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ABSTRACT

In this study, we address two significant issues that hinder the application of deep
learning in real-world settings: Out-of-Distribution Generalization and Calibra-
tion. While both Out-of-Distribution Generalization and Calibration have been
researched in different contexts, we propose a hypothesis that they can be consid-
ered through the lens of curvature. Our extensive experiments demonstrate that
training with Sharpness-Aware Minimization, which achieves low curvature, re-
sults in well-calibrated models with high accuracy, even on Out-of-Distribution
datasets. Finally, we provide theoretical analysis to show that low curvature mod-
els are well-calibrated.

1 INTRODUCTION

Recently, deep neural networks have been widely applied in various industrial applications such as
image recognition and language processing due to their high performance (He et al., 2016; Devlin
et al., 2018). There are, unfortunately, two problems in adapting DNNs to real-world applications.

Out-of-Distribution (OOD) Generalization (Arjovsky, 2021): The general supervised learning
framework of machine learning assumes that training and test data are sampled from i.i.d. Therefore,
by performing empirical risk minimization (ERM), which is a loss in the training data, one expects
to minimize the loss in the test data (Vapnik, 1991). However, this i.i.d. assumption generally does
not hold in real-world applications.

Calibration: Uncertainty, as well as ranking performance, is essential in how statistical models are
evaluated. In other words, the level of confidence with which the estimation is made. Although
recent DNNs have high-ranking performance, they tend to make overconfident estimates and are
known to have low confidence, such that if there are 100 pathology images with a 99% confidence
level, only about 50 of them can be correctly identified (Guo et al., 2017). This gap between confi-
dence and accuracy (ranking performance) is called Expected Calibration Error (ECE), and the lower
the ECE, the higher the confidence in the uncertainty. Correcting the confidence in uncertainty is
called calibration (Naeini et al., 2015).

1.1 MOTIVATION

These two critical barriers to real-world applications are often discussed in different contexts. Our
goal is to understand the connection between OOD and Calibration. In particular, we consider
curvature to be a key factor in understanding the connection between OOD and Calibration, and we
test the following hypothesis:

Hypothesis 1 (Curvature as necessity and sufficiency for OOD generalization and calibration). The
following three operations are equivalent.

(a) Improvement of OOD generalization performance;
(b) Learning well-calibrated model;
(c) Reduction of loss curvature.

*These authors contributed equally to this work
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1.2 CONTRIBUTIONS OF THIS PAPER

To investigate the Hypothesis 1, we addressed it both theoretically and empirically. First, when
using sharpness-aware minimization (Foret et al., 2020), which is known to converge to the optimal
solution with low curvature, we showed that it provides higher OOD generalization performance
and better calibration than other training algorithms on several models in CIFAR10 and ImageNet-
based OOD datasets. Next, we introduce theoretical results supporting the assumption that the well-
calibrated model reduces curvature when learning with focal loss (Lin et al., 2017) that suppresses
overconfidence.

We now summarize our contributions:

• We have demonstrated in sufficient experiments (4 datasets and 6 model architectures) that
a model with smaller curvature obtained by using SAMs has better calibration performance
and higher OOD accuracy (Figure 1, 3).

• We show in our experiments that increasing ρ, the strength of the regularization of the SAM
to curvature, improves calibration and OOD accuracy (Figure 2).

• We provide several remarks through Theorem 1. These analytical results relate model
calibration to curvature and suggest equivalence of their improvements.

2 PRELIMINARIES

Let X be the input space and Y be the output space. The goal of supervised learning is to obtain the
parameter θ ∈ Θ which minimizes the following expected risk.
Definition 1 (Expected risk). For some loss function ℓ : X ×Y×Θ → R, the expected risk R(θ) is
defined as R(θ) = E(x,y)∼q(x,y) [ℓ(x, y;θ)] =

∫
X×Y ℓ(x, y;θ)dxdy, where q(x, y) be a true data

distribution.

Since q(x, y) is generally unknown, we cannot compute the expected risk directly. Then, we con-
sider the ERM, which aims to minimize the following empirical risk (Vapnik, 1991).
Definition 2. Let {(xi, yi)}Ni=1 be the set of data point with sample size N ∈ N. For some loss
function ℓ : X × Y ×Θ → R, the empirical risk R̂(θ) is defined as R̂(θ) = 1

N

∑N
i=1 ℓ(xi, yi;θ).

Under the i.i.d. assumption, it is known that E[R̂(θ)] = R(θ).

2.1 OUT-OF-DISTRIBUTION GENERALIZATION

For some M ∈ N, let E = {D1, D2, . . . , DM}Mi=1 be a set of domains, and each data of domain Di

is generated by qDi
(x, y;θ). Let RDi

(θ) be the expected risk under q(x, y;θ). The goal of out of
distribution generalization (Shen et al., 2021) is minimize RDi(θ) for i = 1, . . . , N as well as R(θ)
under the source distribution q(x, y).

2.2 MODEL CALIBRATION

The goal of model calibration is to obtain the parameter such that

P
(
argmax

y
p(y|x;θ) = y

∣∣∣p(y|x;θ) = s

)
= s, ∀s ∈ [0, 1]. (1)

Expected calibration error (ECE) is one of the most well-known metrics for the model calibration.
Definition 3 (Expected calibration error (Naeini et al., 2015)). For (x, y), let ŷ =
argmax p(y|x;θ). The expected calibration error is defined as

ECE(θ) := E
[∣∣∣P(ŷ = y

∣∣∣p(y|x;θ) = s
)
− s
∣∣∣] . (2)

2.3 SHARPNESS-AWARE MINIMIZATION (SAM)
Sharpness-Aware Minimization (SAM) (Foret et al., 2020) prevents convergence to high curvature
local minima. Its convergence towards smaller curvature solutions results in high validation and
test performance on in-distribution (ID) environment. SAM searches for points where the loss is
maximized within a neighborhood of ρ and uses the gradient at that point for iterative optimization.
The larger the ρ, the higher the effect of preventing convergence to high curvature local minima. We
employ SAM to train models with low curvature.
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Figure 1: Optimizer Comparison on ImageNet1K → ImageNet-V2: The y-axis shows ECE and
the x-axis shows Accuracy. (Left) evaluation on training data, (Center) evaluation on validation data
in the same domain as training data, and (Right) evaluation on the OOD data set.
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Figure 2: ρ Comparison on CIFAR10 → CIFAR10.1: The y-axis shows ECE and the x-axis
shows Accuracy. (Left) evaluation on training data, (Center) evaluation on validation data in the
same domain as training data, and (Right) evaluation on the OOD data set.

3 SAM LEADS BETTER OOD GENERALIZATION AND CALIBRATION

3.1 EXPERIMENTAL PROTOCOL

We conducted a series of experiments using several model architectures, including Vision Trans-
former Small (ViT) (Lee et al., 2021), ResNet18, ResNet50 He et al. (2016), and Multi-Layer Per-
ceptron (MLP). For the task, CIFAR10 (Krizhevsky, 2009) was used for training, and CIFAR10.1
(Recht et al., 2018) was used as OOD data for evaluation. As a more practical experimental set-
ting, we also evaluated a task using ImageNet-1K (Russakovsky et al., 2015) as training data and
ImageNet-V2 (Recht et al., 2019) as OOD data. Momentum SGD and Adam, the most practically
used optimizer, were employed for comparison with SAM. Detailed information, such as learning
rate and batch-size, is shown in Appendix C.

3.2 HOW SAM OUTPERFORMS OTHER OPTIMIZERS

In the context of comparing two metrics, accuracy and ECE, SAM demonstrates competitive perfor-
mance in both ID Validation and OOD Test environments (Figures 1, 3(in Appendix D)). Although
SAM’s high accuracy in ID Validation has been previously reported, this study is the first to evaluate
its performance with respect to ECE and OOD. In the ID Validation setting, SAM exhibits similar
behavior to Momentum SGD but ultimately outperforms it. Conversely, Adam demonstrates over-
fitting behavior in ID Training, which aligns with the findings of Naganuma et al. (2022). In OOD
Test environments, SAM excels in both Accuracy and ECE metrics, further highlighting its superior
performance.

3.3 ABLATION STUDY: EFFECT OF ρ IN SAM OPTIMIZER

Figure 2 indicates that the behavior becomes more robust as the value of ρ increases. This means
that OOD accuracy and ECE performance improve as the flatness strength increases within the
experimental scope range. Further ablation studies regarding other batch-size and models can be
found in Appendix E.
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4 CURVATURE CONNECTING OOD GENERALIZATION AND CALIBRATION

Our objective is to discern the shared principles that improve both calibration and out-of-distribution
generalization performance. We specifically focus on the notion of curvature, otherwise known as
the loss surface. Consequently, we have devised the Hypothesis 1 as presented in Section 1.

Prior research (Wald et al., 2021) demonstrates the correlation between (a) and (b) by considering
model calibration as a unique instance of invariant representation learning. In section 3, utilizing
Sharpness-Aware Minimization (SAM), we have introduced empirical results for (c) → (a) and (c)
→ (b). In this section, we present the theoretical outcomes for (a) → (c) and (b) → (c).

4.1 WELL-CALIBRATED MODEL REDUCES CURVATURE

Here, we discuss the relationship between a well-calibrated model and loss curvature and aim to
show (b) → (c) of Hypothesis 1. To achieve this goal, we consider the Focal loss, a well-known loss
function that is useful for model calibration.
Definition 4 (Focal loss (Lin et al., 2017)). Let p(y|x;θ) be a model parameterized by θ ∈ Θ and
q(y|x) be a true distribution. For γ ≥ 0, the Focal loss Lγ

f (θ)is defined as follows:

Lγ
f (θ) := −

∫
X×Y

(1− p(y|x;θ))γq(y|x) ln p(y|x;θ)dxdy. (3)

Focal loss is well-known to prevent overconfidence of the model. Therefore, theoretical investigation
of the behavior of focal loss should provide insight into what is needed to learn a well-calibrated
model.

Here, we can rewrite Focal loss as the regularized cross-entropy loss.
Proposition 1. Let p(y|x;θ) be a model parameterized by θ ∈ Θ and q(y|x) be a true distribution.
For γ ≥ 0, we have

Lγ
f (θ) = Lc(θ)− γH(y|x,θ), (4)

where Lc(θ) is the cross-entropy loss and H(y|x,θ) is the conditional entropy.

From equation 4, learning procedure with Focal loss can be regarded as maximizing conditional
entropy term under the constraint∫

Θ

p(θ)Lc(θ)dθ =

∫
Θ

p(θ)

(
−
∫
X×Y

q(y|x) ln p(y|x;θ)dxdy
)
dθ = δγ ≤ δ, (5)

for some δ ≥ 0 and δγ ≥ 0.
Theorem 1. Among all distributions defined on Θ with a given δγ , the distribution with the largest
entropy is the Maxwell-Boltzmann distribution

p̃(θ) = α · e−β·Lc(θ) = α · exp
{
β

∫
X×Y

q(y|x) ln p(y|x;θ)dxdy
}
, (6)

where the constants α and β are determined from the following constraints∫
Θ

p(θ)dθ = 1 ⇐⇒ α =

(∫
Θ

e−β·Lc(θ)dθ

)−1

, (7)∫
Θ

Lc(θ)p(θ)dθ = δγ ⇐⇒
∫
Θ

Lc(θ)e
−β·Lc(θ)dθ =

δγ
α
. (8)

Using equation 6 as the prior of parameter distribution as π = p̃, we give the following PAC-Bayes
bound by using Thiemann’s bound(Thiemann et al., 2017).
Remark 1. Maxwell-Boltzmann distribution induces the following bound

P

[
∀ς ∈ P (Θ),Eθ∼ς [R(θ)] ≤ Eθ∼ς [R̂(θ)]

1− λ
2

+
DKL[ς∥π] + log 2

√
n

ϵ

nλ(1− λ
2 )

]
≤ ϵ (9)

for some ϵ > 0 and λ ≥ 0. The minimum of the right-hand side is achieved by

ςλ(θ) =
π(θ)e−λnR̂(θ)

Eθ∼π

[
e−λnR̂(θ)

] , (fixed λ), λ =
2√

2nEς [R̂(θ)]
DKL[ς∥π]+ln 2

√
n

δ

+ 1 + 1

(fixed ς). (10)
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Remark 2. Focal loss equips the following regularizer:

DKL[ς∥π] =
∫
Θ

ς(θ) log
ς(θ)

c · exp
{
β
∫
X×Y q(x, y) log p(y|x;θ)

}dθ. (11)

Proposition 2. Learning with Focal loss reduces the local sharpness of the likelihood, if prior π and
posterior ς are close enough.

Since cross-entropy is the expectation of the negative log-likelihood function, we have the following
remarks.

Remark 3. Focal loss reduces the local curvature of the loss landscape.

Remark 4. Reducing the local curvature of the loss landscape improves the calibration error.

4.2 OOD GENERALIZATION MODEL REDUCES CURVATURE

Next, we introduce the relationship between OOD generalization and curvature, which indicates (a)
→ (c) of Hypothesis 1. Previous studies have revealed the following.

Rame et al. (2022) propose an ”inconsistency score,” a metric that quantifies the degree of incon-
sistency between different domains in a model. Their approach aims to capture how well the model
generalizes across various domains by measuring the difference in risks between them. According to
their findings, good weights should be optimal for all domains and difficult to change. They suggest
a model is expected to generalize better across different domains by minimizing this inconsistency
score.

Proposition 3 (Rame et al. (2022)). Under the quadratic bowl Assumption with positive definite
Hessians, for small ϵ > 0,

Iϵ(θ̂) = max
(A,B)∈E2

max
θ∈N ϵ(A,θ̂)

∣∣∣RB(θ)−RA(θ̂)
∣∣∣ (12)

= max
(A,B)∈E2

(
RA(θ̂)−RA(θ̂) + max

1
2θ

⊤HAθ≤ϵ

1

2
θ⊤HBθ

)
,

where E = {A,B} be a set of domains, N ϵ(A, θ̂) be the neighborhood of θ̂ and He = ∇2
θRe(θ)

be the Hessian for e ∈ E .

Proposition 3 indicates the relationship between OOD generalization and curvature.

Another related work relates to the curvature of the model manifold and covariate shift assumption,
which is one of the OOD problems (Kimura & Hino, 2022).

5 DISCUSSION AND CONCLUSION

We theoretically and empirically showed the connection between OOD generalization and Calibra-
tion through the lens of curvature.

Finally, we would like to mention the limitations of our work. One limitation is that we could have
studied a more comprehensive range of distribution shift datasets. Evaluation on datasets such as
DomainBed (Gulrajani & Lopez-Paz, 2021), WILDS (Koh et al., 2021), and SHIFT15M (Kimura
et al., 2021) is for future work. Another limitation is that we demonstrated through only experiments
that low curvature leads to high OOD accuracy. For a more detailed discussion, it would be helpful
to investigate how curvature depends on the convergence rate of the OOD generalization. That is,
for some function φ(r) where r is a quantity expressing curvature, we expect the OOD general-
ization error ROOD to be written as ROOD(θ) ≤ R̂(θ) + φ(r). Such an analysis guarantees the
effectiveness of the learning algorithm for OOD generalization, which depends on the curvature.
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APPENDIX

A PROOFS

A.1 PROOF FOR PROPOSITION 1

Proof.

Lγ
f (θ) = −

∫
X×Y

(1− p(y|x;θ))γq(y|x) ln p(y|x;θ)dxdy

≥ −
∫
X×Y

(1− γp(y|x;θ))q(y|x) ln p(y|x;θ)dxdy

≥ −
∫
X

{∫
Y
q(y|x) ln p(y|x;θ)dy − γmax

j
q(j|x;θ)

∫
Y
|p(y|x;θ) ln p(y|x;θ)| dy

}
dx

≥ −
∫
X×Y

q(y|x) ln p(y|x;θ)dxdy + γ

∫
X×Y

p(y|x;θ) ln p(y|x;θ)dxdy

= Lc(θ)− γH(y|x;θ).

A.2 PROOF FOR THEOREM 1

Proof. From chain rule, the conditional entropy is written as

H(y|x;θ) = H(y,θ|x)−H(θ).

Then, maximizing conditional entropy H(y|x;θ) is equal to minimizing entropy H(θ). In order to
minimize the entropy (θ) = −

∫
Θ
p(θ)d(θ) subject to constraints∫

Θ

p(θ)dθ = 1 (13)∫
Θ

p(θ)Lc(θ)dθ = δγ , (14)

consider the Lagrangian

L = −p(θ) ln p(θ)− βLc(θ)p(θ)− ηp(θ). (15)

The Euler-Lagrange equation for equation 15 is

ln p(θ) = βLc(θ)− η + 1, (16)

with solution

p(θ) = α · e−β·Lc(θ), (17)

α = e1−η. (18)

From equation 17 and equation 18, we have∫
Θ

e−β·Lc(θ)dθ

∫
Θ

Lc(θ)e
−βLc(θ)dθ = δγ . (19)

Consider

Φ(β) =

∫
Θ

eβLc(−θ)dθ

∫
Θ

Lc(θ)e
−βLc(θ)dθ, (20)

which is an decreasing function of β. Since

lim
β→+∞

Φ(β) = 0, (21)

lim
β→−∞

Φ(β) = +∞, (22)

the continuity of Φ(β) implies that equation 19 has a solution and this is unique. Hence, a unique pair
(α, β) satisfies the problem constraints. Therefore, Maxwell-Boltzmann distribution is unique.
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A.3 PROOF FOR PROPOSITION 2

Proof. From assumption, let
∆ξi = ξπi − ξςi , (23)

where ξς and ξπ are parameters of ς and π. Consider the quadratic approximation of dkl(ξ) =
DKL[ξ

ς∥ξ] as

dkl(x) = dkl(ξ
ς) +

∑
i

∂dkl
∂ξi

(ξς)∆ξi +
1

2

∑
i,j

∂2dkl
∂ξiξj

(xπ)∆ξi∆ξj − o(∥∆ξ∥2). (24)

First, since DKL[p∥q] = 0 if and p = q, we have
dkl(ξ

ς) = DKL[ξ
ς∥ξς ] = 0. (25)

Next, diagonal part of the first variation of the KL-divergence is
∂

∂ξi
DKL[ξ

ς∥ξ] = ∂

∂ξi

∫
Theta

p(θ; ξς) ln p(θ; ξς)dθ − ∂

∂ξi

∫
Θ

p(θ; ξς) ln p(θ; ξ)dθ

= −
∫
Θ

p(θ; ξς)
∂

∂ξi
ln p(θ; ξ)dθ. (26)

∂

∂ξi
DKL[ξ

ς∥ξ]|ξ=ξς
= −

∫
Θ

p(θ; ξς)
∂

∂ξi
ln p(θ; ξς)dθ = −Eξς

[
∂

∂ξi
ln p(θ; ξς)

]
= 0. (27)

Finally, the diagonal part of the Hessian of the KL-divergence is

∂2

∂ξi∂ξj
DKL[ξ

ς∥ξ] = ∂2

∂ξiξj

∫
Θ

p(θ; ξς) ln p(θ; ξς)dθ −
∫
Θ

p(θ; ξς) ln p(θ; ξ)dθ

= −
∫
Θ

p(θ; ξς)
∂2

∂ξi∂ξj
ln p(θ; ξ)dθ. (28)

∂2

∂ξi∂ξj
DKL[ξ

ς∥ξ]|ξ=ξς
= −

∫
Θ

p(θ; ξς)
∂2

∂ξi∂ξj
ln p(θ; ξ)dθ

= −Eξς

[
∂2

∂ξi∂ξj
ln p(θ; ξς)

]
= gij(ξ

ς), (29)

where I(ξ) = (gij(ξ)) is the Fisher information matrix. Then, we have

DKL[ς∥π] =
1

2

∑
i,j

gij(ξ
ς)∆ξi∆ξj + o(∥∆ξ∥2). (30)

From equation 30 and equation 9,

P

[
∀ς ∈ P (Θ),Eθ∼ς [R(θ)] ≤ Eθ∼ς [R̂(θ)]

1− λ
2

+
1
2

∑
i,j gij(ξ

ς)∆ξi∆ξj + log 2
√
n

ϵ

nλ(1− λ
2 )

]
≤ ϵ

with o(∥∆ξ∥2), and the second term of the right-hand side measures the curvature of the log-
likelihood.

B RELATED WORKS

B.1 CALIBRATION

In the current operation of deep learning techniques, post-hoc methods are usually used for calibra-
tion. Methods such as isotonic regression and temperature scaling are ways to improve calibration
without degrading ranking performance. Methods such as Ensemble learningOvadia et al. (2019)
and Bayesian inferenceImmer et al. (2021) are also known to improve calibration. They are effec-
tive for uncertainty estimation, but their computational cost, which can be several times higher, is a
problem in practical applications.

Several studies have been conducted on calibration, but most focus on uncertainty issues in contexts
such as computer visionMukhoti et al. (2020). Calibration methods in recommendation systems
have also been proposedZhang et al. (2020).
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B.2 CALIBRATION AND OUT-OF-DISTRIBUTION GENERALIZATION

Different approaches have been taken for calibration and OOD, and no research has practically
addressed the calibration problem in an OOD environment. Recent theoretical studies have shown
that domain-specific calibration is equivalent to Invariant Risk Minimization (IRM) Arjovsky et al.
(2019), a typical learning method for OOD, in learning multiple domains Wald et al. (2021).

C EXPERIMENTAL SETTINGS

C.1 DATASETS

CIFAR10.1 Recht et al. (2018): This dataset contains approximately 2,000 new test images. This
dataset was collected after multiple years of research on the original CIFAR-10 dataset and was
designed to minimize distribution shifts. The images in CIFAR-10.1 are a subset of the TinyImages
dataset.

ImageNet-V2 Recht et al. (2019): This dataset is a new benchmark for testing image recognition
models, providing 10,000 new images for each of the three test sets. This dataset is unique because
it was collected after ten years of evolution of the original ImageNet dataset, ensuring that accuracy
scores are not biased by adaptive overfitting. The data collection process is designed to maintain
similarity to the original ImageNet dataset. The repository provides code for working with Ima-
geNetV2, a pool of candidate images, and rich metadata. ImageNet-V2 consists of three categories:
TopImages, Threshold0.7, and MatchedFrequency. We evaluated all of them and averaged them to
report as Test OOD accuracy and Test OOD ECE.

C.2 HYPERPARAMETERS

In our experiments on both CIFAR10 and ImageNet, the batch size was standardized at 256. The
learning rate was explored within the range of ”0.0005”, ”0.001”, ”0.005”, ”0.01” using grid search.
The parameter rho was also grid searched within the range of ”0.005”, ”0.01”, ”0.05”, ”0.1”, ”0.5”.
The number of training epochs was 400 for CIFAR10 and 90 for ImageNet experiments.

D OMITTED EXPERIMENTAL RESULTS IN MAIN PAPER

Here we present experimental results that could not be included in the main paper due to paper space
limitations. Figure 3 shows similar results with Figure 1 (The only experimental difference is the
data set and model).

Figures 4, 5 show the transition of each metric during training in the experiments in Figure 3, 1.
The solid line shows the average of the results for the three hyperparameters with the highest final
validation accuracy for each optimization method. The colored regions indicate the variance.

During the initial stages of learning, for SAM, the Train ECE is seen to increase while the other
optimizers suddenly drop (Figure 4). For other optimizers, this sudden drop may be attributed to the
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Figure 3: Optimizer Comparison on CIFAR10 → CIFAR10.1: The y-axis shows ECE and the
x-axis shows Accuracy. (Left) evaluation on training data, (Center) evaluation on validation data in
the same domain as training data, and (Right) evaluation on the OOD data set.
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poor performance of Val ECE and Test ECE. To mitigate this issue, it may be effective to imple-
ment regularization techniques that prevent over-reduction of Train ECE during the early stages of
learning.

In the ImageNet experiment (Figure 5), Train ECE remained high in the case of SAM, which could
lead the better performance in the OOD environment.
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Figure 4: Optimizer Comparison on CIFAR10 → CIFAR10.1: The y-axis shows each metric
(Accuracy or ECE) and the x-axis shows Epochs. (Top) evaluation on training data, (Center) evalu-
ation on validation data in the same domain as training data, and (Bottom) evaluation on the OOD
data set.

11



Published at ICLR 2023 Workshop on Domain Generalization

0 20 40 60 80
Epoch

0

20

40

60

80

ID
 Tr

ai
ni

ng
 A

cc
ur

ac
y

ImageNet1K -> ImageNet-V2 (Optimizer Comparison)

momentum_sgd
adam
sam

0 20 40 60 80
Epoch

0

1

2

3

4

5

ID
 Tr

ai
ni

ng
 E

CE

ImageNet1K -> ImageNet-V2 (Optimizer Comparison)
momentum_sgd
adam
sam

0 20 40 60 80
Epoch

10
20
30
40
50
60

ID
 V

al
id

at
io

n 
Ac

cu
ra

cy

ImageNet1K -> ImageNet-V2 (Optimizer Comparison)

momentum_sgd
adam
sam

0 20 40 60 80
Epoch

0
2
4
6
8

10
12
14

ID
 V

al
id

at
io

n 
EC

E

ImageNet1K -> ImageNet-V2 (Optimizer Comparison)
momentum_sgd
adam
sam

0 20 40 60 80
Epoch

10
20
30
40
50
60

OO
D 

Te
st

 A
cc

ur
ac

y

ImageNet1K -> ImageNet-V2 (Optimizer Comparison)

momentum_sgd
adam
sam

0 20 40 60 80
Epoch

2.5
5.0
7.5

10.0
12.5
15.0
17.5

OO
D 

Te
st

 E
CE

ImageNet1K -> ImageNet-V2 (Optimizer Comparison)
momentum_sgd
adam
sam

Figure 5: Optimizer Comparison on ImageNet1K → ImageNet-V2: The y-axis shows each met-
ric (Accuracy or ECE) and the x-axis shows Epochs. (Top) evaluation on training data, (Center)
evaluation on validation data in the same domain as training data, and (Bottom) evaluation on the
OOD data set.

E ABLATION STUDY

E.1 MODEL COMPARISON

We conducted ablation studies with several model architectures to investigate differences in behavior
by model architecture. In our comparative analysis, we observed that a general trend is that if a
model performs well on OOD data, it is likely to perform well on ECE (Figure 6).

It should be noted that data augmentation was not added in the CIFAR10 experiments. The ex-
perimental results showed that ResNet performed well in calibration and accuracy in both training
and OOD environments. MLP underperformed the other model architectures in the training envi-
ronment and the OOD. ViT outperformed ResNet in the training environment but underperformed
ResNet in the OOD environment. This finding aligns with previous observations that ViT requires
data augmentation to achieve optimal performance Steiner et al. (2021).
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Figure 6: Model Comparison on CIFAR10 → CIFAR10.1: The y-axis shows ECE and the x-axis
shows Accuracy. (Left) evaluation on training data, (Center) evaluation on validation data in the
same domain as training data, and (Right) evaluation on the OOD data set.

E.2 BATCH SIZE COMPARISON

We conducted experiments with different batch sizes using multiple model architectures as an ab-
lation study. For learning rates, the square root scaling rule was used. Our experimental results
showed that there was no significant difference between the batch sizes within the range of our ex-
periments. Figure 7 shows scatter plots of the relationship between accuracy and ECE when training
with CIFAR10 and testing with CIFAR10.1. Each data point represents a different hyperparameter
configuration (difference in model and initial values).
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Figure 7: batch-Size Comparison on CIFAR10 → CIFAR10.1: The y-axis shows ECE and the
x-axis shows Accuracy. (Left) evaluation on training data, (Center) evaluation on validation data in
the same domain as training data, and (Right) evaluation on the OOD data set.

13


	Introduction
	Motivation
	Contributions of this paper

	Preliminaries
	Out-of-Distribution Generalization
	Model calibration
	Sharpness-Aware Minimization (SAM)

	SAM Leads Better OOD Generalization and Calibration
	Experimental Protocol
	How SAM outperforms other optimizers
	Ablation Study: Effect of  in SAM Optimizer

	Curvature connecting OOD generalization and calibration
	Well-calibrated model reduces curvature
	OOD generalization model reduces curvature

	Discussion and Conclusion
	Proofs
	Proof for Proposition 1
	Proof for Theorem 1
	Proof for Proposition 2

	Related works
	Calibration
	Calibration and Out-of-Distribution Generalization

	Experimental Settings
	Datasets
	Hyperparameters

	Omitted Experimental Results in Main Paper
	Ablation Study
	Model Comparison
	Batch Size Comparison


