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Abstract

Prompt tuning has recently emerged as an ef-001
fective method for adapting pre-trained lan-002
guage models to a number of language un-003
derstanding and generation tasks. In this pa-004
per, we investigate prompt tuning for seman-005
tic parsing—the task of mapping natural lan-006
guage utterances onto formal meaning rep-007
resentations. On the low-resource splits of008
Overnight and TOPv2, we find that a prompt009
tuned T5-xl significantly outperforms its fine-010
tuned counterpart, as well as strong GPT-3 and011
BART baselines. We also conduct ablation012
studies across different model scales and tar-013
get representations, finding that, with increas-014
ing model scale, prompt tuned T5 models im-015
prove at generating target representations that016
are far from the pre-training distribution.017

1 Introduction018

With the widespread success of pre-trained lan-019

guage models (LMs; Devlin et al. 2018; Raffel020

et al. 2020; Bommasani et al. 2021), it becomes021

increasingly important to explore how such models022

can be adapted to downstream tasks. One adap-023

tation method which has recently attracted much024

attention is prompt design (Brown et al., 2020; Shin025

et al., 2020), which modulates the behaviour of a026

LM through a task description and a few input-027

output examples. Brown et al. (2020) show that028

this adaptation strategy is increasingly effective for029

larger LMs. However, prompt design is sensitive030

to the exact phrasing of the prompt, and, more im-031

portantly, performs worse than fine-tuning models032

on task-specific examples (Lester et al., 2021).033

Prompt tuning has recently arisen as a strong034

performing alternative adaption method (Lester035

et al., 2021). Rather than hand-designing discrete036

prompts, prompt tuning optimizes the embeddings037

of a number of task-specific prompt tokens. In038

contrast to fine-tuning, this method keeps almost039

all LM parameters frozen. On a set of language040

T5-base

T5-small

T5-large
T5-xl

Figure 1: We show that the gap in prompt tuned T5 per-
formance across target meaning representations shrinks
as the number of parameters increase, with constrained
decoded T5-xl achieving close to performance parity.

understanding tasks, Lester et al. (2021) show 041

that prompt tuning becomes competitive with fine- 042

tuning for the largest pre-trained T5 models (Raffel 043

et al., 2020). Li and Liang (2021) also explore 044

a related parameter-efficient adaptation method 045

called prefix-tuning, finding that it outperforms 046

fine-tuning on a number of language generation 047

tasks. 048

In this paper, we investigate prompt tuning for 049

semantic parsing. This task is fundamentally differ- 050

ent from the aforementioned language understand- 051

ing and generation tasks, as it requires that mod- 052

els output formal meaning representations which 053

do not resemble the natural language distribution 054

seen during pre-training. In particular, we focus 055

on the low-resource setup because examples for 056

semantic parsing are difficult and expensive to col- 057

lect (Wang et al., 2015; Marzoev et al., 2020). We 058

therefore evaluate prompt tuning on two datasets: 059

the 200-shot version of Overnight (Wang et al., 060

2015; Shin et al., 2021) and the low-resource splits 061

TOPv2 (Chen et al., 2020). On both datasets, we 062

compare prompt tuning T5 against fine-tuning and 063

investigate the effect of canonicalizing the meaning 064
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representation, i.e. to what extent naturalizing the065

logical forms influences performance. In addition,066

we study the effect of T5 model scale on Overnight067

as well as varying data regimes on TOPv2. Our068

main findings can be summarized as follows:069

• For large T5 models, prompt tuning signifi-070

cantly outperforms fine-tuning in the low-data071

regime, resulting in an absolute improvement072

of 6% and 15% on Overnight and TOPv2, re-073

spectively. This performance gap decreases074

when more training data becomes available.075

• With growing model size, prompt tuned T5076

models are increasingly capable of outputting077

diverse target representations (see Figure 1).078

On Overnight, we find that the disparity be-079

tween canonical and meaning representations080

shrinks from 17% to 4% for T5-small and081

T5-xl, respectively. On TOPv2, prompt tuned082

T5-large models are much better at generating083

out-of-vocabulary tokens than T5-small.084

2 Experiments085

To evaluate low-resource prompt tuning, we com-086

pare against fine-tuned variants of the same model087

on two semantic parsing datasets with canonical088

representations available. We compare both large089

and small variants of the T5 architecture on these090

datasets and experiment with various canonicalized091

representations.092

2.1 Datasets093

Overnight The Overnight semantic parsing094

dataset (Wang et al., 2015) consists of 13,682 natu-095

ral utterance, canonical form, meaning representa-096

tion triples split across eight domains. To simulate097

low-resource splits of this dataset, we follow Shin098

et al. and create randomly subsampled splits of099

200 training examples for each domain, using 20%100

of the remaining data for validation. We measure101

and report denotation accuracy by evaluating all102

predicted queries using the SEMPRE toolkit (Be-103

rant et al., 2013). We repeat each experiment on104

Overnight with five different random splits.105

TOPv2 Chen et al. (2020) introduce the TOPv2106

dataset, a task-oriented semantic parsing dataset107

with eight domains, two of which come with pre-108

defined low-resource splits. The authors propose a109

principled way of constructing low-resource train-110

ing sets, samples per intent and slot (SPIS), in-111

tended to ensure equal exposure to ontology labels112

across domains of varying complexity. We experi- 113

ment with the weather and reminder domains at the 114

10, 25, and 500 SPIS resource splits, performing 115

five runs on each model varying the random seed. 116

The reminder domain is the most challenging with 117

19 intent labels, 32 slot labels, and with 21% of the 118

programs having a depth greater than 2. Weather in 119

comparison has 7 intent labels, 11 slot labels, and 120

no programs with depth greater than 2. 121

2.2 Canonicalized Representations 122

2.2.1 Overnight 123

Overnight uses a context-free synchronous gram- 124

mar to generate canonical representations for the 125

logical forms. As can be seen in Appendix B, 126

these canonical representations resemble natural 127

language. 128

2.2.2 TOPv2 129

Chen et al. apply a set of simple modifications 130

to the TOPv2 meaning representations to arrive 131

at a canonical form used in all their experiments. 132

Unlike Overnight, these pre-processing steps are 133

largely small encoding differences and do not 134

change the syntactic structure of the logical forms. 135

We adopt all of these canonicalization steps (ex- 136

cept for lexicographic sorting of the semantic parse 137

tree) and add an ontology label shortening step. 138

Examples of these transformations can be seen in 139

Appendix B and are briefly described below. 140

Simplify removes redundant utterance tokens un- 141

necessary for interpreting the meaning repre- 142

sentation. 143

Out-of-Vocab adds the intent and slot labels to 144

the tokenizer as atomic tokens with randomly 145

initialized embeddings. 146

In-Vocab replaces the intent and slot labels with 147

a short unique identifier representable by the 148

pre-trained tokenizer. 149

We perform an ablation over these canonicaliza- 150

tion choices, repeating each experiment three times 151

with varying random seed. 152

2.3 Models 153

We provide training details and hyperparameters 154

for all models in Appendix A. Below, we briefly 155

explain the prompt-tuning methodology. 156
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Model Representation Method Basketball Blocks Calendar Housing Publications Recipes Restaurants Social Average

T5-small Meaning FT 0.767 0.454 0.685 0.608 0.640 0.698 0.691 0.581 0.641
PT 0.621 0.312 0.470 0.352 0.478 0.506 0.608 0.352 0.463

Canonical FT 0.775 0.466 0.721 0.616 0.665 0.673 0.636 0.568 0.640
PT 0.764 0.440 0.680 0.601 0.648 0.699 0.697 0.578 0.638

T5-base Meaning FT 0.769 0.455 0.717 0.612 0.670 0.713 0.714 0.587 0.655
PT 0.717 0.429 0.677 0.510 0.596 0.639 0.705 0.492 0.596

Canonical FT 0.800 0.466 0.736 0.642 0.711 0.694 0.696 0.597 0.668
PT 0.786 0.452 0.682 0.636 0.675 0.705 0.733 0.614 0.660

BART Meaning FT 0.734 0.370 0.514 0.540 0.514 0.477 0.417 0.424 0.499
Canonical FT 0.591 0.331 0.740 0.309 0.668 0.598 0.582 0.532 0.544

T5-large Meaning FT 0.777 0.432 0.690 0.639 0.709 0.729 0.723 0.590 0.661
PT 0.792 0.469 0.739 0.676 0.696 0.734 0.778 0.600 0.685

Canonical FT 0.793 0.458 0.760 0.658 0.678 0.727 0.715 0.581 0.671
PT 0.819 0.525 0.768 0.712 0.744 0.789 0.769 0.655 0.723

T5-xl Meaning FT 0.774 0.413 0.702 0.630 0.682 0.691 0.705 0.580 0.647
PT 0.819 0.532 0.767 0.693 0.694 0.758 0.778 0.632 0.709

Canonical FT 0.799 0.486 0.781 0.647 0.724 0.732 0.725 0.619 0.689
PT 0.839 0.544 0.777 0.729 0.770 0.791 0.789 0.702 0.743

Table 1: Unconstrained denotation accuracy for all models (with unconstrained decoding) on the Overnight dataset.
For each domain, we report the average over 5 runs trained on randomly sampled splits of 200 examples for fine-
tuned (FT) and prompt tuned (PT) models.

2.3.1 Prompt Tuning157

Prompt tuning, as proposed by Lester et al. (2021),158

prepends a sequence of tokens p = (p1, . . . , pK)159

to the input sequence u = (u1, . . . , uN ) before160

feeding it to a language model with parameters161

θ. Prompt tokens pk are added to the vocabu-162

lary and assigned a continuous embedding e(pk).163

During prompt tuning we optimize the embed-164

dings (e(p1), . . . , e(pK)) while keeping the lan-165

guage model parameters θ fixed. Note that this166

process still requires backpropagating gradients167

through the full language model. Like fine-tuning168

models, we maximize the likelihood of generating169

the output sequence z.170

3 Results171

In Table 1, we report Overnight results across four172

T5 model scales and two target representations.173

In Table 2, we add constrained decoding (see Ap-174

pendix A) to our best performing T5 model and175

compare against previously reported Overnight re-176

sults. In Table 3, we display the results of T5-large177

on the three different SPIS-splits of TOPv2, and178

include the BART-CopyPtr results from Chen et al.179

(2020). In Table 4, we summarize the results of the180

canonicalization ablation study for TOPv2.181

3.1 Prompt tuning vs fine tuning182

We find that prompt tuning improves over fine-183

tuning for all large model configurations and tar-184

get representations. On Overnight, prompt tuned185

denotation accuracy exceeds fine-tuned counter-186

parts by up to 5 points with T5-large and T5-xl.187

For T5-small and T5-base, prompt tuning remains188

competitive (within 1% average accuracy) with 189

fine-tuning when predicting canonical forms. On 190

TOPv2, prompt tuning achieves an absolute im- 191

provement of 15% mean accuracy over fine-tuning 192

on the lowest SPIS split. This performance dispar- 193

ity lessens when training data increases; however, 194

prompt tuned T5-large continues to beat its fine- 195

tuned counterpart by 5 points at 500 SPIS and the 196

BART-CopyPtr model by 1.4 points. 197

Our prompt tuning models outperform previ- 198

ously reported results on these datasets. On 199

Overnight, our best model—T5-xl PT with canon- 200

ical representations and constrained decoding— 201

outperforms the BART FT model of Shin et al. 202

(2021) by 5 accuracy points, and GPT-3 by more 203

than 2 points. On the 25 SPIS split of TOPv2, we 204

see an average improvement of more than 5 points 205

compared to the BART-CopyPTR of Chen et al. 206

(2020). 207

3.2 Canonical vs meaning representations 208

Our main finding is that prompt tuned T5 models 209

become better at generating meaning representa- 210

tions with increased model size. On Overnight, we 211

see the absolute difference between canonical and 212

meaning representations shrink from 17.5 points 213

for T5-small to 3.4 points for T5-xl (Table 1). This 214

gap shrinks another 18% to 2.8 points when we 215

apply constrained decoding to T5-xl (Table 2). By 216

contrast, Shin et al. (2021) reports an 11.7 point 217

difference when prompting GPT-3. For our fine- 218

tuning baselines, we observe a small performance 219

gap of 4 points across target representations for 220

BART and T5-xl, while we observe no gap for 221
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Model Representation Method Decoding Basketball Blocks Calendar Housing Publications Recipes Restaurants Social Average

T5-xl Meaning PT Constrained 0.841 0.592 0.802 0.765 0.776 0.814 0.789 0.725 0.763
T5-xl Canonical PT Constrained 0.856 0.619 0.806 0.779 0.824 0.830 0.822 0.793 0.791

BART† Meaning FT Constrained 0.834 0.499 0.750 0.619 0.739 0.796 0.774 0.620 0.704
BART† Canonical FT Constrained 0.864 0.554 0.780 0.672 0.758 0.801 0.801 0.666 0.737

GPT-2† Meaning FT Constrained 0.760 0.479 0.736 0.571 0.645 0.699 0.660 0.606 0.644
GPT-2† Canonical FT Constrained 0.836 0.540 0.766 0.666 0.715 0.764 0.768 0.623 0.710

GPT-3† Canonical Context Constrained 0.859 0.634 0.792 0.741 0.776 0.792 0.840 0.687 0.765

GPT-3†∗ Meaning Context Constrained 0.680 0.530 0.680 0.580 0.630 0.750 0.780 0.630 0.657
GPT-3†∗ Canonical Context Constrained 0.800 0.620 0.820 0.710 0.790 0.840 0.890 0.720 0.774

Table 2: Constrained denotation accuracy for all models on the Overnight dataset. For each domain, we report the
average over 5 runs trained on randomly sampled splits of 200 examples. † denotes results reported by Shin et al.
(2021). ∗ indicates performance on subsampled test set.

SPIS Model Method Reminder Weather Average

10 T5-large FT 0.392 0.579 0.486
PT 0.567 0.700 0.634

25 BART-CopyPtr FT 0.557 0.716 0.637
T5-large FT 0.502 0.683 0.593

PT 0.642 0.739 0.691

500 BART-CopyPtr FT 0.719 0.849 0.784
T5-large FT 0.649 0.846 0.748

PT 0.749 0.847 0.798

Table 3: Average exact match accuracies (5 runs)
for different low-resource splits of the TOPv2 dataset.
BART-CopyPtr results from Chen et al. (2020).

T5-small, T5-base, and T5-large models.222

In our TOPv2 experiments we find similar ev-223

idence of large T5 model flexibility for generat-224

ing sequences far from the training distribution.225

In particular, for our most intrusive canonicaliza-226

tion scheme Out-of-Vocab, which adds novel227

tokens to the vocabulary and leaves these embed-228

dings un-trained, we find no significant reduction229

in performance for T5-large across all data resource230

levels. T5-small, in comparison, sees almost a 50%231

drop in performance relative to no canonicaliza-232

tion (None) at the 10 SPIS level and continues to233

underperform by 33 % at the 500 SPIS level.234

Interestingly, we find that In-Vocab drasti-235

cally reduces performance for T5-small at the 10236

SPIS level—30.9% vs. 43.4% for None—but237

slightly outperforms it at 500 SPIS. We speculate238

that In-Vocab effectively anonymizes the ontol-239

ogy tokens, obscuring information that is useful240

for prediction. In low-data regimes there is not241

enough training data to learn the semantics of these242

anonymized tokens, whereas with enough data this243

problem vanishes.244

3.3 Training Times245

Prompt tuned parameter efficiency comes at a246

cost: we find that prompt tuning takes significantly247

None Simplified In-Vocab Out-of-Vocab

SPIS Sm. Lg. Sm. Lg. Sm. Lg. Sm. Lg.

10 0.43 0.70 0.31 0.66 0.45 0.64 0.23 0.69
25 0.56 0.74 0.51 0.73 0.55 0.71 0.27 0.70
500 0.72 0.85 0.72 0.85 0.72 0.85 0.48 0.83

Table 4: Exact match accuracies (3 runs) on TOPv2
Weather domain for different meaning representation
canonicalization choices (bold indicates best exact
match accuracy at that resource level), Sm. and Lg. re-
fer to T5-small and T5-large, respectively.

longer to train with early stopping than does fine- 248

tuning. On the Overnight dataset, fine-tuned mod- 249

els typically took 500 epochs before validation per- 250

formance plateaued. Our prompt tuned models 251

frequently took more than 2000 epochs when pre- 252

dicting canonical representations, and up to 10,000 253

when predicting meaning representations. 254

4 Conclusion 255

We find that prompt tuning is an effective method 256

for adapting language models to the semantic pars- 257

ing task. Prompt tuning significantly outperforms 258

fine-tuning in low-data regimes, and remains com- 259

petitive in the fully supervised setting. We further- 260

more find that while canonicalizing meaning rep- 261

resentations can slightly improve performance, the 262

disparity between target representations decreases 263

when prompt tuning larger T5 models. This re- 264

sult differs from previous work (Shin et al., 2021) 265

which suggested that pre-trained LMs are much 266

better equipped to output canonical than meaning 267

representations. However, a significant limitation 268

of prompt tuning is that it takes more time to con- 269

verge than fine-tuning. We believe one fruitful di- 270

rection for future research is to look into reducing 271

its training time. 272
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A Models488

Here we provide all model details and hyperpa-489

rameters to reproduce our results. We experi-490

ment with BART(Lewis et al., 2020) and T5(Raffel491

et al., 2020), two large pre-trained encoder-decoder492

language models. BART is trained on the same493

160GB text dataset used to train RoBERTa (Lewis494

et al., 2020) with a denoising objective. There are495

two size configurations (BART-base, BART-large)496

and we experiment only with the 406M parameter497

BART-large on the Overnight dataset. T5 is trained498

on the 750GB C4 dataset (Raffel et al., 2020) with499

a de-noising objective. We use the T5-v1.1 check-500

points from Lester et al. (2021) that were trained501

for an additional 100K steps with the Prefix-LM502

objective. T5-v1.1 has five configurations at vari-503

ous scales: small, base, large, xl, xxl which have504

60M, 220M, 770M, 3B, and 11B parameters, re-505

spectively. Here, we experiment with models up to506

T5-xl.507

Fine-tuning baseline We compare against base-508

lines that fine-tune all parameters of BART and T5.509

We train the T5 models with AdaFactor (Shazeer510

and Stern, 2018) and BART with Adam (Lewis511

et al., 2020; Kingma and Ba, 2015). On TOPv2,512

we use a learning rate of 10−4 and batch size of513

128. On Overnight, we use a learning rate of 10−3514

and a batch size of 64 across all sizes of T5. On515

both datasets, we train for 5000 epochs and perform516

model selection by early stopping on the validation517

set.518

Prompt tuning We follow the prompt tuning pro-519

cedure proposed by Lester et al. for T5. We use520

150 prompt tokens for all model sizes with a learn-521

ing rate of 0.3 optimized with AdaFactor. We train522

for 5000 epochs on most domains, although as high523

as 20000 on the low-resource splits. Like the fine-524

tuned baseline, we perform model selection with525

best exact match accuracy on the validation set. We526

apply the same method to BART and found that it527

did not converge under a number of hyperparam-528

eter configurations. We therefore exclude prompt529

tuned BART models from our results1.530

Constrained Decoding We implement grammar-531

constrained decoding by building a prefix tree con-532

taining all canonical or meaning representations in533

the dataset as in Shin et al. (2021). When doing534

1Li and Liang also find that prompt tuning with BART is
unstable and parameterize the prefix with an MLP; we did not
attempt this setup.

constrained decoding we perform a beam search 535

with 10 beams and use the prefix tree to look up 536

valid single token continuations of the decoded se- 537

quence. 538

B Canonicalization examples 539

We provide an example of the canonicalized 540

and meaning representations from the Overnight 541

dataset in in Figure 2 and of the canonicalizations 542

steps used for TOPv2 in the canonicalization steps 543

for TOPv2 in Figure 3. 544

Figure 2: Example from TOPv2 dataset with different
canonicalization strategies applied.

Figure 3: Example from TOPv2 dataset with different
canonicalization strategies applied.
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C Related work545

Our work is related to recent work on semantic546

parsing and prompt tuning, which we briefly de-547

scribe below.548

C.1 Semantic Parsing549

Semantic parsing is the task of converting a nat-550

ural language utterance u = (u1, . . . , uN ) to a551

formal meaning representation z = (z1, . . . , zM ).552

These meaning representations, also referred to553

as logical forms, can be interpreted by machines554

and executed in a real environment. For ex-555

ample, ThingTalk (Campagna et al., 2019) and556

TOP (Gupta et al., 2018) are meaning representa-557

tions for executing commands of virtual assistants,558

while SQL is a representation for interacting with559

relational databases.560

In recent years, neural sequence-to-sequence561

models have become the dominant approach for562

semantic parsing tasks (Dong and Lapata, 2016).563

Such models encode a natural language utterance u564

into a sequence of continuous embeddings, which565

are then decoded into a probability distribution over566

the meaning representation z. The parameters of567

these encoder-decoder models are trained to maxi-568

mize the likelihood of outputting the correct repre-569

sentation on the training set. To ensure the decoder570

only outputs valid meaning representations, some571

works have explored methods for constraining the572

output space of the decoder (Cheng et al., 2017;573

Yin and Neubig, 2018; Lin et al., 2019).574

Large language models Recent work has ex-575

plored how to leverage pre-trained language mod-576

els, like BERT (Devlin et al., 2018), BART (Lewis577

et al., 2020), and T5 (Raffel et al., 2020), for se-578

mantic parsing tasks. As these language models are579

trained on text-only corpora, it is unclear to what580

extent they can be adapted to generate meaning581

representations. Some researchers have only used582

BERT in the encoder (Wang et al., 2020; Scholak583

et al., 2020; Xu et al., 2020a). Others have pro-584

posed to use a generative model like BART to aug-585

ment the dataset by paraphrasing natural language586

utterances (Xu et al., 2020b). Recently, it has been587

shown that T5 can be successfully fine-tuned on a588

large-scale text-to-sql dataset (Shaw et al., 2021;589

Scholak et al., 2021).590

Canonicalization A common simplification step591

in semantic parsing is to canonicalize the mean-592

ing representations. That is, the meaning repre-593

sentation z is naturalized to a canonical form c 594

through a grammar or set of rules. An example 595

of the meaning and canonical representation for 596

Overnight (Wang et al., 2015) can be found in 597

Fig. 2. 598

When canonical representations are available, 599

Berant and Liang (2014) argue that semantic pars- 600

ing can be seen as a paraphrase task. They propose 601

to use a paraphrase model—using e.g. word vectors 602

trained on Wikipedia—to find the best paraphrase 603

of utterance u among a set of canonical utterances. 604

They show this paraphrase model improves re- 605

sults over directly generating logical forms on two 606

question-answering datasets. Marzoev et al. (2020) 607

extends this work by showing that pre-trained lan- 608

guage models like BERT can be effective para- 609

phrasers. While Berant and Liang (2014); Marzoev 610

et al. (2020) use models to score canonical utter- 611

ances, Shin et al. (2021) propose to constrain the 612

generation process of autoregressive models like 613

BART and GPT-3. On a number of few-shot seman- 614

tic parsing tasks, they demonstrate the benefit of 615

generating canonical representations over meaning 616

representations. 617

C.2 Prompt-tuning 618

Lester et al. (2021) evaluates prompt tuning on 619

SuperGLUE, a benchmark consisting of eight lan- 620

guage understanding tasks. They find that prompt 621

tuning becomes competitive with fine-tuning for 622

the largest T5 model. Li and Liang (2021) propose 623

prefix-tuning to adapt BART and GPT-2 for natu- 624

ral language generation tasks. This method differs 625

from Lester et al. (2021) in that it prepends train- 626

able embeddings for each layer of the language 627

model rather than introducing token embeddings at 628

the input layer. They demonstrate that pre-fix out- 629

performs fine-tuning baselines. Similarly, Liu et al. 630

(2021) also show encouraging results for prompt 631

tuning on natural language understand and gener- 632

ation tasks. Qin and Eisner (2021) also explores 633

prompt tuning but for a knowledge extraction task. 634

Inserting general adapter layers into pre-trained 635

language models is also proposed in Houlsby et al. 636

(2019); Mahabadi et al. (2021). Related to our 637

work are also other few-shot adaptation techniques 638

like PET (Schick and Schütze, 2020; Schick and 639

Schütze, 2020). Moreover, adapter layers have also 640

been explored in the computer vision domain (Re- 641

buffi et al., 2017; De Vries et al., 2017). 642
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D Results643

For completeness, we provide all Overnight results644

in Table 5. In Figure 4, we show example training645

curves for prompt tuning and fine-tuning.646

1k 2k 3k 4k

Epochs
0

0.1

0.2

0.3

0.4

Meaning

(prompt tuned)

Canonical

(prompt tuned)

Meaning

(fine-tuned)

Figure 4: Prompt and fine-tuned exact match validation
accuracy on the Overnight blocks domain. Fine-tuned
models can quickly reach peak validation accuracy re-
gardless of target representation. Prompt tuned models
can take thousands of epochs to converge when predict-
ing meaning representations.
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Model Representation Method Constrained Basketball Blocks Calendar Housing Publications Recipes Restaurants Social Average

T5-small Meaning FT Unconstrained 0.767 0.454 0.685 0.608 0.640 0.698 0.691 0.581 0.641
Constrained 0.787 0.519 0.725 0.624 0.753 0.752 0.705 0.664 0.691

PT Unconstrained 0.621 0.312 0.470 0.352 0.478 0.506 0.608 0.352 0.463
Constrained 0.656 0.392 0.615 0.475 0.593 0.588 0.663 0.450 0.554

Canonical FT Unconstrained 0.775 0.466 0.721 0.616 0.665 0.673 0.636 0.568 0.640
Constrained 0.811 0.519 0.744 0.663 0.729 0.723 0.692 0.671 0.694

PT Unconstrained 0.764 0.440 0.680 0.601 0.648 0.699 0.697 0.578 0.638
Constrained 0.787 0.521 0.730 0.679 0.735 0.748 0.746 0.674 0.703

T5-base Meaning FT Unconstrained 0.769 0.455 0.717 0.612 0.670 0.713 0.714 0.587 0.655
Constrained 0.790 0.496 0.738 0.639 0.743 0.745 0.737 0.644 0.692

PT Unconstrained 0.717 0.429 0.677 0.510 0.596 0.639 0.705 0.492 0.596
Constrained 0.754 0.494 0.760 0.593 0.725 0.699 0.752 0.586 0.670

Canonical FT Unconstrained 0.800 0.466 0.736 0.642 0.711 0.694 0.696 0.597 0.668
Constrained 0.840 0.525 0.745 0.676 0.773 0.736 0.734 0.696 0.716

PT Unconstrained 0.786 0.452 0.682 0.636 0.675 0.705 0.733 0.614 0.660
Constrained 0.826 0.550 0.774 0.717 0.780 0.764 0.770 0.708 0.736

BART Meaning FT Unconstrained 0.734 0.370 0.514 0.540 0.514 0.477 0.417 0.424 0.499
Canonical FT Unconstrained 0.591 0.331 0.740 0.309 0.668 0.598 0.582 0.532 0.544

T5-large Meaning FT Unconstrained 0.777 0.432 0.690 0.639 0.709 0.729 0.723 0.590 0.661
Constrained 0.789 0.475 0.713 0.662 0.743 0.754 0.717 0.641 0.687

PT Unconstrained 0.792 0.469 0.739 0.676 0.696 0.734 0.778 0.600 0.685
Constrained 0.816 0.533 0.774 0.742 0.760 0.787 0.793 0.680 0.736

Canonical FT Unconstrained 0.793 0.458 0.760 0.658 0.678 0.727 0.715 0.581 0.671
Constrained 0.819 0.509 0.751 0.703 0.718 0.742 0.728 0.664 0.704

PT Unconstrained 0.819 0.525 0.768 0.712 0.744 0.789 0.769 0.655 0.723
Constrained 0.841 0.597 0.805 0.770 0.794 0.823 0.823 0.750 0.775

T5-xl Meaning FT Unconstrained 0.774 0.413 0.702 0.630 0.682 0.691 0.705 0.580 0.647
Constrained 0.799 0.453 0.731 0.658 0.749 0.724 0.728 0.647 0.686

PT Unconstrained 0.819 0.532 0.767 0.693 0.694 0.758 0.778 0.632 0.709
Constrained 0.841 0.592 0.802 0.765 0.776 0.814 0.789 0.725 0.763

Canonical FT Unconstrained 0.799 0.486 0.781 0.647 0.724 0.732 0.725 0.619 0.689
Constrained 0.818 0.555 0.783 0.705 0.763 0.770 0.752 0.703 0.731

PT Unconstrained 0.839 0.544 0.777 0.729 0.770 0.791 0.789 0.702 0.743
Constrained 0.856 0.619 0.806 0.779 0.824 0.830 0.822 0.793 0.791

BART Meaning FT Unconstrained 0.813 0.476 0.732 0.566 0.696 0.778 0.720 0.536 0.665
Constrained 0.834 0.499 0.750 0.619 0.739 0.796 0.774 0.620 0.704

Canonical FT Unconstrained 0.852 0.539 0.726 0.656 0.714 0.773 0.756 0.585 0.700
Constrained 0.864 0.554 0.780 0.672 0.758 0.801 0.801 0.666 0.737

GPT-2 Meaning FT Constrained 0.760 0.479 0.736 0.571 0.645 0.699 0.660 0.606 0.644
Canonical FT Constrained 0.836 0.540 0.766 0.666 0.715 0.764 0.768 0.623 0.710

GPT-3 Canonical Context Constrained 0.859 0.634 0.792 0.741 0.776 0.792 0.840 0.687 0.765

GPT-3* Meaning Context Unconstrained 0.560 0.390 0.500 0.420 0.460 0.660 0.580 0.480 0.506
Constrained 0.680 0.530 0.680 0.580 0.630 0.750 0.780 0.630 0.657

Canonical Context Unconstrained 0.760 0.460 0.680 0.560 0.580 0.740 0.740 0.550 0.634
Constrained 0.800 0.620 0.820 0.710 0.790 0.840 0.890 0.720 0.774

Table 5: Results across all model size, target representation, tuning method, and decoding method for Overnight
dataset. BART, GPT-2, and GPT-3 results results are included from Shin et al. (2021)
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