Under review as a conference paper at ICLR 2026

BEP: A BINARY ERROR PROPAGATION ALGORITHM
FOR BINARY NEURAL NETWORKS TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Binary Neural Networks (BNNs), which constrain both weights and activations to
binary values, offer substantial reductions in computational complexity, memory
footprint, and energy consumption. These advantages make them particularly well
suited for deployment on resource-constrained devices. However, training BNNs
via gradient-based optimization remains challenging due to the discrete nature of
their variables. The dominant approach, quantization-aware training, circumvents
this issue by employing surrogate gradients. Yet, this method requires maintaining
latent full-precision parameters and performing the backward pass with floating-
point arithmetic, thereby forfeiting the efficiency of binary operations during
training. While alternative approaches based on local learning rules exist, they are
unsuitable for global credit assignment and for back-propagating errors in multi-
layer architectures. This paper introduces Binary Error Propagation (BEP), the first
learning algorithm to establish a principled, discrete analog of the backpropagation
chain rule. This mechanism enables error signals, represented as binary vectors, to
be propagated backward through multiple layers of a neural network. BEP operates
entirely on binary variables, with all forward and backward computations performed
using only bitwise operations. Crucially, this makes BEP the first solution to enable
end-to-end binary training for recurrent neural network architectures. We validate
the effectiveness of BEP on both multi-layer perceptrons and recurrent neural
networks, demonstrating gains of up to +6.89% and +10.57% in test accuracy,
respectively. The proposed algorithm is released as an open-source repository.

1 INTRODUCTION

The design of Neural Networks (NNs) with weights and activations constrained to binary values,
typically £1, is a promising direction for building models suited to resource-constrained environments.
In particular, Binary Neural Networks (BNNs) offer a compelling solution for deploying Deep
Learning (DL) models on edge devices and specialized hardware, where computational efficiency,
power consumption, and memory footprint are critical design constraints (Courbariaux et al., 2015}
Rastegari et al.,|2016; Hubara et al.,2016). Their primary advantage lies in replacing costly Floating-
Point (FP) arithmetic with lightweight bitwise operations such as XNOR and Popcount, resulting in
substantial reductions in computational complexity (Qin et al., 2020; [Lucibello et al., 2022).

Despite these advantages, effectively training BNNs remains challenging due to the non-differentiable
nature of their activation functions. Consequently, conventional gradient-based learning algorithms
cannot be directly applied, leading to two main classes of solutions. The most prevalent is Quan-
tization Aware Training (QAT), which formulates the problem within a continuous optimization
framework. In this paradigm, full-precision latent weights are maintained, and non-differentiable
activations are bypassed during the backward pass using the Straight-Through Estimator (STE) (Ben
gio et al., 2013). However, reliance on real-valued computations for gradient calculation and weight
updates confines the efficiency of binary arithmetic to the forward pass only (Sayed et al., 2023).

An alternative line of research has explored purely binary, gradient-free learning rules, often inspired
by principles from statistical physics (Baldassi et al.,2015; Baldassil 2009). These methods operate
directly on binary weights and avoid continuous surrogates. A recent extension applied this approach
to binary Multi-Layer Perceptrons (MLPs) by generating local error signals at each layer using fixed
random classifiers (Colombo et al.,|[2025). However, a fundamental limitation of this approach is

Under review as a conference paper at ICLR 2026

that credit assignment remains local and error information does not propagate from the final output
layer through the NN. This constraint makes such rules inapplicable to architectures where learning
depends on end-to-end error propagation across layers, such as Recurrent Neural Networks (RNNs).

From this perspective, this paper addresses the following research question: Is it possible to formulate
a multi-layer, global credit assignment mechanism that back-propagates errors through the NN while
operating exclusively within the binary domain? To the best of our knowledge, we introduce the
first fully binary error Backpropagation (BP) algorithm capable of effectively training BNNs without
relying on FP gradients. The algorithm, called Binary Error Propagation (BEP) hereafter, establishes
a binary analog of the standard BP chain rule, where error signals — represented as binary vectors
— are computed at the output and propagated backward through each layer of the NN. To ensure
learning stability, BEP employs integer-valued hidden weights that provide synaptic inertia and
mitigate catastrophic forgetting (Kirkpatrick et al.,2017). Crucially, the entire forward and backward
passes rely solely on efficient XNOR, Popcount, and increment/decrement operations. In summary,
this work makes the following contributions:

* We formalize a fully binary BP algorithm for BNNs that propagates binary-valued error
signals end-to-end, establishing a discrete analog of the gradient-based BP chain rule.

* We demonstrate that BEP successfully train both MLP and RNN architectures, overcoming
the limitations of prior local and gradient-based learning methods.

As a direct consequence, the proposed BEP algorithm eliminates the need for full-precision gradients
and weight updates, enabling the exclusive use of efficient bitwise operations even during the learning
phase. This drastically reduces both computational complexity and memory footprint. Experimental
evaluations on multi-class classification benchmarks demonstrate test accuracy improvements of up
to +6.89% over the previous State-of-the-Art (SotA) algorithm (Colombo et al., 2025). Furthermore,
BEP is the first solution to enable end-to-end binary training for RNN architectures, outperforming
the QAT-based approach by an average of +10.57% in test accuracy.

The remainder of this paper is organized as follows. Section [2] reviews related work. Section 3]
formalizes the proposed BEP algorithm. Section] presents experimental results on binary MLP and
RNN architectures. Finally, SectionE] draws conclusions and outlines future research directions.

2 RELATED LITERATURE

The predominant paradigm for training BNNs is QAT (Courbariaux et al.,|2015; Hubara et al., 2016
Rastegari et al.,|2016). In this approach, models maintain latent full-precision parameters that are
binarized during the forward pass, while gradients are computed with respect to the latent parameters
using a surrogate gradient, typically a STE (Bengio et al., 2013)). The STE approximates the derivative
of the non-differentiable sign function as an identity within a bounded region, enabling the use of
standard BP. Numerous subsequent works have built upon this foundation, introducing improvements
such as learnable representations, enhanced architectures, and strategies to narrow the accuracy gap
with full-precision models (Lin et al.|[2017; Liu et al.;2020; |Tu et al., 2022} [Schiavone et al., 2023)).
While QAT has achieved strong empirical results, it remains fundamentally a continuous optimization
method applied to a discrete problem. Training relies on FP arithmetic, which prevents the full
realization of BNN efficiency during learning and introduces a discrepancy between training and
inference dynamics (Yin et al.}2019). Recent work (Liu et al., 2018; Bulat & Tzimiropoulos} [2019;
Vargas et al.| 2024) has further refined QAT by incorporating residual connections and improved
surrogate-gradient mechanisms to enhance gradient flow. In contrast, our approach diverges from this
paradigm by eliminating the need for any real-valued parameters or surrogate gradients.

A distinct line of research frames BNN training as a purely binary optimization problem. Early
work in statistical physics explored combinatorial optimization techniques for training single-layer
perceptrons (Gardner, [1988; [Engel, 2001), while later studies investigated fully binary training via
global heuristics such as simulated annealing (Kirkpatrick et al.,|1983} Hintonl, |1990) and evolutionary
strategies (Salimans et al., [2017; |Such et al., 2017; |Loshchilov & Hutter, [2016). Although these
methods avoid continuous relaxations, they explore the weight space via stochastic perturbations
(e.g., random weight flips) and lack a structured, layer-wise credit assignment comparable to BP,
which limits their scalability and efficiency in deep settings. Our work addresses this limitation by
developing a multi-layer, gradient-free training method with a deterministic error-propagation rule.

Under review as a conference paper at ICLR 2026

In parallel, research at the intersection of statistical physics and computational neuroscience has
developed efficient local learning rules for binary neurons. Algorithms such as the Clipped Perceptron
with Reinforcement (CP+R) (Baldassi,2009) and related message-passing approaches (Baldassi et al.}
2007;2015)) introduce integer-valued hidden variables to represent synaptic confidence, demonstrating
that single binary units can learn effectively. Multi-layer extensions of these rules generate layer-wise
local error signals using fixed random classifiers, enabling training of several binary layers but
still lacking end-to-end propagation of task loss (Colombo et al.| 2025). This structural constraint
notably precludes their application to a relevant class of recurrent sequential architectures, such as
RNNSs. BEP overcomes these shortcomings by introducing a global credit assignment mechanism
that propagates binary error signals end-to-end, bridging the gap between fully binary optimization
and multi-layer training of deep architectures.

3 THE BINARY ERROR PROPAGATION ALGORITHM

In this section, we formalize the BEP algorithm for training multi-layer BNNs using exclusively
binary operations. We consider a supervised learning setting defined by a classification task and a
corresponding dataset X = {x*, c“}fj:l of size N, where x* € R¥0 are input patterns of dimension
Ky, and ¢* € {1,...,C} are their corresponding labels, with C' denoting the number of classes.
Specifically, Section[3.1]introduces the BNN architecture and forward-pass dynamics. The binary
backward pass for error propagation is described in Section The weight-update rule is defined in
Section [3.3] while the analogy with standard full-precision BP is presented in Section[3.4] Finally,
Section 3.5|demonstrates the application of the proposed BEP algorithm to RNN architectures.

3.1 BNN ARCHITECTURE AND FORWARD PROPAGATION

The NN under consideration consists of two main components: a trainable binary backbone that
extracts features, and a fixed task-specific output layer that maps these features to the final prediction,

as shown in Figure Given a mini-batch x = [...,x*,...] of bs input samples x*, where
pu € {1,...,bs}, we first obtain their binary representations a}j = bin(x*) € {£1}%°. The

binarization function can be realized via median thresholding for images or thermometer encoding for
tabular data (Bacellar et al.l 2024a). The resulting binary batch ag is then fed to the binary backbone.

Trainable BNN Backbone. The backbone comprises a stack of L fully-connected binary layers.
For each layer [€ {1,..., L}, its state is defined by two matrices, following prior work on binary
synapses (Baldassi, [2009). The first is the matrix of hidden discrete weights H; € ZKi*Ki-1,
These integer-valued weights encode the synaptic inertia of each connection, providing a mechanism
for stable learning and mitigating catastrophic forgetting (Kirkpatrick et al.| |2017). Although
formulated as unbounded integers, in practice H; is constrained to the finite range of a B-bit signed
integer, [-2871,28~1 — 1]. The second is the matrix of visible binary weights W, = sign(H,) €
{£1} K> K1 representing the effective weights used during the forward pass. Here, K; denotes
the number of neurons in layer /, and the sign function is applied component-wise, returning —1 for
negative inputs and +1 otherwise. For each layer [, the pre-activations and activations are computed as
z; = Wa;_; and a; = sign(z;), respectively. The output of the BNN backbone (i.e., the activations
ay) is then fed to the task-specific output layer to produce the final predictions y.

Task-Specific Output Layer. To make predictions, the binary features a’; of each sample ;1 must
be mapped to the space of target variables y*. For regression tasks, this layer acts as a binary decoder
{£1}%2 — RP, where D is the output dimensionality. For a C-class classification problem, the
goal is to produce a logit vector §* € R, whose largest component corresponds to the predicted
class. While different mappings can be used, the choice of output layer influences both learning
and accuracy. In this work, we use a linear layer represented by a fixed, randomly initialized matrix
P ¢ {£1}“*KL_ This corresponds to associating a prototype vector p¢ (the c-th row of P) with
each class ¢ € {1,...,C} (see Appendix [C|for the generation method). Providing the backbone
with a stable and geometrically optimal set of target activations — the class prototypes — simplifies
credit assignment during training and consistently yielded the best performance in our experiments.
Although it is possible to train this classifier, we found empirically that keeping it fixed is more
practical and effective. The final logits are computed as ¥ = P ay, and the predicted class for each
sample p is given by ¢# = arg max, §¥.

Under review as a conference paper at ICLR 2026

(a) BEP applied to a binary MLP (b) BEP applied to a binary RNN

Figure 1: Information flow for a sample p in an MLP and an RNN trained with BEP. Each model
uses a binary core and a fixed classifier. The forward and backward passes are shown in gray and red.

3.2 BINARY ERROR BACKPROPAGATION

The BEP learning rule is error-driven. A backward update is initiated for each sample © when the logit
v, associated with the ground-truth class ¢/ is not sufficiently larger than the others. Specifically,
an update is triggered if

Vi — H;lﬁagf’é‘ <rKp, (1

where r € (0,1] is a user-specified margin hyperparameter and K7, is the size of the last hidden
layer (also representing the maximum possible logit value). Higher values of r enforce a larger gap
between the correct-class logit and all others, thereby encouraging more robust classification.

For clarity, we describe the backward pass for a single training sample u, although in practice it is
applied to all elements of a mini-batch. When a sample 1 meets the update criterion in Eq. |1} BEP
initiates the backward phase to adjust the hidden integer weights H; so that the final output better
aligns with the correct target. This is accomplished by defining, for each layer [, a binary desired
activation vector a;"* that is propagated from the output layer L back to the first layer.

Desired Activation at the Last Layer. The backward pass begins at the final layer L of the BNN
backbone. The first step is to determine the desired activation vector a;", which is the ideal binary
vector that maximizes the logit for the correct class ¢”. Since the logit is a scalar product between
activations and the class prototypes from the fixed classifier P, the desired activations can be found
analytically. They correspond to the prototype vector p¢ for the correct class:

= argmax (a,p®) = p° . 2)
ac{+1}XL

o
ar

Backpropagation of Desired Activations. For each layer | < L, the desired activation vector a?‘“

is obtained by back-propagating the error signal al*_ffl from the subsequent layer [+ 1. The goal is to
determine activations a;' that maximize alignment with desired activations a; ', :

arg max <a;:‘f1, sign(Wii1 a)). 3)
ac{+1}%

Since this is a combinatorial search over 2! configurations, BEP solves a relaxed problem by
removing the non-linear sign function and instead maximizing the alignment with the pre-activations:

argmax ()%, Wi 1a) . 4)
ac{+1}%

This relaxed objective increases the magnitude of the pre-activations z;; while aligning their signs
with al*’jl. A global optimum is unnecessary, as the goal is to steer weight updates in the appropriate
direction. As shown in Lemmal([I] the solution to this relaxed problem can be derived analytically.

Backward Gating. In addition, we introduce a gating mechanism to regulate the back-propagated

signal. This gate is applied at layer [4 1 to emphasize learning on neurons most amenable to change,

i.e., those with pre-activations zf 1= Wl+1af near the decision threshold of 0. Neurons with

Under review as a conference paper at ICLR 2026

large-magnitude pre-activations (nearly saturated responses) are excluded from the backward pass of
sample 4. This is realized through a binary gating vector g;’, ;:

1, if |z, .| <vK,
M R ’ I+1,i1 = 5
(841): {O, otherwise %)

where 2} | ; is the i-th pre-activation at layer [+ 1 and v € [0, 1] is a tunable threshold. More
formally, for a generic gating vector g, we define the gated scalar product as (a,a’)g := >, gia;a;.
This modifies the relaxed optimization problem of Eq. @] to:

oo (6)

*p
arg max <al+1, Wl+1a>gz+1

ac{£1}%
This gating function effectively filters the binary error signal, allowing it to pass only through neurons
close to their activation boundary. This ensures that weight updates are driven by the parts of the
BNN most susceptible to flipping their activations. The solution to Eq.[6]is given by the following
lemma (proved in Appendix [A).
Lemma 1 (Desired activations). Consider a binary vector b € {£1}£v, a binary matrix W €
{£1}Eo*Ka and a gating vector g € {0,1}%v. Problem arg MaXye (4 1}xaq (b, Wa)g has the
unique solution: a* = sign(W' (g ® b)).

Combining the base case from Eq. [2] with Lemma [I] yields the recursive expression for computing the
desired activation vector at any layer [:

At {pC“, ifl =L D
: sign (W, (g4, ©@arty)) ifl<L’

where ® denotes the element-wise product. This formulation forms the cornerstone of BEP, estab-
lishing a fully binary chain rule for propagating binary error signals throughout the BNN.

3.3 WEIGHT UPDATE MECHANISM

Once the target activation vector a;” has been determined for layer [, the corresponding hidden

weights H; are updated. This update strengthens the association between the incoming activation

vector aj' ; and the desired output pattern a;"“. For every sample 1 that triggers an update, we first

compute a candidate weight-update matrix from the desired binary weights, following a procedure

similar to that in prior work (Baldassi et al.,|2007; Baldassi} 20095 |Colombo et al.,[2025). In particular,
. X = b T :

using the same strategy employed to obtain a;", we maximize (a,", W;a;" ;) with respect to W/.

The solution gives the desired direction of change for the integer weight

AH} = sign (a;"(aj") ") = aj*(al")| € {£1} T Fr, (8)
Eq.[§]is the natural matrix generalization of the classical supervised Hebbian perceptron rule (Rosen;
blatt, |1958) and of the Clipped Perceptron (CP) and CP+Reinforcement (CP+R) variants (Baldassi

et al., 2007} Baldassil [2009). When K; = 1, the update AH? reduces exactly to the CP update,
which adds (or subtracts) the input vector a}* ; to the synaptic stability variables whenever the desired

output a,”" is +1 (or —1). In the multi-layer setting, Eq. (8| applies this outer-product mechanism
independently to each hidden neuron, with the desired activations a;** serving as binary targets.

This potential update is then filtered by a binary mask M} € {0,1}%>Ki-1 that selects which
weights to modify. As shown in Appendix |B| the resulting update is locally optimal with respect
to the desired activations a;”". Following the sparse update strategy of (Colombo et al., 2025), the
mask is constructed by partitioning the neurons of layer / into subgroups and, within each group,
updating only the incoming weights of the wrong perceptron deemed easiest to correct based on its
pre-activation. This mechanism promotes a more uniform distribution of updates, leading to more
stable training and improved generalization. If M denotes the set of mini-batch indices that trigger
an update, we first compute each per-sample update AH}' using the same pre-update hidden weights
H;, and then apply the aggregated update as:

H « H,+2) (Mo AH)).)
pneM

'Tt follows from treating each row of W as an independent optimization and swapping a and W in Lemma

Under review as a conference paper at ICLR 2026

The binary mask M/ implements a sparse winner-takes-update rule within each neuron group: only
the least stable unit, i.e., the neuron with the smallest signed stability a;* H; ; among the misclassified
ones, is updated. This mechanism bounds the number of synapses modified per pattern and prevents
over-reinforcing neurons that already classify the sample with high confidence, effectively acting as a
discrete, data-dependent form of learning-rate control. Additional analysis of mask density and its
effect on convergence and generalization is provided in Appendix [D.5] Finally, a reinforcement step
from the CP+R rule stochastically strengthens existing memory trajectories of each integer weight
h € H; via the update h < h + 2sign(h). This occurs with probability p,.+/2/(7K;), where the

reinforcement probability p, is rescaled each epoch by v/ E¢. This mechanism reinforces weights
more frequently when the model is uncertain and balances its effect across layers of different sizes.

While (Colombo et al., 2025) employs a fixed group size v, corresponding to a constant number
of updates per epoch, BEP uses a scheduled group size. LetI'; = {d € N : d | K;} denote
the ordered list of positive divisors of K;. The algorithm begins with a user-defined initial group
size 70, € I'; and increases it adaptively based on accuracy. Whenever the generalization error
stagnates for a user-defined number of epochs, the group size is increased to the next larger divisor
Vi4+1,) = min {d el :d> 7t71}. If 7, is already the largest divisor of K (the last element
of I';), it remains fixed. Because only one perceptron per group is updated, enlarging the groups
gradually reduces the number of weight changes at each step, resulting in increasingly sparse updates.
Empirically, this mechanism leads to a more stable optimization process in the later stages of training.

3.4 ANALOGY TO GRADIENT-BASED BACKPROPAGATION

The BEP procedure can be viewed as a binary reformulation of the classical BP computational
graph (Rumelhart et al.,[1986). It preserves the global flow of information while substituting real-
valued operations with binary, bit-wise counterparts. In standard BP, the weight update for layer [
follows a gradient-descent form:

W, W, — 7761 al—';h
where 7 is the learning rate and §; denotes the back-propagated error signal for layer /. This
real-valued signal is computed recursively by the chain rule:

5 — {VaLEQJ’(zL), ifl=1
CTAUW L) 00 (=), ifl< L

Each component of BEP mirrors a counterpart in gradient-based BP. The binary desired activation
a;" serves as the binary analog of the error signal. Back-projecting it through WlTJrl is structurally
equivalent to the error propagation step in the continuous case. The binary gating function plays the
role of the activation derivative o’ (-), blocking error transmission through saturated neurons as o”’(+)
approaches zero for large inputs. Finally, the sparse mask IM; fulfills the role of the learning rate:
whereas 7 controls the magnitude of an update, the mask governs its sparsity. These correspondences
show that BEP constitutes a coherent end-to-end binary analog of traditional gradient-based BP.

(10)

3.5 APPLYING BEP-TT TO RECURRENT ARCHITECTURES

One of the main strengths of BEP is that its global error-propagation strategy directly extends to
RNNs, a class of models that require explicit temporal credit assignment and is generally intractable
for local learning rules. By unrolling the NN through time, we obtain a binary counterpart of the BP
Through Time (BPTT) algorithm, which we call BEP-TT. Demonstrating its effectiveness provides
key validation of BEP, showing that a global, end-to-end binary error signal can train recurrent
architectures. Accordingly, we employ a binary RNN for many-to-one sequence classification, as
shown in Figure|Ib| Given an input sequence x* = (x/, ..., x/.) of length 7', the RNN is defined by
state-to-state weights H,, € Z%*Xs input-to-state weights H,, € Z®+*X=_and state-to-output
weights H,, € ZXv*% along with their binary counterparts W s5, W5, and W,

Forward Pass Through Time. Ateachtimestept¢ € 1,...,T, the state vector ig € {£1} 5 s
computed from the previous state s} ; and the current binarized input a}’ € {+1}**= according to

the recurrence s}’ = sign(W,a)’ + W s). After the final time step T', the state s/ is mapped to

an output activation s#* € {£1}%v via sl = sign(W gy s'.). This activation is then passed to the fixed
classifier P to produce the prediction y*, which is used to check the update criterion from Eq.

Under review as a conference paper at ICLR 2026

Binary Backpropagation Through Time. When a sequence x* satisfies the update criterion in
Eq.|l} the BEP-TT procedure is performed. This mechanism parallels BEP’s operation on feedforward
NNs but operates over the unrolled temporal structure, propagating a target state vector s;* backward
from time step t = T to t = 1. First, the desired output state is set to the correct class prototype,
sl = p¢", which provides the error signal for the state-to-output layer. Using Eq. , this signal is
then back-projected to obtain the desired state at the last time step, s7*' = sign (Wsy (g © s?j“)).

For preceding time steps ¢t € {T"— 1,..., 1}, the desired state is propagated recursively:

s/ = sign (W, (8111 ©@sif1)) -
Here, g/ and g, are the backward gates computed from the pre-activations z/ and z;', ;. This re-
cursion propagates the binary error signal through the sequence, enabling temporal credit assignment.

Accumulated Updates for Shared Weights. Because RNNs share weights across time, the matrices
H,, and H,; must accumulate updates over all time steps for all samples p € M that triggered an
update. These aggregated updates are then applied to the integer-valued hidden weights using the
corresponding binary masks M¥, and MY, , as described in Eq. [§|and Eq.[%}

88°?

T T
H, ¢ Hoy+2) MO (57%(a)T), Hy« Hy+2 Y MO (si(siy)T).
HEM t=1 HEM t=1

These updates are followed by the reinforcement step described in the previous section. The binary
masks M£_ and MY, are shared across time steps to preserve weight tying, ensuring masking
commutes with temporal aggregation. Allowing masks to vary with time would violate this property,
effectively training different copies of the same parameter at each time index. The final state-to-output
layer is updated analogously to the feedforward case described in Section 3.2}

H,, « Hy, + Y (MY, os(sh)7).
pneEM
This BEP-TT formulation yields a fully binary training procedure for binary RNNs. Its ability to
perform temporal credit assignment stems from the global error propagation mechanism of BEP, a
key advantage over local learning rules.

4 EXPERIMENTAL EVALUATION

In this section, we empirically evaluate the proposed BEP algorithm. The experiments have two main
objectives: (i) to benchmark BEP against the SotA method for binary training of MLPs (Colombo
et al.| 20235)), and (ii) to demonstrate the generality of BEP’s global credit assignment by applying it
to binary RNN:ss, a setting for which local learning methods are unsuited. The Python code used in
our experiments is available in a public repositoryﬂ Section describes the experimental setup.
Section evaluates BEP on binary MLPs against both the SotA approach and QAT-based methods
that rely on full-precision BP. Section[4.3|tests BEP on binary RNNs, contrasting its performance with
QAT. Finally, Section explores the effect of the gating hyperparameter v on training dynamics.

4.1 EXPERIMENTAL SETUP

Our evaluation spans a diverse set of benchmarks. For the feedforward MLPs, we adopt the same
datasets as (Colombo et al.,2025): Random Prototypes, FashionMNIST (Xiao et al., 2017, CIFAR-
10 (Krizhevsky et al.l 2009), and Imagenette (Howard, |2019). The Random Prototypes dataset
comprises 20,000 training and 3,000 test samples with input dimension Ky = 1000 and a flip
probability p = 0.46. FashionMNIST contains 50,000 training and 10,000 test grayscale images
of size 28 x 28. For CIFAR-10 and Imagenette, we use the same AlexNet-derived features as
in (Colombo et al., 2025)). Both are 10-class datasets; CIFAR-10 has 50,000 training and 10,000 test
samples, while Imagenette has 10,000 training and 1,963 test samples. To evaluate recurrent models,
we use Sequential MNIST (S-MNIST) (Dengl [2012)) and 30 real-world time-series classification
tasks from the UCR Archive (Dau et al.,[2019), which cover a wide range of sample sizes, feature
dimensions, and class counts. In all experiments, we utilize a fixed output classifier P generated via
the binary equiangular frame method detailed in Appendix [C]

’The repository will be made available upon acceptance

Under review as a conference paper at ICLR 2026

LayersL=2 LayersL=2 LayersL=2 LayersL=2

4 06 08 10 12
eters

% / 166
5 fes 025 075 125 175

)
1..2025) 33 & QAT (wio batchnorm)

04 06 08 10 12 o 04 06 08 10 0 2 3
Number of parameters 1es Number of parameters 166 Number of parameters

(a) Random Prototypes (b) FashionMNIST (c) CIFAR10 (d) Imagenette

Figure 2: Test accuracy as a function of the number of parameters on Random Prototypes, Fashion-
MNIST, CIFAR10, and Imagenette. Results compare BEP with both the SotA approach (Colombo
et al.| 2025) and QAT-based methods for binary MLPs with L = 2 and L = 3 hidden layers.

4.2 PERFORMANCE ON BINARY MULTI-LAYER PERCEPTRONS

Our first experiment evaluates BEP against the current SotA approach for binary training of
MLPs (Colombo et al., 2025). Specifically, we considered binary MLPs with two and three hidden
layers, trained using both BEP and the SotA local learning rule. The tuned hyperparameters, across
e = 50 epochs, include the robustness parameter r, reinforcement probability p,., initial group size
0,1, and gating threshold v. For a comprehensive benchmark, we also trained the same architectures
using the QAT implementation from the Larg framework (Geiger & Team), |2020). In this setup, the
forward pass employs binarized weights, while the backward pass updates latent FP parameters with
the Adam optimizer (Kingma & Bal 2014). To ensure a fair comparison, the main QAT baseline does
not use batch normalization, resulting in a fully binary model at inference. For completeness, we also
report the performance of QAT with batch normalization as a reference point.

Figure 2]reports test accuracy, averaged over 5 runs, on four datasets as a function of the parameter
count. The results show that both fully binary approaches — BEP and the SotA local rule — signifi-
cantly outperform the comparable QAT baseline across all configurations. When comparing binary
methods, BEP consistently surpasses the SotA approach, achieving improvements of up to +6.89%,
+1.22%, +3.70%, and +2.85% on Random Prototypes, FashionMNIST, CIFAR-10, and Imagenette,
respectively, at the smallest parameter configurations. As model size increases, the performance
gap narrows, with BEP matching the local credit assignment rule but falling slightly behind in one
high-parameter setting (CIFAR-10, 3 layers). These findings underscore the importance of global
error propagation for effective credit assignment in binary MLPs, while also showing that BEP
outperforms both local learning rules and standard QAT baselines without relying on FP gradients.

4.3 VALIDATION ON BINARY RECURRENT NEURAL NETWORKS

Our second experiment tests the BEP algorithm on binary RNNs using its time-unrolled variant
BEP-TT described in Section [3.5] The goal is to demonstrate that a global, end-to-end error signal
can effectively train recurrent models, a task typically intractable for purely local learning rules.
Specifically, we evaluate BEP-TT on many-to-one sequence classification tasks across 30 datasets
from the UCR Time Series Archive (Dau et al.|[2019), using only the last window of each time series.
All RNN results use 3-fold cross-validation and 3 independent runs with the same hyperparameters:
robustness 7 = 0.5, reinforcement probability p,, = 0.5, initial group size vo,; = 15, gating threshold
v = 0.05, hidden and output layer sizes K; = K, = 1035, training epochs ¢ = 50, and batch
size bs = N/10. As a baseline, we trained binary RNNs with the same architecture using the QAT
implementation from the Larg framework (Geiger & Teaml [2020). As in the previous experiment, no
batch or layer normalization was applied so that the models remain fully binary at inference time.
For completeness, we report the performance of QAT with batch normalization as a reference point.

Under review as a conference paper at ICLR 2026

Table 1: Test accuracy on 30 UCR datasets. The results compare our BEP algorithm with the
QAT-based training from the Larg framework (Geiger & Team, |2020) for binary RNN architectures.

UCR Dataset BEP bQAT wio QAT w/ UCR Dataset BEP QAT w/o QAT w/

atchnorm batchnorm batchnorm batchnorm

ArticularyWordRec. 81.28£2.99 51.94+3.61 | 77.62+3.80 JapaneseVowels 9547 £1.24 84.06+2.92 | 96.25+ 1.01
Cricket 86.85+4.19 61.30+6.88 | 86.11 £6.03 MelbournePedestrian ~ 73.03 £4.59 42.83 +£2.35 | 90.91 +0.90
DistalPOAgeGroup 79.78 £2.65 73.84+£251 | 76.94+3.27 MoteStrain 78.62+£2.29 7442+1.70 | 79.82 + 181
ECG5000 91.40 £0.53 88.20+1.08 | 92.71 +0.74 MotionSenseHAR 7425 £2.07 6797 +1.80 | 77.36 +1.89
ECGFiveDays 81.79+£1.97 69.42+271 | 9525+ 145 PEMS-SF 86.13 +3.66 60.69 £4.55 | 8583 +2.43
ERing 82.44+£4.90 71.67+3.89 | 79.11 £4.93 PenDigits 9713021 66.99 +1.44 | 99.00 +0.21
Earthquakes 80.34+£2.94 79.83+283 | 77.01 £2.96 ProximalPOAgeGroup 82.64 +3.08 77.24+3.64 | 82.20+2.27
Epilepsy2 9245+ 0.53 88.82+0.58 | 93.72+0.42 ProximalPOCorrect 7826 £1.09 72.76 £2.89 | 75.68 +2.66

FreezerRegularTrain 7821£1.17 7526+ 1.56 | 85.92+1.06 ProximalPhalanxTW 79.83 £2.66 74.26+5.11 | 75.59 +3.03
FreezerSmallTrain 78.16 £1.46 75.02 % 1.44 | 85.60 + 1.50 SmoothSubspace 89.00 +4.24 58.00 £4.83 | 90.33 +4.08

5
GunPtAgeSpan 86.18 £2.27 81.08£4.53 | 84.11 £2.55 SonyAIBORobotSurfl ~ 75.68 £2.73 64.14 £2.05 | 80.68 + 3.04
GunPtOldVersusYoung 94.01 +1.57 91.87+291 | 9379+ 1.26 SonyAIBORobotSurf2 82.04 +2.37 73.10+1.71 | 84.59 £2.62
InsectEPGRegularTrain 99.14 £0.71 94.64 +2.97 | 99.04 + 0.64 StarLightCurves 82.32£0.34 81.96+0.49 | 82.68 +0.46
InsectEPGSmallTrain ~ 99.37 £0.56 96.62 +2.43 | 98.75 + (.83 Tiselac 81.63+0.47 64.52+0.98 | 84.81 +0.25
ItalyPowerDemand 94.65+1.22 83.18+£2.01 | 96.23 + 1.01 Wafer 95.92+0.61 9525+0.64 | 97.93 +0.24

For all datasets and models, inputs were binarized with a distributive thermometer encoder (Bacellar
et al.| 2024a), followed by a fixed 1 expansion layer projecting the dimension to Ky = 1035. A
hyperparameter search was conducted to tune the sequence window length, defined as the number of
timesteps included in the temporal window, and the number of thermometer bits.

Table [T] presents the test accuracy across the considered UCR tasks. On every dataset, BEP-TT
consistently outperforms the comparable QAT baseline in training fully binary RNNs, achieving
an average test accuracy improvement of +10.57%. These results validate the proposed binary
error propagation mechanism beyond feedforward MLPs. Moreover, because BEP relies on bitwise
operations even during training, it substantially reduces memory and computational costs compared
to QAT, which requires full-precision Adam updates, as discussed in Section4.3]

4.4 THE ROLE OF THE GATING THRESHOLD v

A crucial element to the generalization performance of the BEP algorithm is its gating mechanism,
which modulates the backward error signal as described in Section[3.2} In this third experiment, we
examine how varying the threshold v affects the validation accuracy of a binary RNN on the S-MNIST
dataset. The following hyperparameters are used: robustness » = 0.5, reinforcement probability
pr = 0.5, initial group size vo; = 15, layer sizes K, = K, = 1875, training epochs e = 50, and
batch size bs = 100. Corresponding results for binary MLPs are provided in Appendix [D.I]

Figures[3aland [3b] which show the accuracy averaged over 3 runs as a function of window length
and gating threshold v, respectively, highlight the crucial role of this mechanism. Its effect becomes
more pronounced as the window length grows (corresponding to deeper backward steps through
time), emphasizing the importance of focusing updates on neurons whose pre-activations lie near the
decision boundary. The results reveal an optimum in v: very low or very high thresholds degrade
performance, whereas intermediate values (around 10~2) consistently yield the highest accuracy
across different temporal depths. By filtering out saturated neurons from the error signal, the gate
ensures that weight updates focus on parts of the BNN most susceptible to flipping their activations.

4.5 DISCUSSION AND LIMITATIONS

A key advantage of BEP lies in its ability to perform training using only bitwise computations.
Table 2] summarizes the memory footprint and computational complexity of BEP compared with
standard QAT. Relative to QAT-based methods, our approach achieves a 2x reduction in memory
usage for hidden weights and a 32x reduction for error signals and weight updates. Moreover,
Adam-based QAT requires an additional 64 bits per parameter to store its first- and second-order
moment estimates, further increasing its memory demand. From a computational standpoint, we
adopt the hardware-level metric of equivalent Boolean gates (Colombo et al., [2025) to compare the
intrinsic cost of arithmetic operations. All operations in BEP can be implemented using primitives
such as XNOR, Popcount, and increment/decrement operations, which require at most O(10N)
Boolean gates for N-bit operands (Bacellar et al., [2024b). In contrast, [IEEE-754 single-precision

Under review as a conference paper at ICLR 2026

Table 2: Comparison of memory footprint and computational complexity between QAT (with Adam)
and BEP. Memory is reported in bits per element, and complexity denotes the order of magnitude of
equivalent Boolean-gate operations per element (Colombo et al., 2025). T: This estimate assumes the
absence of batch normalization and full-precision scaling factors commonly used in QAT.

Method Memory (Bits) Complexity (Boolean gates)
etho
Weights Activations Errors / Gradients =~ Forward Backward Update
QAT (Adam) 32 (FP32) 1 32 + 64 (Moments) ~ 107 ~10% ~10%
BEP 16 (Int16) 1 1 ~10 ~10 ~10

95.0 =
90.0

Validation accuracy
o
3
2

—— WL=2

wL=4
—— WL=8
—~— WL=28

2t 2?2

2? 2 103 102 107! 10°
Window length Pre-activation threshold v

(a) Accuracy as a function of window length (b) Accuracy as a function of gating threshold v

Figure 3: Validation accuracy of a binary RNN trained with BEP on the S-MNIST dataset for different
values of the gating threshold hyperparameter v and window length WL.

FP additions and multiplications (876} 2019), which underpin Adam-based QAT, are estimated to
require on the order of 10* Boolean gates each (Luo & Sun, 2024). This comparison highlights the
substantial computational advantage of BEP, which reduces the Boolean-gate cost by approximately
three orders of magnitude relative to FP32 QAT with Adam.

Despite its promising results, our approach has some limitations that suggest natural directions for
future research. First, we focus primarily on binary MLPs and RNNs. Extending BEP to convolutional
or transformer-style models requires a full binary design for these architectures, including handling
binary convolutions, filter-level masking, and additional adaptations to support weight sharing, spatial
structure, and multi-head mechanisms. Second, our experiments are restricted to classification tasks.
Although BEP naturally supports arbitrary binary output vectors and could, in principle, be applied
to multi-label prediction, binary segmentation, or more general binary-vector regression, such tasks
necessitate additional design choices regarding the output encoding. Third, we evaluate BEP on
mid-scale datasets and moderate-depth NNs. Extending BEP to large-scale models (e.g., ImageNet-
level CNNs (Bulat & Tzimiropoulos, 2019; [Vargas et al.| 2024)) requires substantial architectural
adaptations to convolutional or transformer backbones. Moreover, binary-compatible normalization
mechanisms may become necessary to ensure stable training in such settings.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduced BEP, an algorithm for training multi-layer BNNs using exclusively binary
computations. The central contribution is the formulation of a principled, binary analog of the BP
algorithm. By defining a recursive rule for propagating binary-valued error signals and updating
integer-valued metaplastic weights, BEP bridges the gap between the global credit assignment of
gradient-based learning and the computational efficiency of bitwise operations. Theoretically, this
work shows that effective end-to-end learning in multi-layer binary NN is possible without relying
on continuous gradients, opening new avenues for analyzing discrete optimization in DL. Practically,
BEP enables efficient training using only XNOR, Popcount, and increment/decrement operations,
making it well-suited for constrained settings such as TinyML (Capogrosso et al., 2024} Pavan et al.|
2024)), privacy-preserving DL with homomorphic encryption (Falcetta & Roveri, [2022} |Colombo
et al.| 2024)), and neuromorphic systems (Indiveri & Liul [2015; Yamazaki et al.| 2022). Future work
includes extending BEP to convolutional architectures, refining adaptive strategies for the gating
threshold v, exploring learnable masking mechanisms, and developing a formal convergence analysis.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Ieee standard for floating-point arithmetic. IEEE Std 754-2019 (Revision of IEEE 754-2008), pp.
1-84, 2019. doi: 10.1109/IEEESTD.2019.8766229.

Alan Tendler Leibel Bacellar, Zachary Susskind, Mauricio Breternitz Jr, Eugene John, Lizy Kurian
John, Priscila Machado Vieira Lima, and Felipe M.G. Franca. Differentiable weightless neu-
ral networks. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria
Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp.
2277-2295. PMLR, 21-27 Jul 2024a. URL https://proceedings.mlr.press/v235/
bacellar24a.htmll

Alan TL Bacellar, Zachary Susskind, Mauricio Breternitz Jr, Eugene John, Lizy K John, Priscila
Lima, and Felipe MG Franca. Differentiable weightless neural networks. arXiv preprint
arXiv:2410.11112, 2024b.

Carlo Baldassi. Generalization learning in a perceptron with binary synapses. Journal of Statistical
Physics, 136(5):902-916, Sep 2009. ISSN 1572-9613. doi: 10.1007/s10955-009-9822-1. URL
https://doi.org/10.1007/s10955-009-9822-1.

Carlo Baldassi, Alfredo Braunstein, Nicolas Brunel, and Riccardo Zecchina. Efficient supervised
learning in networks with binary synapses. Proceedings of the National Academy of Sciences, 104
(26):11079-11084, 2007. doi: 10.1073/pnas.0700324104. URL https://www.pnas.orgqg/
doi/abs/10.1073/pnas.0700324104.

Carlo Baldassi, Alessandro Ingrosso, Carlo Lucibello, Luca Saglietti, and Riccardo Zecchina. Sub-
dominant dense clusters allow for simple learning and high computational performance in neural
networks with discrete synapses. Physical review letters, 115(12):128101, 2015.

Yoshua Bengio, Nicolas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Adrian Bulat and Georgios Tzimiropoulos. Xnor-net++: Improved binary neural networks.
ArXiv, abs/1909.13863, 2019. URL https://api.semanticscholar.org/CorpusID:
203593135,

Luigi Capogrosso, Federico Cunico, Dong Seon Cheng, Franco Fummi, and Marco Cristani. A
machine learning-oriented survey on tiny machine learning. IEEE Access, 12:23406-23426, 2024.

Luca Colombo, Alessandro Falcetta, and Manuel Roveri. Training encrypted neural networks on
encrypted data with fully homomorphic encryption. WAHC 24, pp. 64, 2024.

Luca Colombo, Fabrizio Pittorino, and Manuel Roveri. Training multi-layer binary neural networks
with random local binary error signals. Machine Learning: Science and Technology, 6(3):035015,
2025.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. In Advances in Neural Information Processing
Systems (NeurIPS), pp. 3123-3131, 2015.

Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh
Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn Keogh. The ucr time series archive.
IEEE/CAA Journal of Automatica Sinica, 6(6):1293-1305, 2019.

Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
web]. IEEE signal processing magazine, 29(6):141-142, 2012.

Andreas Engel. Statistical mechanics of learning. Cambridge University Press, 2001.

Alessandro Falcetta and Manuel Roveri. Privacy-preserving deep learning with homomorphic
encryption: An introduction. IEEE Computational Intelligence Magazine, 17(3):14-25, 2022.

11

https://proceedings.mlr.press/v235/bacellar24a.html
https://proceedings.mlr.press/v235/bacellar24a.html
https://doi.org/10.1007/s10955-009-9822-1
https://www.pnas.org/doi/abs/10.1073/pnas.0700324104
https://www.pnas.org/doi/abs/10.1073/pnas.0700324104
https://api.semanticscholar.org/CorpusID:203593135
https://api.semanticscholar.org/CorpusID:203593135

Under review as a conference paper at ICLR 2026

Elizabeth Gardner. The space of interactions in neural network models. Journal of physics A:
Mathematical and general, 21(1):257, 1988.

Lukas Geiger and Plumerai Team. Larq: An open-source library for training binarized neural
networks. Journal of Open Source Software, 5(45):1746, 2020.

Geoffrey E Hinton. Connectionist learning procedures. In Machine learning, pp. 555-610. Elsevier,
1990.

Jeremy Howard. imagenette, 2019. URL https://github.com/fastai/imagenette/.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. In Advances in Neural Information Processing Systems (NeurIPS), pp. 41074115,
2016.

Giacomo Indiveri and Shih-Chii Liu. Memory and information processing in neuromorphic systems.
Proceedings of the IEEE, 103(8):1379-1397, 2015.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwiriska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences
(PNAS), 114(13):3521-3526, 2017.

Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by simulated annealing.
science, 220(4598):671-680, 1983.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images, 2009.

Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate binary convolutional neural network.
Advances in neural information processing systems, 30, 2017.

Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-real net:
Enhancing the performance of 1-bit cnns with improved representational capability and advanced
training algorithm. In Proceedings of the European Conference on Computer Vision (ECCV),
September 2018.

Zechun Liu, Wenhan Luo, Baoyuan Wu, Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-real net:
Binarizing deep network towards real-network performance. International Journal of Computer
Vision, 128:202-219, 2020.

Ilya Loshchilov and Frank Hutter. Cma-es for hyperparameter optimization of deep neural networks.
arXiv preprint arXiv:1604.07269, 2016.

Carlo Lucibello, Fabrizio Pittorino, Gabriele Perugini, and Riccardo Zecchina. Deep learning
via message passing algorithms based on belief propagation. Machine Learning: Science and
Technology, 3(3):035005, 2022.

Hongyin Luo and Wei Sun. Addition is all you need for energy-efficient language models. arXiv
preprint arXiv:2410.00907, 2024.

Vardan Papyan, X. Y. Han, and David L. Donoho. Prevalence of neural collapse during the terminal
phase of deep learning training. Proceedings of the National Academy of Sciences, 117(40):
24652-24663, 2020. doi: 10.1073/pnas.2015509117. URL https://www.pnas.org/doi/
abs/10.1073/pnas.2015509117.

Massimo Pavan, Eugeniu Ostrovan, Armando Caltabiano, and Manuel Roveri. Tybox: An automatic
design and code generation toolbox for tinyml incremental on-device learning. ACM Transactions
on Embedded Computing Systems, 23(3):1-27, 2024.

Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai, Jingkuan Song, and Nicu Sebe. Binary neural
networks: A survey. Pattern Recognition, 105:107281, 2020.

12

https://github.com/fastai/imagenette/
https://www.pnas.org/doi/abs/10.1073/pnas.2015509117
https://www.pnas.org/doi/abs/10.1073/pnas.2015509117

Under review as a conference paper at ICLR 2026

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. XNOR-Net: ImageNet
classification using binary convolutional neural networks. In European Conference on Computer
Vision (ECCV), pp. 525-542, 2016.

F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the
brain. Psychological Review, 65(6):386—408, 1958. ISSN 0033-295X. doi: 10.1037/h0042519.
URLhttp://dx.doi.org/10.1037/h0042519.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533-536, Oct 1986. ISSN 1476-4687. doi: 10.1038/
323533a0. URL https://doi.org/10.1038/323533a0.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

Ratshih Sayed, Haytham Azmi, Heba Shawkey, Alaa Hussein Khalil, and Mohamed Refky. A
systematic literature review on binary neural networks. IEEE Access, 11:27546-27578, 2023.

Riccardo Schiavone, Francesco Galati, and Maria A Zuluaga. Binary domain generalization for
sparsifying binary neural networks. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 123—140. Springer, 2023.

Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O Stanley, and Jeff
Clune. Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep
neural networks for reinforcement learning. arXiv preprint arXiv:1712.06567, 2017.

Zhijun Tu, Xinghao Chen, Pengju Ren, and Yunhe Wang. Adabin: Improving binary neural networks
with adaptive binary sets. In Computer Vision — ECCV 2022: 17th European Conference, Tel
Aviv, Israel, October 23-27, 2022, Proceedings, Part XI, pp. 379-395, Berlin, Heidelberg, 2022.
Springer-Verlag. ISBN 978-3-031-20082-3. doi: 10.1007/978-3-031-20083-0-23. URL https:
//doi.orqg/10.1007/978-3-031-20083-0_23.

Edwin Vargas, Claudia V. Correa, Carlos Hinojosa, and Henry Arguello. Biper: Binary neural
networks using a periodic function. In 2024 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 5684-5693, 2024. doi: 10.1109/CVPR52733.2024.00543.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Kashu Yamazaki, Viet-Khoa Vo-Ho, Darshan Bulsara, and Ngan Le. Spiking neural networks and
their applications: A review. Brain sciences, 12(7):863, 2022.

Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher, Yingyong Qi, and Jack Xin. Under-
standing straight-through estimator in training activation quantized neural nets. arXiv preprint
arXiv:1903.05662, 2019.

13

http://dx.doi.org/10.1037/h0042519
https://doi.org/10.1038/323533a0
https://doi.org/10.1007/978-3-031-20083-0_23
https://doi.org/10.1007/978-3-031-20083-0_23

Under review as a conference paper at ICLR 2026

A ANALYSIS OF THE BACKWARD PASS

It is possible to provide a justification for the core backward propagation rule. In particular, we show
that the recursion for the desired activations is the exact optimizer of a tractable linear surrogate of the
otherwise intractable combinatorial credit-assignment problem. This positions BEP as a principled
binary analog of BP rather than an ad-hoc heuristic. At layer [, one would ideally choose the binary
activation vector a;** that, when mapped through W, ; and binarized, maximizes alignment with
the upper-layer target a;ﬁ ;- From Eq.

arg max (a; ', sign(W;11a)).
ac{+1}%

This is a nonconvex combinatorial optimization over the hypercube with a discontinuous objective.
In general, it is NP-hard by reduction from standard binary optimization problems. Therefore, we do
not attempt to solve it exactly. Instead, we consider the linear surrogate obtained by dropping the
nonlinearity inside the inner product. From Eq. 4}

arg max (a;';, Wi a).
ac{+1}%

Equivalently, the set may be relaxed to the hypercube [—1, 1] and the optimum remains at a vertex.

Proposition 1 (BEP back-projection solves the linear surrogate exactly). Let v := WlT+1a;£1 € RK:,
The set of maximizers of Eq. H)is

ajl € sign(v) = {a€ {£1} : a; =sign(vy) ifv; #0, a; € {£1} ifv; =0}, (11)
i.e., any coordinate-wise sign choice consistent with v. In particular, when no coordinate tie occurs,
a/" = sign(W /' aj¥',), which is exactly the BEP recursion (Eq. E]without gating).
Proof. By the adjoint identity (u, Av) = (A Tu, v),

K,
(ajl'), Wiia) = <W1T+1a;f:1» a) = Zviai.
i=1

The objective is separable across coordinates on the product set {+1}%%, so it is maximized by
choosing each a; to maximize v;a;, i.e., a; = sign(v;) if v; # 0 and any a; € {1} ifv; =0. O

Lemma 2 (Convex relaxation has an integral optimum). The convex relaxation of Eq. H| with
a € [—1,1)% has the same optimal value, and the set of maximizers is

{a € [-1,11%: a; = clip (|zl|) } ,

which reduces to Eq.[I1)at the vertices. Hence the linear surrogate is solved exactly at a binary point.

Proof. Maximizing a linear function over a hypercube attains the optimum at a vertex. Coordinate-
wise, the same separability argument as above applies. O

Including the gate. Recall the binary gate from Eq.[5|and write D7, | := diag(g]', ,). The BEP

recursion with gating from Eq. replaces a;}', by D', ja; ¥, i.e., it solves the masked surrogate

"

*H * . T " * 1L
Lt Wiaa) = a" esign(W), DY ait)). (12)

arg max (D}
ac{+1}%

Thus, the gate simply zeros out saturated coordinates of the upper-layer target before back-projection,
directly mirroring the role of derivative clipping in STE-based BP.

Proposition [[]and Lemma 2] show that the BEP backward rule is the analytical optimizer of a well-
posed linear objective approximating the intractable target-selection in Eq. [3| The gate induces a
diagonal mask in that objective, yielding the exact masked optimizer in Eq.[I2] Practically, this
explains why BEP focuses the learning signal on neurons near their decision boundary (unsaturated
coordinates) and provides a principled binary analog of gradient gating used by STE-based methods.

14

Under review as a conference paper at ICLR 2026

A.1 PROOF OF LEMMA]]

Proof. The gated scalar product can be expressed as (b, b’} = (g ® b,b’) and by the adjoint
identity (b, Wa) = (W "b, a). Combining these two relations leads to

<b7 Wa>g - <WT (g © b)’ a>'

Denoting W (g ® b) as z of components in Z \ {0}, we reduce to problem arg max, (z,a). The
objective is separable across coordinates: (z,a) =) . z;a;, so it is maximized by choosing each a;
to maximize z;a;, i.e., a; = sign(z;). O

B LoCAL CORRECTNESS OF THE WEIGHT UPDATE

Beyond justifying the backward pass, we also show that the resulting weight update is beneficial in a
layer—local sense. The next lemma proves that, for any sample triggering an update, the modification
to the hidden integers H; is guaranteed to be corrective: it pushes the neuron stabilities in the direction
of the desired activation and increases an anchored alignment potential by a fixed, known amount.

Lemma 3 (Local update correctness on the stabilities). Fix a sample . € M that triggers an update.
Let | be a layer and j a neuron selected by the neuron-wise mask (i.e., the j-th column). Denote the
hidden weights before and after the update by H; and Hj, respectively, and define the stabilities

uétgi (&)’ 1, hy), u;l; "y, 2]>

If the neuron-wise update is Ahf ;= 2a;“; af_l (and zero otherwise), then the alignment strictly
increases by a fixed amount:

*po I *U *,u 1
a ulj—aljulj—FQKl 1> a5 .

Proof.
“ll; (a_ 1,hl)]+2al“af)= +2az llag_ 1”2

Since a)' | € {£1}-1 ||a)" | ||3 = K;_;. Multiplying by a,'; € {£1} yields the claim. O

Remark 1 (From stability to visible pre-activation). The forward pre-activations use visible weights
W, = sign(H,;), hence z|' = (a)' |, wy ;) can change discontinuously when entries of h j cross
zero. Nevertheless Lemmal 3|implies monotonic drift of each coordinate of h; j toward the signed
target al al 1- After T updates of neuron j, each entry has shifted by 2T in the correct direction.
Consequently, once
H;,;(0)+1
szaX’V| lﬂ]()l

i 2
all entries align with a;‘; a;’, ;, and the visible pre-activations satisfy sign(z] ;) = aZ’; and remain
stable under further updates on the anchored desired activations.

)

Lemma[3|shows that each neuron update yields a strict quantifiable increase of an anchored alignment
by 2K;_; (adiscrete analog of a guaranteed descent step). Together with Remark|[T} this ensures that
repeated anchored updates drive the visible state toward the desired activation and stabilize it once
sufficient integer margin accumulates. A full convergence proof is left for future work.

C GENERATING A FIXED BINARY CLASSIFIER VIA EQUIANGULAR FRAMES

As stated in Section [3] our empirical results show that BEP achieves its best performance when using
a fixed output classifier P whose class prototypes are geometrically well-separated. This approach is
inspired by the concept of Equiangular Tight Frames (ETFs), which have been shown to emerge in the
final layers of deep NNs during a phenomenon known as neural collapse (Papyan et al.,2020). While
a simple, randomly generated classifier offers a baseline, optimizing the structure of these prototypes
significantly improves class separability. This appendix details our method for generating a structured
binary classifier by constructing a set of prototype vectors that are maximally and uniformly distant
from each other in the binary feature space.

15

Under review as a conference paper at ICLR 2026

Neural collapse describes an empirical phenomenon where, in the terminal phase of training, the
last-layer feature representations for all samples of a given class collapse to a single point (their class
mean). Furthermore, the set of these class-mean vectors, along with the final-layer classifier weights,
form a simplex ETF. A simplex ETF is a geometric configuration of vectors that are maximally
separated from one another, characterized by equal norms and a constant, negative pairwise inner
product. This structure is optimal for linear classification.

The classical ETF is defined in a real-valued vector space R”. In BNNs, we are interested in a binary
analog where the feature vectors and classifier weights lie on the hypercube {£1}. We define a
Binary Equiangular Frame (BEF) as a set of C binary vectors {p1,...,pc}, where p. € {1},
that satisfy two properties. The first property is high pairwise separation, i.e. the inner product
(pi,p;) for i # j should be as small (i.e., as negative) as possible. In the binary domain, this is
equivalent to maximizing the Hamming distance between any two vectors. The second property is
equiangularity, i.e. the inner products for all distinct pairs (p;, p;) should be approximately equal.
Such a frame, when used as the columns of the classifier matrix P, provides a set of target prototypes
that are maximally and uniformly distant from each other in the binary feature space.

Finding an exact BEF is a hard combinatorial problem. However, we can generate a high-quality
approximation using a binary optimization procedure. Given the desired number of classes C' and
feature dimension D, we seek to find the set of vectors {p.}<_; that minimizes the cost function

T{pe}) = (pi,ps) + - Varic;({ pi, ps)), (13)

1<j

where Var(-) is the variance and @ > 0 balances the two objectives. The first term encourages all
pairwise inner products to be negative, while the second pushes them toward a common value.

We optimize this objective using a simple iterative local search algorithm, starting from a random
initialization of the C' vectors {p.} from {1} For a fixed number of iterations: (i) randomly select
a vector p; and a coordinate k; (ii) compute the change in cost A7 that would result from flipping
the sign of the k-th element of p;; and (iii) if AJ < 0, accept the flip. This greedy coordinate-wise
descent procedure rapidly converges to a local minimum of the cost function. The resulting set of
vectors {p.} can then be used to construct the fixed classifier matrix P = [p1, ..., pc].

D ABLATION STUDIES

D.1 THE ROLE OF THE GATING THRESHOLD v ON MLPSs

In this section, we present an ablation study on the gating threshold v for binary MLPs, as shown in
Figure] Empirically, across layer sizes, optimal and non-trivial values of v emerge, with the effect
becoming more pronounced as NN depth increases, consistent with the RNN ablation in Section [4.4]

LayersL=3 LayersL=3 LayersL=3 LayersL=3

910 W——a—.\‘
890
7.0

05
Gating threshold v

-+
-+ Lo

50
10 00 01 02

0
00 01 02 10 00 01 02 10 00 01 02

05 05 05 05
Gating threshold v Gating threshold v Gating threshold v Gating threshold v

(a) Random Prototypes (b) FashionMNIST (c) CIFAR10 (d) Imagenette

Figure 4: Validation accuracy as a function of the gating threshold » on Random Prototypes, Fashion-
MNIST, CIFAR10, and Imagenette for binary MLPs with L = 3 and L = 5 hidden layers.

16

Under review as a conference paper at ICLR 2026

D.2 THE ROBUSTNESS HYPERPARAMETER 7

In this section, we perform an ablation study on the robustness parameter r for binary MLPs, as
shown in Figure[5] Empirically, setting the margin r in the range 0.5-0.75 consistently yields the
best generalization accuracy across the considered tasks and architectures.

872 840 910

e //—‘—o E E E
3710 3 3 800 3

2600 2790

5 255 § 828 Sac0 |
B 60 135135 F 3

3780

g S5 Ea
650 #3535 Sa2
3.0 80.5
610 79.8
59.0 79.0

0.00 025 050 075 100 0.00 025 050 015 100 0.00 025 050 015 100 0.00 025 050 075 100
Robustness Robustness Robustness Robustness

(a) Random Prototypes (b) FashionMNIST (c) CIFAR10 (d) Imagenette

2 =850
5770 i}
- 525525 > 525525 >
76.0

800 - 525525

750 830

820

Figure 5: Validation accuracy as a function of the robustness 7 on Random Prototypes, FashionMNIST,
CIFAR10, and Imagenette for binary MLPs with L = 2 hidden layers.

D.3 THE REINFORCEMENT PROBABILITY HYPERPARAMETER p,.

In this section, we perform an ablation study on the reinforcement probability p,. for binary MLPs, as
shown in Figure[6] Empirically, setting the probability p, in the range 0.5-0.75 consistently yields
the highest generalization accuracy across the evaluated tasks and architectures, although its overall
impact remains moderate. Nevertheless, compared to disabling reinforcement entirely, enabling it
provides a measurable improvement, with the effect being more marked in lower-capacity models.

705
w2 o0
” o ——— ‘,_,xa\.__l

s18

s
3735 2
e 2 810
3715 3
g g0z
Soos

Fers
Sess

635

615

-
-+
=<
+

3535
595

0.00 025 050 075
Reinforcement probability p,

(a) Random Prototypes (b) FashionMNIST (c) CIFAR10 (d) Imagenette

1.00 0.00 025 050 075
Reinforcement probability p,

1.00 0.00 025

050 075 100 0.00 025
Reinforcement probability p,

050 075 100
Reinforcement probabilty p,

Figure 6: Validation accuracy as a function of the reinforcement probability p,, on Random Prototypes,
FashionMNIST, CIFAR10, and Imagenette for binary MLPs with L = 2 hidden layers.

D.4 ANALYSIS OF BINARIZATION FUNCTION

To examine the sensitivity of BEP to the input binarization method, we compare simple median
thresholding against thermometer encoding on five UCR datasets using binary RNNs. As shown in
Table[3] thermometer encoding significantly outperforms median thresholding on time-series data, as
it preserves coarse magnitude information that is essential for these tasks. In contrast, for image data,
median thresholding is sufficient to achieve SotA performance with BEP.

Table 3: Validation accuracy on five UCR datasets using different thermometer-encoding bits for
input binarization. Notably, using a single bit corresponds to the median-thresholding method.

Thermometer-encoding bits
1 10 20 50 100

ArticularyWordRec. 4898 +393 81.28+299 7937+£2.70 81.16+2.17 81.45+1.85
DistalPOAgeGroup 77.18+£2.74 78924338 7811203 79.78+2.65 79.78+3.74
ItalyPowerDemand 73.54+244 94.65+122 9459+1.13 9434+1.03 93.92+1.31
PenDigits 61.60+2.05 96.66+0.22 96.79+035 96.88+0.26 97.13+0.21
ProximalPOAgeGroup 77.52+343 8231+328 8237+336 8270+2.41 82.53+2.85

Dataset

17

Under review as a conference paper at ICLR 2026

D.5 ANALYSIS OF MASK DENSITY

To substantiate the claim that the sparsity mask fulfills a role analogous to the learning rate, we
evaluate the impact of the group size -y ; (which determines mask density) on training dynamics for
binary MLPs. Figure[7]shows that smaller group sizes (sparser updates) lead to slower convergence,
whereas larger group sizes (denser updates) accelerate initial learning but may introduce instability.
This behavior mirrors the effect of varying the learning rate in gradient-based optimization.

(a) Random Prototypes (b) FashionMNIST (c) CIFAR10 (d) Imagenette

Figure 7: Training and validation accuracy curves over epochs for different values of the group size
v0,1 on Random Prototypes, FashionMNIST, CIFAR10, and Imagenette.

D.6 SCALING TO DEEPER NETWORKS

To assess whether BEP can propagate informative error signals through deep computational chains,
we evaluate binary RNNs on the S-MNIST dataset while progressively increasing the backward
horizon length (i.e., the number of backpropagated time steps). This setup effectively simulates
deeper networks by extending the length of the backward computational graph while keeping the
temporal window fixed. As shown in Figure [§] performance steadily improves as the backward
horizon increases, indicating that BEP successfully propagates useful binary error information over
many steps without suffering from excessive signal decay.

95.0
90.0
..85.0
8

€ 800
I+

2 75.0
c

.g700
]

2650
s

= 60.0
55.0
50.0

Backward steps through time

Figure 8: Validation accuracy of a binary RNN trained with BEP on the S-MNIST dataset for different
values of the backward horizon length (depth of backpropagation).

18

	Introduction
	Related Literature
	The Binary Error Propagation Algorithm
	BNN Architecture and Forward Propagation
	Binary Error Backpropagation
	Weight Update Mechanism
	Analogy to Gradient-Based Backpropagation
	Applying BEP-TT to Recurrent Architectures

	Experimental Evaluation
	Experimental Setup
	Performance on Binary Multi-Layer Perceptrons
	Validation on Binary Recurrent Neural Networks
	The Role of the Gating Threshold nu
	Discussion and Limitations

	Conclusion and Future Work
	Analysis of the Backward Pass
	Proof of Lemma 1

	Local Correctness of the Weight Update
	Generating a Fixed Binary Classifier via Equiangular Frames
	Ablation Studies
	The Role of the Gating Threshold nu on MLPs
	The Robustness Hyperparameter r
	The Reinforcement Probability Hyperparameter pr
	Analysis of Binarization Function
	Analysis of Mask Density
	Scaling to Deeper Networks

