
Accelerating Federated Learning Through Attention on
Local Model Updates

Parsa Assadi, Byung Hoon Ahn, Hadi Esmaeilzadeh
University of California, San Diego

{passadi, bhahn221, hadi}@ucsd.edu

Abstract

Federated learning is used widely for privacy-preserving training. It performs well if the
client datasets are both balanced and IID. However, in real-world settings, client datasets
are non-IID and imbalanced. They may also experience significant distribution shifts.
These non-idealities can hinder the performance of federated learning. To address this
challenge, the paper devises an attention-based mechanism that learns to attend to different
clients in the context of a reference dataset. The reference dataset is a test dataset in the
central server which is used to monitor the performance metric of the model under training.
The innovation is that the attention mechanism captures the similarities and patterns of a
batch of clients’ model drifts (received by the central server in each communication round)
in a low dimensional latent space, similar to the way it captures the mutual relation of
a batch of words (a sentence). To learn this attention layer, we devise an autoencoder
whose input/outputs are the model drifts and its bottleneck is the attention mechanism. The
attention weights in the bottleneck are learned by utilizing the attention-based autoencoder
as a network to reconstruct the model drift on reference dataset, from the batch of received
model drifts from clients in each communication round. The learned attention weights
effectively capture clusters and similarities amongst the clients’ datasets. The empirical
studies with MNIST, FashionMNIST, and CIFAR10 under a non-IID federated learning
setup show that our attention-based autoencoder can identify the cluster of similar clients.
Then the central server can use the clustering results to devise a better policy for choosing
participants clients in each communication round, thereby reducing the communication
rounds by up to 75% on MNIST and FashionMNIST, and 45% on CIFAR10 compared to
FedAvg.

1 Introduction
Federated learning is used widely for privacy-preserving training [1]. While it has shown to yield promising

results under IID setting, it suffers from slow convergence rate when private datasets are non-IID or class
imbalanced [2]. Imbalanced private datasets in the clients may potentially bias the global model as the training
progresses. To make the training more robust to unbalanced and non-IID settings, federated learning adopts a
policy to select clients in each communication round. For instance, if a client with a certain dominant class is
chosen too often due to a bad policy, the global model can become biased towards that class. Therefore, the
policy for choosing the client plays an important role in the convergence rate of the global model, and bad
policy may prolong the training. While the central server having more information about the distribution of the
private datasets can improve the policy, this information is limited to the clients’ model drifts as anything more
than this would contradict the purpose of federated learning which is to keep the clients’ data private. This
work sets out to adopt an attention mechanism to extract knowledge about private distributions from the model
drifts. Inspired by its prevalent adoption in language understanding in which the attention learns the semantic
correlation of words in a sentence [3], we utilize the attention mechanism to learn the similarity of private
dataset distributions in the context of a reference dataset. The reference dataset is a test dataset used by the
central server to monitor the test accuracy of the model throughout the training. We train the attention based
autoencoder, so it learns to first reduce dimensionality of model drifts, then uses a multi-headed self attention
layer on model drifts in this latent low dimensional space to assign a number to all mutual model drifts, finally,
it uses the output of this self attention layer to revert back model drifts to the original high dimensional space
and tries to reconstruct the reference model drift from them. After we trained the attention based autoencoder,
we can utilize it by feeding a batch of model drifts received by the central server in each communication round

Workshop on Federated Learning: Recent Advances and New Challenges, in Conjunction with NeurIPS 2022.



to it, and using the generated weight matrix in the attention layer to cluster them with respect to the private
distribution each of them represents. This clustering knowledge is used to adopt a better policy for choosing
participants in communication rounds; hence accelerating federated learning. To this end, the paper makes the
following contributions: (1) Proposing a framework using an attention based autoencoder which only uses
model drifts received by the central server to cluster the clients with respect to their private distribution. (2)
Devising a policy to leverage the clustering knowledge to choose the participants in each communications
round to speed up the convergence, reducing the communication rounds and accelerating federated learning.
The empirical studies with MNIST, FashionMNIST, and CIFAR10 under a non-IID federated learning setup
show that our attention-based autoencoder can identify the cluster of similar clients, and use this knowledge to
reduce communication rounds by up to 75% on MNIST and FashionMNIST, and 45% on CIFAR10 compared
to FedAvg.

2 Related works
Federated learning is used widely for privacy-preserving training [4, 5, 6, 7, 8, 9]; local model updates are

the only source of information the central server receives from each client. In fact, information beyond the
model drifts may create privacy concerns [10, 11, 12, 13] In real-world settings, non-idealities (e.g., non-IID
settings) are inevitable, and they may limit the performance of federated learning. Works including [14] try
to mitigate the effect of such non-idealities. This paper explores the use of attention mechanism [15] to (1)
cluster the clients to devise better policy to select participants leading to better convergence, thereby (2) less
communication. Below, we discuss the most related works.

Clustering clients for federated learning. Clustering is one of the solutions used by prior works to deal
with statistical non-idealities of clients. Prior works have utilized hierarchical clustering [16], K-means [17],
cosine similarity [18] to cluster the clients based on their distribution. [19] utilizes time zone information to
better cluster the client. [20] uses spectral analysis to cluster them in a low dimensional latent space, and [21]
theoretically studied the statistical heterogeneity issue of clients, and how clustering them can help in reducing
the communication cost. In contrast, this work uniquely leverages attention mechanism by considering
the batch of model drifts as a batch of words, and trains the whole architecture (dimensionality reduction,
clustering) end-to-end for more robust clustering of clients.

Communication reduction in federated learning. As communication is the major bottleneck in federated
learning, a handful of works [22, 20, 23, 24, 19] have focused on communication reduction. These methods
span from reducing the frequency of communication to compressing local updates. However, the focus of this
paper, leveraging statistical properties of private distributions to cluster clients, remains orthogonal to these
inspiring efforts.

3 Challenges in Federated Learning

...

1
Server is blind to 
clients' datasets

Central 
Server

2
Clients' datasets are 
prone to distribution 

shift

3
Communication is 

the main bottleneck

Clients

Figure 1: Challenges in federated learning.

This section outlines three challenges in federated learning.
Blindness to clients’ datasets in federated learning. As

per the definition of federated learning, each dataset of the
clients must be kept private to the client. Therefore we rely
on information extracted from client updates to create a policy
for choosing participants in each communication round. This
policy determines the performance of the federated learning
and even the convergence rate. To provide the policy with more
information about the clients, some works [16, 17, 18] use the
information in client updates to cluster clients with respect to
their distribution (knowledge extraction). From a practical point of view, however, learning from high-
dimensional model updates is challenging both from a statistical point view [25], and in terms of compute
power.

Dynamic real-world setting in federated learning. To make this worse, federated learning may face many
non-idealities. Federated learning with IID and balanced datasets is well studied [9]. However, in a real-world
setting, the datasets are not only non-IID and imbalanced, but are prone to significant distribution shifts [26].
This leads to slow convergence rate [26, 27]. Even if we manage to adapt the client settings to the non-IID
setting at a certain point, this setting changes constantly and frequently rendering this futile. Therefore, it is
critical that the policy can incorporate a mechanism that is robust to the above-mentioned dynamic settings
while estimating the client setting.

Communication cost in federated learning. Even in modern communication systems, communication
cost remains the major bottleneck in federated learning [22, 23, 24, 28]. This makes it crucial to finish training
the model as soon as possible while achieving the desired performance metric to minimize the costly model
updates. The policy used for choosing participants directly impacts convergence rate, thus communication
cost [27, 28]. Figure 1 summarizes the aforementioned issues in federated learning. Overall, an optimal policy

2



can be the panacea to all the above challenges, and the optimality of the policy is highly correlated to the
effectiveness of the knowledge extraction mechanism that is integrated into the policy. To this end, this work
focuses on developing a more effective and robust knowledge extraction mechanism.

4 Accelerating Federated Learning Through Attention on Local Model Updates
This section first outlines the insights that drive the design of our knowledge extraction mechanism. Then,

we dive into the details of the architecture, training, and its usage in the overall federated learning scenario.

4.1 Insights
As discussed in the previous section, the policy for choosing the participants in each communication round

determines the performance of the federated learning. However, despite its importance in improving the policy,
the information about the clients available to the server is limited to the model updates as per the definition of
federated learning. To this end, the problem reduces down to how we can build a better knowledge extraction
framework that can better understand the client settings. The role of the knowledge extraction framework
is two folds: (1) dimensionality reduction of the model drifts and (2) clustering the clients with similar
distribution. Then, to intelligently select the participants for better convergence of federated learning instance,
we cluster the clients with regard to their dataset distribution. Prior works utilize conventional methods such
as Principal Component Analysis (PCA) and spectral analysis for dimensionality reduction, and K-means
and hierarchical clustering to cluster the clients. However, as each of these conventional methods are not
robust to the aforementioned non-idealities such as distribution shifts [29, 30, 31, 32], the policy that utilizes
these methods comes with limited robustness. Furthermore, prior works take a decoupled design where the
dimensionality reduction and clustering are two separate components. Therefore, similar to how conventional
component-based systems only provided sub-par performance in speech recognition [33] and autonomous
driving [34], opting for the current design hampers further performance improvements.

End-to-end training of knowledge extraction. This work takes a fundamentally different approach where
we leverage end-to-end neural network to perform knowledge extraction for federated learning. First, by using
neural networks over the conventional approach, the knowledge extraction framework can benefit from the
generalization power of the neural networks. This not only makes the knowledge extraction perform better
clustering of the clients but also be more robust to the dynamic settings of real-world federated learning.
Furthermore, by taking an end-to-end design, the knowledge extraction framework can learn richer features
that lead to better clustering of the clients.

...

Encoder

...

...

DecoderSelf Attention

F
la

tt
en

Output (Refrence 
Model Drift)

Attention Weights

Attended 
Reduced 

Dimensioanlity 
Model Drifts

Reduced 
Dimensioanlity 

Model Drifts

Clients' Model 
Drifts

Figure 2: Attention Based Clustering (ABC) network architecture.

Adopting attention based on analogy to language understanding. The attention mechanism is a learnable
layer which is designed to simulate attention operation (assigning mutual weight for pair of features). It
performs an attention operation to its input called Value matrix by dot producting it to a matrix of weights
generated from its other two inputs Key and Query. In this work, we use scaled dot-product self attention [15],
in which weights are calculate as shown in Equation 1.

W (Q,K) = softmax(
QKT

√
Dk

) (1)

This work sets out to adopt an attention mechanism in knowledge extraction for federated learning. Inspired
by its prevalent adoption in language understanding in which the attention learns the semantic correlation of
words in a sentence [3], we utilize the attention mechanism to learn the similarity of private dataset distributions
in the context of a reference dataset. The innovation is that the attention mechanism captures the similarities
and patterns of a batch of clients’ model drifts (received by the central server in each communication round)
in a low-dimensional latent space, similar to the way it captures the mutual relation of a batch of words (a
sentence). Extracting feature dependencies even in a latent low dimensional space (as is the case in this work)
helps in clustering clients.

4.2 ABC: Attention Based Clustering
Architecture. The proposed architecture for performing Attention-Based Clustering (ABC) consists of three
main components as can be seen in Figure 2. The first part is the encoder which is a stack of linear layers each
followed by ReLU for reducing the dimension of inputs. The input to the network is a fat two-dimensional

3



matrix, and the encoder makes it thinner by performing dimensionality reduction The second component is
a self attention mechanism which attends to this thinned two-dimensional matrix. The third part is a stack
of layers for flattening the output of self attention (attended version of the thinned input) to combine the
information in two dimensions into one dimension, and a conventional decoder (like normal autoencoders).
The final output of the network is a one-dimensional vector with the same dimensionality as the input matrix
width.

Training. Figure 3a summarizes the overall formulation of ABC training. The ABC network is placed in the
central server observing the distributed training and client updates in each communication round. Between any
two communication round, the model in each client experiences a change (client model drift), and the model
in the central server is trained with the same number of training steps as in clients, on the reference dataset
The change of model parameters as a result of training on the reference dataset is called reference model drift
We formulate the learning problem as a regression problem, in which the network tries to reconstruct the
reference model drift, from a batch of clients’ model drifts (formed as a two-dimensional matrix) received in
each communication round. We use the mean-squared-error loss function for training the network end-to-end.
Although we formulate the learning problem as a regression problem for reconstructing reference model
drifts from clients’ model drifts, we use this network for clustering with the learned weight matrix of the
attention mechanism. Overall, this formulation results in an encoder for effective dimensionality reduction
and a clustering mechanism from the weight matrix of the attention.

Deployment. Figure 3b summarizes the overall formulation of ABC deployment. Once the training phase
is finished, ABC network is ready to be deployed, without the need to be re-trained or fine-tuned in case of
distribution shifts. When ABC netwrok receives a set of model drifts, the attention mechanism generates
a weight matrix W (N,N), with N the number of clients. Conceptually, element in row i and column j of
W (N,N) represent a number, modeling the dependency of client i and j. We monitor the sum of rows of this
matrix which we call score vector S(1,N), thus element i of S(1,N) is the sum of dependency of client i with
all other clients and is called ith client score. These client scores generated by ABC network, cluster clients in
only one dimension, which is a severe degree of dimensionality reduction while preserving clustering patterns.
It is worth mentioning that, it is not necessary to use ABC network in each communication round to check
clients’ clusters (check-in stage), as the frequency of using it depends on how often clients’ datasets change.
Finally, this client scores S(1,N) are used to pick participants in each communication round. Assuming the
resources allow K participants per communication round, we compute the average of all clients’ scores
(S(1,N)) called averaged center of clusters, and pick participants such that (1) the average score of participants
in each communication round is roughly equal to averaged center of clusters, (2) diversify participants as
much as possible. Under a specific constraint for the number of participants, this policy ensures that the model
under training does not get biased toward any distribution (which is a major reason for wiggliness of the
learning curve in federated learning). The ABC network is only used for inference in check-in stages, so it does
not introduce any major overhead in the regular process of federated learning (less than 1% of training time
with ABC deployed)

Central Server

Refrence 
Dataset

ABC network training

Refrence model Drift

Client Updates Updated model

Model under training

Batch of samples

Related to model under training

Related to training ABC

...

(a) Training phase of ABC.

Central Server

Refrence 
Dataset

ABC network Deployment

Clustering Info

Client Updates Updated model

Model under training

Related to model under training

Related to ABC deployment

...

(b) Deployment phase of ABC.

Figure 3: The training phase of ABC. Network weights are frozen once the training phase is finished, then ABC
is ready to be deployed, without the need to be re-trained or fine-tuned in case of distribution shifts.

Implementation details. We refer to a federated learning session as a full cycle of training a model
in federated learning (by any method) until achieving a target accuracy. In our implementation, each
federated learning session’s configuration consists of the type of dataset to be used in clients (EMNIST,
CIFAR10, or FMNIST), the clients’ settings (distribution of datasets in clients), the number of participants in
each communication round, number of clients, frequency of performing a communication round, learning
hyperparameters (optimizer parameters, batch size, and model parameter initialization, random seed). Before
starting any federated learning session, all of these configurations must be specified. For generating a specific
distribution from a dataset (say EMNIST) to be used in a client, we first determine the number of samples

4



needed from each class, and then perform uniform sampling from each class as many times as needed to
achieve the distribution.

Algorithm 1 ABC Deployment
Initialize: max epoch, num batches, local models, local
datasets, central model, K, T
Output: central model

1: epoch← 1
2: check in flag← True {for controlling the frequency

of using ABC network}
3:
4: while epoch ≤ max epoch do
5: for b = 1 to num batches do
6: local models = Train(local models) {trains

each client’s model for one batch of data}
7: if b %num bathces

T = 0 then
8: if check in flag = True then
9: client scores← ABC(local models)

10: end if
11: active clients← Pick(local models, client

scores, K) {picking up participants based
on the policy}

12: central model← Average(active clients)
13: end if
14: end for
15: end while

Details about the hyperparameters and the exact
setup are included in Appendix C.

5 Experiments
In this section, we show the effectiveness of ABC

for reducing communication rounds under clients’
distribution shift compared to the baseline FedAvg.
Setup. We evaluate the performance improvements
of ABC in terms of communication reduction with
FedAvg [9] as the baseline, which is a widely used
federated learning method. Each federated learning
session is designed as an stand-alone Jupyter note-
book that can be used by only setting configuration
parameters.

Client settings. We define a couple of clients’
dataset distribution settings, that we use in our fed-
erated learning session. As a reminder, we refer to
clients’ setting in a federated learning session as the
setting of distributions of clients’ datasets. Our gen-
eral approach is training the ABC network under an
specific client setting, and evaluating it in that same
setting, and other settings for showing the robustness.
Each of the pie charts in Figure 4a, 4b, and 4c, shows
a specific client setting.

For instance, in Figure 4c which shows 5C setting,
we can see that clients are divided into five different
clusters, and a client in each cluster has a dataset
consists of a specific dominant label (showed in the figure)

Dominant Label 7 (80% of dataset) Dominant Label 8 (80% of dataset)

Two Cluster of Clients (2C-1)

(a) 2C-1 Setting

Dominant Label 0 (80% of dataset) Dominant Label 9 (80% of dataset)

Two Cluster of Clients (2C-2)

(b) 2C-2 Setting

Dominant Label 0 (80% of dataset) Dominant Label 9 (80% of dataset)
Dominant Label 1 (80% of dataset) Dominant Label 4 (80% of dataset)

Dominant Label 5 (80% of dataset)

Five Cluster of Clients (5C)

(c) 5C Setting

Figure 4: Clients’ settings for the experiments.

Training ABC network. We train the ABC archi-
tecture with the procedure mentioned in section 3.4
for three datasets (EMNIST, FMNIST, CIFAR10)
each under 2C-1 setting. Each client consists of 500
samples (1000 in case of CIFAR10)

Deploying ABC network: After training the ABC architecture under 2C-1 setting, we use Algorithm 1 to do
federated learning sessions under 2C-1, 2C-2, and 5C settings. We use the 2C-2 setting to show the robustness
of trained ABC architecture in dealing with a totally new setting in terms of client distributions, but with the
same number of clusters. The 5C setting is designed for showing the robustness of the trained ABC architecture
when there are more clusters of clients. We push the robustness evaluation even harder by evaluating the
trained ABC network in a setting in which all the clients datasets are entirely changed compared to the training
time. we deploy ABC and run federated learning sessions under 2C-1, 2C-2, and 5C setting for each dataset
(3× 3 = 9 total number of deployment federated learning sessions). For each of these deployment sessions
(9 sessions) we visualize client scores (S(1,N)) to verify clusters of similar clients. Finally, we run multiple
full blown federated learning sessions for three datasets (EMNIST, FMNIST, CIFAR10), under three settings
(to simulate distribution shift, each once with FedAvg and once with ABC in deployment phase. Each of the
mentioned federated learning sessions are executed once with N = 10 clients with K = 2 participant per
communication round, and also with N = 50 with K = 2 and K = 10. This adds up to a total of 54 execution
of federated learning sessions. As a extreme case of robustness evaluation, we deploy the ABC network trained
on EMNIST, to all the mentioned federated learning sessions but with FMNIST dataset in all clients, which
added 18 more execution of federated learning sessions (18 + 54 = 72)

Cluster visualization. As mentioned before, ABC generates a list of client scores S(1,N) when ever a batch
of received model drifts are passed through it in the central server. The trained ABC network under 2C-1
setting is deployed and evaluated under all other three settings with three datasets under study (9 experiments).
client scores for some of these experiments can be found in Figure 5. Further cluster visualization plots (under
different deployment settings) are available in Appendix A. In Figure 5, horizontal axis shows the id of each
client, and the vertical axis shows the score assigned to each client by ABC network under deployment. As is
observed in Figure 5, ABC successfully discriminate clusters of similar clients in terms of their distribution
in the lowest dimension possible (one dimension - assigning a single number to each client) These two
properties of this clustering method which are (1) severe dimensionality reduction while preserving clustering
information (2) robustness to distribution shifts, makes it a powerful clustering method.

5



Figure 5: Plots show client scores generated by the ABC network under three different deployment settings
(2C-1, 2C-2, and 5C) for three datasets.

Figure 6: Plots show test accuracy curves of FedAvg and ABC in three different federated learning sessions
without re-training or fine-tuning the ABC network.

Communication cost analysis. Having this knowledge (clusters) about clients, we can use it
to devise the optimum policy for accelerating federated learning In Table 1, number of communi-
cation rounds for many federated learning sessions (including all the clients’ settings, datasets, dif-
ferent number of clients, different number of participants per communication round and their dif-
ferent combinations) can be seen. The test accuracy of the model under training is the crite-
ria for terminating the session (45% for CIFAR10, 75% for EMNIST, and 70% for FMNIST).

Comparison of
Communication
Rounds

N=10 N=50
K=2 K=2 K=10
FedAvg ABC FedAvg ABC FedAvg ABC

EMNIST
2C-1 Not Converged 967 2980 738 1725 1363
2C-2 3413 804 2036 1015 1191 1086
5C 834 522 1516 1297 865 731

FMNIST
2C-1 1606 468 2718 887 1134 600
2C-2 913 344 1151 776 932 580
5C 2474 804 Not Converged 1697 703 501

CIFAR10
2C-1 Not Converged 3908 Not Converged 3419 4708 3058
2C-2 Not Converged 4986 Not Converged 3666 4195 3712
5C Not Converged 4997 Not Converged 4993 3225 2204

FMNIST*
2C-1 1606 523 1516 689 1134 600
2C-2 913 397 2718 820 932 580
5C 2474 2109 1151 1406 703 501

Table 1: Number of communication rounds until a tar-
get test accuracy is achieved. For each dataset, the ABC
network is trained under 2C-1 setting. For FMNIST*,
ABC network is trained under 2C-1 setting of EMNIST
dataset.

Also, the model under training in all federated lean-
ing sessions is a CNN with a fully convolutional
backbone with ReLU non-linearity, and the head of
the network is a stack of linear layers. Results in Ta-
ble 1 shows that deploying ABC network, effectively
decrease the communication cost (up to 75% for
MNIST and FMNIST, and up to 45% for CIFAR10).
Evidently, in presence of distribution shifts, the pol-
icy devised using the clustering knowledge from ABC
is effective in reducing communication rounds com-
pared to the baseline, so it is robust to distribution
shifts. As a more extreme case of policy robust-
ness evaluation, we deploy ABC network trained on
MNIST to various settings in which clients’ datasets
are FMNIST (It is indicated by FMNIST* in table
1), and ABC is still superior to FedAvg. To better understand how devising this policy based on ABC clustering
information decreases communication cost, we plot test accuracy of the model under train in three federated
learning sessions 6 (more plots available in Appendix B). The learning dynamics in Figure 6 shows that the
accuracy curve of ABC is much more stable and less wiggly than its counterpart FedAvg. The fluctuations in
learning curve of FedAvg is a direct result of the occasional undesired bias of model under training, towards
specific clients throughout the training. To minimize this effect, ABC adopt a policy in which all the clusters
are equally involved (By keeping the average client score of participants in each communication round stable)
throughout the training progress This more stable and less wiggly learning curve results in faster convergence
of the model under training, thus reduces communication rounds and accelerates federated learning.

6 Conclusion
We present attention-based knowledge extraction to improve the policy for choosing participants of each

communication round in federated learning. The paper uniquely explores the use of end-to-end knowledge
extraction with attention to better cluster the clients. Extensive experiments on different datasets with variations
of client settings show that attention-based knowledge extraction significantly reduces the communication
rounds in federated learning, and it is robust to dynamic settings,

6



References
[1] Jakub Konečný, Brendan McMahan, and Daniel Ramage. Federated optimization: Distributed optimiza-

tion beyond the datacenter. CoRR, abs/1511.03575, 2015.

[2] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data, 2019.

[3] Jianpeng Cheng, Li Dong, and Mirella Lapata. Long short-term memory-networks for machine reading,
2016.

[4] Christopher Briggs, Zhong Fan, and Peter Andras. Federated learning with hierarchical clustering of
local updates to improve training on non-iid data, 2020.

[5] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept and
applications. ACM Trans. Intell. Syst. Technol., 10(2), jan 2019.

[6] Jakub Konečný, H. Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated optimization:
Distributed machine learning for on-device intelligence, 2016.

[7] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir Ivanov,
Chloé Kiddon, Jakub Konečný, Stefano Mazzocchi, Brendan McMahan, Timon Van Overveldt, David
Petrou, Daniel Ramage, and Jason Roselander. Towards federated learning at scale: System design.
In A. Talwalkar, V. Smith, and M. Zaharia, editors, Proceedings of Machine Learning and Systems,
volume 1, pages 374–388, 2019.

[8] Tian Li, Anit Kumar Sahu, Ameet S. Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE Signal Processing Magazine, 37:50–60, 2020.

[9] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data. 2016.

[10] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. Exploiting unintended
feature leakage in collaborative learning. In 2019 IEEE Symposium on Security and Privacy (SP), pages
691–706, 2019.

[11] Karan Ganju, Qi Wang, Wei Yang, Carl A. Gunter, and Nikita Borisov. Property inference attacks on
fully connected neural networks using permutation invariant representations. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, CCS ’18, page 619–633, New
York, NY, USA, 2018. Association for Computing Machinery.

[12] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients - how
easy is it to break privacy in federated learning? In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan,
and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 16937–16947.
Curran Associates, Inc., 2020.

[13] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc., 2019.

[14] Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic federated learning, 2019.

[15] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.

[16] Christopher Briggs, Zhong Fan, and Péter András. Federated learning with hierarchical clustering
of local updates to improve training on non-iid data. 2020 International Joint Conference on Neural
Networks (IJCNN), pages 1–9, 2020.

[17] Avishek Ghosh, Justin Hong, Dong Yin, and Kannan Ramchandran. Robust federated learning in a
heterogeneous environment. ArXiv, abs/1906.06629, 2019.

[18] Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered federated learning: Model-agnostic
distributed multi-task optimization under privacy constraints. CoRR, abs/1910.01991, 2019.

[19] Ming Xie, Guodong Long, Tao Shen, Tianyi Zhou, Xianzhi Wang, Jing Jiang, and Chengqi Zhang.
Multi-center federated learning, 2020.

7



[20] Debora Caldarola, Massimiliano Mancini, Fabio Galasso, Marco Ciccone, Emanuele Rodola, and
Barbara Caputo. Cluster-driven graph federated learning over multiple domains. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pages
2749–2758, June 2021.

[21] Yann Fraboni, Richard Vidal, Laetitia Kameni, and Marco Lorenzi. Clustered sampling: Low-variance
and improved representativity for clients selection in federated learning. In ICML, 2021.

[22] Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered federated learning: Model-agnostic
distributed multi-task optimization under privacy constraints. CoRR, abs/1910.01991, 2019.

[23] Felix Sattler, Simon Wiedemann, Klaus-Robert Müller, and Wojciech Samek. Robust and communication-
efficient federated learning from non-iid data, 2019.

[24] Tao Lin, Lingjing Kong, Sebastian U. Stich, and Martin Jaggi. Ensemble distillation for robust model
fusion in federated learning. CoRR, abs/2006.07242, 2020.

[25] Hans-Peter Kriegel, Peer Kröger, and Arthur Zimek. Clustering high-dimensional data: A survey on
subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans. Knowl. Discov.
Data, 3(1), mar 2009.

[26] Amirhossein Reisizadeh, Farzan Farnia, Ramtin Pedarsani, and Ali Jadbabaie. Robust federated learning:
The case of affine distribution shifts, 2020.

[27] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data, 2019.

[28] Hao Wang, Zakhary Kaplan, Di Niu, and Baochun Li. Optimizing federated learning on non-iid data with
reinforcement learning. In IEEE INFOCOM 2020 - IEEE Conference on Computer Communications,
pages 1698–1707, 2020.

[29] Mia Hubert, Peter Rousseeuw, and Tim Verdonck. Robust pca for skewed data and its outlier map. Com-
putational Statistics Data Analysis, 53(6):2264–2274, 2009. The Fourth Special Issue on Computational
Econometrics.

[30] Mia Hubert, Peter J. Rousseeuw, and Sabine Verboven. A fast method for robust principal components
with applications to chemometrics. Chemometrics and Intelligent Laboratory Systems, 60:101–111,
2002.

[31] Alexandros Georgogiannis. Robust k-means: a theoretical revisit. In D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 29.
Curran Associates, Inc., 2016.

[32] Maria-Florina Balcan, Yingyu Liang, and Pramod Gupta. Robust hierarchical clustering. Journal of
Machine Learning Research, 15(118):4011–4051, 2014.

[33] Jinyu Li. Recent advances in end-to-end automatic speech recognition, 2021.

[34] Tesla-AI-Day. https://youtu.be/j0z4fwecy4m, 2021.

8


	Introduction
	Related works
	Challenges in Federated Learning
	Accelerating Federated Learning Through Attention on Local Model Updates
	Insights
	ABC: Attention Based Clustering

	Experiments
	Conclusion

