The Power of Prompt Tuning for Low-Resource Semantic Parsing

Anonymous ACL submission

Abstract

Prompt tuning has recently emerged as an effective method for adapting pre-trained language models to a number of language understanding and generation tasks. In this paper, we investigate prompt tuning for semantic parsing-the task of mapping natural language utterances onto formal meaning representations. On the low-resource splits of Overnight and TOPv2, we find that a prompt tuned T5-xl significantly outperforms its finetuned counterpart, as well as strong GPT-3 and BART baselines. We also conduct ablation studies across different model scales and target representations, finding that, with increasing model scale, prompt tuned T5 models improve at generating target representations that are far from the pre-training distribution.

1 Introduction

001

004

013

017

021

037

With the widespread success of pre-trained language models (LMs; Devlin et al. 2018; Raffel et al. 2020; Bommasani et al. 2021), it becomes increasingly important to explore how such models can be adapted to downstream tasks. One adaptation method which has recently attracted much attention is prompt design (Brown et al., 2020; Shin et al., 2020), which modulates the behaviour of a LM through a task description and a few inputoutput examples. Brown et al. (2020) show that this adaptation strategy is increasingly effective for larger LMs. However, prompt design is sensitive to the exact phrasing of the prompt, and, more importantly, performs worse than fine-tuning models on task-specific examples (Lester et al., 2021).

Prompt tuning has recently arisen as a strong performing alternative adaption method (Lester et al., 2021). Rather than hand-designing discrete prompts, prompt tuning optimizes the embeddings of a number of task-specific prompt tokens. In contrast to fine-tuning, this method keeps almost all LM parameters frozen. On a set of language

Figure 1: We show that the gap in prompt tuned T5 performance across target meaning representations shrinks as the number of parameters increase, with constrained decoded T5-xl achieving close to performance parity.

understanding tasks, Lester et al. (2021) show that prompt tuning becomes competitive with finetuning for the largest pre-trained T5 models (Raffel et al., 2020). Li and Liang (2021) also explore a related parameter-efficient adaptation method called prefix-tuning, finding that it outperforms fine-tuning on a number of language generation tasks.

041

042

043

045

050

054

056

060

061

062

063

064

In this paper, we investigate prompt tuning for semantic parsing. This task is fundamentally different from the aforementioned language understanding and generation tasks, as it requires that models output formal meaning representations which do not resemble the natural language distribution seen during pre-training. In particular, we focus on the low-resource setup because examples for semantic parsing are difficult and expensive to collect (Wang et al., 2015; Marzoev et al., 2020). We therefore evaluate prompt tuning on two datasets: the 200-shot version of Overnight (Wang et al., 2015; Shin et al., 2021) and the low-resource splits TOPv2 (Chen et al., 2020). On both datasets, we compare prompt tuning T5 against fine-tuning and investigate the effect of canonicalizing the meaning

representation, i.e. to what extent naturalizing the
logical forms influences performance. In addition,
we study the effect of T5 model scale on Overnight
as well as varying data regimes on TOPv2. Our
main findings can be summarized as follows:

- For large T5 models, prompt tuning significantly outperforms fine-tuning in the low-data regime, resulting in an absolute improvement of 6% and 15% on Overnight and TOPv2, respectively. This performance gap decreases when more training data becomes available.
- With growing model size, prompt tuned T5 models are increasingly capable of outputting diverse target representations (see Figure 1). On Overnight, we find that the disparity between canonical and meaning representations shrinks from 17% to 4% for T5-small and T5-xl, respectively. On TOPv2, prompt tuned T5-large models are much better at generating out-of-vocabulary tokens than T5-small.

2 Experiments

076

082

091

096

102

103

104

To evaluate low-resource prompt tuning, we compare against fine-tuned variants of the same model on two semantic parsing datasets with canonical representations available. We compare both large and small variants of the T5 architecture on these datasets and experiment with various canonicalized representations.

2.1 Datasets

Overnight The Overnight semantic parsing dataset (Wang et al., 2015) consists of 13,682 natural utterance, canonical form, meaning representation triples split across eight domains. To simulate low-resource splits of this dataset, we follow Shin et al. and create randomly subsampled splits of 200 training examples for each domain, using 20% of the remaining data for validation. We measure and report denotation accuracy by evaluating all predicted queries using the SEMPRE toolkit (Berant et al., 2013). We repeat each experiment on Overnight with five different random splits.

106**TOPv2** Chen et al. (2020) introduce the TOPv2107dataset, a task-oriented semantic parsing dataset108with eight domains, two of which come with pre-109defined low-resource splits. The authors propose a110principled way of constructing low-resource train-111ing sets, samples per intent and slot (SPIS), in-112tended to ensure equal exposure to ontology labels

across domains of varying complexity. We experi-113 ment with the weather and reminder domains at the 114 10, 25, and 500 SPIS resource splits, performing 115 five runs on each model varying the random seed. 116 The *reminder* domain is the most challenging with 117 19 intent labels, 32 slot labels, and with 21% of the 118 programs having a depth greater than 2. Weather in 119 comparison has 7 intent labels, 11 slot labels, and 120 no programs with depth greater than 2. 121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

151

152

153

154

155

156

2.2 Canonicalized Representations

2.2.1 Overnight

Overnight uses a context-free synchronous grammar to generate canonical representations for the logical forms. As can be seen in Appendix B, these canonical representations resemble natural language.

2.2.2 TOPv2

Chen et al. apply a set of simple modifications to the TOPv2 meaning representations to arrive at a canonical form used in all their experiments. Unlike Overnight, these pre-processing steps are largely small encoding differences and do not change the syntactic structure of the logical forms. We adopt all of these canonicalization steps (except for lexicographic sorting of the semantic parse tree) and add an ontology label shortening step. Examples of these transformations can be seen in Appendix B and are briefly described below.

- **Simplify** removes redundant utterance tokens unnecessary for interpreting the meaning representation.
- **Out-of-Vocab** adds the intent and slot labels to the tokenizer as atomic tokens with randomly initialized embeddings.
- **In-Vocab** replaces the intent and slot labels with a short unique identifier representable by the pre-trained tokenizer.

We perform an ablation over these canonicalization choices, repeating each experiment three times with varying random seed.

2.3 Models

We provide training details and hyperparameters for all models in Appendix A. Below, we briefly explain the prompt-tuning methodology.

Model	Representation	Method	Basketball	Blocks	Calendar	Housing	Publications	Recipes	Restaurants	Social	Average
T5-small	Meaning	FT PT	0.767 0.621	0.454 0.312	0.685 0.470	0.608 0.352	0.640 0.478	0.698 0.506	0.691 0.608	0.581 0.352	0.641 0.463
	Canonical	FT PT	0.775 0.764	0.466 0.440	0.721 0.680	0.616 0.601	0.665 0.648	0.673 0.699	0.636 0.697	0.568 0.578	0.640 0.638
T5-base	Meaning	FT PT FT	0.769 0.717 0.800	0.455 0.429 0.466	0.717 0.677 0.736	0.612 0.510 0.642	0.670 0.596 0.711	0.713 0.639 0.694	0.714 0.705 0.696	0.587 0.492 0.597	0.655 0.596 0.668
	Calibilica	PT	0.786	0.452	0.682	0.636	0.675	0.705	0.733	0.614	0.660
BART	Meaning Canonical	FT FT	0.734 0.591	0.370 0.331	0.514 0.740	0.540 0.309	0.514 0.668	0.477 0.598	0.417 0.582	0.424 0.532	0.499 0.544
T5-large	Meaning	FT PT	0.777 0.792	0.432 0.469	0.690 0.739	0.639 0.676	0.709 0.696	0.729 0.734	0.723 0.778	0.590 0.600	0.661 0.685
	Canonical	FT PT	0.793 0.819	0.458 0.525	0.760 0.768	0.658 0.712	0.678 0.744	0.727 0.789	0.715 0.769	0.581 0.655	0.671 0.723
T5-xl	Meaning	FT PT	0.774 0.819	0.413 0.532	0.702 0.767	0.630 0.693	0.682 0.694	0.691 0.758	0.705 0.778	0.580 0.632	0.647 0.709
	Canonical	FT PT	0.799 0.839	0.486 0.544	0.781 0.777	0.647 0.729	0.724 0.770	0.732 0.791	0.725 0.789	0.619 0.702	0.689 0.743

Table 1: Unconstrained denotation accuracy for all models (with unconstrained decoding) on the Overnight dataset. For each domain, we report the average over 5 runs trained on randomly sampled splits of 200 examples for fine-tuned (FT) and prompt tuned (PT) models.

2.3.1 Prompt Tuning

157

158

159

160

161

162

163

164

165

166

168

169

170

171

172

173

174

175

176

177

178

179

181

182

Prompt tuning, as proposed by Lester et al. (2021), prepends a sequence of tokens $\mathbf{p} = (p_1, \dots, p_K)$ to the input sequence $\mathbf{u} = (u_1, \dots, u_N)$ before feeding it to a language model with parameters θ . Prompt tokens p_k are added to the vocabulary and assigned a continuous embedding $e(p_k)$. During prompt tuning we optimize the embeddings $(e(p_1), \dots, e(p_K))$ while keeping the language model parameters θ fixed. Note that this process still requires backpropagating gradients through the full language model. Like fine-tuning models, we maximize the likelihood of generating the output sequence \mathbf{z} .

3 Results

In Table 1, we report Overnight results across four T5 model scales and two target representations. In Table 2, we add constrained decoding (see Appendix A) to our best performing T5 model and compare against previously reported Overnight results. In Table 3, we display the results of T5-large on the three different SPIS-splits of TOPv2, and include the BART-CopyPtr results from Chen et al. (2020). In Table 4, we summarize the results of the canonicalization ablation study for TOPv2.

3.1 Prompt tuning vs fine tuning

We find that prompt tuning improves over finetuning for all large model configurations and target representations. On Overnight, prompt tuned denotation accuracy exceeds fine-tuned counterparts by up to 5 points with T5-large and T5-xl.
For T5-small and T5-base, prompt tuning remains competitive (within 1% average accuracy) with fine-tuning when predicting canonical forms. On TOPv2, prompt tuning achieves an absolute improvement of 15% mean accuracy over fine-tuning on the lowest SPIS split. This performance disparity lessens when training data increases; however, prompt tuned T5-large continues to beat its finetuned counterpart by 5 points at 500 SPIS and the BART-CopyPtr model by 1.4 points. 189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

221

Our prompt tuning models outperform previously reported results on these datasets. On Overnight, our best model—T5-xl PT with canonical representations and constrained decoding outperforms the BART FT model of Shin et al. (2021) by 5 accuracy points, and GPT-3 by more than 2 points. On the 25 SPIS split of TOPv2, we see an average improvement of more than 5 points compared to the BART-CopyPTR of Chen et al. (2020).

3.2 Canonical vs meaning representations

Our main finding is that prompt tuned T5 models become better at generating meaning representations with increased model size. On Overnight, we see the absolute difference between canonical and meaning representations shrink from 17.5 points for T5-small to 3.4 points for T5-xl (Table 1). This gap shrinks another 18% to 2.8 points when we apply constrained decoding to T5-xl (Table 2). By contrast, Shin et al. (2021) reports an 11.7 point difference when prompting GPT-3. For our finetuning baselines, we observe a small performance gap of 4 points across target representations for BART and T5-xl, while we observe no gap for

Model	Representation	Method	Decoding	Basketball	Blocks	Calendar	Housing	Publications	Recipes	Restaurants	Social	Average
T5-xl	Meaning	PT	Constrained	0.841	0.592	0.802	0.765	0.776	0.814	0.789	0.725	0.763
T5-xl	Canonical	PT	Constrained	0.856	0.619	0.806	0.779	0.824	0.830	0.822	0.793	0.791
BART [†]	Meaning	FT	Constrained	0.834	0.499	0.750	0.619	0.739	0.796	0.774	0.620	0.704
BART [†]	Canonical	FT	Constrained	0.864	0.554	0.780	0.672	0.758	0.801	0.801	0.666	0.737
GPT-2 [†]	Meaning	FT	Constrained	0.760	0.479	0.736	0.571	0.645	0.699	0.660	0.606	0.644
GPT-2 [†]	Canonical	FT	Constrained	0.836	0.540	0.766	0.666	0.715	0.764	0.768	0.623	0.710
GPT-3 [†]	Canonical	Context	Constrained	0.859	0.634	0.792	0.741	0.776	0.792	0.840	0.687	0.765
GPT-3 [†] *	Meaning	Context	Constrained	0.680	0.530	0.680	0.580	0.630	0.750	0.780	0.630	0.657
GPT-3 [†] *	Canonical	Context	Constrained	0.800	0.620	0.820	0.710	0.790	0.840	0.890	0.720	0.774

Table 2: Constrained denotation accuracy for all models on the Overnight dataset. For each domain, we report the average over 5 runs trained on randomly sampled splits of 200 examples. [†] denotes results reported by Shin et al. (2021). * indicates performance on subsampled test set.

SPIS	Model	Method	Reminder	Weather	Average
10	T5-large	FT PT	0.392 0.567	0.579 0.700	0.486 0.634
25	BART-CopyPtr T5-large	FT FT PT	0.557 0.502 0.642	0.716 0.683 0.739	0.637 0.593 0.691
500	BART-CopyPtr T5-large	FT FT PT	0.719 0.649 0.749	0.849 0.846 0.847	0.784 0.748 0.798

Table 3: Average exact match accuracies (5 runs) for different low-resource splits of the TOPv2 dataset. BART-CopyPtr results from Chen et al. (2020).

	None		Simplified		In-V	'ocab	Out-of-Vocab		
SPIS	Sm.	Lg.	Sm.	Lg.	Sm.	Lg.	Sm.	Lg.	
10 25 500	0.43 0.56 0.72	0.70 0.74 0.85	0.31 0.51 0.72	0.66 0.73 0.85	0.45 0.55 0.72	0.64 0.71 0.85	0.23 0.27 0.48	0.69 0.70 0.83	

Table 4: Exact match accuracies (3 runs) on TOPv2 Weather domain for different meaning representation canonicalization choices (**bold** indicates best exact match accuracy at that resource level), Sm. and Lg. refer to T5-small and T5-large, respectively.

T5-small, T5-base, and T5-large models.

223

224

226

227

228

230

240

241

242

243

245

246

247

In our TOPv2 experiments we find similar evidence of large T5 model flexibility for generating sequences far from the training distribution. In particular, for our most intrusive canonicalization scheme Out-of-Vocab, which adds novel tokens to the vocabulary and leaves these embeddings un-trained, we find no significant reduction in performance for T5-large across all data resource levels. T5-small, in comparison, sees almost a 50% drop in performance relative to no canonicalization (None) at the 10 SPIS level and continues to underperform by 33 % at the 500 SPIS level.

Interestingly, we find that In-Vocab drastically reduces performance for T5-small at the 10 SPIS level—30.9% vs. 43.4% for None—but slightly outperforms it at 500 SPIS. We speculate that In-Vocab effectively anonymizes the ontology tokens, obscuring information that is useful for prediction. In low-data regimes there is not enough training data to learn the semantics of these anonymized tokens, whereas with enough data this problem vanishes.

3.3 Training Times

Prompt tuned parameter efficiency comes at a cost: we find that prompt tuning takes significantly

longer to train with early stopping than does finetuning. On the Overnight dataset, fine-tuned models typically took 500 epochs before validation performance plateaued. Our prompt tuned models frequently took more than 2000 epochs when predicting canonical representations, and up to 10,000 when predicting meaning representations. 248

249

250

251

252

253

254

255

256

257

258

259

261

262

263

264

265

266

267

268

269

270

271

272

4 Conclusion

We find that prompt tuning is an effective method for adapting language models to the semantic parsing task. Prompt tuning significantly outperforms fine-tuning in low-data regimes, and remains competitive in the fully supervised setting. We furthermore find that while canonicalizing meaning representations can slightly improve performance, the disparity between target representations decreases when prompt tuning larger T5 models. This result differs from previous work (Shin et al., 2021) which suggested that pre-trained LMs are much better equipped to output canonical than meaning representations. However, a significant limitation of prompt tuning is that it takes more time to converge than fine-tuning. We believe one fruitful direction for future research is to look into reducing its training time.

References

273

274

275

281

290

291

297

301

302

304

305

308

313

314

315

316

317

319

323

324

325

326

- J. Berant, A. Chou, R. Frostig, and P. Liang. 2013. Semantic parsing on Freebase from question-answer pairs. In *Empirical Methods in Natural Language Processing (EMNLP)*.
- Jonathan Berant and Percy Liang. 2014. Semantic parsing via paraphrasing. In *Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 1415– 1425, Baltimore, Maryland. Association for Computational Linguistics.
- Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie S. Chen, Kathleen Creel, Jared Quincy Davis, Dorottya Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren Gillespie, Karan Goel, Noah D. Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark S. Krass, Ranjay Krishna, Rohith Kuditipudi, and et al. 2021. On the opportunities and risks of foundation models. CoRR, abs/2108.07258.
 - Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam Mc-Candlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners. arXiv:2005.14165 [cs].
 - Giovanni Campagna, Silei Xu, Mehrad Moradshahi, Richard Socher, and Monica S. Lam. 2019. Genie: A generator of natural language semantic parsers for virtual assistant commands. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2019, page 394–410, New York, NY, USA. Association for Computing Machinery.
- Xilun Chen, Asish Ghoshal, Yashar Mehdad, Luke Zettlemoyer, and Sonal Gupta. 2020. Low-Resource Domain Adaptation for Compositional Task-Oriented Semantic Parsing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 5090– 5100, Online. Association for Computational Linguistics.

Jianpeng Cheng, Siva Reddy, Vijay Saraswat, and Mirella Lapata. 2017. Learning structured natural language representations for semantic parsing. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 44–55, Vancouver, Canada. Association for Computational Linguistics. 331

332

334

335

339

341

342

344

345

346

347

349

350

351

352

354

355

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

- Harm De Vries, Florian Strub, Jérémie Mary, Hugo Larochelle, Olivier Pietquin, and Aaron Courville.
 2017. Modulating early visual processing by language. arXiv preprint arXiv:1707.00683.
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. Cite arxiv:1810.04805Comment: 13 pages.
- Li Dong and Mirella Lapata. 2016. Language to logical form with neural attention. In *Proceedings of the* 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 33–43, Berlin, Germany. Association for Computational Linguistics.
- Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj Kumar, and Mike Lewis. 2018. Semantic parsing for task oriented dialog using hierarchical representations. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pages 2787–2792, Brussels, Belgium. Association for Computational Linguistics.
- Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. Parameter-efficient transfer learning for nlp. In *International Conference on Machine Learning*, pages 2790–2799. PMLR.
- Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. *CoRR*, abs/1412.6980.
- Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The Power of Scale for Parameter-Efficient Prompt Tuning. *arXiv:2104.08691* [cs].
- Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART: Denoising sequence-to-sequence pretraining for natural language generation, translation, and comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7871–7880, Online. Association for Computational Linguistics.
- Xiang Lisa Li and Percy Liang. 2021. Prefix-Tuning: Optimizing Continuous Prompts for Generation. *arXiv:2101.00190 [cs]*.
- Kevin Lin, Ben Bogin, Mark Neumann, Jonathan Berant, and Matt Gardner. 2019. Grammar-based neural text-to-sql generation. *CoRR*, abs/1905.13326.

- 387 388 390 391 392 393 394 395 396
- 3
- 400
- 401 402
- 403 404
- 405
- 407
- 408 409 410
- 411

412 413

414 415 416

> 417 418

> > 419

420 421

422 423

424 425

426

427 428 429

430 431

432 433

434

435 436

436 437

- Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. 2021. Gpt understands, too. *arXiv preprint arXiv:2103.10385*.
- Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. 2021. Compacter: Efficient lowrank hypercomplex adapter layers. *arXiv preprint arXiv:2106.04647*.
- Alana Marzoev, Samuel Madden, M. Frans Kaashoek, Michael J. Cafarella, and Jacob Andreas. 2020. Unnatural language processing: Bridging the gap between synthetic and natural language data. *CoRR*, abs/2004.13645.
- Guanghui Qin and Jason Eisner. 2021. Learning how to ask: Querying lms with mixtures of soft prompts. *arXiv preprint arXiv:2104.06599*.
- Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the limits of transfer learning with a unified text-totext transformer. *Journal of Machine Learning Research*, 21(140):1–67.
- S-A Rebuffi, H. Bilen, and A. Vedaldi. 2017. Learning multiple visual domains with residual adapters. In Advances in Neural Information Processing Systems.
- Timo Schick and Hinrich Schütze. 2020. Few-shot text generation with pattern-exploiting training. *arXiv* preprint arXiv:2012.11926.
- Timo Schick and Hinrich Schütze. 2020. Exploiting cloze questions for few-shot text classification and natural language inference. *Computing Research Repository*, arXiv:2001.07676.
- Torsten Scholak, Raymond Li, Dzmitry Bahdanau, Harm de Vries, and Chris Pal. 2020. Duo-RAT: Towards Simpler Text-to-SQL Models. *arXiv:2010.11119 [cs]*.
- Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. 2021. Picard: Parsing incrementally for constrained auto-regressive decoding from language models.
- Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and Kristina Toutanova. 2021. Compositional generalization and natural language variation: Can a semantic parsing approach handle both? In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 922–938, Online. Association for Computational Linguistics.
- Noam M. Shazeer and Mitchell Stern. 2018. Adafactor: Adaptive learning rates with sublinear memory cost. *ArXiv*, abs/1804.04235.

- Richard Shin, Christopher H. Lin, Sam Thomson, Charles Chen, Subhro Roy, Emmanouil Antonios Platanios, Adam Pauls, Dan Klein, Jason Eisner, and Benjamin Van Durme. 2021. Constrained Language Models Yield Few-Shot Semantic Parsers. *arXiv:2104.08768 [cs]*.
- Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. 2020. AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 4222–4235, Online. Association for Computational Linguistics.
- Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew Richardson. 2020. RAT-SQL: Relation-aware schema encoding and linking for text-to-SQL parsers. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 7567–7578, Online. Association for Computational Linguistics.
- Yushi Wang, Jonathan Berant, and Percy Liang. 2015. Building a Semantic Parser Overnight. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 1332–1342, Beijing, China. Association for Computational Linguistics.
- Silei Xu, Giovanni Campagna, Jian Li, and Monica S. Lam. 2020a. Schema2qa: High-quality and lowcost q&a agents for the structured web. In CIKM '20: The 29th ACM International Conference on Information and Knowledge Management, Virtual Event, Ireland, October 19-23, 2020, pages 1685– 1694. ACM.
- Silei Xu, Sina Semnani, Giovanni Campagna, and Monica Lam. 2020b. AutoQA: From databases to QA semantic parsers with only synthetic training data. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing* (*EMNLP*), pages 422–434, Online. Association for Computational Linguistics.
- Pengcheng Yin and Graham Neubig. 2018. TRANX: A transition-based neural abstract syntax parser for semantic parsing and code generation. In *Proceedings* of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 7–12, Brussels, Belgium. Association for Computational Linguistics.

477

478

479

480

481

482

483

484

485

486

487

438

439

440

441

442

443

444

445

446

447

448

Α Models

488

489

490

491

492

493

494

495

496

497

498

499

503

504

507

509

511

512

513

514

515

516

517

518

531

532

533

534

Here we provide all model details and hyperparameters to reproduce our results. We experiment with BART(Lewis et al., 2020) and T5(Raffel et al., 2020), two large pre-trained encoder-decoder language models. BART is trained on the same 160GB text dataset used to train RoBERTa (Lewis et al., 2020) with a denoising objective. There are two size configurations (BART-base, BART-large) and we experiment only with the 406M parameter BART-large on the Overnight dataset. T5 is trained on the 750GB C4 dataset (Raffel et al., 2020) with a de-noising objective. We use the T5-v1.1 checkpoints from Lester et al. (2021) that were trained for an additional 100K steps with the Prefix-LM objective. T5-v1.1 has five configurations at various scales: small, base, large, xl, xxl which have 60M, 220M, 770M, 3B, and 11B parameters, respectively. Here, we experiment with models up to T5-xl.

Fine-tuning baseline We compare against baselines that fine-tune all parameters of BART and T5. We train the T5 models with AdaFactor (Shazeer 510 and Stern, 2018) and BART with Adam (Lewis et al., 2020; Kingma and Ba, 2015). On TOPv2, we use a learning rate of 10^{-4} and batch size of 128. On Overnight, we use a learning rate of 10^{-3} and a batch size of 64 across all sizes of T5. On both datasets, we train for 5000 epochs and perform model selection by early stopping on the validation set.

Prompt tuning We follow the prompt tuning pro-519 cedure proposed by Lester et al. for T5. We use 520 150 prompt tokens for all model sizes with a learning rate of 0.3 optimized with AdaFactor. We train 522 for 5000 epochs on most domains, although as high 523 as 20000 on the low-resource splits. Like the fine-524 tuned baseline, we perform model selection with 525 best exact match accuracy on the validation set. We apply the same method to BART and found that it did not converge under a number of hyperparameter configurations. We therefore exclude prompt tuned BART models from our results¹.

Constrained Decoding We implement grammarconstrained decoding by building a prefix tree containing all canonical or meaning representations in the dataset as in Shin et al. (2021). When doing

constrained decoding we perform a beam search 535 with 10 beams and use the prefix tree to look up 536 valid single token continuations of the decoded se-537 quence. 538

539

B **Canonicalization examples**

We provide an example of the canonicalized 540 and meaning representations from the Overnight 541 dataset in in Figure 2 and of the canonicalizations 542 steps used for TOPv2 in the canonicalization steps 543 for TOPv2 in Figure 3. 544

Utterance

which players are not point guards

Meaning Representation

```
(call listValue
  (call getProperty
    ((lambda s
       (call filter
         (var s)
         (string position)
         (string !=) en.position.point_guard))
      (call domain
        (string player)))
    (string player)))
```

Canonicalization

player whose position is not point guard

Figure 2: Example from TOPv2 dataset with different canonicalization strategies applied.

Utterance

Driving directions to the Eagles game

Meaning Representation

```
[IN:GET_DIRECTIONS Driving directions to
   [SL:DESTINATION
      [IN:GET_EVENT the
         [SL:NAME_EVENT Eagles]
         [SL:CAT_EVENT game]]]]
```

Canonicalization

```
simplify meaning representation by removing utterance tokens
  [IN:GET_DIRECTIONS Driving directions to
      [SL:DESTINATION
         [IN:GET EVENT the
             [SL:NAME_EVENT Eagles]
             [SL:CAT_EVENT game]]]]
replace ontology labels with shortened In-Vocab label
  [T1 [T2 [T3 [T4 Eagles] [T5 game]]]]
replace ontology labels with single Out-of-Vocab token
  [<+1> [<+2> [<+3> [<+4> Eagles] [<+5> game]]]]
```

Figure 3: Example from TOPv2 dataset with different canonicalization strategies applied.

¹Li and Liang also find that prompt tuning with BART is unstable and parameterize the prefix with an MLP; we did not attempt this setup.

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

594

C Related work

545

546

547

548

549

550

551

552

555

556

558

561

562

563

568

571

574

576

577

580

584

585

586

589

Our work is related to recent work on semantic parsing and prompt tuning, which we briefly describe below.

C.1 Semantic Parsing

Semantic parsing is the task of converting a natural language utterance $\mathbf{u} = (u_1, \ldots, u_N)$ to a formal meaning representation $\mathbf{z} = (z_1, \ldots, z_M)$. These meaning representations, also referred to as logical forms, can be interpreted by machines and executed in a real environment. For example, ThingTalk (Campagna et al., 2019) and TOP (Gupta et al., 2018) are meaning representations for executing commands of virtual assistants, while SQL is a representation for interacting with relational databases.

In recent years, neural sequence-to-sequence models have become the dominant approach for semantic parsing tasks (Dong and Lapata, 2016). Such models encode a natural language utterance **u** into a sequence of continuous embeddings, which are then decoded into a probability distribution over the meaning representation **z**. The parameters of these encoder-decoder models are trained to maximize the likelihood of outputting the correct representation on the training set. To ensure the decoder only outputs valid meaning representations, some works have explored methods for constraining the output space of the decoder (Cheng et al., 2017; Yin and Neubig, 2018; Lin et al., 2019).

Large language models Recent work has explored how to leverage pre-trained language models, like BERT (Devlin et al., 2018), BART (Lewis et al., 2020), and T5 (Raffel et al., 2020), for semantic parsing tasks. As these language models are trained on text-only corpora, it is unclear to what extent they can be adapted to generate meaning representations. Some researchers have only used BERT in the encoder (Wang et al., 2020; Scholak et al., 2020; Xu et al., 2020a). Others have proposed to use a generative model like BART to augment the dataset by paraphrasing natural language utterances (Xu et al., 2020b). Recently, it has been shown that T5 can be successfully fine-tuned on a large-scale text-to-sql dataset (Shaw et al., 2021; Scholak et al., 2021).

591CanonicalizationA common simplification step592in semantic parsing is to canonicalize the mean-593ing representations. That is, the meaning repre-

sentation z is naturalized to a canonical form c through a grammar or set of rules. An example of the meaning and canonical representation for Overnight (Wang et al., 2015) can be found in Fig. 2.

When canonical representations are available, Berant and Liang (2014) argue that semantic parsing can be seen as a paraphrase task. They propose to use a paraphrase model-using e.g. word vectors trained on Wikipedia-to find the best paraphrase of utterance u among a set of canonical utterances. They show this paraphrase model improves results over directly generating logical forms on two question-answering datasets. Marzoev et al. (2020) extends this work by showing that pre-trained language models like BERT can be effective paraphrasers. While Berant and Liang (2014); Marzoev et al. (2020) use models to score canonical utterances, Shin et al. (2021) propose to constrain the generation process of autoregressive models like BART and GPT-3. On a number of few-shot semantic parsing tasks, they demonstrate the benefit of generating canonical representations over meaning representations.

C.2 Prompt-tuning

Lester et al. (2021) evaluates prompt tuning on SuperGLUE, a benchmark consisting of eight language understanding tasks. They find that prompt tuning becomes competitive with fine-tuning for the largest T5 model. Li and Liang (2021) propose prefix-tuning to adapt BART and GPT-2 for natural language generation tasks. This method differs from Lester et al. (2021) in that it prepends trainable embeddings for each layer of the language model rather than introducing token embeddings at the input layer. They demonstrate that pre-fix outperforms fine-tuning baselines. Similarly, Liu et al. (2021) also show encouraging results for prompt tuning on natural language understand and generation tasks. Qin and Eisner (2021) also explores prompt tuning but for a knowledge extraction task. Inserting general adapter layers into pre-trained language models is also proposed in Houlsby et al. (2019); Mahabadi et al. (2021). Related to our work are also other few-shot adaptation techniques like PET (Schick and Schütze, 2020; Schick and Schütze, 2020). Moreover, adapter layers have also been explored in the computer vision domain (Rebuffi et al., 2017; De Vries et al., 2017).

D Results

644 645

646

643

For completeness, we provide all Overnight results in Table 5. In Figure 4, we show example training curves for prompt tuning and fine-tuning.

Figure 4: Prompt and fine-tuned exact match validation accuracy on the Overnight *blocks* domain. Fine-tuned models can quickly reach peak validation accuracy regardless of target representation. Prompt tuned models can take thousands of epochs to converge when predicting meaning representations.

Model	Representation	Method	Constrained	Basketball	Blocks	Calendar	Housing	Publications	Recipes	Restaurants	Social	Average
T5-small	Meaning	FT	Unconstrained	0.767	0.454	0.685	0.608	0.640	0.698	0.691	0.581	0.641
			Constrained	0.787	0.519	0.725	0.624	0.753	0.752	0.705	0.664	0.691
		PT	Unconstrained	0.621	0.312	0.470	0.352	0.478	0.506	0.608	0.352	0.463
			Constrained	0.656	0.392	0.615	0.475	0.593	0.588	0.663	0.450	0.554
	Canonical	FT	Unconstrained	0.775	0.466	0.721	0.616	0.665	0.673	0.636	0.568	0.640
		500	Constrained	0.811	0.519	0.744	0.663	0.729	0.723	0.692	0.671	0.694
		PT	Unconstrained	0.764	0.440	0.680	0.601	0.648	0.699	0.697	0.578	0.638
			Constrained	0.787	0.521	0.730	0.679	0.735	0.748	0.746	0.674	0.703
T5-base	Meaning	FT	Unconstrained	0.769	0.455	0.717	0.612	0.670	0.713	0.714	0.587	0.655
			Constrained	0.790	0.496	0.738	0.639	0.743	0.745	0.737	0.644	0.692
		PT	Unconstrained	0.717	0.429	0.677	0.510	0.596	0.639	0.705	0.492	0.596
			Constrained	0.754	0.494	0.760	0.593	0.725	0.699	0.752	0.586	0.670
	Canonical	FT	Unconstrained	0.800	0.466	0.736	0.642	0.711	0.694	0.696	0.597	0.668
			Constrained	0.840	0.525	0.745	0.676	0.773	0.736	0.734	0.696	0.716
		PT	Unconstrained	0.786	0.452	0.682	0.636	0.675	0.705	0.733	0.614	0.660
			Constrained	0.826	0.550	0.774	0.717	0.780	0.764	0.770	0.708	0.736
BART	Meaning	FT	Unconstrained	0.734	0.370	0.514	0.540	0.514	0.477	0.417	0.424	0.499
	Canonical	FT	Unconstrained	0.591	0.331	0.740	0.309	0.668	0.598	0.582	0.532	0.544
T5-large	Meaning	FT	Unconstrained	0.777	0.432	0.690	0.639	0.709	0.729	0.723	0.590	0.661
			Constrained	0.789	0.475	0.713	0.662	0.743	0.754	0.717	0.641	0.687
		PT	Unconstrained	0.792	0.469	0.739	0.676	0.696	0.734	0.778	0.600	0.685
			Constrained	0.816	0.533	0.774	0.742	0.760	0.787	0.793	0.680	0.736
	Canonical	FT	Unconstrained	0.793	0.458	0.760	0.658	0.678	0.727	0.715	0.581	0.671
			Constrained	0.819	0.509	0.751	0.703	0.718	0.742	0.728	0.664	0.704
		PT	Unconstrained	0.819	0.525	0.768	0.712	0.744	0.789	0.769	0.655	0.723
			Constrained	0.841	0.597	0.805	0.770	0.794	0.823	0.823	0.750	0.775
T5-xl	Meaning	FT	Unconstrained	0.774	0.413	0.702	0.630	0.682	0.691	0.705	0.580	0.647
			Constrained	0.799	0.453	0.731	0.658	0.749	0.724	0.728	0.647	0.686
		PT	Unconstrained	0.819	0.532	0.767	0.693	0.694	0.758	0.778	0.632	0.709
			Constrained	0.841	0.592	0.802	0.765	0.776	0.814	0.789	0.725	0.763
	Canonical	FT	Unconstrained	0.799	0.486	0.781	0.647	0.724	0.732	0.725	0.619	0.689
			Constrained	0.818	0.555	0.783	0.705	0.763	0.770	0.752	0.703	0.731
		PT	Unconstrained	0.839	0.544	0.777	0.729	0.770	0.791	0.789	0.702	0.743
			Constrained	0.856	0.619	0.806	0.779	0.824	0.830	0.822	0.793	0.791
BART	Meaning	FT	Unconstrained	0.813	0.476	0.732	0.566	0.696	0.778	0.720	0.536	0.665
			Constrained	0.834	0.499	0.750	0.619	0.739	0.796	0.774	0.620	0.704
	Canonical	FT	Unconstrained	0.852	0.539	0.726	0.656	0.714	0.773	0.756	0.585	0.700
			Constrained	0.864	0.554	0.780	0.672	0.758	0.801	0.801	0.666	0.737
GPT-2	Meaning	FT	Constrained	0.760	0.479	0.736	0.571	0.645	0.699	0.660	0.606	0.644
	Canonical	FT	Constrained	0.836	0.540	0.766	0.666	0.715	0.764	0.768	0.623	0.710
GPT-3	Canonical	Context	Constrained	0.859	0.634	0.792	0.741	0.776	0.792	0.840	0.687	0.765
GPT-3*	Meaning	Context	Unconstrained	0.560	0.390	0.500	0.420	0.460	0.660	0.580	0.480	0.506
	U U		Constrained	0.680	0.530	0.680	0.580	0.630	0.750	0.780	0.630	0.657
	Canonical	Context	Unconstrained	0.760	0.460	0.680	0.560	0.580	0.740	0.740	0.550	0.634
			Constrained	0.800	0.620	0.820	0.710	0.790	0.840	0.890	0.720	0.774

Table 5: Results across all model size, target representation, tuning method, and decoding method for Overnight dataset. BART, GPT-2, and GPT-3 results results are included from Shin et al. (2021)