

000 BEP: A BINARY ERROR PROPAGATION ALGORITHM 001 FOR BINARY NEURAL NETWORKS TRAINING 002

003 **Anonymous authors**
004
005 Paper under double-blind review
006

007 ABSTRACT 008

009 Binary Neural Networks (BNNs), which constrain both weights and activations to
010 binary values, offer substantial reductions in computational complexity, memory
011 footprint, and energy consumption. These advantages make them particularly well
012 suited for deployment on resource-constrained devices. However, training BNNs
013 via gradient-based optimization remains challenging due to the discrete nature of
014 their variables. The dominant approach, quantization-aware training, circumvents
015 this issue by employing surrogate gradients. Yet, this method requires maintaining
016 latent full-precision parameters and performing the backward pass with floating-
017 point arithmetic, thereby forfeiting the efficiency of binary operations during
018 training. While alternative approaches based on local learning rules exist, they are
019 unsuitable for global credit assignment and for back-propagating errors in multi-
020 layer architectures. This paper introduces Binary Error Propagation (BEP), the first
021 learning algorithm to establish a principled, discrete analog of the backpropagation
022 chain rule. This mechanism enables error signals, represented as binary vectors, to
023 be propagated backward through multiple layers of a neural network. BEP operates
024 entirely on binary variables, with all forward and backward computations performed
025 using only bitwise operations. Crucially, this makes BEP the first solution to enable
026 end-to-end binary training for recurrent neural network architectures. We validate
027 the effectiveness of BEP on both multi-layer perceptrons and recurrent neural
028 networks, demonstrating gains of up to +6.89% and +10.57% in test accuracy,
029 respectively. The proposed algorithm is released as an open-source repository.
030

031 1 INTRODUCTION 032

033 The design of Neural Networks (NNs) with weights and activations constrained to binary values,
034 typically ± 1 , is a promising direction for building models suited to resource-constrained environments.
035 In particular, Binary Neural Networks (BNNs) offer a compelling solution for deploying Deep
036 Learning (DL) models on edge devices and specialized hardware, where computational efficiency,
037 power consumption, and memory footprint are critical design constraints (Courbariaux et al., 2015;
038 Rastegari et al., 2016; Hubara et al., 2016). Their primary advantage lies in replacing costly Floating-
039 Point (FP) arithmetic with lightweight bitwise operations such as XNOR and Popcount, resulting in
040 substantial reductions in computational complexity (Qin et al., 2020; Lucibello et al., 2022).
041

042 Despite these advantages, effectively training BNNs remains challenging due to the non-differentiable
043 nature of their activation functions. Consequently, conventional gradient-based learning algorithms
044 cannot be directly applied, leading to two main classes of solutions. The most prevalent is Quan-
045 tization Aware Training (QAT), which formulates the problem within a continuous optimization
046 framework. In this paradigm, full-precision latent weights are maintained, and non-differentiable
047 activations are bypassed during the backward pass using the Straight-Through Estimator (STE) (Ben-
048 gio et al., 2013). However, reliance on real-valued computations for gradient calculation and weight
049 updates confines the efficiency of binary arithmetic to the forward pass only (Sayed et al., 2023).

050 An alternative line of research has explored purely binary, gradient-free learning rules, often inspired
051 by principles from statistical physics (Baldassi et al., 2015; Baldassi, 2009). These methods operate
052 directly on binary weights and avoid continuous surrogates. A recent extension applied this approach
053 to binary Multi-Layer Perceptrons (MLPs) by generating local error signals at each layer using fixed
random classifiers (Colombo et al., 2025). However, a fundamental limitation of this approach is

054 that credit assignment remains local and error information does not propagate from the final output
 055 layer through the NN. This constraint makes such rules inapplicable to architectures where learning
 056 depends on end-to-end error propagation across layers, such as Recurrent Neural Networks (RNNs).
 057

058 From this perspective, this paper addresses the following research question: *Is it possible to formulate*
 059 *a multi-layer, global credit assignment mechanism that back-propagates errors through the NN while*
 060 *operating exclusively within the binary domain?* To the best of our knowledge, we introduce the
 061 first *fully binary* error Backpropagation (BP) algorithm capable of effectively training BNNs without
 062 relying on FP gradients. The algorithm, called Binary Error Propagation (BEP) hereafter, establishes
 063 a binary analog of the standard BP chain rule, where error signals – represented as binary vectors
 064 – are computed at the output and propagated backward through each layer of the NN. To ensure
 065 learning stability, BEP employs integer-valued hidden weights that provide synaptic inertia and
 066 mitigate catastrophic forgetting (Kirkpatrick et al., 2017). Crucially, the *entire forward and backward*
 067 *passes* rely solely on efficient XNOR, Popcount, and increment/decrement operations. In summary,
 this work makes the following contributions:

- 068 • We formalize a fully binary BP algorithm for BNNs that propagates binary-valued error
 069 signals end-to-end, establishing a discrete analog of the gradient-based BP chain rule.
- 070 • We demonstrate that BEP successfully train both MLP and RNN architectures, overcoming
 071 the limitations of prior local and gradient-based learning methods.

073 As a direct consequence, the proposed BEP algorithm eliminates the need for full-precision gradients
 074 and weight updates, enabling the exclusive use of efficient bitwise operations *even during the learning*
 075 *phase*. This drastically reduces both computational complexity and memory footprint. Experimental
 076 evaluations on multi-class classification benchmarks demonstrate test accuracy improvements of up
 077 to +6.89% over the previous State-of-the-Art (SotA) algorithm (Colombo et al., 2025). Furthermore,
 078 BEP is the first solution to enable end-to-end binary training for RNN architectures, outperforming
 079 the QAT-based approach by an average of +10.57% in test accuracy.

080 The remainder of this paper is organized as follows. Section 2 reviews related work. Section 3
 081 formalizes the proposed BEP algorithm. Section 4 presents experimental results on binary MLP and
 082 RNN architectures. Finally, Section 5 draws conclusions and outlines future research directions.

084 2 RELATED LITERATURE

086 The predominant paradigm for training BNNs is QAT (Courbariaux et al., 2015; Hubara et al., 2016;
 087 Rastegari et al., 2016). In this approach, models maintain latent full-precision parameters that are
 088 binarized during the forward pass, while gradients are computed with respect to the latent parameters
 089 using a surrogate gradient, typically a STE (Bengio et al., 2013). The STE approximates the derivative
 090 of the non-differentiable *sign* function as an identity within a bounded region, enabling the use of
 091 standard BP. Numerous subsequent works have built upon this foundation, introducing improvements
 092 such as learnable representations, enhanced architectures, and strategies to narrow the accuracy gap
 093 with full-precision models (Lin et al., 2017; Liu et al., 2020; Tu et al., 2022; Schiavone et al., 2023).
 094 While QAT has achieved strong empirical results, it remains fundamentally a continuous optimization
 095 method applied to a discrete problem. Training relies on FP arithmetic, which prevents the full
 096 realization of BNN efficiency during learning and introduces a discrepancy between training and
 097 inference dynamics (Yin et al., 2019). Recent work (Liu et al., 2018; Bulat & Tzimiropoulos, 2019;
 098 Vargas et al., 2024) has further refined QAT by incorporating residual connections and improved
 099 surrogate-gradient mechanisms to enhance gradient flow. In contrast, our approach diverges from this
 paradigm by eliminating the need for any real-valued parameters or surrogate gradients.

100 A distinct line of research frames BNN training as a purely binary optimization problem. Early
 101 work in statistical physics explored combinatorial optimization techniques for training single-layer
 102 perceptrons (Gardner, 1988; Engel, 2001), while later studies investigated fully binary training via
 103 global heuristics such as simulated annealing (Kirkpatrick et al., 1983; Hinton, 1990) and evolutionary
 104 strategies (Salimans et al., 2017; Such et al., 2017; Loshchilov & Hutter, 2016). Although these
 105 methods avoid continuous relaxations, they explore the weight space via stochastic perturbations
 106 (e.g., random weight flips) and lack a structured, layer-wise credit assignment comparable to BP,
 107 which limits their scalability and efficiency in deep settings. Our work addresses this limitation by
 developing a multi-layer, gradient-free training method with a deterministic error-propagation rule.

108 In parallel, research at the intersection of statistical physics and computational neuroscience has
 109 developed efficient *local* learning rules for binary neurons. Algorithms such as the Clipped Perceptron
 110 with Reinforcement (CP+R) (Baldassi, 2009) and related message-passing approaches (Baldassi et al.,
 111 2007; 2015) introduce integer-valued hidden variables to represent synaptic confidence, demonstrating
 112 that single binary units can learn effectively. Multi-layer extensions of these rules generate layer-wise
 113 local error signals using fixed random classifiers, enabling training of several binary layers but
 114 still lacking end-to-end propagation of task loss (Colombo et al., 2025). This structural constraint
 115 notably precludes their application to a relevant class of recurrent sequential architectures, such as
 116 RNNs. BEP overcomes these shortcomings by introducing a *global* credit assignment mechanism
 117 that propagates binary error signals end-to-end, bridging the gap between fully binary optimization
 118 and multi-layer training of deep architectures.
 119

3 THE BINARY ERROR PROPAGATION ALGORITHM

122 In this section, we formalize the BEP algorithm for training multi-layer BNNs using exclusively
 123 binary operations. We consider a supervised learning setting defined by a classification task and a
 124 corresponding dataset $\mathbf{X} = \{\mathbf{x}^\mu, c^\mu\}_{\mu=1}^N$ of size N , where $\mathbf{x}^\mu \in \mathbb{R}^{K_0}$ are input patterns of dimension
 125 K_0 , and $c^\mu \in \{1, \dots, C\}$ are their corresponding labels, with C denoting the number of classes.
 126 Specifically, Section 3.1 introduces the BNN architecture and forward-pass dynamics. The binary
 127 backward pass for error propagation is described in Section 3.2. The weight-update rule is defined in
 128 Section 3.3, while the analogy with standard full-precision BP is presented in Section 3.4. Finally,
 129 Section 3.5 demonstrates the application of the proposed BEP algorithm to RNN architectures.
 130

3.1 BNN ARCHITECTURE AND FORWARD PROPAGATION

132 The NN under consideration consists of two main components: a trainable binary backbone that
 133 extracts features, and a fixed task-specific output layer that maps these features to the final prediction,
 134 as shown in Figure 1a. Given a mini-batch $\mathbf{x} = [\dots, \mathbf{x}^\mu, \dots]$ of bs input samples \mathbf{x}^μ , where
 135 $\mu \in \{1, \dots, bs\}$, we first obtain their binary representations $\mathbf{a}_0^\mu = bin(\mathbf{x}^\mu) \in \{\pm 1\}^{K_0}$. The
 136 binarization function can be realized via median thresholding for images or thermometer encoding for
 137 tabular data (Bacellar et al., 2024a). The resulting binary batch \mathbf{a}_0 is then fed to the binary backbone.
 138

139 **Trainable BNN Backbone.** The backbone comprises a stack of L fully-connected binary layers.
 140 For each layer $l \in \{1, \dots, L\}$, its state is defined by two matrices, following prior work on binary
 141 synapses (Baldassi, 2009). The first is the matrix of *hidden discrete weights* $\mathbf{H}_l \in \mathbb{Z}^{K_l \times K_{l-1}}$.
 142 These integer-valued weights encode the synaptic inertia of each connection, providing a mechanism
 143 for stable learning and mitigating catastrophic forgetting (Kirkpatrick et al., 2017). Although
 144 formulated as unbounded integers, in practice \mathbf{H}_l is constrained to the finite range of a B -bit signed
 145 integer, $[-2^{B-1}, 2^{B-1} - 1]$. The second is the matrix of *visible binary weights* $\mathbf{W}_l = sign(\mathbf{H}_l) \in$
 146 $\{\pm 1\}^{K_l \times K_{l-1}}$, representing the effective weights used during the forward pass. Here, K_l denotes
 147 the number of neurons in layer l , and the *sign* function is applied component-wise, returning -1 for
 148 negative inputs and $+1$ otherwise. For each layer l , the pre-activations and activations are computed as
 149 $\mathbf{z}_l = \mathbf{W}_l \mathbf{a}_{l-1}$ and $\mathbf{a}_l = sign(\mathbf{z}_l)$, respectively. The output of the BNN backbone (i.e., the activations
 150 \mathbf{a}_L) is then fed to the task-specific output layer to produce the final predictions $\hat{\mathbf{y}}$.

151 **Task-Specific Output Layer.** To make predictions, the binary features \mathbf{a}_L^μ of each sample μ must
 152 be mapped to the space of target variables \mathbf{y}^μ . For regression tasks, this layer acts as a binary decoder
 153 $\{\pm 1\}^{K_L} \rightarrow \mathbb{R}^D$, where D is the output dimensionality. For a C -class classification problem, the
 154 goal is to produce a logit vector $\hat{\mathbf{y}}^\mu \in \mathbb{R}^C$, whose largest component corresponds to the predicted
 155 class. While different mappings can be used, the choice of output layer influences both learning
 156 and accuracy. In this work, we use a linear layer represented by a fixed, randomly initialized matrix
 157 $\mathbf{P} \in \{\pm 1\}^{C \times K_L}$. This corresponds to associating a prototype vector ρ^c (the c -th row of \mathbf{P}) with
 158 each class $c \in \{1, \dots, C\}$ (see Appendix C for the generation method). Providing the backbone
 159 with a stable and geometrically optimal set of target activations – the class prototypes – simplifies
 160 credit assignment during training and consistently yielded the best performance in our experiments.
 161 Although it is possible to train this classifier, we found empirically that keeping it fixed is more
 162 practical and effective. The final logits are computed as $\hat{\mathbf{y}} = \mathbf{P} \mathbf{a}_L$, and the predicted class for each
 163 sample μ is given by $\hat{c}^\mu = \arg \max_c \hat{\mathbf{y}}_c^\mu$.

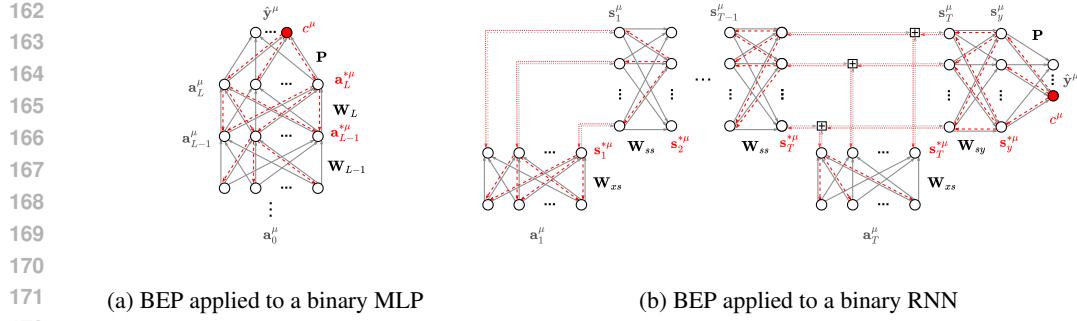


Figure 1: Information flow for a sample μ in an MLP and an RNN trained with BEP. Each model uses a binary core and a fixed classifier. The forward and backward passes are shown in gray and red.

3.2 BINARY ERROR BACKPROPAGATION

The BEP learning rule is error-driven. A backward update is initiated for each sample μ when the logit $\hat{y}_{c^\mu}^\mu$ associated with the ground-truth class c^μ is not sufficiently larger than the others. Specifically, an update is triggered if

$$\hat{y}_{c^\mu}^\mu - \max_{c \neq c^\mu} \hat{y}_c^\mu < rK_L, \quad (1)$$

where $r \in (0, 1]$ is a user-specified margin hyperparameter and K_L is the size of the last hidden layer (also representing the maximum possible logit value). Higher values of r enforce a larger gap between the correct-class logit and all others, thereby encouraging more robust classification.

For clarity, we describe the backward pass for a single training sample μ , although in practice it is applied to all elements of a mini-batch. When a sample μ meets the update criterion in Eq. 1, BEP initiates the backward phase to adjust the hidden integer weights \mathbf{H}_l so that the final output better aligns with the correct target. This is accomplished by defining, for each layer l , a binary *desired activation* vector $\mathbf{a}_l^{*\mu}$ that is propagated from the output layer L back to the first layer.

Desired Activation at the Last Layer. The backward pass begins at the final layer L of the BNN backbone. The first step is to determine the desired activation vector $\mathbf{a}_L^{*\mu}$, which is the ideal binary vector that maximizes the logit for the correct class c^μ . Since the logit is a scalar product between activations and the class prototypes from the fixed classifier \mathbf{P} , the desired activations can be found analytically. They correspond to the prototype vector ρ^{c^μ} for the correct class:

$$\mathbf{a}_L^{*\mu} := \arg \max_{\mathbf{a} \in \{\pm 1\}^{K_L}} \langle \mathbf{a}, \rho^{c^\mu} \rangle = \rho^{c^\mu}. \quad (2)$$

Backpropagation of Desired Activations. For each layer $l < L$, the desired activation vector $\mathbf{a}_l^{*\mu}$ is obtained by back-propagating the error signal $\mathbf{a}_{l+1}^{*\mu}$ from the subsequent layer $l+1$. The goal is to determine activations \mathbf{a}_l^μ that maximize alignment with desired activations $\mathbf{a}_{l+1}^{*\mu}$:

$$\arg \max_{\mathbf{a} \in \{\pm 1\}^{K_l}} \langle \mathbf{a}_{l+1}^{*\mu}, \text{sign}(\mathbf{W}_{l+1} \mathbf{a}) \rangle. \quad (3)$$

Since this is a combinatorial search over 2^{K_l} configurations, BEP solves a relaxed problem by removing the non-linear *sign* function and instead maximizing the alignment with the pre-activations:

$$\arg \max_{\mathbf{a} \in \{\pm 1\}^{K_l}} \langle \mathbf{a}_{l+1}^{*\mu}, \mathbf{W}_{l+1} \mathbf{a} \rangle. \quad (4)$$

This relaxed objective increases the magnitude of the pre-activations \mathbf{z}_{l+1} while aligning their signs with $\mathbf{a}_{l+1}^{*\mu}$. A global optimum is unnecessary, as the goal is to steer weight updates in the appropriate direction. As shown in Lemma 1, the solution to this relaxed problem can be derived analytically.

Backward Gating. In addition, we introduce a gating mechanism to regulate the back-propagated signal. This gate is applied at layer $l+1$ to emphasize learning on neurons most amenable to change, i.e., those with pre-activations $\mathbf{z}_{l+1}^\mu = \mathbf{W}_{l+1} \mathbf{a}_l^\mu$ near the decision threshold of 0. Neurons with

216 large-magnitude pre-activations (nearly saturated responses) are excluded from the backward pass of
 217 sample μ . This is realized through a binary gating vector \mathbf{g}_{l+1}^μ :

$$(219) \quad (\mathbf{g}_{l+1}^\mu)_i = \begin{cases} 1, & \text{if } |z_{l+1,i}^\mu| \leq \nu K_l \\ 0, & \text{otherwise} \end{cases} \quad (5)$$

221 where $z_{l+1,i}^\mu$ is the i -th pre-activation at layer $l + 1$ and $\nu \in [0, 1]$ is a tunable threshold. More
 222 formally, for a generic gating vector \mathbf{g} , we define the gated scalar product as $\langle \mathbf{a}, \mathbf{a}' \rangle_{\mathbf{g}} := \sum_i g_i a_i a'_i$.
 223 This modifies the relaxed optimization problem of Eq. 4 to:

$$(225) \quad \arg \max_{\mathbf{a} \in \{\pm 1\}^{K_l}} \langle \mathbf{a}_{l+1}^{*\mu}, \mathbf{W}_{l+1} \mathbf{a} \rangle_{\mathbf{g}_{l+1}^\mu}. \quad (6)$$

227 This gating function effectively filters the binary error signal, allowing it to pass only through neurons
 228 close to their activation boundary. This ensures that weight updates are driven by the parts of the
 229 BNN most susceptible to flipping their activations. The solution to Eq. 6 is given by the following
 230 lemma (proved in Appendix A).

231 **Lemma 1** (Desired activations). *Consider a binary vector $\mathbf{b} \in \{\pm 1\}^{K_b}$, a binary matrix $\mathbf{W} \in$
 232 $\{\pm 1\}^{K_b \times K_a}$, and a gating vector $\mathbf{g} \in \{0, 1\}^{K_b}$. Problem $\arg \max_{\mathbf{a} \in \{\pm 1\}^{K_a}} \langle \mathbf{b}, \mathbf{W} \mathbf{a} \rangle_{\mathbf{g}}$ has the
 233 unique solution: $\mathbf{a}^* = \text{sign}(\mathbf{W}^\top (\mathbf{g} \odot \mathbf{b}))$.*

234 Combining the base case from Eq. 2 with Lemma 1 yields the recursive expression for computing the
 235 desired activation vector at any layer l :

$$(237) \quad \mathbf{a}_l^{*\mu} = \begin{cases} \rho^{c^\mu}, & \text{if } l = L \\ \text{sign}(\mathbf{W}_{l+1}^\top (\mathbf{g}_{l+1}^\mu \odot \mathbf{a}_{l+1}^{*\mu})) & \text{if } l < L \end{cases} \quad (7)$$

239 where \odot denotes the element-wise product. This formulation forms the cornerstone of BEP, estab-
 240 lishing a fully binary chain rule for propagating binary error signals throughout the BNN.

242 3.3 WEIGHT UPDATE MECHANISM

244 Once the target activation vector $\mathbf{a}_l^{*\mu}$ has been determined for layer l , the corresponding hidden
 245 weights \mathbf{H}_l are updated. This update strengthens the association between the incoming activation
 246 vector \mathbf{a}_{l-1}^μ and the desired output pattern $\mathbf{a}_l^{*\mu}$. For every sample μ that triggers an update, we first
 247 compute a candidate weight-update matrix from the desired binary weights, following a procedure
 248 similar to that in prior work (Baldassi et al., 2007; Baldassi, 2009; Colombo et al., 2025). In particular,
 249 using the same strategy employed to obtain $\mathbf{a}_l^{*\mu}$, we maximize $\langle \mathbf{a}_l^{*\mu}, \mathbf{W}_l \mathbf{a}_{l-1}^\mu \rangle$ with respect to \mathbf{W}_l .
 250 The solution gives the desired direction of change for the integer weights¹:

$$(251) \quad \Delta \mathbf{H}_l^\mu = \text{sign}(\mathbf{a}_l^{*\mu} (\mathbf{a}_{l-1}^\mu)^\top) = \mathbf{a}_l^{*\mu} (\mathbf{a}_{l-1}^\mu)^\top \in \{\pm 1\}^{K_l \times K_{l-1}}. \quad (8)$$

252 Eq. 8 is the natural matrix generalization of the classical supervised Hebbian perceptron rule (Rosen-
 253 blatt, 1958) and of the Clipped Perceptron (CP) and CP+Reinforcement (CP+R) variants (Baldassi
 254 et al., 2007; Baldassi, 2009). When $K_l = 1$, the update $\Delta \mathbf{H}_l^\mu$ reduces exactly to the CP update,
 255 which adds (or subtracts) the input vector \mathbf{a}_{l-1}^μ to the synaptic stability variables whenever the desired
 256 output $\mathbf{a}_l^{*\mu}$ is $+1$ (or -1). In the multi-layer setting, Eq. 8 applies this outer-product mechanism
 257 independently to each hidden neuron, with the desired activations $\mathbf{a}_l^{*\mu}$ serving as binary targets.

258 This potential update is then filtered by a binary mask $\mathbf{M}_l^\mu \in \{0, 1\}^{K_l \times K_{l-1}}$ that selects which
 259 weights to modify. As shown in Appendix B, the resulting update is locally optimal with respect
 260 to the desired activations $\mathbf{a}_l^{*\mu}$. Following the sparse update strategy of (Colombo et al., 2025), the
 261 mask is constructed by partitioning the neurons of layer l into subgroups and, within each group,
 262 updating only the incoming weights of the wrong perceptron deemed *easiest to correct* based on its
 263 pre-activation. This mechanism promotes a more uniform distribution of updates, leading to more
 264 stable training and improved generalization. If \mathcal{M} denotes the set of mini-batch indices that trigger
 265 an update, we first compute each per-sample update $\Delta \mathbf{H}_l^\mu$ using the same pre-update hidden weights
 266 \mathbf{H}_l , and then apply the aggregated update as:

$$(267) \quad \mathbf{H}_l \leftarrow \mathbf{H}_l + 2 \sum_{\mu \in \mathcal{M}} (\mathbf{M}_l^\mu \odot \Delta \mathbf{H}_l^\mu). \quad (9)$$

269 ¹It follows from treating each row of \mathbf{W}_l as an independent optimization and swapping \mathbf{a} and \mathbf{W} in Lemma 1.

The binary mask M_l^μ implements a sparse *winner-takes-update* rule within each neuron group: only the least stable unit, i.e., the neuron with the smallest signed stability $a_l^{*\mu} H_{l,j}$ among the misclassified ones, is updated. This mechanism bounds the number of synapses modified per pattern and prevents over-reinforcing neurons that already classify the sample with high confidence, effectively acting as a discrete, data-dependent form of learning-rate control. Additional analysis of mask density and its effect on convergence and generalization is provided in Appendix D.5. Finally, a reinforcement step from the CP+R rule stochastically strengthens existing memory trajectories of each integer weight $h \in \mathbf{H}_l$ via the update $h \leftarrow h + 2\text{sign}(h)$. This occurs with probability $p_r \sqrt{2/(\pi K_l)}$, where the reinforcement probability p_r is rescaled each epoch by $\sqrt{E^e}$. This mechanism reinforces weights more frequently when the model is uncertain and balances its effect across layers of different sizes.

While (Colombo et al., 2025) employs a fixed group size γ , corresponding to a constant number of updates per epoch, BEP uses a scheduled group size. Let $\Gamma_l = \{d \in \mathbb{N} : d \mid K_l\}$ denote the ordered list of positive divisors of K_l . The algorithm begins with a user-defined initial group size $\gamma_{0,l} \in \Gamma_l$ and increases it adaptively based on accuracy. Whenever the generalization error stagnates for a user-defined number of epochs, the group size is increased to the next larger divisor $\gamma_{t+1,l} = \min \{d \in \Gamma_l : d > \gamma_{t,l}\}$. If $\gamma_{t,l}$ is already the largest divisor of K_l (the last element of Γ_l), it remains fixed. Because only one perceptron per group is updated, enlarging the groups gradually reduces the number of weight changes at each step, resulting in increasingly sparse updates. Empirically, this mechanism leads to a more stable optimization process in the later stages of training.

3.4 ANALOGY TO GRADIENT-BASED BACKPROPAGATION

The BEP procedure can be viewed as a binary reformulation of the classical BP computational graph (Rumelhart et al., 1986). It preserves the global flow of information while substituting real-valued operations with binary, bit-wise counterparts. In standard BP, the weight update for layer l follows a gradient-descent form:

$$\mathbf{W}_l \leftarrow \mathbf{W}_l - \eta \delta_l \mathbf{a}_{l-1}^\top,$$

where η is the learning rate and δ_l denotes the back-propagated error signal for layer l . This real-valued signal is computed recursively by the chain rule:

$$\delta_l = \begin{cases} \nabla_{\mathbf{a}_L} \mathcal{L} \odot \sigma'(\mathbf{z}_L), & \text{if } l = L \\ (\mathbf{W}_{l+1}^\top \delta_{l+1}) \odot \sigma'(\mathbf{z}_l), & \text{if } l < L \end{cases} \quad (10)$$

Each component of BEP mirrors a counterpart in gradient-based BP. The binary desired activation $a_l^{*\mu}$ serves as the binary analog of the error signal. Back-projecting it through \mathbf{W}_{l+1}^\top is structurally equivalent to the error propagation step in the continuous case. The binary gating function plays the role of the activation derivative $\sigma'(\cdot)$, blocking error transmission through saturated neurons as $\sigma'(\cdot)$ approaches zero for large inputs. Finally, the sparse mask M_l fulfills the role of the learning rate: whereas η controls the magnitude of an update, the mask governs its sparsity. These correspondences show that BEP constitutes a coherent end-to-end binary analog of traditional gradient-based BP.

3.5 APPLYING BEP-TT TO RECURRENT ARCHITECTURES

One of the main strengths of BEP is that its global error-propagation strategy directly extends to RNNs, a class of models that require explicit temporal credit assignment and is generally intractable for local learning rules. By unrolling the NN through time, we obtain a binary counterpart of the BP Through Time (BPTT) algorithm, which we call BEP-TT. Demonstrating its effectiveness provides key validation of BEP, showing that a global, end-to-end binary error signal can train recurrent architectures. Accordingly, we employ a binary RNN for many-to-one sequence classification, as shown in Figure 1b. Given an input sequence $\mathbf{x}^\mu = (\mathbf{x}_1^\mu, \dots, \mathbf{x}_T^\mu)$ of length T , the RNN is defined by state-to-state weights $\mathbf{H}_{ss} \in \mathbb{Z}^{K_s \times K_s}$, input-to-state weights $\mathbf{H}_{xs} \in \mathbb{Z}^{K_s \times K_x}$, and state-to-output weights $\mathbf{H}_{sy} \in \mathbb{Z}^{K_y \times K_s}$, along with their binary counterparts \mathbf{W}_{ss} , \mathbf{W}_{xs} , and \mathbf{W}_{sy} .

Forward Pass Through Time. At each time step $t \in 1, \dots, T$, the state vector $\mathbf{s}_t^\mu \in \{\pm 1\}^{K_s}$ is computed from the previous state \mathbf{s}_{t-1}^μ and the current binarized input $\mathbf{a}_t^\mu \in \{\pm 1\}^{K_x}$ according to the recurrence $\mathbf{s}_t^\mu = \text{sign}(\mathbf{W}_{xs} \mathbf{a}_t^\mu + \mathbf{W}_{ss} \mathbf{s}_{t-1}^\mu)$. After the final time step T , the state \mathbf{s}_T^μ is mapped to an output activation $\mathbf{s}_y^\mu \in \{\pm 1\}^{K_y}$ via $\mathbf{s}_y^\mu = \text{sign}(\mathbf{W}_{sy} \mathbf{s}_T^\mu)$. This activation is then passed to the fixed classifier \mathbf{P} to produce the prediction $\hat{\mathbf{y}}^\mu$, which is used to check the update criterion from Eq. 1.

324 **Binary Backpropagation Through Time.** When a sequence \mathbf{x}^μ satisfies the update criterion in
 325 Eq. 1, the BEP-TT procedure is performed. This mechanism parallels BEP’s operation on feedforward
 326 NNs but operates over the unrolled temporal structure, propagating a target state vector $\mathbf{s}_t^{*\mu}$ backward
 327 from time step $t = T$ to $t = 1$. First, the desired output state is set to the correct class prototype,
 328 $\mathbf{s}_y^{*\mu} := \rho^{c^\mu}$, which provides the error signal for the state-to-output layer. Using Eq. 7, this signal is
 329 then back-projected to obtain the desired state at the last time step, $\mathbf{s}_T^{*\mu} = \text{sign}(\mathbf{W}_{sy}^\top (\mathbf{g}_y^\mu \odot \mathbf{s}_y^{*\mu}))$.
 330 For preceding time steps $t \in \{T-1, \dots, 1\}$, the desired state is propagated recursively:
 331

$$\mathbf{s}_t^{*\mu} = \text{sign}(\mathbf{W}_{ss}^\top (\mathbf{g}_{t+1}^\mu \odot \mathbf{s}_{t+1}^{*\mu})).$$

333 Here, \mathbf{g}_y^μ and \mathbf{g}_{t+1}^μ are the backward gates computed from the pre-activations \mathbf{z}_y^μ and \mathbf{z}_{t+1}^μ . This re-
 334 cursion propagates the binary error signal through the sequence, enabling temporal credit assignment.
 335

336 **Accumulated Updates for Shared Weights.** Because RNNs share weights across time, the matrices
 337 \mathbf{H}_{xs} and \mathbf{H}_{ss} must accumulate updates over all time steps for all samples $\mu \in \mathcal{M}$ that triggered an
 338 update. These aggregated updates are then applied to the integer-valued hidden weights using the
 339 corresponding binary masks \mathbf{M}_{xs}^μ and \mathbf{M}_{ss}^μ , as described in Eq. 8 and Eq. 9:

$$340 \mathbf{H}_{xs} \leftarrow \mathbf{H}_{xs} + 2 \sum_{\mu \in \mathcal{M}} \mathbf{M}_{xs}^\mu \odot \sum_{t=1}^T (\mathbf{s}_t^{*\mu} (\mathbf{a}_t^\mu)^\top), \quad \mathbf{H}_{ss} \leftarrow \mathbf{H}_{ss} + 2 \sum_{\mu \in \mathcal{M}} \mathbf{M}_{ss}^\mu \odot \sum_{t=1}^T (\mathbf{s}_t^{*\mu} (\mathbf{s}_{t-1}^\mu)^\top).$$

343 These updates are followed by the reinforcement step described in the previous section. The binary
 344 masks \mathbf{M}_{xs}^μ and \mathbf{M}_{ss}^μ are shared across time steps to preserve weight tying, ensuring masking
 345 commutes with temporal aggregation. Allowing masks to vary with time would violate this property,
 346 effectively training different copies of the same parameter at each time index. The final state-to-output
 347 layer is updated analogously to the feedforward case described in Section 3.2:

$$348 \mathbf{H}_{sy} \leftarrow \mathbf{H}_{sy} + \sum_{\mu \in \mathcal{M}} (\mathbf{M}_{sy}^\mu \odot \mathbf{s}_y^{*\mu} (\mathbf{s}_T^\mu)^\top).$$

350 This BEP-TT formulation yields a fully binary training procedure for binary RNNs. Its ability to
 351 perform temporal credit assignment stems from the global error propagation mechanism of BEP, a
 352 key advantage over local learning rules.
 353

354 4 EXPERIMENTAL EVALUATION

356 In this section, we empirically evaluate the proposed BEP algorithm. The experiments have two main
 357 objectives: (i) to benchmark BEP against the SotA method for binary training of MLPs (Colombo
 358 et al., 2025), and (ii) to demonstrate the generality of BEP’s global credit assignment by applying it
 359 to binary RNNs, a setting for which local learning methods are unsuited. The Python code used in
 360 our experiments is available in a public repository². Section 4.1 describes the experimental setup.
 361 Section 4.2 evaluates BEP on binary MLPs against both the SotA approach and QAT-based methods
 362 that rely on full-precision BP. Section 4.3 tests BEP on binary RNNs, contrasting its performance with
 363 QAT. Finally, Section 4.4 explores the effect of the gating hyperparameter ν on training dynamics.
 364

365 4.1 EXPERIMENTAL SETUP

366 Our evaluation spans a diverse set of benchmarks. For the feedforward MLPs, we adopt the same
 367 datasets as (Colombo et al., 2025): Random Prototypes, FashionMNIST (Xiao et al., 2017), CIFAR-
 368 10 (Krizhevsky et al., 2009), and Imagenette (Howard, 2019). The Random Prototypes dataset
 369 comprises 20,000 training and 3,000 test samples with input dimension $K_0 = 1000$ and a flip
 370 probability $p = 0.46$. FashionMNIST contains 50,000 training and 10,000 test grayscale images
 371 of size 28×28 . For CIFAR-10 and Imagenette, we use the same AlexNet-derived features as
 372 in (Colombo et al., 2025). Both are 10-class datasets; CIFAR-10 has 50,000 training and 10,000 test
 373 samples, while Imagenette has 10,000 training and 1,963 test samples. To evaluate recurrent models,
 374 we use Sequential MNIST (S-MNIST) (Deng, 2012) and 30 real-world time-series classification
 375 tasks from the UCR Archive (Dau et al., 2019), which cover a wide range of sample sizes, feature
 376 dimensions, and class counts. In all experiments, we utilize a fixed output classifier \mathbf{P} generated via
 377 the binary equiangular frame method detailed in Appendix C.

²The repository will be made available upon acceptance

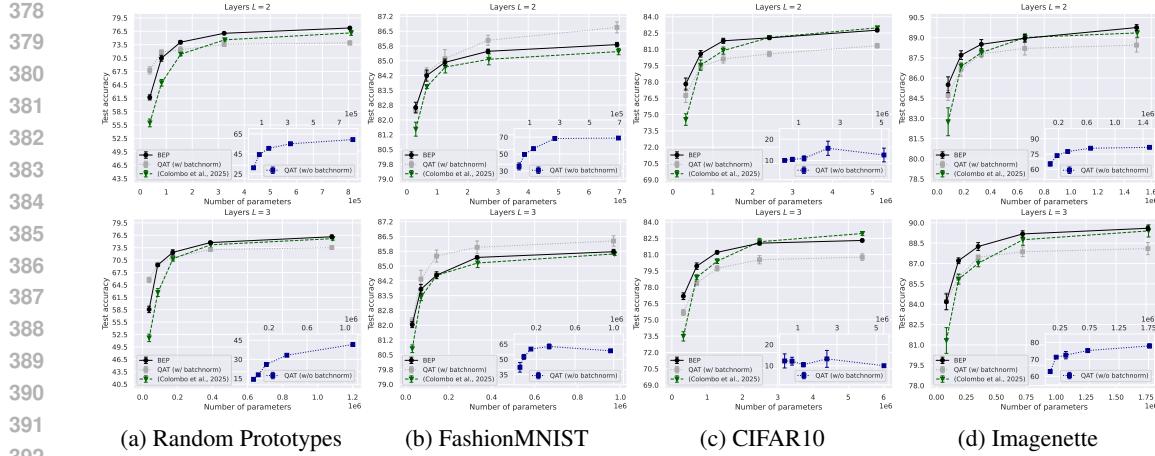


Figure 2: Test accuracy as a function of the number of parameters on Random Prototypes, FashionMNIST, CIFAR10, and Imagenette. Results compare BEP with both the SotA approach (Colombo et al., 2025) and QAT-based methods for binary MLPs with $L = 2$ and $L = 3$ hidden layers.

4.2 PERFORMANCE ON BINARY MULTI-LAYER PERCEPTRONS

Our first experiment evaluates BEP against the current SotA approach for binary training of MLPs (Colombo et al., 2025). Specifically, we considered binary MLPs with two and three hidden layers, trained using both BEP and the SotA local learning rule. The tuned hyperparameters, across $e = 50$ epochs, include the robustness parameter r , reinforcement probability p_r , initial group size $\gamma_{0,l}$, and gating threshold ν . For a comprehensive benchmark, we also trained the same architectures using the QAT implementation from the *Larg* framework (Geiger & Team, 2020). In this setup, the forward pass employs binarized weights, while the backward pass updates latent FP parameters with the Adam optimizer (Kingma & Ba, 2014). To ensure a fair comparison, the main QAT baseline does not use batch normalization, resulting in a fully binary model at inference. For completeness, we also report the performance of QAT with batch normalization as a reference point.

Figure 2 reports test accuracy, averaged over 5 runs, on four datasets as a function of the parameter count. The results show that both fully binary approaches – BEP and the SotA local rule – significantly outperform the comparable QAT baseline across all configurations. When comparing binary methods, BEP consistently surpasses the SotA approach, achieving improvements of up to +6.89%, +1.22%, +3.70%, and +2.85% on Random Prototypes, FashionMNIST, CIFAR-10, and Imagenette, respectively, at the smallest parameter configurations. As model size increases, the performance gap narrows, with BEP matching the local credit assignment rule but falling slightly behind in one high-parameter setting (CIFAR-10, 3 layers). These findings underscore the importance of global error propagation for effective credit assignment in binary MLPs, while also showing that BEP outperforms both local learning rules and standard QAT baselines without relying on FP gradients.

4.3 VALIDATION ON BINARY RECURRENT NEURAL NETWORKS

Our second experiment tests the BEP algorithm on binary RNNs using its time-unrolled variant BEP-TT described in Section 3.5. The goal is to demonstrate that a global, end-to-end error signal can effectively train recurrent models, a task typically intractable for purely local learning rules. Specifically, we evaluate BEP-TT on many-to-one sequence classification tasks across 30 datasets from the UCR Time Series Archive (Dau et al., 2019), using only the last window of each time series. All RNN results use 3-fold cross-validation and 3 independent runs with the same hyperparameters: robustness $r = 0.5$, reinforcement probability $p_r = 0.5$, initial group size $\gamma_{0,l} = 15$, gating threshold $\nu = 0.05$, hidden and output layer sizes $K_s = K_y = 1035$, training epochs $e = 50$, and batch size $bs = N/10$. As a baseline, we trained binary RNNs with the same architecture using the QAT implementation from the *Larg* framework (Geiger & Team, 2020). As in the previous experiment, no batch or layer normalization was applied so that the models remain fully binary at inference time. For completeness, we report the performance of QAT with batch normalization as a reference point.

432 Table 1: Test accuracy on 30 UCR datasets. The results compare our BEP algorithm with the
 433 QAT-based training from the *Larg* framework (Geiger & Team, 2020) for binary RNN architectures.
 434

435 UCR Dataset	436 BEP	437 QAT w/o 438 batchnorm	439 QAT w/ 440 batchnorm	441 UCR Dataset	442 BEP	443 QAT w/o 444 batchnorm	445 QAT w/ 446 batchnorm
<i>ArticularyWordRec.</i>	81.28 ± 2.99	51.94 ± 3.61	77.62 ± 3.80	<i>JapaneseVowels</i>	95.47 ± 1.24	84.06 ± 2.92	96.25 ± 1.01
<i>Cricket</i>	86.85 ± 4.19	61.30 ± 6.88	86.11 ± 6.03	<i>MelbournePedestrian</i>	73.03 ± 4.59	42.83 ± 2.35	90.91 ± 0.90
<i>DistalPOAgeGroup</i>	79.78 ± 2.65	73.84 ± 2.51	76.94 ± 3.27	<i>MoteStrain</i>	78.62 ± 2.29	74.42 ± 1.70	79.82 ± 1.81
<i>ECG5000</i>	91.40 ± 0.53	88.20 ± 1.08	92.71 ± 0.74	<i>MotionSenseHAR</i>	74.25 ± 2.07	67.97 ± 1.80	77.36 ± 1.89
<i>ECGFiveDays</i>	81.79 ± 1.97	69.42 ± 2.71	95.25 ± 1.45	<i>PEMS-SF</i>	86.13 ± 3.66	60.69 ± 4.55	85.83 ± 2.43
<i>ERing</i>	82.44 ± 4.90	71.67 ± 3.89	79.11 ± 4.93	<i>PenDigits</i>	97.13 ± 0.21	66.99 ± 1.44	99.00 ± 0.21
<i>Earthquakes</i>	80.34 ± 2.94	79.83 ± 2.83	77.01 ± 2.96	<i>ProximalPOAgeGroup</i>	82.64 ± 3.08	77.24 ± 3.64	82.20 ± 2.27
<i>Epilepsy2</i>	92.45 ± 0.53	88.82 ± 0.58	93.72 ± 0.42	<i>ProximalPOCorrect</i>	78.26 ± 1.09	72.76 ± 2.89	75.68 ± 2.66
<i>FreezerRegularTrain</i>	78.21 ± 1.17	75.26 ± 1.56	85.92 ± 1.06	<i>ProximalPhalanxTW</i>	79.83 ± 2.66	74.26 ± 5.11	75.59 ± 3.03
<i>FreezerSmallTrain</i>	78.16 ± 1.46	75.02 ± 1.44	85.60 ± 1.50	<i>SmoothSubspace</i>	89.00 ± 4.24	58.00 ± 4.83	90.33 ± 4.08
<i>GunPtAgeSpan</i>	86.18 ± 2.27	81.08 ± 2.53	84.11 ± 2.55	<i>SonyAIBORobotSurf1</i>	75.68 ± 2.73	64.14 ± 2.05	80.68 ± 3.04
<i>GunPtOldVersusYoung</i>	94.01 ± 1.57	91.87 ± 2.91	93.79 ± 1.26	<i>SonyAIBORobotSurf2</i>	82.04 ± 2.37	73.10 ± 1.71	84.59 ± 2.62
<i>InsectEPGRegularTrain</i>	99.14 ± 0.71	94.64 ± 2.97	99.04 ± 0.64	<i>StarLightCurves</i>	82.32 ± 0.34	81.96 ± 0.49	82.68 ± 0.46
<i>InsectEPGSmallTrain</i>	99.37 ± 0.56	96.62 ± 2.43	98.75 ± 0.83	<i>Tiselas</i>	81.63 ± 0.47	64.52 ± 0.98	84.81 ± 0.25
<i>ItalyPowerDemand</i>	94.65 ± 1.22	83.18 ± 2.01	96.23 ± 1.01	<i>Wafer</i>	95.92 ± 0.61	95.25 ± 0.64	97.93 ± 0.24

447
 448 For all datasets and models, inputs were binarized with a distributive thermometer encoder (Bacellar
 449 et al., 2024a), followed by a fixed ± 1 expansion layer projecting the dimension to $K_0 = 1035$. A
 450 hyperparameter search was conducted to tune the sequence window length, defined as the number of
 451 timesteps included in the temporal window, and the number of thermometer bits.

452 Table 1 presents the test accuracy across the considered UCR tasks. On every dataset, BEP-TT
 453 consistently outperforms the comparable QAT baseline in training fully binary RNNs, achieving
 454 an average test accuracy improvement of +10.57%. These results validate the proposed binary
 455 error propagation mechanism beyond feedforward MLPs. Moreover, because BEP relies on bitwise
 456 operations even during training, it substantially reduces memory and computational costs compared
 457 to QAT, which requires full-precision Adam updates, as discussed in Section 4.5.

459 4.4 THE ROLE OF THE GATING THRESHOLD ν

460 A crucial element to the generalization performance of the BEP algorithm is its gating mechanism,
 461 which modulates the backward error signal as described in Section 3.2. In this third experiment, we
 462 examine how varying the threshold ν affects the validation accuracy of a binary RNN on the S-MNIST
 463 dataset. The following hyperparameters are used: robustness $r = 0.5$, reinforcement probability
 464 $p_r = 0.5$, initial group size $\gamma_{0,l} = 15$, layer sizes $K_s = K_y = 1875$, training epochs $e = 50$, and
 465 batch size $bs = 100$. Corresponding results for binary MLPs are provided in Appendix D.1.

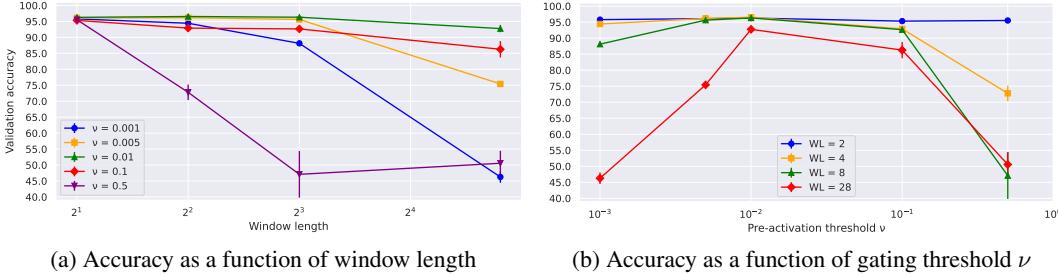
466 Figures 3a and 3b, which show the accuracy averaged over 3 runs as a function of window length
 467 and gating threshold ν , respectively, highlight the crucial role of this mechanism. Its effect becomes
 468 more pronounced as the window length grows (corresponding to deeper backward steps through
 469 time), emphasizing the importance of focusing updates on neurons whose pre-activations lie near the
 470 decision boundary. The results reveal an optimum in ν : very low or very high thresholds degrade
 471 performance, whereas intermediate values (around 10^{-2}) consistently yield the highest accuracy
 472 across different temporal depths. By filtering out saturated neurons from the error signal, the gate
 473 ensures that weight updates focus on parts of the BNN most susceptible to flipping their activations.

475 4.5 DISCUSSION AND LIMITATIONS

477 A key advantage of BEP lies in its ability to perform training using only bitwise computations.
 478 Table 2 summarizes the memory footprint and computational complexity of BEP compared with
 479 standard QAT. Relative to QAT-based methods, our approach achieves a $2\times$ reduction in memory
 480 usage for hidden weights and a $32\times$ reduction for error signals and weight updates. Moreover,
 481 Adam-based QAT requires an additional 64 bits per parameter to store its first- and second-order
 482 moment estimates, further increasing its memory demand. From a computational standpoint, we
 483 adopt the hardware-level metric of equivalent Boolean gates (Colombo et al., 2025) to compare the
 484 intrinsic cost of arithmetic operations. All operations in BEP can be implemented using primitives
 485 such as XNOR, Popcount, and increment/decrement operations, which require at most $\mathcal{O}(10N)$
 Boolean gates for N -bit operands (Bacellar et al., 2024b). In contrast, IEEE-754 single-precision

486
 487 Table 2: Comparison of memory footprint and computational complexity between QAT (with Adam)
 488 and BEP. Memory is reported in bits per element, and complexity denotes the order of magnitude of
 489 equivalent Boolean-gate operations per element (Colombo et al., 2025). \dagger : This estimate assumes the
 490 absence of batch normalization and full-precision scaling factors commonly used in QAT.

Method	Memory (Bits)			Complexity (Boolean gates)		
	Weights	Activations	Errors / Gradients	Forward	Backward	Update
QAT (Adam)	32 (FP32)	1	32 + 64 (Moments)	$\sim 10^\dagger$	$\sim 10^4$	$\sim 10^4$
BEP	16 (Int16)	1	1	~ 10	~ 10	~ 10



506 Figure 3: Validation accuracy of a binary RNN trained with BEP on the S-MNIST dataset for different
 507 values of the gating threshold hyperparameter ν and window length WL.
 508

510 FP additions and multiplications (876, 2019), which underpin Adam-based QAT, are estimated to
 511 require on the order of 10^4 Boolean gates each (Luo & Sun, 2024). This comparison highlights the
 512 substantial computational advantage of BEP, which reduces the Boolean-gate cost by approximately
 513 three orders of magnitude relative to FP32 QAT with Adam.

514 Despite its promising results, our approach has some limitations that suggest natural directions for
 515 future research. First, we focus primarily on binary MLPs and RNNs. Extending BEP to convolutional
 516 or transformer-style models requires a full binary design for these architectures, including handling
 517 binary convolutions, filter-level masking, and additional adaptations to support weight sharing, spatial
 518 structure, and multi-head mechanisms. Second, our experiments are restricted to classification tasks.
 519 Although BEP naturally supports arbitrary binary output vectors and could, in principle, be applied
 520 to multi-label prediction, binary segmentation, or more general binary-vector regression, such tasks
 521 necessitate additional design choices regarding the output encoding. Third, we evaluate BEP on
 522 mid-scale datasets and moderate-depth NNs. Extending BEP to large-scale models (e.g., ImageNet-
 523 level CNNs (Bulat & Tzimiropoulos, 2019; Vargas et al., 2024)) requires substantial architectural
 524 adaptations to convolutional or transformer backbones. Moreover, binary-compatible normalization
 525 mechanisms may become necessary to ensure stable training in such settings.

5 CONCLUSION AND FUTURE WORK

526 In this paper, we introduced BEP, an algorithm for training multi-layer BNNs using exclusively binary
 527 computations. The central contribution is the formulation of a principled, binary analog of the BP
 528 algorithm. By defining a recursive rule for propagating binary-valued error signals and updating
 529 integer-valued metaplastic weights, BEP bridges the gap between the global credit assignment of
 530 gradient-based learning and the computational efficiency of bitwise operations. Theoretically, this
 531 work shows that effective end-to-end learning in multi-layer binary NNs is possible without relying
 532 on continuous gradients, opening new avenues for analyzing discrete optimization in DL. Practically,
 533 BEP enables efficient training using only XNOR, Popcount, and increment/decrement operations,
 534 making it well-suited for constrained settings such as TinyML (Capogrosso et al., 2024; Pavan et al.,
 535 2024), privacy-preserving DL with homomorphic encryption (Falcetta & Roveri, 2022; Colombo
 536 et al., 2024), and neuromorphic systems (Indiveri & Liu, 2015; Yamazaki et al., 2022). Future work
 537 includes extending BEP to convolutional architectures, refining adaptive strategies for the gating
 538 threshold ν , exploring learnable masking mechanisms, and developing a formal convergence analysis.
 539

540 REFERENCES
541

542 Ieee standard for floating-point arithmetic. *IEEE Std 754-2019 (Revision of IEEE 754-2008)*, pp.
543 1–84, 2019. doi: 10.1109/IEEEESTD.2019.8766229.

544 Alan Tendler Leibel Bacellar, Zachary Susskind, Mauricio Breternitz Jr, Eugene John, Lizy Kurian
545 John, Priscila Machado Vieira Lima, and Felipe M.G. Fran  a. Differentiable weightless neu-
546 ral networks. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria
547 Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Proceedings of the 41st International
548 Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp.
549 2277–2295. PMLR, 21–27 Jul 2024a. URL <https://proceedings.mlr.press/v235/bacellar24a.html>.

550

551 Alan TL Bacellar, Zachary Susskind, Mauricio Breternitz Jr, Eugene John, Lizy K John, Priscila
552 Lima, and Felipe MG Fran  a. Differentiable weightless neural networks. *arXiv preprint
553 arXiv:2410.11112*, 2024b.

554

555 Carlo Baldassi. Generalization learning in a perceptron with binary synapses. *Journal of Statistical
556 Physics*, 136(5):902–916, Sep 2009. ISSN 1572-9613. doi: 10.1007/s10955-009-9822-1. URL
557 <https://doi.org/10.1007/s10955-009-9822-1>.

558

559 Carlo Baldassi, Alfredo Braunstein, Nicolas Brunel, and Riccardo Zecchina. Efficient supervised
560 learning in networks with binary synapses. *Proceedings of the National Academy of Sciences*, 104
561 (26):11079–11084, 2007. doi: 10.1073/pnas.0700324104. URL <https://www.pnas.org/doi/abs/10.1073/pnas.0700324104>.

562

563 Carlo Baldassi, Alessandro Ingrosso, Carlo Lucibello, Luca Saglietti, and Riccardo Zecchina. Sub-
564 dominant dense clusters allow for simple learning and high computational performance in neural
565 networks with discrete synapses. *Physical review letters*, 115(12):128101, 2015.

566

567 Yoshua Bengio, Nicolas L  onard, and Aaron Courville. Estimating or propagating gradients through
568 stochastic neurons for conditional computation. *arXiv preprint arXiv:1308.3432*, 2013.

569

570 Adrian Bulat and Georgios Tzimiropoulos. Xnor-net++: Improved binary neural networks.
571 *ArXiv*, abs/1909.13863, 2019. URL <https://api.semanticscholar.org/CorpusID:203593135>.

572

573 Luigi Capogrosso, Federico Cunico, Dong Seon Cheng, Franco Fummi, and Marco Cristani. A
574 machine learning-oriented survey on tiny machine learning. *IEEE Access*, 12:23406–23426, 2024.

575

576 Luca Colombo, Alessandro Falcetta, and Manuel Roveri. Training encrypted neural networks on
577 encrypted data with fully homomorphic encryption. *WAHC’24*, pp. 64, 2024.

578

579 Luca Colombo, Fabrizio Pittorino, and Manuel Roveri. Training multi-layer binary neural networks
580 with random local binary error signals. *Machine Learning: Science and Technology*, 6(3):035015,
2025.

581

582 Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
583 networks with binary weights during propagations. In *Advances in Neural Information Processing
584 Systems (NeurIPS)*, pp. 3123–3131, 2015.

585

586 Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh
587 Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn Keogh. The ucr time series archive.
588 *IEEE/CAA Journal of Automatica Sinica*, 6(6):1293–1305, 2019.

589

590 Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
591 web]. *IEEE signal processing magazine*, 29(6):141–142, 2012.

592

593 Andreas Engel. *Statistical mechanics of learning*. Cambridge University Press, 2001.

Alessandro Falcetta and Manuel Roveri. Privacy-preserving deep learning with homomorphic
594 encryption: An introduction. *IEEE Computational Intelligence Magazine*, 17(3):14–25, 2022.

594 Elizabeth Gardner. The space of interactions in neural network models. *Journal of physics A: Mathematical and general*, 21(1):257, 1988.

595

596

597 Lukas Geiger and Plumerai Team. Larq: An open-source library for training binarized neural networks. *Journal of Open Source Software*, 5(45):1746, 2020.

598

599 Geoffrey E Hinton. Connectionist learning procedures. In *Machine learning*, pp. 555–610. Elsevier, 600 1990.

601

602 Jeremy Howard. imagenette, 2019. URL <https://github.com/fastai/imagenette/>.

603

604 Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized neural networks. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 4107–4115, 605 2016.

606

607 Giacomo Indiveri and Shih-Chii Liu. Memory and information processing in neuromorphic systems. *Proceedings of the IEEE*, 103(8):1379–1397, 2015.

608

609 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*, 2014.

610

611

612 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwińska, et al. Overcoming catastrophic forgetting in neural networks. *Proceedings of the National Academy of Sciences (PNAS)*, 114(13):3521–3526, 2017.

613

614

615

616 Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by simulated annealing. *science*, 220(4598):671–680, 1983.

617

618

619 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images, 2009.

620

621 Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate binary convolutional neural network. *Advances in neural information processing systems*, 30, 2017.

622

623 Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-real net: Enhancing the performance of 1-bit cnns with improved representational capability and advanced training algorithm. In *Proceedings of the European Conference on Computer Vision (ECCV)*, September 2018.

624

625

626

627 Zechun Liu, Wenhan Luo, Baoyuan Wu, Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-real net: Binarizing deep network towards real-network performance. *International Journal of Computer Vision*, 128:202–219, 2020.

628

629

630 Ilya Loshchilov and Frank Hutter. Cma-es for hyperparameter optimization of deep neural networks. *arXiv preprint arXiv:1604.07269*, 2016.

631

632

633 Carlo Lucibello, Fabrizio Pittorino, Gabriele Perugini, and Riccardo Zecchina. Deep learning via message passing algorithms based on belief propagation. *Machine Learning: Science and Technology*, 3(3):035005, 2022.

634

635

636 Hongyin Luo and Wei Sun. Addition is all you need for energy-efficient language models. *arXiv preprint arXiv:2410.00907*, 2024.

637

638

639 Vardan Papyan, X. Y. Han, and David L. Donoho. Prevalence of neural collapse during the terminal phase of deep learning training. *Proceedings of the National Academy of Sciences*, 117(40): 24652–24663, 2020. doi: 10.1073/pnas.2015509117. URL <https://www.pnas.org/doi/abs/10.1073/pnas.2015509117>.

640

641

642

643 Massimo Pavan, Eugeniu Ostrovski, Armando Caltabiano, and Manuel Roveri. Tybox: An automatic design and code generation toolbox for tinyml incremental on-device learning. *ACM Transactions on Embedded Computing Systems*, 23(3):1–27, 2024.

644

645

646

647 Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai, Jingkuan Song, and Nicu Sebe. Binary neural networks: A survey. *Pattern Recognition*, 105:107281, 2020.

648 Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. XNOR-Net: ImageNet
 649 classification using binary convolutional neural networks. In *European Conference on Computer*
 650 *Vision (ECCV)*, pp. 525–542, 2016.

651

652 F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the
 653 brain. *Psychological Review*, 65(6):386–408, 1958. ISSN 0033-295X. doi: 10.1037/h0042519.
 654 URL <http://dx.doi.org/10.1037/h0042519>.

655 David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by
 656 back-propagating errors. *Nature*, 323(6088):533–536, Oct 1986. ISSN 1476-4687. doi: 10.1038/
 657 323533a0. URL <https://doi.org/10.1038/323533a0>.

658

659 Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
 660 scalable alternative to reinforcement learning. *arXiv preprint arXiv:1703.03864*, 2017.

661

662 Ratshih Sayed, Haytham Azmi, Heba Shawkey, Alaa Hussein Khalil, and Mohamed Refky. A
 663 systematic literature review on binary neural networks. *IEEE Access*, 11:27546–27578, 2023.

664

665 Riccardo Schiavone, Francesco Galati, and Maria A Zuluaga. Binary domain generalization for
 666 sparsifying binary neural networks. In *Joint European Conference on Machine Learning and*
667 Knowledge Discovery in Databases, pp. 123–140. Springer, 2023.

668

669 Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O Stanley, and Jeff
 670 Clune. Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep
 671 neural networks for reinforcement learning. *arXiv preprint arXiv:1712.06567*, 2017.

672

673 Zhijun Tu, Xinghao Chen, Pengju Ren, and Yunhe Wang. Adabin: Improving binary neural networks
 674 with adaptive binary sets. In *Computer Vision – ECCV 2022: 17th European Conference, Tel
 675 Aviv, Israel, October 23–27, 2022, Proceedings, Part XI*, pp. 379–395, Berlin, Heidelberg, 2022.
 Springer-Verlag. ISBN 978-3-031-20082-3. doi: 10.1007/978-3-031-20083-0_23. URL https://doi.org/10.1007/978-3-031-20083-0_23.

676

677 Edwin Vargas, Claudia V. Correa, Carlos Hinojosa, and Henry Arguello. Biper: Binary neural
 678 networks using a periodic function. In *2024 IEEE/CVF Conference on Computer Vision and*
679 Pattern Recognition (CVPR), pp. 5684–5693, 2024. doi: 10.1109/CVPR52733.2024.00543.

680

681 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
 682 machine learning algorithms. *arXiv preprint arXiv:1708.07747*, 2017.

683

684 Kashu Yamazaki, Viet-Khoa Vo-Ho, Darshan Bansara, and Ngan Le. Spiking neural networks and
 685 their applications: A review. *Brain sciences*, 12(7):863, 2022.

686

687 Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher, Yingyong Qi, and Jack Xin. Under-
 688 standing straight-through estimator in training activation quantized neural nets. *arXiv preprint*
 689 *arXiv:1903.05662*, 2019.

690

691

692

693

694

695

696

697

698

699

700

701

702 **A ANALYSIS OF THE BACKWARD PASS**
 703

704 It is possible to provide a justification for the core backward propagation rule. In particular, we show
 705 that the recursion for the desired activations is the *exact* optimizer of a tractable linear surrogate of the
 706 otherwise intractable combinatorial credit-assignment problem. This positions BEP as a principled
 707 binary analog of BP rather than an ad-hoc heuristic. At layer l , one would ideally choose the binary
 708 activation vector $\mathbf{a}_l^{*\mu}$ that, when mapped through \mathbf{W}_{l+1} and binarized, maximizes alignment with
 709 the upper-layer target $\mathbf{a}_{l+1}^{*\mu}$. From Eq. 3:

$$710 \quad \arg \max_{\mathbf{a} \in \{\pm 1\}^{K_l}} \langle \mathbf{a}_{l+1}^{*\mu}, \text{sign}(\mathbf{W}_{l+1} \mathbf{a}) \rangle.$$

713 This is a nonconvex combinatorial optimization over the hypercube with a discontinuous objective.
 714 In general, it is NP-hard by reduction from standard binary optimization problems. Therefore, we do
 715 not attempt to solve it exactly. Instead, we consider the linear surrogate obtained by dropping the
 716 nonlinearity inside the inner product. From Eq. 4:

$$717 \quad \arg \max_{\mathbf{a} \in \{\pm 1\}^{K_l}} \langle \mathbf{a}_{l+1}^{*\mu}, \mathbf{W}_{l+1} \mathbf{a} \rangle.$$

719 Equivalently, the set may be relaxed to the hypercube $[-1, 1]^{K_l}$ and the optimum remains at a vertex.

720 **Proposition 1** (BEP back-projection solves the linear surrogate exactly). *Let $\mathbf{v} := \mathbf{W}_{l+1}^\top \mathbf{a}_{l+1}^{*\mu} \in \mathbb{R}^{K_l}$.
 721 The set of maximizers of Eq. 4 is*

$$723 \quad \mathbf{a}_l^{*\mu} \in \text{sign}(\mathbf{v}) := \{ \mathbf{a} \in \{\pm 1\}^{K_l} : a_i = \text{sign}(v_i) \text{ if } v_i \neq 0, a_i \in \{\pm 1\} \text{ if } v_i = 0 \}, \quad (11)$$

724 *i.e., any coordinate-wise sign choice consistent with \mathbf{v} . In particular, when no coordinate tie occurs,
 725 $\mathbf{a}_l^{*\mu} = \text{sign}(\mathbf{W}_{l+1}^\top \mathbf{a}_{l+1}^{*\mu})$, which is exactly the BEP recursion (Eq. 7 without gating).*

727 *Proof.* By the adjoint identity $\langle \mathbf{u}, \mathbf{A}\mathbf{v} \rangle = \langle \mathbf{A}^\top \mathbf{u}, \mathbf{v} \rangle$,

$$729 \quad \langle \mathbf{a}_{l+1}^{*\mu}, \mathbf{W}_{l+1} \mathbf{a} \rangle = \langle \mathbf{W}_{l+1}^\top \mathbf{a}_{l+1}^{*\mu}, \mathbf{a} \rangle = \sum_{i=1}^{K_l} v_i a_i.$$

732 The objective is separable across coordinates on the product set $\{\pm 1\}^{K_l}$, so it is maximized by
 733 choosing each a_i to maximize $v_i a_i$, i.e., $a_i = \text{sign}(v_i)$ if $v_i \neq 0$ and any $a_i \in \{\pm 1\}$ if $v_i = 0$. \square

735 **Lemma 2** (Convex relaxation has an integral optimum). *The convex relaxation of Eq. 4 with
 736 $\mathbf{a} \in [-1, 1]^{K_l}$ has the same optimal value, and the set of maximizers is*

$$737 \quad \left\{ \mathbf{a} \in [-1, 1]^{K_l} : a_i = \text{clip} \left(\frac{v_i}{|v_i|} \right) \right\},$$

740 *which reduces to Eq. 11 at the vertices. Hence the linear surrogate is solved exactly at a binary point.*

741 *Proof.* Maximizing a linear function over a hypercube attains the optimum at a vertex. Coordinate-
 742 wise, the same separability argument as above applies. \square

744 **Including the gate.** Recall the binary gate from Eq. 5 and write $\mathbf{D}_{l+1}^\mu := \text{diag}(\mathbf{g}_{l+1}^\mu)$. The BEP
 745 recursion with gating from Eq. 7 replaces $\mathbf{a}_{l+1}^{*\mu}$ by $\mathbf{D}_{l+1}^\mu \mathbf{a}_{l+1}^{*\mu}$, i.e., it solves the *masked* surrogate

$$748 \quad \arg \max_{\mathbf{a} \in \{\pm 1\}^{K_l}} \langle \mathbf{D}_{l+1}^\mu \mathbf{a}_{l+1}^{*\mu}, \mathbf{W}_{l+1} \mathbf{a} \rangle \implies \mathbf{a}_l^{*\mu} \in \text{sign}(\mathbf{W}_{l+1}^\top \mathbf{D}_{l+1}^\mu \mathbf{a}_{l+1}^{*\mu}). \quad (12)$$

750 Thus, the gate simply zeros out saturated coordinates of the upper-layer target before back-projection,
 751 directly mirroring the role of derivative clipping in STE-based BP.

752 Proposition 1 and Lemma 2 show that the BEP backward rule is the analytical optimizer of a well-
 753 posed linear objective approximating the intractable target-selection in Eq. 3. The gate induces a
 754 diagonal mask in that objective, yielding the exact masked optimizer in Eq. 12. Practically, this
 755 explains why BEP focuses the learning signal on neurons near their decision boundary (unsaturated
 coordinates) and provides a principled binary analog of gradient gating used by STE-based methods.

756 A.1 PROOF OF LEMMA 1
757758 *Proof.* The gated scalar product can be expressed as $\langle \mathbf{b}, \mathbf{b}' \rangle_{\mathbf{g}} = \langle \mathbf{g} \odot \mathbf{b}, \mathbf{b}' \rangle$ and by the adjoint
759 identity $\langle \mathbf{b}, \mathbf{W}\mathbf{a} \rangle = \langle \mathbf{W}^\top \mathbf{b}, \mathbf{a} \rangle$. Combining these two relations leads to

760
$$\langle \mathbf{b}, \mathbf{W}\mathbf{a} \rangle_{\mathbf{g}} = \langle \mathbf{W}^\top (\mathbf{g} \odot \mathbf{b}), \mathbf{a} \rangle.$$

761

762 Denoting $\mathbf{W}^\top (\mathbf{g} \odot \mathbf{b})$ as \mathbf{z} of components in $\mathbb{Z} \setminus \{0\}$, we reduce to problem $\arg \max_{\mathbf{a}} \langle \mathbf{z}, \mathbf{a} \rangle$. The
763 objective is separable across coordinates: $\langle \mathbf{z}, \mathbf{a} \rangle = \sum_i z_i a_i$, so it is maximized by choosing each a_i
764 to maximize $z_i a_i$, i.e., $a_i = \text{sign}(z_i)$. \square
765766 B LOCAL CORRECTNESS OF THE WEIGHT UPDATE
767768 Beyond justifying the backward pass, we also show that the resulting weight update is beneficial in a
769 layer-local sense. The next lemma proves that, for any sample triggering an update, the modification
770 to the hidden integers \mathbf{H}_l is guaranteed to be corrective: it pushes the neuron *stabilities* in the direction
771 of the desired activation and increases an anchored alignment potential by a fixed, known amount.
772773 **Lemma 3** (Local update correctness on the stabilities). *Fix a sample $\mu \in \mathcal{M}$ that triggers an update.
774 Let l be a layer and j a neuron selected by the neuron-wise mask (i.e., the j -th column). Denote the
775 hidden weights before and after the update by \mathbf{H}_l and \mathbf{H}'_l , respectively, and define the stabilities*

776
$$u_{l,j}^\mu := \langle \mathbf{a}_{l-1}^\mu, \mathbf{h}_{l,j} \rangle, \quad u'_{l,j}^\mu := \langle \mathbf{a}_{l-1}^\mu, \mathbf{h}'_{l,j} \rangle.$$

777

778 If the neuron-wise update is $\Delta \mathbf{h}_{l,j}^\mu = 2a_{l,j}^{*\mu} \mathbf{a}_{l-1}^\mu$ (and zero otherwise), then the alignment strictly
779 increases by a fixed amount:

780
$$a_{l,j}^{*\mu} u'_{l,j}^\mu = a_{l,j}^{*\mu} u_{l,j}^\mu + 2K_{l-1} > a_{l,j}^{*\mu} u_{l,j}^\mu.$$

781

782 *Proof.*

783
$$u'_{l,j}^\mu = \langle \mathbf{a}_{l-1}^\mu, \mathbf{h}_{l,j} + 2a_{l,j}^{*\mu} \mathbf{a}_{l-1}^\mu \rangle = u_{l,j}^\mu + 2a_{l,j}^{*\mu} \|\mathbf{a}_{l-1}^\mu\|_2^2.$$

784

785 Since $\mathbf{a}_{l-1}^\mu \in \{\pm 1\}^{K_{l-1}}$, $\|\mathbf{a}_{l-1}^\mu\|_2^2 = K_{l-1}$. Multiplying by $a_{l,j}^{*\mu} \in \{\pm 1\}$ yields the claim. \square
786787 **Remark 1** (From stability to visible pre-activation). *The forward pre-activations use visible weights
788 $\mathbf{W}_l = \text{sign}(\mathbf{H}_l)$, hence $z_{l,j}^\mu = \langle \mathbf{a}_{l-1}^\mu, \mathbf{w}_{l,j} \rangle$ can change discontinuously when entries of $\mathbf{h}_{l,j}$ cross
789 zero. Nevertheless, Lemma 3 implies monotonic drift of each coordinate of $\mathbf{h}_{l,j}$ toward the signed
790 target $a_{l,j}^{*\mu} \mathbf{a}_{l-1}^\mu$. After T updates of neuron j , each entry has shifted by $2T$ in the correct direction.
791 Consequently, once*

792
$$T \geq \max_i \left\lceil \frac{|\mathbf{H}_{l,i}(0)| + 1}{2} \right\rceil,$$

793

794 all entries align with $a_{l,j}^{*\mu} \mathbf{a}_{l-1,i}^\mu$, and the visible pre-activations satisfy $\text{sign}(z_{l,j}^\mu) = a_{l,j}^{*\mu}$ and remain
795 stable under further updates on the anchored desired activations.796 Lemma 3 shows that each neuron update yields a *strict quantifiable* increase of an anchored alignment
797 by $2K_{l-1}$ (a discrete analog of a guaranteed descent step). Together with Remark 1, this ensures that
798 repeated anchored updates drive the visible state toward the desired activation and stabilize it once
799 sufficient integer margin accumulates. A full convergence proof is left for future work.
800801 C GENERATING A FIXED BINARY CLASSIFIER VIA EQUIANGULAR FRAMES
802803 As stated in Section 3, our empirical results show that BEP achieves its best performance when using
804 a fixed output classifier \mathbf{P} whose class prototypes are geometrically well-separated. This approach is
805 inspired by the concept of Equiangular Tight Frames (ETFs), which have been shown to emerge in the
806 final layers of deep NNs during a phenomenon known as neural collapse (Papyan et al., 2020). While
807 a simple, randomly generated classifier offers a baseline, optimizing the structure of these prototypes
808 significantly improves class separability. This appendix details our method for generating a structured
809 binary classifier by constructing a set of prototype vectors that are maximally and uniformly distant
from each other in the binary feature space.

810 Neural collapse describes an empirical phenomenon where, in the terminal phase of training, the
 811 last-layer feature representations for all samples of a given class collapse to a single point (their class
 812 mean). Furthermore, the set of these class-mean vectors, along with the final-layer classifier weights,
 813 form a simplex ETF. A simplex ETF is a geometric configuration of vectors that are maximally
 814 separated from one another, characterized by equal norms and a constant, negative pairwise inner
 815 product. This structure is optimal for linear classification.

816 The classical ETF is defined in a real-valued vector space \mathbb{R}^D . In BNNs, we are interested in a binary
 817 analog where the feature vectors and classifier weights lie on the hypercube $\{\pm 1\}^D$. We define a
 818 *Binary Equiangular Frame* (BEF) as a set of C binary vectors $\{\rho_1, \dots, \rho_C\}$, where $\rho_c \in \{\pm 1\}^D$,
 819 that satisfy two properties. The first property is high pairwise separation, i.e. the inner product
 820 $\langle \rho_i, \rho_j \rangle$ for $i \neq j$ should be as small (i.e., as negative) as possible. In the binary domain, this is
 821 equivalent to maximizing the Hamming distance between any two vectors. The second property is
 822 equiangularity, i.e. the inner products for all distinct pairs $\langle \rho_i, \rho_j \rangle$ should be approximately equal.
 823 Such a frame, when used as the columns of the classifier matrix \mathbf{P} , provides a set of target prototypes
 824 that are maximally and uniformly distant from each other in the binary feature space.

825 Finding an exact BEF is a hard combinatorial problem. However, we can generate a high-quality
 826 approximation using a binary optimization procedure. Given the desired number of classes C and
 827 feature dimension D , we seek to find the set of vectors $\{\rho_c\}_{c=1}^C$ that minimizes the cost function

$$828 \quad \mathcal{J}(\{\rho_c\}) = \sum_{i < j} \langle \rho_i, \rho_j \rangle + \alpha \cdot \text{Var}_{i < j}(\langle \rho_i, \rho_j \rangle), \quad (13)$$

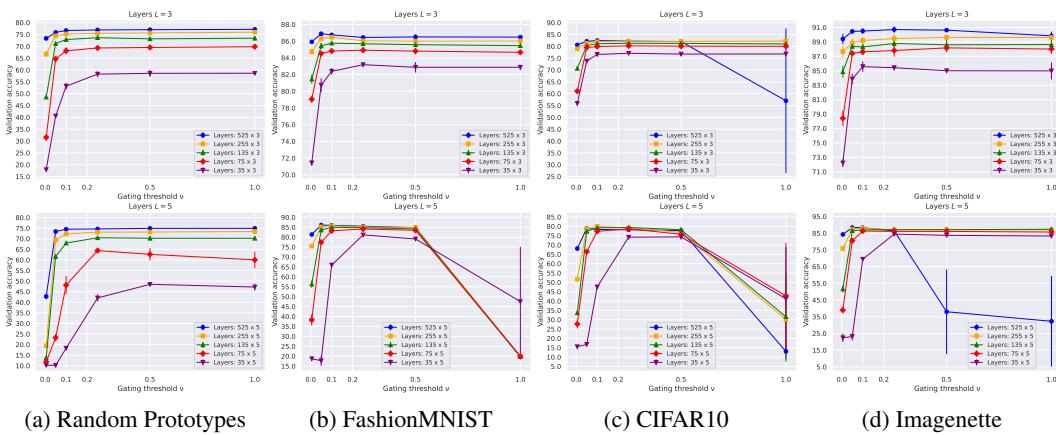
831 where $\text{Var}(\cdot)$ is the variance and $\alpha \geq 0$ balances the two objectives. The first term encourages all
 832 pairwise inner products to be negative, while the second pushes them toward a common value.

833 We optimize this objective using a simple iterative local search algorithm, starting from a random
 834 initialization of the C vectors $\{\rho_c\}$ from $\{\pm 1\}^D$. For a fixed number of iterations: (i) randomly select
 835 a vector ρ_i and a coordinate k ; (ii) compute the change in cost $\Delta \mathcal{J}$ that would result from flipping
 836 the sign of the k -th element of ρ_i ; and (iii) if $\Delta \mathcal{J} < 0$, accept the flip. This greedy coordinate-wise
 837 descent procedure rapidly converges to a local minimum of the cost function. The resulting set of
 838 vectors $\{\rho_c\}$ can then be used to construct the fixed classifier matrix $\mathbf{P} = [\rho_1, \dots, \rho_C]$.

D ABLATION STUDIES

D.1 THE ROLE OF THE GATING THRESHOLD ν ON MLPs

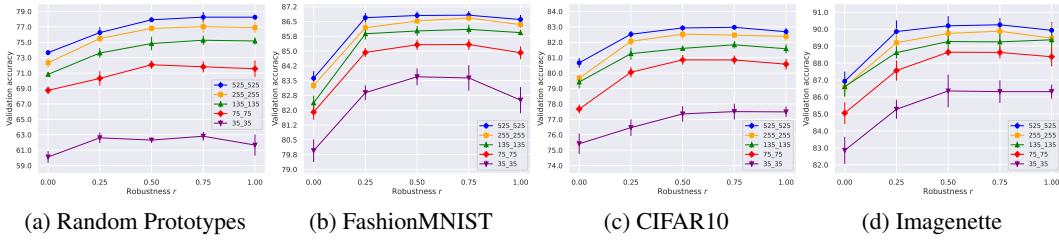
844 In this section, we present an ablation study on the gating threshold ν for binary MLPs, as shown in
 845 Figure 4. Empirically, across layer sizes, optimal and non-trivial values of ν emerge, with the effect
 846 becoming more pronounced as NN depth increases, consistent with the RNN ablation in Section 4.4.



862 Figure 4: Validation accuracy as a function of the gating threshold ν on Random Prototypes, Fashion-
 863 MNIST, CIFAR10, and Imagenette for binary MLPs with $L = 3$ and $L = 5$ hidden layers.

864 D.2 THE ROBUSTNESS HYPERPARAMETER r
865

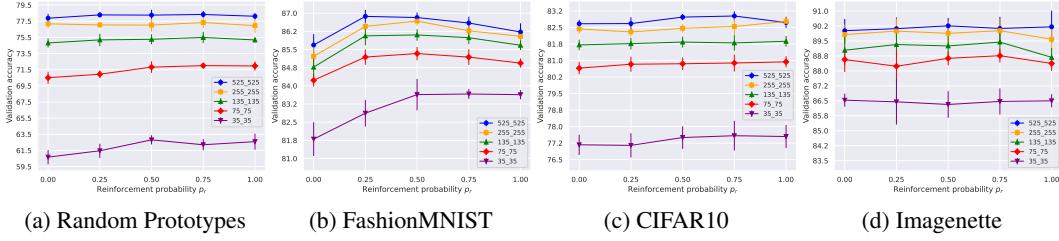
866 In this section, we perform an ablation study on the robustness parameter r for binary MLPs, as
867 shown in Figure 5. Empirically, setting the margin r in the range 0.5–0.75 consistently yields the
868 best generalization accuracy across the considered tasks and architectures.



869
870
871
872
873
874
875
876 Figure 5: Validation accuracy as a function of the robustness r on Random Prototypes, FashionMNIST,
877 CIFAR10, and Imagenette for binary MLPs with $L = 2$ hidden layers.
878
879

880 D.3 THE REINFORCEMENT PROBABILITY HYPERPARAMETER p_r
881

882 In this section, we perform an ablation study on the reinforcement probability p_r for binary MLPs, as
883 shown in Figure 6. Empirically, setting the probability p_r in the range 0.5–0.75 consistently yields
884 the highest generalization accuracy across the evaluated tasks and architectures, although its overall
885 impact remains moderate. Nevertheless, compared to disabling reinforcement entirely, enabling it
886 provides a measurable improvement, with the effect being more marked in lower-capacity models.
887



888
889
890
891
892
893
894
895 Figure 6: Validation accuracy as a function of the reinforcement probability p_r on Random Prototypes,
896 FashionMNIST, CIFAR10, and Imagenette for binary MLPs with $L = 2$ hidden layers.
897
898

900 D.4 ANALYSIS OF BINARIZATION FUNCTION
901

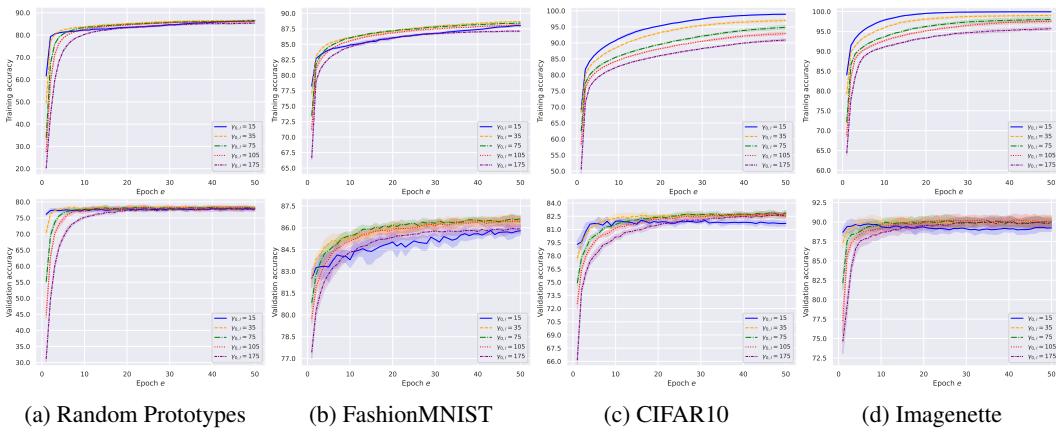
902 To examine the sensitivity of BEP to the input binarization method, we compare simple median
903 thresholding against thermometer encoding on five UCR datasets using binary RNNs. As shown in
904 Table 3, thermometer encoding significantly outperforms median thresholding on time-series data, as
905 it preserves coarse magnitude information that is essential for these tasks. In contrast, for image data,
906 median thresholding is sufficient to achieve SotA performance with BEP.
907

908 Table 3: Validation accuracy on five UCR datasets using different thermometer-encoding bits for
909 input binarization. Notably, using a single bit corresponds to the median-thresholding method.
910

911 Dataset	Thermometer-encoding bits				
	912 1	10	20	50	100
913 <i>ArticularyWordRec.</i>	48.98 \pm 3.93	81.28 \pm 2.99	79.37 \pm 2.70	81.16 \pm 2.17	81.45 \pm 1.85
914 <i>DistalPOAgeGroup</i>	77.18 \pm 2.74	78.92 \pm 3.38	78.11 \pm 2.03	79.78 \pm 2.65	79.78 \pm 3.74
915 <i>ItalyPowerDemand</i>	73.54 \pm 2.44	94.65 \pm 1.22	94.59 \pm 1.13	94.34 \pm 1.03	93.92 \pm 1.31
916 <i>PenDigits</i>	61.60 \pm 2.05	96.66 \pm 0.22	96.79 \pm 0.35	96.88 \pm 0.26	97.13 \pm 0.21
917 <i>ProximalPOAgeGroup</i>	77.52 \pm 3.43	82.31 \pm 3.28	82.37 \pm 3.36	82.70 \pm 2.41	82.53 \pm 2.85

918 D.5 ANALYSIS OF MASK DENSITY
919

920 To substantiate the claim that the sparsity mask fulfills a role analogous to the learning rate, we
921 evaluate the impact of the group size $\gamma_{0,l}$ (which determines mask density) on training dynamics for
922 binary MLPs. Figure 7 shows that smaller group sizes (sparser updates) lead to slower convergence,
923 whereas larger group sizes (denser updates) accelerate initial learning but may introduce instability.
924 This behavior mirrors the effect of varying the learning rate in gradient-based optimization.



930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Figure 7: Training and validation accuracy curves over epochs for different values of the group size $\gamma_{0,l}$ on Random Prototypes, FashionMNIST, CIFAR10, and Imagenette.

D.6 SCALING TO DEEPER NETWORKS

To assess whether BEP can propagate informative error signals through deep computational chains, we evaluate binary RNNs on the S-MNIST dataset while progressively increasing the backward horizon length (i.e., the number of backpropagated time steps). This setup effectively simulates deeper networks by extending the length of the backward computational graph while keeping the temporal window fixed. As shown in Figure 8, performance steadily improves as the backward horizon increases, indicating that BEP successfully propagates useful binary error information over many steps without suffering from excessive signal decay.

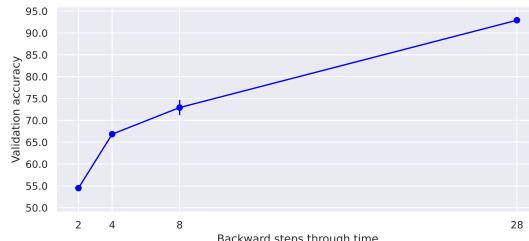


Figure 8: Validation accuracy of a binary RNN trained with BEP on the S-MNIST dataset for different values of the backward horizon length (depth of backpropagation).