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Abstract
Scoring matching (SM), and its related counter-
part, Stein discrepancy (SD) have achieved great
success in model training and evaluations. How-
ever, recent research shows their limitations when
dealing with certain types of distributions. One
possible fix is incorporating the original score
matching (or Stein discrepancy) with a diffusion
matrix, which is called diffusion score matching
(DSM) (or diffusion Stein discrepancy (DSD)) .
However, the lack of the interpretation of the dif-
fusion limits its usage within simple distributions
and manually chosen matrix. In this work, we
plan to fill this gap by interpreting the diffusion
matrix using normalizing flows. Specifically, we
theoretically prove that DSM (or DSD) is equiva-
lent to the original score matching (or score match-
ing) evaluated in the transformed space defined by
the normalizing flow, where the diffusion matrix
is the inverse of the flow’s Jacobian matrix. In
addition, we also build its connection to Rieman-
nian manifolds, and further extend it to continuous
flows, where the change of DSM is characterized
by an ODE.

1. Introduction
Recently, score matching (Hyvärinen, 2005) and its closely
related counterpart, Stein discrepancy (Gorham, 2017) have
made great progress in both understanding their theoretical
properties and practical usage. Particularly, unlike Kull-
back–Leibler (KL) divergence which can only be used for
distributions with known normalizing constant, SM (or SD)
can be evaluated for unnormalized densities, and requires
fewer assumptions for the probability distributions (Fisher
et al., 2021). Such useful properties enable them to be
widely applied in training energy-based model (EBM) (Song
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et al., 2020a; Grathwohl et al., 2020; Wenliang et al., 2019),
state-of-the-art score-based generative model (Song & Er-
mon, 2019; Song et al., 2020b), statistical tests (Liu et al.,
2016; Chwialkowski et al., 2016) and variational inference
(Hu et al., 2018; Liu & Wang, 2016).

Despite their elegant statistical properties, recent work (Barp
et al., 2019) demonstrated their failure when dealing with
certain type of distributions (e.g. heavy-tailed distributions).
For instance, when the data and the model are heavy tailed
distributions, the model can fail to recover the true mode
even in one dimensional case. The root of this problem
is that the SM (or SD) objective is highly non-convex and
does not correlate well with likelihood. To fix it, Barp et al.
(2019) proposed a variant called diffusion score matching
(and diffusion Stein discrepancy), where a diffusion matrix
is introduced. However, the author did not provide us an
interpretation of this diffusion matrix. In fact, the diffusion
used by the author (Barp et al., 2019) is manually chosen
for toy densities. Such lack of interpretation hinders further
development of a proper training method of the diffusion
matrix.

In this paper, we aim to give an interpretation based on
normalizing flows, which sheds light on developing training
method for the diffusion. We summarize our contributions
as follows:

• We theoretically prove that DSM (or DSD) is equiva-
lent to the original SM (or SD) performed in the trans-
formed space defined by the normalizing flow. The
diffusion matrix is exactly the same as the inverse of
the flow’s Jacobian matrix.

• We further show that its connection to Riemannian
manifold. Specifically, we show the diffusion matrix is
closely related to the Riemannian metric tensor.

• We further extend DSM to their continuous version.
Namely, we derive an ODE to characterize its instanta-
neous change.

We hope that by building these connections, a broad range
of techniques from normalizing flow communities can be
leveraged to develop training methods for the diffusion ma-
trix.
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2. Background: Diffusion Stein discrepancy
2.1. Score matching and Stein discrepancy

Let P be the space of Borel probability measures on RD,
Q ∈ P to be a probability measure, the objective for
model learning is to find a sequence of probability mea-
sures {Pθ : θ ∈ Θ} ⊂ P that approximates Q in an ap-
propriate sense. One common way to achieve this is by
defining a discrepancy measure D : P × P → R, which
quantifies the differences between two probability mea-
sures. Thus, the optimal parameters θ∗ can be obtained by
θ∗ = argminD(Q||Pθ). The choice of discrepancy depends
on the properties of the probability measures, the efficiency
and its robustness. The one we are focused on is called
Fisher divergence. Assuming for probability measures Q
and Pθ, we have corresponding twice differentiable densi-
ties q(x), pθ(x). The Fisher divergence (Johnson, 2004) is
defined as

F(q, p) =
1

2
Eq[||sp(x)− sq(x)||2] (1)

where sp(x) = ∇x log pθ(x) is called the score of pθ, and
sq is defined accordingly. Despite that q is often used for un-
derlying data densities with the intractable sq , sq in fact acts
as a constant for parameter θ. Thus, one can use integration-
by-part to derive the following:

F(q, pθ) = Eq
[

1

2
||sp(x)||2 + Tr(∇xsp(x))

]
︸ ︷︷ ︸

SM(q,pθ)

+Cq (2)

with Cq a constant w.r.t. θ. This equivalent objective
SM(q, pθ) is referred as score matching (Hyvärinen, 2005).

Another discrepancy measure we are interested is called
Stein discrepancy, which is defined as

S(q, pθ) = sup
f∈H

Eq[sp(x)Tf(x) +∇Txf(x)] (3)

where f : RD → RD is a test function, andH is an appro-
priate test function family, e.g. reproducing kernel Hilbert
space (Liu et al., 2016; Chwialkowski et al., 2016) or Stein
class (Gorham, 2017; Liu et al., 2016). Recent work (Hu
et al., 2018) proved a connection between Stein discrepancy
and Fisher divergence by showing the optimal test function:

f∗(x) ∝ sp(x)− sq(x). (4)

thus we can show Stein discrepancy is equivalent to Fisher
divergence up to a multiplicative constant.

Barp et al. (2019); Gorham et al. (2019) further extend the
score matching and Stein discrepancy by incorporating a
diffusion matrix m(x) : RD → RD×D. It starts from
defining diffusion Fisher divergence

Fm(q, pθ) =
1

2
Eq[||m(x)T (sp(x)− sq(x))||2] (5)

where m(x) is a matrix-valued function. Expanding eq. 5
and applying integration by parts (with m short-handing
m(x) and sp short-handing sp(x)):

Fm(q, pθ) = Eq
[

1

2
||mTsp||2 +∇>(mm>sp)

]
︸ ︷︷ ︸

DSMm(q,pθ)

+Cq,m,

(6)
where Cq,m depends on both q and m(x). Similar to the
derivation of SM(q, pθ), this also returns an alternative
diffusion score matching (DSM) objective DSMm(q, pθ).

Similarly, Diffusion Stein discrepancy (DSD) is defined as

DSDm(q, pθ)

= sup
f∈H

Eq[(m(x)Tsp(x))Tf(x) +∇Tx(m(x)f(x))] (7)

It can be shown that as long as m(x) is invertible,Fm(q, pθ)
and DSDm(q, pθ) are valid divergences. These two exten-
sions have demonstrated superior performances when deal-
ing with certain type of distributions. In the following, we
give a motivating example similar to Barp et al. (2019).

2.2. Motivating example: Student-t distribution

Let assume q, pθ to be 1 dimensional student-t distribution.
The target is to approximate q by pθ. The training set is
300 i.i.d data sampled from q with mean 0 and scale 0.3.
We assume the scale parameter for pθ is the same as q, and
the only trainable parameter θ is the mean. The degree of
freedom is 5 for both q, pθ.

The left panel of figure 1 shows the score matching loss
computed for different θ. We can observe that for original
SM(q, pθ) loss, it is highly non-convex, and the loss value
does not correlate well with likelihood. Indeed, we can see
the true location θ = 0 is protected by two high ’walls’. In
other words, unlike maximum likelihood estimator, a param-
eter θ that is closer to the ground truth does not necessarily
produce low SM loss. One important consequence is that
unless the initialized θ is within the narrow valid region, the
gradient-based optimization will never recover the truth.

On the other hand, the middle panel of figure 1 shows that
if we chose m(x) = (1 + (x−θ)2

0.6 ) (Manual Flow) as the
diffusion matrix, the corresponding DSMm(q, pθ) loss is
convex. The ground truth can be recovered by minimizing
DSM with a proper gradient-based optimizer.

However, this DSMm(q, pθ) is only a surrogate objective
for learning θ because the diffusion matrix m contains θ.
Thus, the dropped term Cq,m in eq.6 is no longer a constant.
Although one can treat the θ in m as constant during training
and ignore its contribution when taking the derivative, this
is equivalent to use different losses after each θ update. We
leave its convergence analysis for the future work.
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Valid Init. Region
Ground Truth

Ground Truth
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Figure 1. The SM(q, pθ) and DSMm(q, pθ) losses computed with different mean parameters θ. Left: This orange line plots the vanilla
SM loss between q and pθ . The arrow indicates the gradient descent direction of θ. The red dot • is the ground truth for θ. Middle: The
blue line plots the DSM loss with m(x) = 1 + (x−θ)2

0.6
. The blue rectangle indicates the region with large gradient descent magnitude

(fast convergence). Right: The red line plots the DSM loss with Gaussian flow. Thered rectangle indicates the fast convergence region.

The selection of the diffusion matrix is crucial to the success
of the estimator. Unfortunately, the interpretation of this
matrix is unclear, not mentioning a selection algorithm. In
the following, we aim to shed lights on this problem by
connecting this diffusion with normalizing flows.

3. Diffusion matrix as normalizing flow
3.1. Interpreting DSM/DSD using normalizing flow

Let assume we have two densities qX(x), pX(x) defined
on RD and are twice differentiable. We further define an
differentiable invertible transformation T (x) : RD → RD:

y = T (x) (8)

with the corresponding induced densities qY (y) and pY (y).
We can prove the following theorem:

Theorem 3.1. For twice differentiable densities qX(x),
pX(x) and an invertible differentiable transformation T :
RD → RD, the diffusion Fisher divergence (Eq.5) is equiv-
alent to the original Fisher divergence in y space:

F(qY , pY ) =
1

2
EqY [||spY (y)− sqY (y)||2] (9)

where y = T (x), and pY , qY are corresponding densities
after the transformation. The diffusion matrix m(x) is the
inverse of the Jacobian matrix (∇xT (x))−1

Proof. From the change of variable formula, the correspond-
ing densities pY (y), qY (y) can be defined as:

pY (y) = pX(T−1(y))|∂T
−1(y)

∂y
|,

qY (y) = qX(T−1(y))|∂T
−1(y)

∂y
|.

Then the Fisher divergence F(qY , pY ) is formulated as:

F(qY , pY ) :=
1

2
EqY [||∇y log pY (y)−∇y log qY (y)||22]

=
1

2
EqY [||∇y log pX(T−1(y))−∇y log qX(T−1(y))||22]

=
1

2
EqY [||∇yT

−1(y)>

(∇T−1(y) log pX(T−1(y))−∇T−1(y) log qX(T−1(y)))||22]

=
1

2
EqX [||(∇xT (x))−>(∇x log pX(x)−∇x log qX(x))||22],

(10)
where the last step comes from changing the variable to
x = T−1(y) and noticing that∇yT

−1(y) = (∇xT (x))−1

from the inverse function theorem. This objective coincides
with the diffusion Fisher divergence (Eq.5). Importantly,
Fm(qX , pX) is a valid divergence (i.e. Fm(pX , qX) = 0
iff. pX = qX ) when m(x) is an invertible matrix for
every x. As normalising flow transformations naturally
give invertible Jacobian matrices, we can easily extablish
the connection F(qY , pY ) = Fm(qX , pX) with m(x) =
(∇xT (x))−1.

We also include the likelihood plots afte the transformation
in Appendix D.

Similarly, we can prove the connections between DSD
(Eq.7) and normalizing flow. The proof is in appendix A.
Theorem 3.2. For twice differentiable densities qX(x),
pX(x), an invertible differentiable transformation T (x) :
RD → RD and differentiable test function in suitable test
function family H: f : RD → RD ∈ H, the diffusion
Stein discrepancy (Eq.7) is equivalent to the original Stein
discrepancy

S(qY , pY ) = sup
g∈H′

EqY [spY (y)Tg(y) +∇Tyg(y)] (11)

where g(y) = f(T−1(y)), H′ is the corresponding func-
tion space for g, pY and qY are transformed densities by
T (·). The diffusion matrix m(x) = (∇xT (x))−1.
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Based on the above two theorems, we formally establish the
connections between the diffusion Fisher divergence/DSD
with normalizing flows. This gives us an interpretation of
the diffusion matrix as the inverse of the Jacobian matrix
defined by the flow.

3.2. Better flow design

Based on the interpretation, we try to give a better design
for the diffusion matrix m. Here, we design a flow TG(·)
that transforms the Student-t distribution pθ to a standard
Gaussian N (0, 1), which we named as Gaussian flow:

TG(x) = F−1
G ◦ Fθ(x). (12)

Here FG and Fθ are cumulative density functions for
N (0, 1) and pθ respectively. We plot the corresponding
DSMm(q, pθ) loss in the right panel of Figure 1. Both the
manually designed flow and Gaussian flow can recover the
ground truth θ regardless of initialization. However, Gaus-
sian flow allows faster convergence during training. The
fast convergence regions is the region where the gradient
of the DSM w.r.t θ has a magnitude greater than 1. The
Gaussian flow has a much wider region compared to manual
flow. The length of the region is 4.44 and 10.56 respectively
(more than 2 times). For high dimensional distributions, this
area of the region can scale up with O(2D), which can have
significant impact on convergence speed. Another advan-
tage of this systematic design of the diffusion matrix is its
robustness, which is further discussed in Appendix E.

3.3. Interpreting DSM using Riemannian manifold

Assume we have a Riemannian manifold (M, g) with Rie-
mannian metric tensor g. For each point a ∈M, we assume
it has a local coordinates xa = [x1

a, . . . , x
D
a ]. We can prove

the following proposition:
Proposition 3.1. Define two probability measures Q, P on
the Riemannian manifold (M, g) as defined above. We
denote the corresponding densities (in terms of local coordi-
nates x) w.r.t. Riemannian manifold as p̃(x) = dP

dM(x) and

q̃(x) = dQ
dM(x) . Then, the Fisher divergence from q̃ to q̃ is

FM(q̃, p̃) =
1

2
Eq[∆(x)TG(x)−1∆(x)] (13)

where p(x) = dP
dM(x)

dM(x)
dx , q(x) is defined similarly, and

∆(x) = sp(x) − sq(x). G(x) is an symmetric positive
definite matrix representing the Riemannian metric tensor.
Particularly, if G(x) = m(x)−Tm(x)−1, then FM(q̃, p̃)
is equivalent to the diffusion Fisher divergence (Eq.5) with
diffusion matrix m(x).

The proof is in appendix B.

This result is more general than theorem 3.1. Specifically,
theorem 3.1 only proves a sufficient condition for the diffu-

sion Fisher divergence to be a valid discrepancy. Namely, if
we have an invertible flow, the diffusion matrix m(x) must
be invertible. However, the converse is not true. On the
other hand, proposition 3.1 only requires m(x) to be invert-
ible, which is more general. Indeed, from the topological
point of view, if we have an invertible and differentiable
flow T , then the transformed space (Riemannian manifold)
is actually diffeomorphic to the original space (e.g. RD).
Thus, this flow can be viewed as a special case of Gemici
et al. (2016). But in general, Riemannian manifold may not
be diffeomorphic to RD, which explains why theorem 3.1
is only a sufficient condition.

3.4. Continuous DSM with ODE flow

Previous sections assume a deterministic transformation
T (x). Recent work has shown promising results for con-
tinuous flows characterised by an ODE (Chen et al., 2018;
Grathwohl et al., 2018).

dx = g(x(t))dt (14)

where g(x(t)) is a deterministic drift that is uniformly Lip-
schitz continuous w.r.t. x. We define pt and qt to be the
corresponding densities for x(t). Inspired by Chen et al.
(2018), we can characterise the instantaneous change of the
score matching loss dF(qt,pt)

dt by the following proposition:
Proposition 3.2. Let pt(x(t)), qt(x(t)) be two probability
density functions, where x(t) is characterized by an ODE
defined in eq.14. Assume g(x(t)) is uniformly Lipschitz
continuous w.r.t. x(t). Then, the instantaneous change of
score matching loss follows:

dF(qt, pt)

dt
= −1

2
Eqt [∆(x)T (∇xg(x)+∇xg(x)T )∆(x)]

(15)
where ∆(x) = spt(x)− sqt(x).

The proof is in appendix C.

4. Conclusion
In this paper, we discuss the connections of the diffusion
score matching and diffusion Stein discrepancy to normaliz-
ing flows. Specifically, we theoretically prove that the diffu-
sion Fisher divergence (or DSD) is equivalent to performing
the original Fisher divergence (or Stein discrepancy) on the
transformed densities. The diffusion matrix m(x) is de-
fined by the inverse of the flow’s Jacobian matrix. We also
establish the connection of diffusion Fisher divergence with
densities defined on Riemannian manifolds. In the end, we
extend the diffusion Fisher divergence by continuous flow,
and derive an ODE characterizing its instantaneous changes.
By building the connections, we hope to shed lights on de-
veloping training method for the diffusion matrix to enable
the practical usage for large models.



Interpreting diffusion score matching using normalizing flow

References
Barp, A., Briol, F.-X., Duncan, A. B., Girolami, M., and

Mackey, L. Minimum stein discrepancy estimators. arXiv
preprint arXiv:1906.08283, 2019.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. Neural ordinary differential equations. arXiv preprint
arXiv:1806.07366, 2018.

Chwialkowski, K., Strathmann, H., and Gretton, A. A kernel
test of goodness of fit. In International conference on
machine learning, pp. 2606–2615. PMLR, 2016.

Fisher, M., Nolan, T., Graham, M., Prangle, D., and Oates,
C. Measure transport with kernel stein discrepancy. In
International Conference on Artificial Intelligence and
Statistics, pp. 1054–1062. PMLR, 2021.

Gemici, M. C., Rezende, D., and Mohamed, S. Normal-
izing flows on riemannian manifolds. arXiv preprint
arXiv:1611.02304, 2016.

Gorham, J. Measuring sample quality with Stein’s method.
Stanford University, 2017.

Gorham, J., Duncan, A. B., Vollmer, S. J., Mackey, L., et al.
Measuring sample quality with diffusions. Annals of
Applied Probability, 29(5):2884–2928, 2019.

Grathwohl, W., Chen, R. T., Bettencourt, J., Sutskever, I.,
and Duvenaud, D. Ffjord: Free-form continuous dy-
namics for scalable reversible generative models. arXiv
preprint arXiv:1810.01367, 2018.

Grathwohl, W., Wang, K.-C., Jacobsen, J.-H., Duvenaud, D.,
and Zemel, R. Learning the stein discrepancy for training
and evaluating energy-based models without sampling.
In International Conference on Machine Learning, pp.
3732–3747. PMLR, 2020.

Hu, T., Chen, Z., Sun, H., Bai, J., Ye, M., and Cheng, G.
Stein neural sampler. arXiv preprint arXiv:1810.03545,
2018.

Hyvärinen, A. Estimation of non-normalized statistical
models by score matching. Journal of Machine Learning
Research, 6(4), 2005.

Johnson, O. Information theory and the central limit theo-
rem. World Scientific, 2004.

Liu, Q. and Wang, D. Stein variational gradient descent:
A general purpose bayesian inference algorithm. arXiv
preprint arXiv:1608.04471, 2016.

Liu, Q., Lee, J., and Jordan, M. A kernelized stein discrep-
ancy for goodness-of-fit tests. In International conference
on machine learning, pp. 276–284. PMLR, 2016.

Song, Y. and Ermon, S. Generative modeling by estimat-
ing gradients of the data distribution. arXiv preprint
arXiv:1907.05600, 2019.

Song, Y., Garg, S., Shi, J., and Ermon, S. Sliced score
matching: A scalable approach to density and score es-
timation. In Uncertainty in Artificial Intelligence, pp.
574–584. PMLR, 2020a.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Wenliang, L., Sutherland, D., Strathmann, H., and Gretton,
A. Learning deep kernels for exponential family densities.
In International Conference on Machine Learning, pp.
6737–6746. PMLR, 2019.



Interpreting diffusion score matching using normalizing flow

A. Proof of theorem 3.2
Proof. Let’s first define the Stein operator as

SpY [g] = spY (y)Tg(x) +∇Tyg(y) (16)

for the test function g(y) and density pY (y). Thus, the
Stein discrepancy can be rewritten as

S(qY , pY ) = sup
g∈H

EqY [SpY [g]] (17)

In the following, we will focus on the Stein operator. From
the change of variable formula y = T (x), we have

pY (y) = pX(T−1(y))

∣∣∣∣∂T−1(y)

∂y

∣∣∣∣ , g(y) = f(T−1(y))

(18)
Now we can rewrite the Stein operator:

SpY [g] = ∇y log pY (y)Tg(y) +∇Tyg(y)

=∇y log pX(T−1(y))Tg(y) + (∇y log

∣∣∣∣∂T−1(y)

∂y

∣∣∣∣)Tg(y)

+∇yg(y)

=
[
(∇yT

−1(y))T (∇T−1(y) log pX(T−1(y)))
]T

g(y)

+ (∇y log

∣∣∣∣∂T−1(y)

∂y

∣∣∣∣)Tg(y)︸ ︷︷ ︸
1

+ Tr[(∇yT
−1(y))∇T−1(y)f(T−1(y))]

(19)

The second equality is from the chain rule and definition of
divergence operator ∇T . For the layout of the matrix cal-
culus, we follow the column vector layout as the following:
for a function h : RD → R, and f : RD → RN , we have

∂h(x)

∂x
=


∂h(x)
∂x1

...
∂h(x)
∂xD


∂f(x)

∂x
=


∂f1(x)
∂x1

. . . ∂f1(x)
∂xD

...
...

...
∂fN (x)
∂x1

. . . ∂fN (x)
∂xD


(20)

Now, we focus on 1 term:

∇y log |∂T
−1(y)

∂y
| = Tr[(∇yT

−1(y))−1∇y∇yT
−1(y)]

= Tr[∇xT (x)∇y(∇xT (x))−1]

= Tr[∇xT (x)∇yT
−1(y)∇x(∇xT (x))−1]

= Tr[∇x(∇xT (x))−1]
(21)

where we use the inverse function theorem ∇yT
−1(y) =

(∇xT (x))−1. In addition, we define ∇Tx(∇xT (x))−1 =
Tr[∇x(∇xT (x))−1].

So we can set m(x) = (∇xT (x))−1, we can obtain:

SpY [g] = (m(x)Tsp(x))Tf(x) + (∇Txm(x))Tf(x)

+ Tr[m(x)∇xf(x)]

= (m(x)Tsp(x))Tf(x) +∇Tx [m(x)f(x)]

(22)

which is exactly the same as the inner part of DSD (Eq.7).
So with change of variable formula, we can easily show

S(qY , pY ) = DSDm(qX , pX) (23)

B. Proof of proposition 3.1
With the definition of the Riemannian manifold (M, g), for
any point a ∈M with local coordinates x ∈ RD, and two
vectors u,v from its tangent plane TaM, we can represents
u, v using the basis ( ∂

∂xi
)a as

u =

D∑
i=1

ui(
∂

∂xi
)a, v =

D∑
i=1

vi(
∂

∂xi
)a (24)

The inner product defined by the metric g can be expressed
as

g(u,v) =

D∑
i,j

uivj〈(
∂

∂xi
)a, (

∂

∂xj
)a〉g =

D∑
i,j

uigij(x)vj

(25)
where gij(x) is the ij − th element of matrix G(x) and
〈·, ·〉g is the inner product defined by Riemannian metric g.

We assume the measure M(x) is absolutely continuous
w.r.t. Lebesgue measure, then we have the following change
of variable formula

dM(x) =
√
|G(x)|dx (26)

Then we can represents the densities p̃, q̃ under Lebessgue
measure

p(x) =
dP

dM(x)

dM(x)

dx
= p̃(x)

√
|G(x)| (27)

and q(x) is defined accordingly. The score matching loss
for p̃ and q̃ is

FM(q̃, p̃) =
1

2

∫
q̃(x)||∇ log p̃(x)−∇ log q̃(x)||2gdM(x)

=
1

2

∫
q(x)||∇ log p̃(x)−∇ log q̃(x)||2gdx

(28)
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Now let’s define∇ log p̃(x). From the basics of Riemannian
manifold, for a point a ∈M with local coordinate x, and
X is a vector field onM, we have the following definition

〈
D∑
i=1

(∇ log p̃(x))i(
∂

∂xi
)a,

D∑
j=1

Xj(
∂

∂xj
)〉g =

D∑
i=1

Xi
∂ log p̃

∂xi

(29)
Written in terms of matrix form, assume X =
[X1, . . . ,XD]T , and gij(x) is the element of symmetric
positive definite matrix G(x), we have

(∇ log p̃)TG(x)X = (
∂ log p̃

∂x
)TX

=⇒∇ log p̃ = G−1(x)(
∂ log p̃

∂x
)

(30)

Therefore, we have

||∇ log p̃(x)−∇ log q̃(x)||2g
=〈∇ log p̃(x)−∇ log q̃(x),∇ log p̃(x)−∇ log q̃(x)〉g

=〈G−1(x) (
∂ log p̃

∂x
− ∂ log q̃

∂x
)︸ ︷︷ ︸

∆̃(x)

,G−1(x)(
∂ log p̃

∂x
− ∂ log q̃

∂x
)〉g

=∆̃(x)TG−1(x)G(x)G−1(x)∆̃(x)

=∆̃(x)TG−1(x)∆̃(x)

(31)

By change of variable formula, it is also easy to show that

∆̃(x) = (
∂ log p

∂x
− ∂ log q

∂x
)︸ ︷︷ ︸

∆(x)

(32)

Therefore, we have

||∇ log p̃(x)−∇ log q̃(x)||2g = ∆T (x)G−1(x)∆(x)
(33)

Substitute back to FM(q̃, p̃) (Eq.28), we can obtain the re-
sult. Particularly, compare to diffusion Fisher divergence
(Eq.5), we can observe that if G(x) = m(x)−Tm(x)−1,
the FM(q̃, p̃) is equivalent to diffusion Fisher divergence.
Indeed, as m(x) ∈ RD×D is an invertible matrix, then
m(x)−Tm(x)−1 must be symmetric positive definite,
which satisfies the requirements for G(x).

C. Proof of proposition 3.2
An ODE flow is defined by the solution of an ODE:

dx = g(x)dt (34)

with g(x) the deterministic drift term. Let us consider the
forward Euler discretisation of the ODE, which gives

x(t+ δ) = x(t) + δg(x(t)) := Tδ(x(t)). (35)

With δ ≈ 0 we see that Tδ is an invertible transformation.
Now consider y = x(t + δ) and x(t) = x. This again
pushes pX(x) and qX(x) to pY (y) and qY (y), respectively.
Therefore we can reuse results from theorem 3.1 and derive

F(pY , qY ) =
1

2
EqX [||m(x)T (spX (x)− sqX (x))||2],

(36)
where m(x) = (∇xTδ(x))−1 Notice that Tδ(x) = x
when δ = 0. This means we can compute the change of
score matching at time t as:

∂

∂t
F(pY , qY ) = lim

δ→0+

F (pY , qY )− F (pX , qX)

δ

=
1

2
lim
δ→0+

EqX(x)[∆(x)>δ−1(m(x)m(x)> − I)∆(x)],

(37)
with ∆(x) = ∇x log pX(x) − ∇x log qX(x). As
∇xTδ(x) = I + δ∇xg(x), simple calculation shows that

δ−1(m(x)m(x)> − I)

=δ−1[[(I + δ∇xg(x))>(I + δ∇xg(x))]−1 − I]

=δ−1[[I + δ(∇xg(x) +∇xg(x)>) +O(δ2)]−1 − I]

=− [∇xg(x) +∇xg(x)> +O(δ)]

[I + δ(∇xg(x) +∇xg(x)>) +O(δ2)]−1,
(38)

which leads to

∂

∂t
F(pY , qY )

= lim
δ→0+

1

2
EqX(x)[∆(x)>δ−1(m(x)m(x)> − I)∆(x)]

=− 1

2
EqX(x)[∆(x)>(∇xg(x) +∇xg(x)>)∆(x)]

(39)
As this quantifies the instantaneous changes, replacing pt
and qt for pY , pX , qY and qX gives the instantaneous
change of score matching loss.

D. Additional plots
From the motivating example and theorem 3.1, we know
m(x) = (1 + (x−θ)2

b ). Therefore, by simple calculus, the
corresponding transformation y = T (x) can be defined as

y = T (x) =
1

b
√
b

tan−1(
x− θ√

b
)

x = T−1(y) =
√
b tan(b

√
by) + θ

(40)

Let’s define the transformed densities pY (y) and qY (y) as

pY (y) = p(T−1(y))
∣∣∇yT

−1(y)
∣∣

qY (y) = q(T−1(y))
∣∣∇yT

−1(y)
∣∣ (41)

Therefore, we can plot the log likelihood for the original
densities p,q and transformed densities pY , qY as Figure 2.
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Figure 2. Left: The log likelihood plot for original densities q, p. Middle: The log likelihood function for transformed density pY Right:
The log likelihood function for qY . We choose θ = −2.5 and b = 0.6. Notice that the transformed densities pY , qY are periodic as we
consider y ∈ R. This won’t happen if we consider y = T (x). Because all x value will be squeezed inside the period containing 0, i.e. y
will inside [−3.37, 3.37] in this case.

In this case, we set p(x) has the mean −2.5 with the same
scale 0.3 as q, whereas q has mean 0. For the transformation
T , we set θ = −2.5 with b = 0.6.

E. Robustness of Gaussian flow
Here, we investigate the robustness of the diffusion matrix
w.r.t. the degree-of-freedom (DoF) of studnet-t distribution.
We adopt the similar settings as the motivating example (Sec-
tion 2.2) where q and pθ are Student-t distribution with same
scale parameter. We vary their DoF together to investigate
the changes in DSM loss. Because the manual flow lacks
a proper interpretation, so it is difficult to adapted to the
change of DoF. Thus, we use the same m(x) = 1 + (x−θ)2

0.6
for all DoF. On the other hand, Gaussian flow is designed
to transform from Student-t to standard Gaussian. So it
can be easily adapted to the change of DoF by using the
corresponding Fθ.

Figure 3 plots the DSM losses with both manual flow and
Gaussian flow. From the top panel, we can clearly observe
that manual flow only works with DoF = 5. For other DoF,
the corresponding DSM fails to recover the ground truth θ.
On the other hand, the bottom panel shows that Gaussian
flow is robust to the change of DoF, and consistently gives
the correct ground truth θ with wide fast convergence region.

We emphasize again that for both flows, the resulting
DSMm(q, pθ) is not equivalent to Fm(q, pθ) (Eq. 5) as
Cq,m in Eq. 6 is dependent on θ. However, unlike the man-
ually designed flow by Barp et al. (2019), the Gaussian
flow returns surrogate losses that have only one global opti-
mum at the desired solution in all cases considered. Future
work will evaluate the Gaussian flow construction of DSM
objectives beyond student-t case for further understandings.

Figure 3. The DSMm(q, pθ) losses using pθ , q with different
degree-of-freedom (DoF). They are plotted when m(x) is con-
structed using the manual flow (top) or Gaussian flow (bottom).


