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ABSTRACT

There has been remarkable progress in the development of Deep Learning Weather
Prediction (DLWP) models, so much so that they are poised to become competi-
tive with traditional numerical weather prediction (NWP) models. Indeed, a wide
number of DLWP architectures—based on various backbones, including U-Net,
Transformer, Graph Neural Network (GNN), or Fourier Neural Operator (FNO)—
have demonstrated their potential at forecasting atmospheric states. However, due
to differences in training protocols, data choices (resolution, selected prognos-
tic variables, or additional forcing inputs), and forecast horizons, it still remains
unclear which of these methods and architectures is most suitable for weather
forecasting. Here, we back up and provide a detailed empirical analysis, under
controlled conditions, comparing and contrasting the most prominent backbones
used in DLWP models. This is done by predicting two-dimensional incompress-
ible Navier-Stokes dynamics with different numbers of parameters and Reynolds
number values. In terms of accuracy, memory consumption, and runtime, our re-
sults illustrate various tradeoffs, and they show favorable performance of FNO, in
comparison with Transformer, U-Net, and GNN backbones.

1 INTRODUCTION

Deep Learning Weather Prediction (DLWP) models have recently evolved to form a promising and
competitive alternative to numerical weather prediction (NWP) models (Bauer et al., 2015). Early
attempts (Scher & Messori, 2018; Weyn et al., 2019) designed U-Net models (Ronneberger et al.,
2015) on a cylinder mesh, learning to predict air pressure and temperature dynamics on a coarse
global resolution of 5.625 ◦. More recently, Pathak et al. (2022) designed FourCastNet on the basis
of the Fourier Neural Operator (FNO) (Li et al., 2020b), moving to the native resolution of 0.25 ◦

of the ERA5 reanalysis dataset (Hersbach et al., 2020), which amounts to 721 × 1440 data points
covering the globe. The same dataset finds application in the Vision Transformer (ViT) (Dosovitskiy
et al., 2020) based Pangu-Weather model (Bi et al., 2023) and the state-of-the-art message-passing
Graph Neural Network (GNN) (Battaglia et al., 2018; Fortunato et al., 2022) based GraphCast model
(Lam et al., 2022).

In a comparison of state-of-the-art DLWP models, Rasp et al. (2023) find that GraphCast generates
the most accurate weather forecasts on lead-times up to ten days. GraphCast was trained on 221
variables from ERA5 (substantially more than Pangu-Weather and FourCastNet, which were trained
on 67 and 24 prognostic variables, respectively), but the root of GraphCast’s improved performance

∗Work done during an internship at AWS.
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remains entangled in details of the architecture type, choice of prognostic variables, and training
protocol. Here, we seek to elucidate the effect of the model architecture, i.e., GNN, Transformer,
U-Net, or FNO, and design an empirical evaluation that thoroughly compares DLWP backbone ar-
chitectures under controlled conditions while freezing data choice and training protocol. To this end,
we train and evaluate various architectures on two-dimensional Navier-Stokes simulations, while
controlling the number of parameters to generate cost-performance tradeoff curves. We motivate
our data choice of using the Navier-Stokes equations since they find application in NWP where they
are used to describe parts of the atmosphere’s dynamics.

With this analysis, we seek to motivate a model that has the greatest potential in addressing down-
sides of current DLWP models, e.g., stability of long roll-outs for climate lengthscales, uncertainty
quantification, and physically meaningful predictions. Our aim is to help the community find and
agree on a suitable backbone for DLWP models.

2 RELATED WORK AND METHODS

We compare six model classes that form the basis for state-of-the-art DLWP models. We provide a
brief overview of these methods in the following. (See Appendix A.1 for details and Table 2 in this
appendix for how we modify them to vary the number of parameters.) As a naı̈ve baseline and upper
bound for our error comparison, we implement Persistence, which predicts the last observed
state. Starting with early deep learning (DL) methods, we include convolutional long short-term
memory (ConvLSTM) (Shi et al., 2015), which combines spatial and temporal information pro-
cessing by replacing the scalar computations of LSTM gates (Hochreiter & Schmidhuber, 1997)
with convolution operations. ConvLSTM is one of the first DL models for precipitation nowcasting
and other spatiotemporal forecasting tasks, and it finds applications in Google’s MetNet1 and Met-
Net2 (Sønderby et al., 2020; Espeholt et al., 2022). Among early DL methods, we also benchmark
U-Net, which is one of the most prominent and versatile DL architectures, originally designed for
biomedical image segmentation (Ronneberger et al., 2015) and forms the backbone of many DLWP
models (Weyn et al., 2019; 2020; 2021; Karlbauer et al., 2023; Lopez-Gomez et al., 2023).

We also include two more recent architecture backbones based on Transformer and GNN, which
power current state-of-the-art DLWP models. The Transformer architecture (Vaswani et al., 2017)
has found success with image processing (Dosovitskiy et al., 2020) and has been applied to weather
forecasting, by viewing the atmospheric state as a sequence of three-dimensional images (Gao
et al., 2022). Pangu-Weather (Bi et al., 2023, by Huawei) and FuXi (Chen et al., 2023), use the
SwinTransformer backbone (Liu et al., 2021), whereas Microsoft refines the Transformer into
ClimaX, a model for weather and climate related downstream tasks (Nguyen et al., 2023). Multi-
Scale MeshGraphNet (MS MeshGraphNet) (Fortunato et al., 2022) extends MeshGraphNet (Pfaff
et al., 2020)—a message-passing GNN processing unstructured meshes—to operate on multiple
grids with different resolutions. MS MeshGraphNet forms the basis of GraphCast (Lam et al.,
2022) using a hierarchy of icosahedral meshes on the sphere.

Lastly, we benchmark architectures based on FNO (Li et al., 2020b). FNO is a type of operator learn-
ing method (Li et al., 2020a; Lu et al., 2021; Gupta et al., 2021) that learns a function-to-function
mapping by combining pointwise operations in physical space and in the wavenumber/frequency
domain. In contrast to the aforementioned architectures, it is a discretization invariant operator
method. While FNO can be applied to higher resolutions than it was trained on, it may not be able to
predict processes that unfold on smaller scales than observed during training (Krishnapriyan et al.,
2023). These uncaptured small-scale processes can be important in turbulence modeling. We im-
plement both a two- and a three-dimensional variant of FNO, as specified in Appendix A.1. We
also experiment with TFNO, using a Tucker-based tensor decomposition (Tucker, 1966; Kolda &
Bader, 2009), which is more parameter efficient. FNO serves as the basis for LBL’s and NVIDIA’s
FourCastNet series (Pathak et al., 2022; Bonev et al., 2023; Kurth et al., 2023), which we also
include in our comparison.1

1Due to the rectangular nature of our data, we consider the original FourCastNet implementation based
on Guibas et al. (2021) instead of the newer Spherical Fourier Neural Operator (SFNO) (Bonev et al., 2023),
which works with spherical data and is promising for weather prediction on the sphere.
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Table 1: RMSE scores for experiment 1, reported for each model under different number of parame-
ters. Errors reported in italic correspond to models that had to be retrained with gradient clipping (by
norm) due to stability issues. With OOM and sat, we denote models that ran out of GPU memory
and saturated, respectively. Saturated means that we did not further increase the parameters because
the performance already saturated over smaller parameter ranges. Best results shown in bold.

#params

Model 5 k 50 k 500 k 1M 2M 4M 8M 16M 32M

Persistence .5993 .5993 .5993 .5993 .5993 .5993 .5993 .5993 .5993
ConvLSTM .1278 .0319 .0102 .0090 .2329 .4443 OOM —- —-
U-Net .5993 .0269 .0157 .0145 .0131 .0126 .0126 sat —-
FNO3D L1-8 .3650 .2159 .1125 .1035 .1050 .0383 .0144 .0095 —-
TFNO3D L1-16 —- —- —- .0873 .0889 .0221 .0083 .0066 .0069
TFNO3D L4 —- .0998 .0173 .0127 .0107 .0091 .0083 sat —-
TFNO2D L4 .0632 .0139 .0055 .0046 .0043 .0054 .0041 .0046 sat
SwinTransformer .1637 .0603 .0107 .0084 .0070 OOM —- —- —-
FourCastNet .1558 .0404 .0201 .0154 .0164 .0153 .0149 sat —-
MS MeshGraphNet .2559 .0976 .5209 OOM —- —- —- —- —-

3 EXPERIMENTS AND RESULTS

We conduct three series of experiments to explore the ability of the architectures (see Section 2) to
predict the two-dimensional incompressible Navier-Stokes dynamics in a periodic domain. Our data
is discretized on a two-dimensional 64 × 64 grid, and we design the experiments to test two levels
of difficulties by generating less and more turbulent data, with Reynolds Numbers Re = 1× 103

(experiment 1) and Re = 1× 104 (experiments 2 and 3), respectively. For experiments 1 and 2, we
generate 1 k samples, while experiment 3 repeats experiment 2 with an increased number, 10 k, of
samples. Our experiments are designed to test: (1) easier vs. harder problems, with the modification
in Re, and (2) the effect of the data size. For comparability, the initial condition and forcing of the
data generation process are chosen to be identical with those in Li et al. (2020b); Gupta et al. (2021).
(See Appendix A.2.) Also, following Li et al. (2020b), the models receive a context history of
h = 10 input frames, on basis of which they autoregressively generate the remaining 40 (experiment
1) or 20 (experiments 2 and 3) frames.2 Concretely, we apply a rolling window when generating
autoregressive forecasts, by feeding the most recent h frames as input and predicting the next single
frame, i.e., ŷt+1 = φθ(xt−h,...,t), where ŷt+1 denotes the prediction of the next frame generated
by model φ with trainable parameters θ, and xt−h,...,t denotes the most recent h frames provided
as input concatenated along the channel dimension. The three-dimensional (T)FNO models make
an exception to the autoregressive rolling window approach, by receiving the first h frames x0:h

as input to directly generate a prediction ŷh+1:T of the entire remaining sequence in a single step.
See Appendix A.3 for our training protocol featuring hyperparameters, learning rate scheduling, and
weight updates.

Experiment 1: Reynolds Number Re = 1×103, 1 k samples. In this experiment, we generate
less turbulent dynamics with Reynolds Number Re = 1×103 and a sequence length of T = 50. The
quantitative root mean squared error (RMSE) metric, reported in Table 1 and Figure 1 (left) shows
that TFNO2D performs best, followed by TFNO3D, SwinTransformer, FNO3D, ConvLSTM,
U-Net, FourCastNet, and MS MeshGraphNet. (See the qualitative results in Figure 2 in
Appendix B.1 with the same findings.) All models outperform the naı̈ve Persistence baseline,
which always predicts the last observed state, i.e., ŷt = xh. This principally indicates a successful
training of all models. We observe substantial differences in the error saturation when increasing the
number of parameters, which supports the ordering of architectures seen in Figure 2. Concretely,
with an error of 1 × 10−2, MS MeshGraphNet does not reach the accuracy level of the other
models. Beyond 500 k parameters, the model hits the memory constraint and also does not con-

2Larger Reynolds Numbers lead to more turbulent dynamics that are harder to predict. Thus, Li et al.
(2020b) selects T = 50 and T = 30 for Re = 1e3 and Re = 1e4, respectively. We follow this convention.
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Figure 1: RMSE vs. number of parameters for models trained on Reynolds Numbers Re = 1× 103

(experiment 1, left) and Re = 1 × 104 (experiment 2, right) with 1k samples. Note the different
y-axis scales. Triangle markers indicate models with instability issues during training, requiring the
application of gradient clipping. In the limit of growing parameters, each model converges to an
individual error score (left), which seems consistent across data complexities (cf. left and right).

verge.3 When investigating the source of this unstable training behavior, we identify remarkable
effects of the graph design by comparing periodic 4-stencil, 8-stencil, and Delaunay triangulation
graphs, where the latter supports a stable convergence most (see Figure 3 in Appendix B.1 for de-
tails). Throughout our experiments, we use the 4-stencil graph. ConvLSTM is competitive within
the low-parameter-regime, saturating around an RMSE of 9 × 10−3, and becomes unstable with
large channel sizes (which we could not compensate even with gradient clipping), runs out of mem-
ory beyond 4M parameters, and suffers from exponential runtime complexity (see Figure 4 (right)
in Appendix B.1). Similarly, SwinTransformer generates comparably accurate predictions,
reaching an error of 7 × 10−3, before quickly running out of memory when going beyond 2M pa-
rameters. U-Net and FourCastNet express a similar behavior, saturating at the 1M parameter
configuration and reaching error levels of 1.2 × 10−2 and 1.5 × 10−2, respectively. In FNO3D and
TFNO3D, we observe a two-staged saturation, where the models first converge to a poor error regime
of 1 × 10−1, albeit approaching a remarkably smaller RMSE of 9 × 10−3 and 6 × 10−3, respec-
tively, when increasing the number of layers from 1 at #params ≤ 2M to 2, 4, 8, and 16 to obtain
the respective larger parameter counts.4 Instead, when fixing the numbers of layers at l = 4 and
varying the number of channels in TFNO3D L4, we observe better performance compared to the
single-layer TFNO3D L1-16 in the low-parameter regime (until 2M parameters), albeit not com-
petitive with other models. To additionally explore the effect of the number of layers vs. channels in
TFNO3D, we vary the number of parameters either by increasing the layers over l ∈ [1, 2, 4, 8, 16],
while fixing the number of channels at c = 32 in TFNO3D L1-16, or by increasing the number
of channels over c ∈ [2, 8, 11, 16, 22, 32] while fixing the number of layers at l = 4 in TFNO3D
4L. Consistent with Li et al. (2020b), we observe the performance saturating at four layers. Finally,
the autoregressive TFNO2D performs remarkably well across all parameter ranges—converging at
an unparalleled RMSE score of 4× 10−3—while, at the same time, constituting a reasonable trade-
off between memory consumption and runtime complexity (see Figure 4 in Appendix B.1). From
this we conclude that, at least for periodic fluid flow simulation, FNO2D marks a promising choice,
suggesting its application to real-world weather forecasting scenarios.

Experiment 2: Reynolds Number Re = 1 × 104, 1 k samples. In this experiment, to stress
test the consistency of the model order found in experiment 1, we generate more turbulent data by
increasing the Reynolds Number Re by an order of magnitude and reducing the simulation time
and sequence length to T = 30 timesteps. To reduce our search over various architectures, we

3Experiments are performed on an AWS g5.12xlarge instance featuring four NVIDIA A10G GPUs
with 23GB RAM each. We used single GPU training throughout all our experiments.

4We observe a similar behavior (not shown) when experimenting with the number of blocks vs. layers in
SwinTransformer, suggesting to prioritise more layers per block over more blocks with less layers.
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focus here on stable models only by removing those that depend on gradient clipping. We make
the same observations as in experiment 1, confirming TFNO2D as the most accurate model, fol-
lowed by SwinTransformer, TFNO3D, and U-Net on this harder task. See Figure 1 (right) for
quantitative results and Figure 6 in Appendix B.2 for qualitative results.

Experiment 3: Reynolds Number Re = 1 × 104, 10 k samples. Since in experiment 2, the
three-dimensional TFNO models with #params ≥ 8M start to show a slight tendency to overfit
(not shown), we repeat the experiment, increasing the number of training samples by an order of
magnitude to 10 k. Figure 5, Figure 7 and Table 4 in Appendix B.2 show that the same findings hold
on experiment 3, which has a larger number of 10 k samples.

4 DISCUSSION

In this work, we obtain insights into which DLWP models are more suitable for weather forecasting
by devising controlled experiments, which are useful more generally, to compare these models. In
particular, we fix the input data and training protocol and vary the architecture and number of param-
eters. In this limited setup on the synthetic two-dimensional periodic incompressible Navier-Stokes
dataset, we find that TFNO2D performs the best at predicting the dynamics, followed by TFNO3D,
SwinTransformer, FNO3D, ConvLSTM, U-Net, FourCastNet, and MS MeshGraphNet.
Importantly, throughout our experiments, we see that all benchmarked models eventually saturate at
an individual error regime, indicating that scaling laws could not be determined for the models and
task at hand. We thus identify a value for further research in developing an architecture that scales
with increased parameters without converging at a specific error level. The spherical Fourier Neural
Operator SFNO (Bonev et al., 2023) marks a reasonable starting point for further exploration, rang-
ing from increasing the number of prognostic variables, to providing more context to the models by
means of forcing fields, to incorporating physical knowledge (Li et al., 2022; Hansen et al., 2023)
and moving beyond deterministic forecasts (Cachay et al., 2023; Gao et al., 2023; Price et al., 2023).

A limitation of our work is the sole consideration of synthetic data. We seek to focus our future
endeavors on repeating the analysis presented here on WeatherBench (Rasp et al., 2020) to verify
our claims and suggestions on real-world weather data that is represented on the sphere. In addi-
tion, although we enable circular padding in the compared architectures, the periodic nature of the
data we use may favor the inductive bias of FNO. The periodicity exhibited in our data matches
that of weather dynamics on global scale. Throughout our experiments, we perform only single
model runs. When experimenting with different seeds, we do not encounter severe variations, which
is also supported by the consistent RMSE vs. parameter plots. We note the poor results for MS
MeshGraphNet, which we attribute to the underlying graph and to our training protocol. See-
ing that GraphCast has been trained very carefully on 221 prognostic variables, its lead over other
DLWP may be dominated by the number of variables and by the training protocol, and less to the
actual architecture. This hypothesis, however, needs further investigations in future work such as on
WeatherBench.
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A MODEL, DATA, AND TRAINING SPECIFICATIONS

In this section, we discuss the model configurations and how we vary the number of parameters in
our experiments. In addition, we detail the dataset generation and training protocols.

A.1 MODEL CONFIGURATIONS

We compare six model classes that form the basis for state-of-the-art DLWP models. We provide
details about each model and how we modify them in order to vary the number of parameters below.
Table 2 provides an overview and summary of the parameters and model configurations.

ConvLSTM We first implement an encoder—to increase the model’s receptive field—consisting
of three convolutions with kernel size k = 3, stride s = 1, padding p = 1, set
padding mode = circular to match the periodic nature of our data, and implement tanh activa-
tion functions. We add four ConvLSTM cells, also with circular padding and varying channel depth
(see Table 2 for details), followed by a linear output layer. Being the only recurrent model, we

Table 2: Model configurations partitioned by model and number of parameters (which amount
to the trainable weights). For configurations that are not specified here, the default settings
from the respective model config files are applied, e.g., ConvLSTM employs the default from
configs/model/convlstm.yaml, while overriding hidden sizes by the content of the
“Dim.” column of this table. Details are also reported in the respective model paragraphs of Ap-
pendix A.1.

Model #params Model-specific configurations

C
o
n
v
L
S
T
M

Enc. Dim. Dec.

5 k

3
×
C
o
n
v
2
D

w
ith

t
a
n
h
(
) 4× 4

1
×
C
o
n
v
2
D

50 k 4× 13
500 k 4× 40
1M 4× 57
2M 4× 81
4M 4× 114
8M — — —

(
T
)
F
N
O
3
D
L
1
-
1
6

#modes Dim. #layers

5 k 3× 3 11 1
50 k 3× 3 32 1

500 k 3× 7 32 1
1M 3× 10 32 1
2M 3× 12 32 1
4M 3× 12 32 2
8M 3× 12 32 4

16M 3× 12 32 8
32M 3× 12 32 16

T
F
N
O
3
D
L
4

#modes Dim. #layers

5 k — — —
50 k 3× 12 8 4

500 k 3× 12 11 4
1M 3× 12 16 4
2M 3× 12 22 4
4M 3× 12 32 4
8M 3× 12 45 4

S
w
i
n
-

T
r
a
n
s
f
o
r
m
e
r #heads Dim. #blocks #lrs/blck

5 k 1 8 1 1
50 k 2 8 2 2

500 k 4 40 2 4
1M 4 60 2 4
2M 4 88 2 4

Model Model-specific configurations

U
-
N
e
t

Dim. (hidden sizes)

[1, 2, 4, 8, 8]
[3, 6, 12, 24, 48]

[8, 16, 32, 64, 128]
[12, 24, 48, 96, 192]
[16, 32, 64, 128, 256]
[23, 46, 92, 184, 368]
[33, 66, 132, 264, 528]

T
F
N
O
2
D
L
4

#modes Dim. #layers

2× 12 2 4
2× 12 8 4
2× 12 27 4
2× 12 38 4
2× 12 54 4
2× 12 77 4
2× 12 108 4
2× 12 154 4

— — —

F
o
u
r
C
a
s
t
N
e
t

Dim. #layers

12 1
64 1
112 4
160 4
232 4
326 4
468 4

M
S
M
e
s
h
-

G
r
a
p
h
N
e
t

Dprocessor Dother

8 8
34 32
116 32
— —
— —
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perform ten steps of teacher forcing before switching to closed loop to autoregressively unroll a
prediction into the future.

U-Net We implement a five-layer encoder-decoder architecture with avgpool and transposed con-
volution operations for down and up-sampling, respectively. On each layer, we employ two con-
secutive convolutions with ReLU activations (Fukushima, 1975) and apply the same parameters
described above in the encoder for ConvLSTM. See Table 2 for the numbers of channels hyperpa-
rameter setting.

SwinTransformer Enabling circular padding and setting patch size p = 2, we benchmark the
shifted window transformer (Liu et al., 2021) by varying the number of channels, heads, layers, and
blocks, as detailed in Table 2, while keeping remaining parameters at their defaults.

MS MeshGraphNet We formulate a periodically connected graph to apply Multi-Scale Mesh-
GraphNet (MS MeshGraphNet) with two stages, featuring 1-hop and 2-hop neighborhoods, and
follow Fortunato et al. (2022) by encoding the distance and angle to neighbors in the edges. We
employ four processor and two node/edge encoding and decoding layers and set hidden dim = 32
for processor, node encoder, and edge encoder, unless overridden (see Table 2).

FNO We compare three variants of FNO: Two three-dimensional formulations, which process
the temporal and both spatial dimensions simultaneously to generate a three-dimensional output
of shape [T,H,W ] in one call, and a two-dimensional version, which only operates on the spatial
dimensions of the input and autoregressively unrolls a prediction into the future. While fixing the
lifting and projection channels at 256, we vary the number of Fourier modes, channel depth, and
number of layers according to Table 2.

FourCastNet We choose a patch size of p = 4, fix num blocks = 4, enable periodic padding in
both spatial dimensions, and keep the remaining parameters at their default values while varying the
number of layers and channels as specified in Table 2.

A.2 DATA GENERATION

We provide additional information about the data generation process in Table 3, which we keep as
close as possible to that reported in Li et al. (2020b) and Gupta et al. (2021).

A.3 TRAINING PROTOCOL

In the experiments, we use the Adam optimizer with learning rate η = 1× 10−3 (except for MS
MeshGraphNet, which only converged with a smaller learning rate of η = 1× 10−4) and cosine
learning rate scheduling to train all models with a batch size of B = 4, effectively realizing 125 k

Table 3: Settings for training, validation, and test data generation in the experiments, where f , T , δt,
and ν denote the dynamic forcing, sequence length (corresponding to the simulation time, which, in
our case, matches the number of frames, i.e., ∆t = 1), time step size for the simulation, and viscosity
(which is the inverse of the Reynolds Number, i.e., Re = 1/ν), respectively. The parameters α and
τ parameterize the Gaussian random field to sample an initial condition (IC) resembling the first
timestep.

Simulation parameters IC #samples

Experiment f T δt ν α τ Train Val. Test

1 ∗ 50 1× 10−2 1× 10−3 2.5 7 1000 50 200
2 ∗ 30 1× 10−4 1× 10−4 2.5 7 1000 50 200
3 ∗ 30 1× 10−4 1× 10−4 2.5 7 10000 50 200

∗f = 0.1(sin(2π(x+ y)) + cos(2π(x+ y))), with x, y ∈ [0, 1, . . . , 63].
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weight update steps, relating to 500 and 50 epochs, respectively, for 1 k and 10 k samples.5 For
the training objective and loss function, we choose the mean squared error (MSE) between the
model outputs and respective ground truth frames, that is L = MSE(ŷh+1:T , yh+1:T ). Note that, to
stabilize training, we have to employ gradient clipping (by norm) for selected models, indicated by
italic numbers in tables and triangle markers in figures.

B ADDITIONAL RESULTS AND MATERIALS

In this section, we provide additional empirical results for the three experiments.

B.1 RESULTS FROM EXPERIMENT 1: REYNOLDS NUMBER Re = 1× 103

Figure 2 illustrates the initial and end conditions along with the respective predictions of all models.
Qualitatively, we find there exist parameter settings for all models to successfully unroll a plausible
prediction of the Navier-Stokes dynamics over 40 frames into the future, as showcased by the last
predicted frame, i.e., ŷt=T (see the third and fifth row of Figure 2). When computing the difference
between the prediction and ground truth, i.e., d = ŷ − y, we observe clear variations in the accu-
racy of the model outputs, denoted by the saturation of the difference plots in the second and fourth
row of Figure 2. Interestingly, this difference plot also reveals artifacts in the outputs of selected
models: SwinTransformer and FourCastNet generate undesired patterns that resemble their
windowing and patching mechanisms, whereas the 2-hop neighborhood, which was chosen as the
resolution of the coarser grid, is baked into the output of MS MeshGraphNet. According to the

Table 4: RMSE scores partitioned by experiments and reported for each model under different
numbers of parameters. Errors reported in italic correspond to models that had to be retrained with
gradient clipping (by norm) due to stability issues. With OOM and sat, we denote models that ran
out of GPU memory and saturated, meaning that we did not train models with more parameters
because the performance already saturated over smaller parameter ranges. Best results are reported
in bold. More details about architecture specifications are reported in Appendix A.1 and Table 2.

#params

Model 5 k 50 k 500 k 1M 2M 4M 8M 16M 32M

E
xp

er
im

en
t1

Persistence .5993 .5993 .5993 .5993 .5993 .5993 .5993 .5993 .5993
ConvLSTM .1278 .0319 .0102 .0090 .2329 .4443 OOM —- —-
U-Net .5993 .0269 .0157 .0145 .0131 .0126 .0126 sat —-
FNO3D L1-8 .3650 .2159 .1125 .1035 .1050 .0383 .0144 .0095 —-
TFNO3D L1-16 —- —- —- .0873 .0889 .0221 .0083 .0066 .0069
TFNO3D L4 —- .0998 .0173 .0127 .0107 .0091 .0083 sat —-
TFNO2D L4 .0632 .0139 .0055 .0046 .0043 .0054 .0041 .0046 sat
SwinTransformer .1637 .0603 .0107 .0084 .0070 OOM —- —- —-
FourCastNet .1558 .0404 .0201 .0154 .0164 .0153 .0149 sat —-
MS MeshGraphNet .2559 .0976 .5209 OOM —- —- —- —- —-

E
xp

er
im

en
t2

Persistence 1.202 1.202 1.202 1.202 1.202 1.202 1.202 1.202 1.202
U-Net —- .3874 .3217 .3117 .3239 .3085 sat —- —-
TFNO3D L1-8 —- —- —- —- .5407 .3811 .3105 .3219 sat
TFNO3D L4 —- .5038 .3444 .3261 .3224 .3155 .3105 sat —-
TFNO2D L4 .4955 .3091 .2322 .2322 .2236 .2349 .2358 sat —-
SwinTransformer .6266 .4799 .2678 .2552 .2518 OOM —- —- —-

E
xp

er
im

en
t3

Persistence 1.202 1.202 1.202 1.202 1.202 1.202 1.202 1.202 1.202
U-Net —- .3837 .3681 .2497 .3162 .2350 .2383 sat —-
TFNO3D L1-16 —- —- —- —- .5146 .2805 .1814 .1570 .1709
TFNO3D L4 —- .4799 .2754 .2438 .2197 .2028 .1814 .1740 sat
TFNO2D L4 .4846 .2897 .1778 .1585 .1449 .1322 .1248 .1210 sat
SwinTransformer .6187 .4698 .2374 .2078 .1910 OOM —- —- —-

5With an exception for MS MeshGraphNet, which only supports a batch size of B = 1, resulting in
500 k weight update steps.
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Figure 2: Qualitative results on the Navier-Stokes dataset with Reynolds Number Re = 1 × 103

trained on 1 k samples (experiment 1). The first row shows the ground truth at four different points
in time. The remaining rows show the difference between the predicted- and ground-truth at final
time (row two and four), as well as the predicted final frame (row three and five). All models
receive the first 10 frames of the sequence to predict the remaining 40 frames. The last frame of
the predicted sequence from the best models are visualized and respective parameter counts are
displayed in parenthesis.

lowest error scores reported in Table 4, we only visualize the best performing model among all pa-
rameter ranges in Figure 2 and observe the trend that TFNO2D performs best, followed by TFNO3D,
SwinTransformer, FNO3D, ConvLSTM, U-Net, FourCastNet, and MS MeshGraphNet.
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10 20 30 40
Time step

10 1RM
SE

Persistence
MGN 4-stencil
MGN 8-stencil
MGN Delaunay
End of teacher forcing

Comparing different graphs for MeshGraphNet

Figure 3: RMSE evolving over forecast time for three different underlying graphs (meshes) that are
used in the single scale MeshGraphNet (MGN) (Pfaff et al., 2020).

Next, we study the effect of the underlying graph in GNNs. Observing the poor behavior of MS
MeshGraphNet in Figure 2, we investigate the effect of three different periodic graph designs to
represent the neighborhoods in the GNN. First, the 4-stencil graph connects each node’s perpendic-
ular four direct neighbors (i.e., north, east, south, and west) in a standard square Cartesian mesh.
Second, the 8-stencil graph adds the direct diagonal neighbors to the 4-stencil graph. Third, the
Delaunay graph connects all nodes in the graph by means of triangles, resulting in a hybrid of the
4-stencil and 8-stencil graph, where only some diagonal edges are added. To simplify the problem,
we conduct this analysis on the single-scale MeshGraphNet (Pfaff et al., 2020) instead of using the
hierarchical MS MeshGraphNet (Fortunato et al., 2022). While the graphs have the same number
of nodes |N | = 4096, their edge counts differ to |E4| = 16384, |E8| = 32768, and |ED| = 24576
for the 4-stencil, 8-stencil, and Delaunay graph, respectively. The results reported in this paper are
based on the 4-stencil graph.

Interestingly, as indicated in Figure 3, the results favor the Delaunay graph over the 8- and 4-stencil
graphs, respectively. Apparently, the increased connectedness is beneficial for the task. At the same
time, though, the irregularity introduced by the Delaunay triangulation potentially forces the model
to develop more informative codes for the edges to represent direction and distance of neighbors
more meaningfully.

Lastly, Figure 4 compares the RMSE, memory consumption and computational cost in seconds per
epoch as a function of the number of parameters. We see that TFNO2D L4 performs the best in
terms of the RMSE and also scales well with respect to memory and runtime.
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Figure 4: RMSE (left), memory consumption (center), and runtime complexity in seconds per epoch
(right) over different parameter counts for models trained on Reynolds Number Re = 1× 103 with
1 k samples for experiment 1.
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Figure 5: RMSE vs. parameters for models trained on Reynolds Number Re = 1 × 104 with 1 k
(experiment 2, left) and 10 k (experiment 3, right) samples. Note the different y-axis scales. Main
observation: As expected, model performance correlates with the number of samples. The number
of samples, though, does not affect the model ranking.

Initial condition

Ground truth U-Net (8M) TFNO3D (8M) TFNO2D (1M) SwinTransformer (2M)
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Figure 6: Qualitative results on Navier-Stokes data with Reynolds Number 1 × 104 trained on 1 k
samples (experiment 2). The top left shows the initial condition. The remaining columns in the top
row show the differences between the predicted and ground-truth at the final time for the various
models. The bottom left shows the ground truth at the final time. The remaining columns in the
bottom row show the final predictions from the various models to visually compare to the ground
truth. All models face difficulties at resolving the yellow vortex, resulting in blurry predictions
around the turbulent structure at this higher Reynolds Number. Among the parameter ranges, the
best models are selected for visualizations (parameter count in brackets).
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Figure 7: Qualitative results on Navier-Stokes data with Reynolds Number 1 × 104 trained on 10 k
samples (experiment 3). In comparison to Figure 6, the yellow vortex is captured more accurately
by TFNO2D as a consequence of the larger training set. See plot description in Figure 6 for details.
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B.2 RESULTS FROM EXPERIMENT 2 AND EXPERIMENT 3: Re = 1× 104

Table 4 shows the quantitative error scores of all the experiments (for an easier comparability).
We see that the same trend occurs across all three experiments with TFNO2D performing the best.
Figure 5 illustrates the similar trends of these RMSE results from experiments 2 and 3. Figure 6
and Figure 7 provide the qualitative visualizations for experiments 2 and 3, respectively. Figure 5
(right) and Figure 7 for experiment 3 show that, while all models consistently improve their scores
due to the larger training set, the results from experiments 1-2 still hold. That is, when comparing
the convergence levels in Figure 5 (right) and Table 4, we see that all models saturate at lower
error regimes, while the ordering of the model performance from experiment 1 remains unchanged.
Also qualitatively, the models benefit from the increase of training samples in experiment 3, since,
visually, the yellow vortex at this higher Reynolds Number is resolved more accurately when the
models are trained on more data, as illustrated in Figure 6 and Figure 7.
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