the four large
datasets. The improvement of DGMLP over baseline methods mainly relies on its support of both
large Dp and large Dt.

7.3 TRAINING SCALABILITY

To test the scalability of DGMLP, we use the Erdős-Rényi graph (Erdos et al., 1960) generator in the
Python package NetworkX (Hagberg et al., 2008) to generate artificial graphs of different sizes. The
node sizes of the generated artificial graphs vary from 0.1 million to 1 million, and the probability of
an edge exists between two nodes is set to 0.0001. We choose two representative methods GCN and
APPNP as compared baselines. The total running time (including the pre-processing time) of training
for 200 epochs and the GPU memory requirement are shown in Fig. 5(a) and Fig. 5(b), respectively.
The running time speedup of DGMLP against GCN is also included in Fig. 5(a).

The experimental results in Fig. 5(a) illustrate that DGMLP is highly efficient compared to GCN
and APPNP. It only takes DGMLP 223.4 seconds to finish the training on a large graph of size
1 million, which is less than the running time of both GCN and APPNP on the graph of size 0.3
million. Fig. 5(b) shows that the GPU memory requirement of DGMLP grows almost linearly along
with graph size. On the contrary, the GPU memory requirements of GCN and APPNP both grow
much quicker than DGMLP, exceeding 16GB when the graph size is 1 million, while the memory
requirement of DGMLP is just over 3GB at the same graph size. It indicates that our proposed
DGMLP enjoys high scalability and high efficiency at the same time.

8

Under review as a conference paper at ICLR 2022

100K 300K 500K 1000K
Graph Size

0

1000

2000

3000

4000

R
un

ni
ng

T
im

e
(s

)

DGMLP

APPNP

GCN

0

5

10

15

20

S
p

ee
du

p

1.9
3.7

10.2

17.1

0.25 0.50 0.75 1.00
Graph Size ×106

5000

10000

15000

R
eq

ui
re

d
G

P
U

M
em

or
y GCN

APPNP

DGMLP

Figure 5: Running time and GPU memory requirement comparison on different sizes of graphs

2 4 6 8 10 12 14 16 18 20
Number of Propagation Depth Dp

66

68

70

72

T
es

t
A

cc
ur

ac
y

SGC
DAGNN
S2GC
DGMLP

(a) fix Dt change Dp

1 2 3 4 5 6 7 8 9 10
Number of Transformation Depth Dt

55

60

65

70

T
es

t
A

cc
ur

ac
y

SGC

DAGNN

S2GC

DGMLP

(b) fix Dp change Dt

Figure 6: Test accuracy with different Dp or Dt.

7.4 ANALYSIS OF MODEL DEPTH

In this subsection, we conduct experiments to validate that our proposed DGMLP can support both
large Dp and large Dt. We choose SGC, DAGNN, and S2GC as baseline methods.

Firstly, we fix Dt to 3 and increase Dp from 1 to 20 on the ogbn-arxiv dataset. As seen from
Fig. 6(a), SGC cannot perform well when Dp goes deep as the over-smoothing issue occurs. The
predictive accuracy of DAGNN, S2GC, and our DGMLP maintains high when Dp becomes large.
Moreover, DGMLP consistently outperforms all the baseline methods when Dp is greater than 6. The
superiority of our DGMLP over DAGNN and S2GC lies in that we adopt a node-adaptive combination
mechanism to satisfy the diverse needs of different nodes for propagation depth Dp.

Secondly, we fix Dp to 10 and increase Dt from 1 to 10. Fig. 6(b) shows that the predictive
accuracy of all the baseline methods, including SGC, DAGNN, and S2GC decreases rapidly when
Dt becomes large. It is because that these methods do not take the model degradation issue into
consideration, which is precisely the main contributor to the performance degradation when Dt is
large. This property limits the expressive power of these baseline methods, resulting in relatively
low performance when adopted on large graphs. In the meantime, the performance of our proposed
DGMLP still increases steadily or maintains even when Dt is large. To sum up, compared with other
baseline methods, our DGMLP can consistently improve predictive accuracy with larger Dp or Dt,
which validates our experimental analysis and guidelines in Sec. 4 and 5.

8 CONCLUSION

In this paper, we perform an experimental evaluation of current GNNs and find the root cause for
the failure of deep GNNs: the model degradation issue introduced by large transformation depth.
The over-smoothing issue introduced by large propagation depth does harm the predictive accuracy.
However, GNN is much more sensitive to the model degradation issue than the over-smoothing issue,
i.e., the model degradation issue happens much earlier than the over-smoothing issue as Dp and
Dt increases at the same speed. Based on the above analysis, we present Deep Graph Multi-Layer
Perceptron (DGMLP), a flexible and deep GNN model that simultaneously support large propagation
and transformation depth. Extensive experiments on seven real-world graph datasets demonstrate
that DGMLP outperforms state-of-the-art GNNs, and enjoys high scalability and efficiency at the
same time.

9

Under review as a conference paper at ICLR 2022

9 REPRODUCIBILITY STATEMENT

The source code of DGMLP can be found in Anonymous Github (https://anonymous.4open.
science/r/DGMLP-4A79). To ensure reproducibility, we have provided the overview of datasets
and baselines in Section 7.1 and Appendix D.1. The detailed hyperparameter settings for our DGMLP
can be found in Appendix D.2. Please refer to “README.md” in the Github repository for more
reproduction details.

REFERENCES

Joost Bastings, Ivan Titov, Wilker Aziz, Diego Marcheggiani, and Khalil Sima’an. Graph
convolutional encoders for syntax-aware neural machine translation. arXiv preprint
arXiv:1704.04675, 2017.

Dominique Beaini, Saro Passaro, Vincent Létourneau, William L. Hamilton, Gabriele Corso, and
Pietro Lió. Directional graph networks. In Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, pp. 748–758, 2021.

John Bradshaw, Matt J. Kusner, Brooks Paige, Marwin H. S. Segler, and José Miguel Hernández-
Lobato. A generative model for electron paths. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. arXiv preprint
arXiv:2006.13318, 2020.

Ben Chamberlain, James Rowbottom, Maria Gorinova, Michael M. Bronstein, Stefan Webb, and
Emanuele Rossi. GRAND: graph neural diffusion. In Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, pp. 1407–1418,
2021.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34, pp. 3438–3445, 2020a.

Ming Chen, Zhewei Wei, Bolin Ding, Yaliang Li, Ye Yuan, Xiaoyong Du, and Ji-Rong Wen. Scalable
graph neural networks via bidirectional propagation. arXiv preprint arXiv:2010.15421, 2020b.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International Conference on Machine Learning, pp. 1725–1735. PMLR,
2020c.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. In 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021, 2021.

Hanjun Dai, Chengtao Li, Connor W. Coley, Bo Dai, and Le Song. Retrosynthesis prediction with
conditional graph logic network. In Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pp. 8870–8880, 2019.

Kien Do, Truyen Tran, and Svetha Venkatesh. Graph transformation policy network for chemical
reaction prediction. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019, pp.
750–760, 2019.

Paul Erdos, Alfréd Rényi, et al. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad.
Sci, 5(1):17–60, 1960.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The World Wide Web Conference, pp. 417–426, 2019.

10

https://anonymous.4open.science/r/DGMLP-4A79
https://anonymous.4open.science/r/DGMLP-4A79

Under review as a conference paper at ICLR 2022

Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny
Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised learning on graphs.
Advances in Neural Information Processing Systems, 33, 2020.

Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael Bronstein, and Federico
Monti. Sign: Scalable inception graph neural networks. arXiv preprint arXiv:2004.11198, 2020.

Victor Garcia and Joan Bruna. Few-shot learning with graph neural networks. arXiv preprint
arXiv:1711.04043, 2017.

Jonathan Godwin, Michael Schaarschmidt, Alexander Gaunt, Alvaro Sanchez-Gonzalez, Yulia
Rubanova, Petar Veličković, James Kirkpatrick, and Peter Battaglia. Very deep graph neural
networks via noise regularisation. arXiv preprint arXiv:2106.07971, 2021.

Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and function
using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United
States), 2008.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
NIPS, pp. 1024–1034, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yong-Dong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In Proceedings of the
43rd International ACM SIGIR conference on research and development in Information Retrieval,
SIGIR 2020, Virtual Event, China, July 25-30, 2020, pp. 639–648, 2020.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Yifan Hou, Jian Zhang, James Cheng, Kaili Ma, Richard TB Ma, Hongzhi Chen, and Ming-Chang
Yang. Measuring and improving the use of graph information in graph neural networks. In
International Conference on Learning Representations, 2019.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020.

Chao Huang, Huance Xu, Yong Xu, Peng Dai, Lianghao Xia, Mengyin Lu, Liefeng Bo, Hao
Xing, Xiaoping Lai, and Yanfang Ye. Knowledge-aware coupled graph neural network for social
recommendation. In AAAI Conference on Artificial Intelligence (AAAI), 2021.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph
neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.

Michihiro Kuramochi and George Karypis. Finding frequent patterns in a large sparse graph. Data
mining and knowledge discovery, 11(3):243–271, 2005.

Xu Lan, Xiatian Zhu, and Shaogang Gong. Knowledge distillation by on-the-fly native ensemble. In
Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp.
7528–7538, 2018.

Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep
as cnns? In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
9267–9276, 2019.

11

Under review as a conference paper at ICLR 2022

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

Yang Li, Yu Shen, Wentao Zhang, Yuanwei Chen, Huaijun Jiang, Mingchao Liu, Jiawei Jiang,
Jinyang Gao, Wentao Wu, Zhi Yang, et al. Openbox: A generalized black-box optimization service.
arXiv preprint arXiv:2106.00421, 2021.

Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
338–348, 2020.

Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in social
networks. Annual review of sociology, 27(1):415–444, 2001.

Yimeng Min, Frederik Wenkel, and Guy Wolf. Scattering gcn: Overcoming oversmoothness in graph
convolutional networks. arXiv preprint arXiv:2003.08414, 2020.

Federico Monti, Michael M Bronstein, and Xavier Bresson. Geometric matrix completion with
recurrent multi-graph neural networks. arXiv preprint arXiv:1704.06803, 2017.

Hoang NT and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass filters.
CoRR, abs/1905.09550, 2019.

Siyuan Qi, Wenguan Wang, Baoxiong Jia, Jianbing Shen, and Song-Chun Zhu. Learning human-
object interactions by graph parsing neural networks. In Proceedings of the European Conference
on Computer Vision (ECCV), pp. 401–417, 2018.

Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and Jie Tang. Deepinf: Modeling
influence locality in large social networks. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’18), 2018.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. arXiv preprint arXiv:1907.10903, 2019.

Emanuele Rossi, Fabrizio Frasca, Ben Chamberlain, Davide Eynard, Michael M. Bronstein, and
Federico Monti. SIGN: scalable inception graph neural networks. CoRR, abs/2004.11198, 2020.

Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superglue:
Learning feature matching with graph neural networks. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 4938–4947, 2020.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina Eliassi-Rad.
Collective classification in network data. AI Mag., 29(3):93–106, 2008.

Lei Shi, Yifan Zhang, Jian Cheng, and Hanqing Lu. Skeleton-based action recognition with directed
graph neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 7912–7921, 2019.

Indro Spinelli, Simone Scardapane, and Aurelio Uncini. Adaptive propagation graph convolutional
network. IEEE Transactions on Neural Networks and Learning Systems, 2020.

Shikhar Vashishth, Naganand Yadati, and Partha Talukdar. Graph-based deep learning in natural
language processing. In Proceedings of the 7th ACM IKDD CoDS and 25th COMAD, pp. 371–372.
2020.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger.
Simplifying graph convolutional networks. In International conference on machine learning,
pp. 6861–6871. PMLR, 2019.

12

Under review as a conference paper at ICLR 2022

Lingfei Wu, Yu Chen, Kai Shen, Xiaojie Guo, Hanning Gao, Shucheng Li, Jian Pei, and Bo Long.
Graph neural networks for natural language processing: A survey. arXiv preprint arXiv:2106.06090,
2021.

Shiwen Wu, Fei Sun, Wentao Zhang, and Bin Cui. Graph neural networks in recommender systems:
a survey. arXiv preprint arXiv:2011.02260, 2020.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
Conference on Machine Learning, pp. 5453–5462. PMLR, 2018.

Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of the
same coin: Heterophily and oversmoothing in graph convolutional neural networks. arXiv preprint
arXiv:2102.06462, 2021.

Chaoqi Yang, Ruijie Wang, Shuochao Yao, Shengzhong Liu, and Tarek Abdelzaher. Revisiting
over-smoothing in deep gcns. arXiv preprint arXiv:2003.13663, 2020.

Ruiping Yin, Kan Li, Guangquan Zhang, and Jie Lu. A deeper graph neural network for recommender
systems. Knowledge-Based Systems, 185:105020, 2019.

Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal Kannan,
Viktor Prasanna, Long Jin, and Ren Chen. Deep graph neural networks with shallow subgraph
samplers. arXiv preprint arXiv:2012.01380, 2020a.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor K. Prasanna.
Graphsaint: Graph sampling based inductive learning method. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020b.

Wentao Zhang, Yuezihan Jiang, Yang Li, Zeang Sheng, Yu Shen, Xupeng Miao, Liang Wang, Zhi
Yang, and Bin Cui. Rod: Reception-aware online distillation for sparse graphs. arXiv preprint
arXiv:2107.11789, 2021a.

Wentao Zhang, Yu Shen, Zheyu Lin, Yang Li, Xiaosen Li, Wen Ouyang, Yangyu Tao, Zhi Yang,
and Bin Cui. Gmlp: Building scalable and flexible graph neural networks with feature-message
passing. arXiv preprint arXiv:2104.09880, 2021b.

Xiaotong Zhang, Han Liu, Qimai Li, and Xiao Ming Wu. Attributed graph clustering via adaptive
graph convolution. In 28th International Joint Conference on Artificial Intelligence, IJCAI 2019,
pp. 4327–4333. International Joint Conferences on Artificial Intelligence, 2019.

Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A survey. IEEE Transactions on
Knowledge and Data Engineering, 2020.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020.

Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan Gan, Zheng Zhang,
and George Karypis. Distdgl: distributed graph neural network training for billion-scale graphs. In
2020 IEEE/ACM 10th Workshop on Irregular Applications: Architectures and Algorithms (IA3),
pp. 36–44. IEEE, 2020.

Kaixiong Zhou, Xiao Huang, Yuening Li, Daochen Zha, Rui Chen, and Xia Hu. Towards deeper
graph neural networks with differentiable group normalization. arXiv preprint arXiv:2006.06972,
2020a.

Kuangqi Zhou, Yanfei Dong, Kaixin Wang, Wee Sun Lee, Bryan Hooi, Huan Xu, and Jiashi Feng.
Understanding and resolving performance degradation in graph convolutional networks. arXiv
preprint arXiv:2006.07107, 2020b.

Hao Zhu and Piotr Koniusz. Simple spectral graph convolution. In International Conference on
Learning Representations, 2021.

13

Under review as a conference paper at ICLR 2022

A DEEPER ANALYSIS OF GNN ARCHITECTURE

A.1 CONVOLUTION PATTERN

According to whether the model disentangles the EP and ET operations, current GNNs can be
classified into two major categories: entangled and disentangled, and each can be further classified
into two smaller categories based on the order of EP and ET operations.

Entangled Graph Convolution. Entangled Propagation and Transformation (EPT) pattern is
widely adopted by mainstream GNNs, like GCN (Kipf & Welling, 2016), GraphSAGE (Hamilton
et al., 2017), GAT (Velickovic et al., 2018), and GraphSAINT (Zeng et al., 2020b). The idea behind
EPT-based GNNs is similar to the conventional convolution: it passes the input signals through a
set of filters to propagate the information, which is further followed by nonlinear transformations.
As a result, EP and ET operations are inherently intertwined in this pattern, i.e., each EP operation
requires a neural layer to transform the hidden representations to generate the new embeddings for
the next step. Motivated by ResNet (He et al., 2016), some GNNs with the EPT-SC pattern deepen
the EPT-based GNNs with skip connections, and both JK-Net (Xu et al., 2018), and ResGCN (Li
et al., 2019) are the representative methods of this category.

Besides the strict restriction that Dp = Dt, Table 2 shows EPT-based and EPT-SC-based GNNs
also suffer from low scalability and low efficiency. On the one hand, a deeper structure has more
parameters, resulting in greater computation costs. On the other hand, the number of nodes within
each node’s neighborhood grows exponentially with the increase of model depth in typical graphs,
incurring significant memory requirement in a single machine or high communication costs in
distributed environments (Zheng et al., 2020).

Disentangled Graph Convolution. Previous works (Frasca et al., 2020; He et al., 2020; Wu et al.,
2019; Zhang et al., 2021a) have shown that the true effectiveness of GNNs lies in the EP operation
rather than the ET operation inside the graph convolution. Therefore, some disentangled GNNs
propose to separate the ET operation from the EPT scheme. They can be classified into the following
two categories according to the order of EP and ET operations.

One pattern is the Disentangled Transformation and Propagation (DTP). As shown in Table 2, DTP-
based GNNs firstly execute the ET operations and then turn to the EP operations, and the most
representative methods in this category are PPNP (Klicpera et al., 2018), APPNP (Klicpera et al.,
2018), and AP-GCN (Spinelli et al., 2020). Unlike the DTP pattern, GNNs with the convolution
pattern of Disentangled Propagation and Transformation (DPT) execute the EP operations in advance,
and the propagated features are fed into a simple model composed of multiple ET operations (Zhang
et al., 2021b). For example, SGC (Wu et al., 2019) removes the nonlinearities in GCN and collapses
all the weight matrices between consecutive layers into a simple logistic regression. Based on SGC,
SIGN (Frasca et al., 2020) further combines many graph convolutional filters in the EP operations,
which differ in types and depths, utilizing significantly more structural information.

As shown in Table 2, compared with entangled GNNs, DTP-based GNNs can support large
propagation depth Dp. Besides, DTP-based GNNs do not restrict Dp = Dt, enabling more flexibility
in the GNN architecture design. However, they still have low scalability and efficiency issues when
adapted to large graphs due to the high-cost propagation process during training. On the contrary,
DPT-based GNNs only need to precompute the propagated features once. Therefore, they are easier
to scale to large graphs with less computation cost and lower memory requirement.

A.2 DGMLP VERSUS EXISTING METHODS

EPT-based GNNs. GNNs with the convolution pattern of EPT assume that Dp = Dt. However, as
discussed in Sec. 6.1, the optimal Dp and Dt are highly related to graph sparsity and graph size. For
example, it is better to assign large Dp and small Dt for better performance on a small graph with
sparse edges. Due to the model degradation issue, current EPT-based GNNs usually have both small
Dp and Dt, owing to the inflexible restriction that Dp = Dt. Besides, the EPT-based GNNs also face
the problem of low scalability and low efficiency. For example, GCN has the high time complexity of
O(DpMd+DtNd

2) for the need to repeatedly perform recursive neighborhood expansion at each
training iteration to compute the hidden representations of each node. This process is unscalable due
to the high memory and computation costs on a single machine and high communication costs in

14

Under review as a conference paper at ICLR 2022

Table 2: Algorithm analysis. We denote N , Nl, M and d as the number of nodes, the number
of labeled nodes, edges and feature dimensions respectively. P is the EP operation and T is the
ET operation. “SC” means “Skip Connection”, and k refers to the number of sampled nodes in
GraphSAGE.

Algorithm Convolution Type Pattern Disentangled Large Dp Large Dt Complexity

GCN (Kipf & Welling, 2016) EPT PT· · · PT × × × O(DpMd+DtNd
2)

GraphSAGE (Hamilton et al., 2017) EPT PT· · · PT × × × O(kDpNd2)
JK-Net (Xu et al., 2018) EPT-SC PT· · · PT × × X O(DpMd+DtNd

2)
ResGCN (Li et al., 2019) EPT-SC PT· · · PT × × X O(DpMd+DtNd

2)
APPNP (Klicpera et al., 2018) DTP T· · ·TP· · · P X X × O(DpMd+DtNd

2)
AP-GCN (Spinelli et al., 2020) DTP T· · ·TP· · · P X X × O(DpMd+DtNd

2)
DAGNN (Liu et al., 2020) DTP T· · ·TP· · · P X X × O(DpMd+DtNd

2)
SGC (Wu et al., 2019) DPT P· · · PT· · ·T X X × O(DtNld

2)
SIGN (Frasca et al., 2020) DPT P· · · PT· · ·T X X × O(DtNld

2)
S2GC (Rossi et al., 2020) DPT P· · · PT· · ·T X X × O(DtNld

2)
GBP (Chen et al., 2020b) DPT P· · · PT· · ·T X X × O(DtNld

2)
DGMLP DPT P· · · PT· · ·T X X X O(DtNld

2)

distributed environments. Compared with EPT-based GNNs, DGMLP is more flexible in assigning
different Dp and Dt and enjoys better efficiency, scalability, and lower memory requirement.

EPT-SC-based GNNs. Compared with EPT-based GNNs, the skip connection in EPT-SC-based
GNNs helps to alleviate the model degradation issue introduced by large Dt. However, Fig. 3(b)
shows that the test accuracy degrades with deeper architecture due to the over-smoothing issue
introduced by large Dp. A large graph without the graph sparsity issue requires large Dt and small
Dp. However, EPT-SC-based GNNs like ResGCN cannot satisfy such requirements since they simply
restrict Dp = Dt. Besides, EPT-SC-based GNNs still have the issues of low scalability, efficiency,
and high memory requirement as EPT-based GNNs. Compared with EPT-SC-based GNNs, DGMLP
can improve the performance by enabling larger Dp while maintaining high scalability, efficiency,
and low memory requirement.

DTP-based GNNs. Compared with GNNs with the convolution pattern of EPT and EPT-SC, DTP-
based GNNs disentangle the propagation and the transformation operation, thus can support flexible
combinations of Dp and Dt. As shown in Fig. 2(b) and Fig. 2(c), over-smoothing may have less
impact on the performance degradation compared with model degradation, and the test accuracy will
not decrease rapidly with the larger over-smoothing level. Therefore, lots of DTP-based GNNs own
large Dp and small Dt and claim that they can perform well with the deeper architecture. However,
they ignore the transformation depth Dt in their design. As shown in Fig. 7(b), the test accuracy
degrades rapidly if we increase the transformation depth Dt of DAGNN. Correspondingly, it is hard
for DTP-based GNNs to support large graphs with limited transformation depth Dt. Besides, as they
execute ET operations first, scalability, efficiency, and memory requirement issues still exist.

DPT-based GNNs. Compared with current DPT-based GNNs, the proposed DGMLP utilizes the
same convolution pattern. They all enjoy high scalability, efficiency, and low memory requirement
as they can precompute the propagated features. The difference between DGMLP and other DPT-
based GNNs is that DGMLP is the first method considering the smoothness from the node level.
Therefore, DGMLP can assign individual feature propagation weights to different nodes and then get
better-smoothed node embeddings by considering the personalized area in the graph where each node
resides. Another advantage of DGMLP is that it can support large transformation depth Dt with the
help of residual connections.

B WHEN WE NEED DEEP GNN ARCHITECTURES?

When we need deep EP? We review the related works and researches concerning Dp’s importance
and then investigate experimentally when it is appropriate to enlarge Dp in GNNs. GNNs mainly
benefit from performing EP operations over neighborhoods. Stacking more EP operations will expand
a node’s receptive field and help it to gain more deep structural information. However, if the graph
is dense, increasing Dp may lead to over-smoothing, which results from the rapid expansion of the
receptive field.

15

Under review as a conference paper at ICLR 2022

Table 3: Replacing the logistic regression in SGC with ResMLP. The test accuracy of the
corresponding model on small graph Cora and large graph ogbn-arxiv when the MLP depth Dt

changes from 1 to 7.

Dataset 1 2 3 4 5 6 7
Cora 80.9 81.7 81.5 81.1 80.7 80.5 80.2

ogbn-arxiv 70.1 70.2 71.2 71.4 71.4 71.6 71.3

Table 4: Test accuracy under different edge sparsity.

Datasets M
N2 2 4 6 8 12 16 20

Cora 0.7‰ 59.8 59.6 57.9 57.3 56.5 51.8 47.1

PubMed 0.1‰ 78.5 78.9 77.8 77.6 77.3 76.6 75.8

Table 5: Test accuracy under different label missing rates.
Datasets Labels/class 2 4 6 8 12 16 20

Cora 20 81.5 81.3 80.8 80.1 80.0 79.5 78.8
1 53.8 59.2 62.9 64.3 66.5 66.7 65.6

PubMed 20 78.5 78.9 77.8 77.6 77.3 76.6 75.8
1 61.2 65.9 67.4 67.5 67.7 69.0 68.3

Generally, most real-world graphs exhibit sparsity in three aspects: edges, labels, and features.
We define edge sparsity, label sparsity, and feature sparsity as follows: (1) Edge sparsity: nodes
in real-world graphs usually have a skewed degree distribution, and many nodes are rarely
connected (Kuramochi & Karypis, 2005). (2) Label sparsity: only a small part of nodes are labeled
due to the high labeling costs or long labeling time (Garcia & Bruna, 2017). (3) Feature sparsity:
some nodes in the graph do not own features, i.e., the new users or products in a graph-based
recommendation system (Zhao & Akoglu, 2020). We argue that sparse graphs naturally need
deeper EP for larger receptive fields. Experiments are conducted to demonstrate that the graph
sparsity mentioned above will highly affect the optimal choice of Dp. SGC is adopted as the base
model throughout these experiments.

Firstly, we investigate how edge sparsity influences the optimal Dp. For a fair comparison, we only
sample part of the labels for Cora to have the same feature and label missing rates as PubMed. Then
we increase Dp from 2 to 20 on Cora and PubMed and report the test accuracy under each setting.
The experimental results in Fig. 4 show that the optimal Dp is 4 for PubMed and 2 for Cora, meaning
that the sparser graph requires a larger Dp, which further demonstrate the benefits of deepening Dp

under edge sparse conditions. Secondly, we illustrate the relationship between the label sparsity and
Dp. As shown in Fig. 5, we fix one labeled node per class on Cora and PubMed and keep the same
setting with the edge sparsity experiment. It can be seen that the classification accuracy increases
as Dp ascends from 2 to 16. However, if we increase the label rate to 20 nodes per class, the node
classification drops from 2 layers. The experiment on PubMed also shows that graphs with lower
label rates require larger Dp. Finally, in Table 6, we report the test accuracy under the feature sparsity
setting where 50% node features are randomly dropped from Cora and PubMed datasets. The result
is consistent with the former two experiments that graphs with higher feature sparsity levels require
larger Dp.

When we need deep ET? Generally, stacking multiple ET operations can better fit and learn
the data distribution. However, we observe that the optimal Dt for GNN is sensitive to the
graph size. Concretely, small graphs contain limited information, and shallow transformation
architecture is enough for generating decent node embeddings. However, large graphs have
complex structural information as complexity grows at a squared rate, which requires larger

16

Under review as a conference paper at ICLR 2022

Table 6: Test accuracy under different feature missing rates.
Datasets Feature missing % 2 4 6 8 12 16 20

Cora 0% 81.5 81.3 80.8 80.1 80.0 79.5 78.8
50% 75.4 77.7 78.5 79.5 79.4 78.9 78.0

PubMed 0% 78.5 78.9 77.8 77.6 77.3 76.6 75.8
50% 60.6 65.1 66.3 66.7 68.7 69.2 68.7

1 2 3 4 5 6 7
Number of Transformation Depth Dt

40

60

80

100

P
re

di
ct

io
n

A
cc

ur
ac

y

Train

Test

(a) Training and test accuracy both
drop sharply when model grows
deep.

2 4 8 16 32 128
Number of Propagation Depth Dp

20

40

60

80

T
es

t
A

cc
ur

ac
y

Dt = 2

Dt = Dp

(b) Fixing Dt = Dp degrades
the performance badly when Dp

becomes large on Cora dataset.

0 100 200
Epoch

0.0000

0.0002

0.0004

0.0006

G
ra

di
en

t
of

th
e

F
ir

st
L

ay
er 2-layer GCN Acc: 81.7

7-layer GCN Acc: 73.2

(c) First layer gradient comparison
of GCN with different layers on
Cora dataset.

Figure 7: Overfitting, entanglement, and gradient vanishing are not the major cause for the
performance degradation in deep GNNs.

Dt to extract meaningful information. We prove this insight by experimentally examining how
Dt influences the node classification performance on Cora and ogbn-arxiv datasets. Concretely, we
replace the logistic regression in SGC with “MLP+Res” and increase Dt from 1 to 7. Table 3 shows
that the accuracy on ogbn-arxiv increases as Dt ascends from 1 to 6. However, Dt = 2 is enough for
the small graph Cora. Therefore, larger graphs need larger Dt for high-quality node embeddings.

C MORE MISLEADING EXPLANATIONS

C.1 OVER-FITTING

Some works (Rong et al., 2019; Li et al., 2019; Zhou et al., 2020b; Yang et al., 2020) attribute
the performance degradation of deep GNNs to over-fitting. Concretely, over-fitting comes from
the case when an over-parametric model tries to fit a distribution with limited training data, which
results in learning well on the training data but failing to generalize to the testing data. We plot
the corresponding node classification accuracy of GCN on both the training and the test set under
different model depths in Fig. 7(a).

Finding. Both the training and test accuracy drop quickly when the model grows deep.
However, over-fitting assumes that over-parametric models get low training error but high testing
error, inconsistent with the experimental results.

Implication. Over-fitting is not the primary cause for performance degradation of deep GNNs.

C.2 ENTANGLEMENT

Some recent works (He et al., 2020; Liu et al., 2020) argue that the key factor compromising
the performance of deep GNNs is the entanglement of EP and ET operations in current graph
convolutional layers. For example, DAGNN claims that the entanglement of EP and ET operations in
GCN is the true reason it only supports shallow architectures. To investigate this statement, we vary
the transformation depth Dt in ResGCN, DenseGCN, and vanilla GCN and report their test accuracy
on the PubMed dataset. The experimental results are shown in Fig. 3(b).

17

Under review as a conference paper at ICLR 2022

Finding 1. Although ResGCN and DenseGCN have entangled designs, when Dp and Dt both
become large, they do not experience significant performance drop as GCN does. Both the
residual and dense connections can effectively alleviate the influence of model degradation, and the
performance degradation of ResGCN and DenseGCN starting at Dt = 6 might be caused by the
over-smoothing issue.

Implication. GNNs can go deep even in an entangled design, and the entanglement of EP and ET
operations may not be the true limitation of the GNN depth.

What is worth noting is that previous works (Zhu & Koniusz, 2021; Liu et al., 2020), which have
disentangled designs and state that they support deep architectures, are only able to go deep on the
propagation depth Dp. In their original design, if we increase Dt, their performance will also degrade
badly. To validate this, we run DAGNN in two different settings: the first controls Dt = 2 and
increases Dp, the second controls Dt = Dp and increases Dp. The test accuracy under these two
settings on the PubMed dataset is shown in Fig. 7(b).

Finding 2. The disentangled DAGNN also experiences huge performance degradation when
the model owns large Dt. If the entanglement dominates the performance degradation of deep
GNNs, DAGNN should be able to also go deep on Dt. However, if we individually increase Dt of
DAGNN, the sharp performance decline still exists.

Implication. The major limitation of deep GNNs is the model degradation issue introduced by large
Dt rather than the entanglement of EP and ET operation.

C.3 GRADIENT VANISHING/EXPLOSION

Gradient vanishing means that the low gradient in the shallow layers makes it hard to train the
model weights when the network goes deeper, and it has a domino effect on all of the further
weights throughout the network. To evaluate whether the gradient vanishing exists in deep GNNs,
we respectively perform node classification experiments on the Cora dataset and plot the gradient –
the mean absolute value of the gradient matrix of the first layer in the 2-layer and 7-layer GCN in
Fig. 7(c).

Finding 1. Although the test accuracy of 7-layer GCN drops quickly, its gradient is as large
as the gradient of 2-layer GCNs, or even larger in the initial model training phases. The
explanation for the initial gradient rise of the 7-layer GCN might be that the large model needs more
momentum first to adjust and then jump out of the suboptimal local minima initially.

Implication. Gradient vanishing is not the leading cause of performance degradation in deep GNNs.

C.4 DISENTANGLED CONVOLUTION

We then investigate why disentangling EP and ET is able to allow more EP operations.
Concretely, we carefully investigate current disentangled GNNs (Frasca et al., 2020; Rossi et al.,
2020) and find that the decoupling strategy makes the propagation and the transformation operations
independent, thus Dp and Dt are not forced to be the same. Therefore, disentangled GNNs
generally fix Dt and increase Dp to capture deeper graph structural information. Here we select
two disentangled GNNs, S2GC and Grand, which state that they support deep architectures. Their
performance of individually increasing Dp and Dt are shown in Fig. ?? and Fig. ??, respectively.

Finding. Individually increasing Dp would not incur a severe performance drop even
when Dp is increased to 64, while their performance would experience a sharp decline when
Dt increases. Increasing Dp enlarges each node’s receptive field, thus leading to more decent
representations, which is demonstrated to be even more beneficial for sparse graphs in our following
experiments (See Sec. 6.1).

Implication. Deep disentangled GNNs are flexible to individually increase Dp, so that the model
degradation introduced by large Dt can be avoided.

18

Under review as a conference paper at ICLR 2022

Table 7: Overview of datasets and task types.

Dataset #Nodes #Features #Edges #Classes #Train/Val/Test Description

Cora 2,708 1,433 5,429 7 140/500/1,000 citation network
Citeseer 3,327 3,703 4,732 6 120/500/1,000 citation network
Pubmed 19,717 500 44,338 3 60/500/1,000 citation network

ogbn-arxiv 169,343 128 1,166,243 40 91K/30K/47K citation network
ogbn-products 2,449,029 100 61,859,140 47 196K/49K/2,204K citation network

ogbn-papers100M 111,059,956 128 1,615,685,872 172 1,207K/125K/214K citation network
Industry 1,000,000 64 1,434,382 253 5K/10K/30K short-form video network

100 101 102

Relative Training Time

45

46

47

48

Te
st

 A
cc

ur
ac

y
(%

)

SGC
1x

GCN
33x

APPNP
78x

DGMLP
2x

S2GC
1x

GBP
1x AP-GCN

112x

JK-Net
113x

 Res-GCN
132xSIGN

3x

Figure 8: Performance along with training time on the Industry dataset.

D EXPERIMENTAL DETAILS

D.1 DATASET DETAILS

The details of the adopted seven datasets can be found in Table 7.

D.2 HYPERPARAMETER DETAILS

For the three small citation networks, we adopt a simple logistic regression as the classifier. The
propagation depth Dp is set to 20 for Cora and PubMed, and 15 for Citeseer. The learning rate is
set to 0.1, and the dropout rate is obtained from a search of range 0.1 to 0.5 with step 0.1. Residual
connections are not used on these three citation networks.

For three large ogbn datasets and Industry dataset, a 6-layer MLP with hidden size of 512 is used,
and the propagation depth Dp is respectively 20 and 12 for them. Residual connections are used for
these four large datasets. Besides, the temperature T is set to 1 as default if it is not specified, and the
learning rate and the dropout rate are set to 0.001 and 0.5, respectively.

We run all the methods for 200 and 500 epochs on the citation networks and OGB datasets, respectively.
Besides, we run all methods 10 times and report the mean values and the variances of different
performance metrics. Other hyperparameters are tuned with the toolkit OpenBox (Li et al., 2021) or
follow the settings in their original paper.

E ADDITIONAL EXPERIMENTS

E.1 PERFORMANCE-EFFICIENCY ANALYSIS

In this subsection, we evaluate the efficiency of each method in our industrial environment: the
real-world Industry dataset. Here, we precompute the smoothed features of each DPT-based GNN,
and the time for preprocessing is also included in the training time. Fig. 8 illustrates the results on the
Industry dataset across representative baseline methods of each convolution pattern.

Compared with DPT-based GNNs, we observe that both EPT-based and DTP-based GNNs require a
significantly larger training time. For example, GCN takes 32 times longer than SGC to complete
the training and the training time of AP-GCN is 112 times the one of SGC. Due to the more
complex preprocessing, our DGMLP takes twice the training time of SGC’s. However, the relatively
time-consuming preprocessing brings significant performance gain to DGMLP, exceeding SGC by

19

Under review as a conference paper at ICLR 2022

0.25 0.50 0.75 1.00
Percent of Remaining Edges

50

60

70

80

Te
st

 A
cc

ur
ac

y
SGC
SIGN
S2GC
GBP
DGMLP

(a) Edge Sparsity

10 20
Training Nodes per Class

70

75

80

Te
st

 A
cc

ur
ac

y

SGC
SIGN
S2GC
GBP
DGMLP

(b) Label Sparsity

0.25 0.50 0.75 1.00
Percent of Remaining Node Features

60

70

80

Te
st

 A
cc

ur
ac

y

SGC
SIGN
S2GC
GBP
DGMLP

(c) Feature Sparsity

Figure 9: Test accuracy on PubMed dataset under different levels of feature, edge and label sparsity.

0 50 100
Number of Propagation Depth Dp

0.0

0.2

0.4

0.6

0.8

N
od

e
S

m
oo

th
in

g
L

ev
el

SGC

DGMLP

Figure 10: Graph Smoothing Level comparison between SGC and our proposed DGMLP.

more than 2% across three citation networks. To sum up, our proposed DGMLP achieves better
performance and maintains high efficiency.

E.2 INFLUENCE OF GRAPH SPARSITY

To simulate extreme sparse situations in the real world, we design three independent settings on the
PubMed dataset to test the performance of our proposed DGMLP when faced with edge sparsity,
label sparsity, and feature sparsity, respectively.

Edge Sparsity. We randomly remove some edges in the original graph to strengthen the edge sparsity
situation. The edges removed from the original graph are fixed across all the methods under the
same edge remaining rate. From the results in Fig. 9(a), it is clear to see that the performance of
GBP, S2GC, and our DGMLP is significantly better than SIGN and SGC. Further, DGMLP always
has higher test accuracy than GBP and S2GC. SIGN and SGC both have a flaw in that they can not
effectively capture the deep structural information, which would become more prominent when edges
are extremely sparse in the graph.

Label Sparsity. In this setting, we vary the training nodes per class from 1 to 20 and report the test
accuracy of each method. The experimental results in Fig. 9(b) show that the test accuracy of all
the compared methods increases as the number of training nodes per class becomes larger. In the
meantime, our DGMLP outperforms all the baselines throughout the experiment. With 11 training
nodes per class, DGMLP achieves comparable performance with SGC trained under 20 training
nodes per class.

Feature Sparsity. In a real-world situation, the feature of some nodes in the graph might be missing.
We follow the same experimental design in the edge sparsity setting but removing node features
instead of edges. The results in Fig. 9(c) illustrate that our proposed DGMLP has a great anti-
interference ability when faced with feature sparsity as its performance drops only a little even there
is only 10% node features available.

20

Under review as a conference paper at ICLR 2022

E.3 INTERPRETABILITY

In this subsection, we empirically explain why our proposed DGMLP is more robust to the over-
smoothing issue. Concretely, the baseline method SGC is used for comparison, and the temperature
T in our DGMLP is set to 0.2. Besides, the Graph Smoothing Level (GSL) in Sec. 3.2.1 is adopted
to evaluate the graph smoothness.

The results in Fig. 10 show that the GSL of both SGC and DGMLP decreases as Dp increases.
However, the descending speed of SGC is much quicker than DGMLP, especially when Dp changes
from 1 to 5. Moreover, the GSL of DGMLP at Dp = 100 is even larger than the one of SGC at
Dp = 5. Fig. 10 strongly illustrates that our proposed DGMLP is more robust to the over-smoothing
issue introduced by large Dp, and the performance results in Fig. 6(a) further shows that DGMLP
can take advantage of this property to gain more beneficial deep structural information for prediction.

21

	Introduction
	Preliminary
	Problem Formalization
	Convolution on Graphs

	Smoothness Measurement
	Misconceptions and the True Root Cause
	Is Over-smoothing Really the Root Cause?
	What's Behind Large Dt?

	Guidelines on Constructing Deep GNNs
	A More Flexible Framework
	How to Construct GNNs with Large Dp?
	How to Construct GNNs with Large Dt?

	One Alternative Solution
	Node-adaptive Weighting Mechanism
	Skip Connections

	DGMLP Evaluation
	Experimental Settings
	End-to-End Comparison
	Training Scalability
	Analysis of model depth

	Conclusion
	Reproducibility Statement
	Deeper analysis of GNN architecture
	Convolution Pattern
	DGMLP versus Existing Methods

	When We Need Deep GNN Architectures?
	More Misleading Explanations
	Over-fitting
	Entanglement
	Gradient Vanishing/Explosion
	Disentangled Convolution

	Experimental Details
	Dataset Details
	Hyperparameter Details

	Additional Experiments
	Performance-Efficiency Analysis
	Influence of Graph Sparsity
	Interpretability

