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ABSTRACT

Binary Neural Networks (BNNs), which constrain both weights and activations to binary values,
offer substantial reductions in computational complexity, memory footprint, and energy consumption.
These advantages make them particularly well suited for deployment on resource-constrained devices.
However, training BNNs via gradient-based optimization remains challenging due to the discrete
nature of their variables. The dominant approach, Quantization-Aware Training, circumvents this
issue by employing surrogate gradients. Yet, this method requires maintaining latent full-precision
parameters and performing the backward pass with floating-point arithmetic, thereby forfeiting
the efficiency of binary operations during training. While alternative approaches based on local
learning rules exist, they are unsuitable for global credit assignment and for back-propagating errors
in multi-layer architectures. This paper introduces Binary Error Propagation (BEP), the first learning
algorithm to establish a principled, discrete analog of the backpropagation chain rule. This mechanism
enables error signals, represented as binary vectors, to be propagated backward through multiple
layers of a neural network. BEP operates entirely on binary variables, with all forward and backward
computations performed using only bitwise operations. Crucially, this makes BEP the first solution to
enable end-to-end binary training for recurrent neural network architectures as well. We validate the
effectiveness of BEP on both multi-layer perceptrons and recurrent neural networks, demonstrating
performance gains of up to +8.70% and +12.30% in test accuracy, respectively. The proposed
algorithm is released as an open-source repository.

1 INTRODUCTION

The design of Neural Networks (NNs) with weights and activations constrained to binary values, typically £1, is a
promising direction for building models suited to resource-constrained environments. In particular, Binary Neural
Networks (BNNs) offer a compelling solution for deploying Deep Learning (DL) models on edge devices and
specialized hardware, where computational efficiency, power consumption, and memory footprint are critical design
constraints (Courbariaux et al., [2015} |Rastegari et al., [2016; |Hubara et al., [2016). The primary advantage of BNNs
lies in their ability to replace costly floating-point arithmetic with lightweight bitwise operations such as XNOR and
Popcount, resulting in substantial reductions in computational complexity (Qin et al.,[2020; |Lucibello et al., 2022).

Despite these advantages, effectively training BNNs remains a significant challenge due to the non-differentiable nature
of their activation functions. Consequently, conventional gradient-based learning algorithms cannot be directly applied,
leading to two main classes of solutions. The most prevalent approach is Quantization Aware Training (QAT), which
formulates the problem within a continuous (full-precision) optimization framework. In this paradigm, full-precision
latent weights are maintained, and the non-differentiable activations are bypassed during the backward pass using the
Straight-Through Estimator (STE) (Bengio et al.,|2013). However, the reliance on real-valued computations for gradient
calculation and weight updates confines the efficiency of binary arithmetic to the forward pass only (Sayed et al.| [2023).

An alternative line of research has explored purely binary, gradient-free learning rules, often inspired by principles
from statistical physics (Baldassi et al., 2015} |Baldassil 2009). These methods operate directly on binary weights and
avoid continuous surrogates. A recent extension applied this approach to binary Multi-Layer Perceptrons (MLPs)
by generating local error signals at each layer using fixed random classifiers (Colombo et al., |2025). However, the
fundamental limitation of this approach is that credit assignment remains local and error information does not propagate
from the final output layer through the NN. This structural constraint makes such rules inapplicable to architectures
where learning depends on end-to-end error propagation across layers, such as Recurrent Neural Networks (RNNs).



From this perspective, this paper addresses the following research question: Is it possible to formulate a multi-layer,
global credit assignment mechanism that back-propagates errors through the NN while operating exclusively within the
binary domain? To the best of our knowledge, we introduce the first fully binary error Backpropagation (BP) algorithm
capable of effectively training BNNs without relying on floating-point gradients. The algorithm, called Binary Error
Propagation (BEP) hereafter, establishes a binary analog of the standard BP chain rule, where error signals — represented
as binary vectors — are computed at the output and propagated backward through each layer of the NN. To ensure
learning stability, BEP employs integer-valued hidden weights that provide synaptic inertia and mitigate catastrophic
forgetting (Kirkpatrick et al.,|2017). Crucially, the entire forward and backward passes rely solely on efficient XNOR,
Popcount, and increment/decrement operations.

In summary, this work makes the following contributions:

* We formalize a fully binary BP algorithm for BNNs that propagates binary-valued error signals end-to-end,
establishing a discrete analog of the gradient-based chain rule.

* We demonstrate that BEP successfully train both MLP and RNN architectures, overcoming the limitations of
prior local and gradient-based learning methods.

As a direct consequence, the proposed BEP algorithm eliminates the need for full-precision gradients and weight
updates, enabling the exclusive use of efficient bitwise operations even during the learning phase. This drastically
reduces both computational complexity and memory footprint. Experimental evaluations on multi-class classification
benchmarks demonstrate test accuracy improvements of up to +8.70% over the previous State-of-the-Art (SotA)
algorithm (Colombo et al.,|2025). Furthermore, BEP is the first solution to enable end-to-end binary training for RNN
architectures, outperforming the QAT-based approach by an average of +12.30% in test accuracy.

The remainder of this paper is organized as follows. Section [2|reviews related work. Section [3|formalizes the proposed
BEP algorithm. Sectionfd]presents experimental results on binary MLP and binary RNN architectures. Finally, Section[3]
draws conclusions and outlines future research directions.

2 RELATED LITERATURE

The predominant paradigm for training BNNs is QAT (Courbariaux et al.,2015; Hubara et al.,|2016; Rastegari et al.,
2016). In this approach, models maintain latent full-precision parameters that are binarized during the forward pass,
while gradients are computed with respect to the latent parameters using a surrogate gradient, typically a STE (Bengio
et alL[2013). The STE approximates the derivative of the non-differentiable sign function as an identity within a bounded
region, enabling the use of standard BP. Numerous subsequent works have built upon this foundation, introducing
improvements such as learnable representations, enhanced architectures, and strategies to narrow the accuracy gap
with full-precision models (Lin et al.l 2017} |Liu et al., 2020; |Tu et al., 2022} |Schiavone et al., 2023)). While QAT has
achieved strong empirical results, it remains fundamentally a continuous optimization method applied to a discrete
problem. Training relies on floating-point arithmetic, which prevents the full realization of BNN efficiency during
learning and introduces a discrepancy between training and inference dynamics (Yin et al.,2019). Our work diverges
from this paradigm by eliminating the need for any real-valued parameters or surrogate gradients.

A distinct line of research frames BNN training as a purely binary optimization problem. Early work in statistical
physics explored combinatorial optimization techniques for training single-layer perceptrons (Gardner, |1988} Engel,
2001), while later studies investigated fully binary training via global heuristics such as simulated annealing (Kirkpatrick:
et al., {1983} |Hinton, |1990) and evolutionary strategies (Salimans et al., 2017;|Such et al., 2017; |Loshchilov & Hutter,
2016). Although these methods avoid continuous relaxations, they typically explore the weight space via stochastic
perturbations (e.g., random weight flips) and lack a structured, layer-wise credit assignment mechanism comparable to
BP, which limits their scalability and efficiency in deep settings. Our work addresses this challenge by developing a
multi-layer, gradient-free training procedure with a deterministic error-propagation rule.

In parallel, research at the intersection of statistical physics and computational neuroscience has developed efficient local
learning rules for binary neurons. Algorithms such as the Clipped Perceptron with Reinforcement (CP+R) (Baldassi,
2009) and related message-passing approaches (Baldassi et al.| 2007;2015)) introduce integer-valued hidden variables
to represent synaptic confidence, demonstrating that single binary units can learn effectively. Multi-layer extensions of
these rules generate layer-wise local error signals using fixed random classifiers, enabling training of several binary
layers but still lacking end-to-end propagation of task loss (Colombo et al.,[2025). This structural constraint notably



precludes their application to a relevant class of recurrent sequential architectures, such as RNNs. BEP overcomes these
shortcomings by introducing a global credit assignment mechanism that propagates binary error signals end-to-end,
bridging the gap between fully binary optimization and multi-layer training of deep architectures.

3 THE BINARY ERROR PROPAGATION (BEP) ALGORITHM

In this section, we formalize the BEP algorithm for training multi-layer BNNs using exclusively binary operations. We
consider a supervised learning setting defined by a classification task and a corresponding dataset X = {x*, c“}fy:l

of size N, where x* € R¥¢ are input patterns of dimension K, and c* € {1,...,C} are their corresponding labels,
with C' denoting the number of classes. Specifically, Section [3.T]introduces the BNN architecture and forward-pass
dynamics. The binary backward pass for error propagation is described in Section The weight-update rule is
defined in Section[3.3] while the analogy with standard full-precision BP is presented in Section[3.4] Finally, Section[3.3]
demonstrates the application of the proposed BEP algorithm to RNN architectures.

3.1 BNN ARCHITECTURE AND FORWARD PROPAGATION

The NN under consideration consists of two main components: a trainable binary backbone that extracts features, and a
fixed task-specific output layer that maps these features to the final prediction, as shown in Figure Given a mini-
batchx = [...,x",.. }]( of bs input samples x*, where p € {1,...,bs}, we first obtain their binary representations
afy = bin(x") € {£1}"°. The binarization function can be realized via median thresholding for images or thermometer
encoding for tabular data (Bacellar et al.,2024)). The resulting binary batch ag is then fed to the binary backbone.

Trainable BNN Backbone. The backbone comprises a stack of L fully-connected binary layers. For each layer
le{1,...,L},its state is defined by two matrices, following prior work on binary synapses (Baldassi, 2009). The first
is the matrix of hidden discrete weights H; € Z*1*¥i-1_ These integer-valued weights encode the synaptic inertia
of each connection, providing a mechanism for stable learning and mitigating catastrophic forgetting (Kirkpatrick
et al,2017). Although formulated as unbounded integers, in practice H; is constrained to the finite range of a B-bit
signed integer, [-25~1 2B=1 — 1] (e.g., using B = 16 bits). The second is the matrix of visible binary weights
W, = sign(H;) € {£1}51>*%i-1 representing the effective weights used during the forward pass. Here, K; denotes
the number of neurons in layer [, and the sign function is applied component-wise, returning —1 for negative inputs and
+1 otherwise. For each layer [, the pre-activations and activations are computed as z; = W;a,_; and a; = sign(z;),
respectively. The output of the BNN backbone (i.e., the activations ay) is then fed to the task-specific output layer to
produce the final predictions ¥.

Task-Specific Output Layer. To make predictions, the binary features a’ of each sample ; must be mapped to the
space of target variables y*. For regression tasks, this layer acts as a binary decoder {£1}%Z — R, where D is the
output dimensionality. For a C-class classification problem, the goal is to produce a logit vector §* € RY, whose
largest component corresponds to the predicted class. While different mappings can be used, the choice of output layer
influences both learning and accuracy. In this work, we use a linear layer represented by a fixed, randomly initialized
matrix P € {£1}°*Kz_ This corresponds to associating a prototype vector p° (the c-th row of P) with each class
c€{l,...,C} (see Appendix for the generation method). Providing the backbone with a stable and geometrically
optimal set of target activations — the class prototypes — simplifies credit assignment during training and consistently
yielded the best performance in our experiments. Although it is possible to train this classifier, we found empirically
that keeping it fixed is more practical and effective. The final logits are computed as y = P a,, and the predicted class
for each sample f is given by ¢* = arg max. y*.

3.2 BINARY ERROR BACKPROPAGATION

The BEP learning rule is error-driven. A backward update is initiated for each sample p when the logit ¥, associated
with the ground-truth class c* is not sufficiently larger than the others. Specifically, an update is triggered if

i — r&axyg <rKy, €))
where r € (0, 1] is a user-specified margin hyperparameter and K7, is the size of the last hidden layer (also representing

the maximum possible logit value). Higher values of r enforce a larger gap between the correct-class logit and all
others, thereby encouraging more robust classification.



(a) BEP applied to a binary MLP (b) BEP applied to a binary RNN

Figure 1: Information flow for a sample p in an MLP and an RNN trained with BEP. Each model combines a trainable
binary core with a fixed output classifier. The forward pass is shown in gray, while the backward pass is shown in red.

For clarity, we describe the backward pass for a single training sample p, although in practice it is applied to all elements
of a mini-batch. When a sample ;» meets the update criterion in Eq. I} BEP initiates the backward phase to adjust the
hidden integer weights H; so that the final output better aligns with the correct target. This is accomplished by defining,
for each layer [, a binary desired activation vector a;** that is propagated from the output layer L back to the first layer.

Desired Activation at the Last Layer. The backward pass begins at the final layer L of the BNN backbone. The first
step is to determine the desired activation vector a7, which is the ideal binary vector that maximizes the logit for the
correct class c#. Since the logit is a scalar product between activations and the class prototypes from the fixed classifier
P, the desired activations can be found analytically. They correspond to the prototype vector p¢ for the correct class:

ajt = argmax (a,p") = p°. )

ac{+1}XL

Backpropagation of Desired Activations. For each layer | < L, the desired activation vector a;" is obtained by
back-propagating the error signal azkﬁ , from the subsequent layer [ 4 1. The goal is to determine activations a}’ that
maximize alignment with desired activations aff; 1
argmax (&%, sign(Wiy1a)). 3)
ac{£1}5
Since this is a combinatorial search over 2% configurations, BEP solves a relaxed problem by removing the non-linear
sign function and instead maximizing the alignment with the pre-activations:
argmax ()%, Wi 1a) . 4)
ac{+1}%

This relaxed objective increases the magnitude of the pre-activations z;; while aligning their signs with afﬁ .- Itis
worth noting that a global optimum is not required, as the goal is to steer weight updates in the appropriate direction.
As shown in Lemmal|[T]below, the solution to this relaxed problem can be derived analytically.

Backward Gating. In addition, we introduce a gating mechanism to regulate the back-propagated signal. This gate
is applied at layer [ + 1 to emphasize learning on neurons most amenable to change, i.e., those with pre-activations
z)’ 1= W,1a)" near the decision threshold of 0. Neurons with large-magnitude pre-activations (nearly saturated

responses) are excluded from the backward pass of sample . This is realized through a binary gating vector gl“H:

1, if |z, | <vK
M L ’ I+1,41 — 5
(841): {O, otherwise ©)



where zfﬂrl’ , 18 the i-th pre-activation at layer [ + 1 and v € [0, 1] is a tunable threshold. More formally, for a generic
gating vector g, we define the gated scalar product as (a,a’)g := >, g;a;a;. This modifies the relaxed optimization
problem of Eq. ] to:

arg max <a;:‘f1, Wiiia) 6)

ac{£1}
This gating function effectively filters the binary error signal, allowing it to pass only through neurons close to their
activation boundary. This ensures that weight updates are driven by the parts of the BNN most susceptible to flipping
their activations. The solution to Eq. [f]is given by the following lemma (proved in Appendix [A).

"
841

Lemma 1 (Desired activations). Consider a binary vector b € {£1}5¢, a binary matrix W € {£1}Kv*Ea and a
gating vector g € {0, 1}%0. Problem arg MaXye (1 1}xa (b, Wa)g has the unique solution: a* = sign (W' (gob)).

Combining the base case from Eq. 2] with Lemma [I] yields the recursive expression for computing the desired activation

vector at any layer [:
*M_{p‘:‘ﬂ ifl =1L

a - . A * L . 9
: sign (W, (g4, @arty)) ifl<L
where ® denotes the element-wise product. This formulation forms the cornerstone of BEP, establishing a fully binary
chain rule for propagating binary error signals throughout the BNN.

N

3.3 WEIGHT UPDATE MECHANISM

Once the target activation vector a;* has been determined for layer /, the corresponding hidden weights H; are updated.
This update strengthens the association between the incoming activation vector a}’ ; and the desired output pattern a;*.
For every sample y that triggers an update, we first compute a weight update matrix from the desired binary weights,
following a procedure similar to that in prior work (Baldassi et al.| 2007} |Baldassi, [2009; (Colombo et al., [2025)). In

particular, using the same strategy described for finding a,”, we maximize (a,", W;a;" ;) with respect to W;. The
solution gives the desired direction of change for the integer weight

AH;' = sign (af“(af_l)T) = al*u(afl—JT € {il}KLXKZ_l- 3

This potential update is then filtered by a binary mask M}' € {0, 1}%:*%i-1 that selects which weights to modify.
This update can be shown to be locally optimal on the desired activations a;* (see Appendix . Following the sparse
update strategy of (Colombo et al., 2025)), the mask is constructed by dividing the neurons of layer [ into subgroups
and, within each group, updating only the incoming weights of the perceptron judged to be the easiest to correct based
on its pre-activation. This mechanism promotes a more uniform distribution of updates, leading to balanced training
and improved generalization. If M denotes the set of mini-batch indices that trigger an update, we first compute each
per-sample update AH/" using the same pre-update hidden weights H;, and then apply the update as:

H, <« H; +2 ) (M}'© AH}). )
peEM

Finally, a reinforcement step from the CP+R rule (Baldassi,[2009) stochastically strengthens existing memory trajectories
of each integer weight h € H; via the update h < h + 2sign(h). This occurs with a probability normalized by the

layer width, p.+/2/(7K;), where the reinforcement probability p,. is adaptively rescaled each epoch by the square root

of the training error v/ E'¢. This mechanism applies reinforcement more frequently when the model is uncertain and
balances its effect across layers of different sizes.

While (Colombo et al.| [2025) employs a fixed group size -y, corresponding to a constant number of updates per epoch,
BEP uses a scheduled group size. Let I, = {d € N : d | K} denote the ordered list of positive divisors of K.
The algorithm begins with a user-defined initial group size vy ; € I'; and increases it adaptively based on accuracy.
Whenever the generalization error stagnates for a user-defined number of epochs, the group size is increased to the next
larger divisor 7,41, = min {d el d>vyy } If 7y, ,; is already the largest divisor of K; (the last element of I';), it
remains fixed. Because only one perceptron per group is updated, enlarging the groups gradually reduces the number
of weight changes at each step, resulting in increasingly sparse updates. Empirically, this mechanism leads to a more
stable optimization process in the later stages of training.

IThis follows from treating each row of W/ as an independent optimization, swapping the roles of a and W in Lemma



3.4 ANALOGY TO GRADIENT-BASED BACKPROPAGATION

The BEP procedure can be viewed as a binary reformulation of the classical BP computational graph (Rumelhart
et al.,[1986). It preserves the global flow of information while substituting real-valued operations with binary, bit-wise
counterparts. In standard BP, the weight update for layer [ follows a gradient-descent form:

Wl <—Wl —nélalT_l,

where 7) is the learning rate and §; denotes the back-propagated error signal for layer [. This real-valued signal is
computed recursively by the chain rule:

5 {VaLEQJ’(zL), ifl=1L
l:

. 10
(W[ 10041) ©0'(m), ifl<L (10)

Each component of BEP mirrors a counterpart in gradient-based BP. The binary desired activation a;" serves as the
binary analog of the error signal. Back-projecting it through WZT+1 is structurally equivalent to the error propagation
step in the continuous case. The binary gating function plays the role of the activation derivative o’ (-), blocking error
transmission through saturated neurons as o”(-) approaches zero for large inputs. Finally, the sparse mask M; fulfills
the role of the learning rate: whereas n controls the magnitude of an update, the mask governs its sparsity. These
correspondences show that BEP constitutes a coherent end-to-end binary analog of traditional gradient-based BP.

3.5 APPLYING BEP-TT TO RECURRENT ARCHITECTURES

One of the main strengths of BEP is that its global error-propagation strategy can be directly extended to RNNs, a
class of models that require explicit temporal credit assignment, which is generally intractable for local learning rules.
By unrolling the NN through time, we obtain a binary counterpart of the BP Through Time (BPTT) algorithm, which
we call BEP-TT. Demonstrating its effectiveness provides a key validation of BEP, showing that a global, end-to-end
binary error signal can support the training of recurrent architectures. Accordingly, we employ a standard binary RNN
for many-to-one sequence classification, as shown in Figure Given an input sequence x* = (x/,...,x%) of length
T, the RNN is defined by recurrent (state-to-state) weights H,, € Z%-*%s_input-to-state weights H,, € Z%s*Ke
and state-to-output weights H,,, € ZHKyxKs along with their binary counterparts W, W, and W,

Forward Pass Through Time. At eachtimestept € 1,...,T, the state vector s} € {£1}#¢ is computed from the
previous state s;’ | and the current binarized input a}' € {£1}#+ according to the recurrence s}’ = sign(Wsa}' +
W,si |). After the final time step 7', the state s is mapped to an output activation s ¢ {£1} 5 via sl =

sign(W sysh.). This activation is then passed to the fixed classifier P to produce the prediction y*, which is used to
check the update criterion from Eq. [T]

Binary Backpropagation Through Time. When a sequence x* satisfies the update criterion in Eq. |1} the BEP-
TT procedure is performed. This mechanism parallels BEP’s operation on feedforward NNs but operates over the
unrolled temporal structure, propagating a target state vector s,/ backward from time step t = T to ¢t = 1. First,
the desired output state is set to the correct class prototype, s, := p", which provides the error signal for the
state-to-output layer. Using Eq.[/] this signal is then back-projected to obtain the desired state at the last time step,
syt = sign (W;ry (g © SZ“)). For preceding time steps t € {T'—1, ..., 1}, the desired state is propagated recursively:

* . T
Stu = sign (Wss (géﬁrl @ S;ﬁl)) .

Here, g!/ and giﬁrl are the backward gates computed from the pre-activations z/; and zf+1, respectively. This recursion

propagates the binary error signal across the entire sequence, enabling temporal credit assignment in RNNS.

Accumulated Updates for Shared Weights. Because RNNs share weights across time, the matrices H, s and H,
must accumulate updates over all time steps for all samples 1 € M that triggered an update. These aggregated updates
are then applied to the integer-valued hidden weights using the corresponding binary masks M, and M., as described

in Eq.[8|and Eq.[9 -

T T
H,, « Hoo+2 > ML O (si(a))7),  Ha«Ho+2) MLOY (s )T).
HEM t=1 HEM t=1
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Figure 2: Test accuracy as a function of the total number of parameters on the Random Prototypes, FashionMNIST,
CIFAR10, and Imagenette datasets. The results compare our BEP algorithm with both the multi-layer SotA ap-
proach (Colombo et al.|[2025)) and QAT-based methods for binary MLPs with L = 2 and L = 3 hidden layers.

These updates are followed by the reinforcement step described in the previous section. The binary masks M~ and M,
are shared across time steps to preserve weight tying, ensuring masking commutes with temporal aggregation. Allowing
masks to vary with time would violate this property, effectively training different copies of the same parameter at each
time index. The final state-to-output layer is updated analogously to the feedforward case described in Section

H,, < H,, + Z (M, © SZ#(S%)T) :
HEM

This BEP-TT formulation yields a fully binary training procedure for binary RNNs. Its ability to perform temporal
credit assignment stems from the global error propagation mechanism of BEP, a key advantage over local learning rules.

4 EXPERIMENTAL EVALUATION

In this section, we empirically evaluate the proposed BEP algorithm. The experiments have two main objectives: (i)
to benchmark BEP against the current SotA approach for binary training of MLPs (Colombo et al., 2025)), and (ii) to
demonstrate the generality of BEP’s global credit assignment by applying it to binary RNNs, a setting for which local
learning methods are unsuited. The Python code used in our experiments is available in a public reposito Section
describes the experimental setup. Section [f.2] evaluates BEP on binary MLPs against both the SotA approach and
QAT-based methods that rely on full-precision BP. Section tests BEP on binary RNNs, contrasting its performance
with QAT. Finally, Section [4.4]explores the effect of the gating hyperparameter v on the training dynamics.

4.1 EXPERIMENTAL SETUP

Our evaluation spans a diverse set of benchmarks. For the feedforward MLPs, we adopt the same datasets as (Colombo
et al.l 2025): Random Prototypes, FashionMNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky et al., 2009), and
Imagenette (Howard, 2019). The Random Prototypes dataset comprises 20,000 training and 3,000 test samples with
input dimension Ky = 1000 and a flip probability p = 0.46. FashionMNIST contains 50,000 training and 10,000
test grayscale images of size 28 x 28. For CIFAR-10 and Imagenette, we use the same AlexNet-derived features as
in (Colombo et al.,|2025). Both are 10-class datasets; CIFAR-10 has 50,000 training and 10,000 test samples, while
Imagenette has 10,000 training and 3,394 test samples. To evaluate recurrent models, we use Sequential MNIST
(S-MNIST) (Dengl 2012) and 30 real-world time-series classification tasks from the UCR Archive (Dau et al., 2019),

2The repository will be made available upon acceptance



Table 1: Test accuracy on 30 UCR datasets. The results compare our BEP algorithm with the QAT-based training from
the Larg framework (Geiger & Team, |[2020) for binary RNN architectures.

UCR Dataset BEP QAT w/o QAT w/ UCR Dataset BEP QAT w/o QAT w/
batchnorm batchnorm batchnorm batchnorm
ArticularyWordRec 86.67 £3.20 60.29 +7.00 | 86.38 +4.04 JapaneseVowels 96.35+0.97 8594+0.64 | 91.41 +3.98
Cricket 95.37 +3.46 82.41+3.46 | 9537+ 1.31 MelbournePedestrian ~ 77.09 £ 1.63 40.42 £4.58 | 92.04 +0.31
DistalPOAgeGroup 7913 +1.59 73.83+£2.64 | 77.88 +0.44 MoteStrain 80.71 £2.11 70.08 £5.05 | 81.36 +0.49
ECG5000 91.93+0.29 8540+2.28 | 92.83 +0.82 MotionSenseHAR 78.18+3.34 67.75+0.84 | 81.17+1.38
ECGFiveDays 82.58 +1.17 68.56+3.42 | 97.16 +0.46 PEMS-SF 96.59 +0.93 71.59+5.79 | 85.61 £5.89
ERing 90.56 + 1.57 80.00 £2.36 | 88.33 +£3.60 PenDigits 98.06 £ 0.49 71.70 £5.23 | 99.36 + 0.06
Earthquakes 8297 £2.56 8297+1.85 | 79.35+1.77  ProximalPOAgeGroup 85.40 +3.33 77.13+3.95 | 84.30+2.70
Epilepsy?2 92.75+0.37 83.93+£1.97 | 9441 +0.39 ProximalPOCorrect 7828 £3.12 71.54 £2.26 | 76.97 + 1.65
FreezerRegularTrain 76.39 £0.79 69.67 £1.93 | 84.00 + 1.38 ProximalPhalanxTW  80.99 £2.43 73.55+3.57 | 77.41 +£3.19
FreezerSmallTrain 77.51+1.14 70.67£1.61 | 8574 +0.75 SmoothSubspace 94.44 £ 0.79 5944 +342 | 97.78 +2.08
GunPtAgeSpan 85.56 £ 0.91 83.33+395 | 84.81 +0.52  SonyAIBORobotSurf2 85.71 +1.44 7398 £2.73 | 89.46 + 1.46
GunPtOldVersusYoung 9519 +1.39 9481 £1.89 | 95.56 + 1.57 SpokenArabicDigits  76.60 £0.74 38.01 £2.51 | 82.79 + 1.53
InsectEPGRegularTrain  98.92 £0.76 98.92 +0.76 | 98.92 +0.76 StarLightCurves 82.55+0.17 75.89+1.80 | 84.82+0.93
InsectEPGSmallTrain ~ 99.37 £0.89 98.11 £1.54 | 99.37 +0.89 Tiselac 82.41+£0.48 63.06+1.24 | 85.85+0.27
ItalyPowerDemand 96.80 £ 0.37 85.69 £0.57 | 96.65 +0.43 Wafer 96.42 £0.77 93.78 +1.20 | 97.97 +0.21

which cover a wide range of sample sizes, feature dimensions, and class counts. In all experiments, we utilize a fixed
output classifier P generated via the binary equiangular frame method detailed in Appendix

4.2 PERFORMANCE ON BINARY MULTI-LAYER PERCEPTRONS

Our first experiment evaluates BEP against the current SotA approach for binary training of MLPs (Colombo et al.,
2025)). Specifically, we considered binary MLPs with two and three hidden layers, trained using both BEP and the
SotA local learning rule. The tuned hyperparameters included the robustness parameter 7, reinforcement probability p,.,
initial group size 7y, and gating threshold v. For a comprehensive benchmark, we also trained the same architectures
using the QAT implementation from the Larg framework (Geiger & Team, [2020). In this setup, the forward pass
employs binarized weights, while the backward pass updates latent floating-point parameters with the Adam optimizer.
To ensure a fair comparison, the main QAT baseline does not use batch normalization, resulting in a fully binary model
at inference. For completeness, we also report the performance of QAT with batch normalization as a reference point.

Figure 2] reports the test accuracy on four datasets as a function of the model’s parameter count. The results show that
both fully binary approaches — BEP and the SotA local rule — significantly outperform the comparable QAT baseline
across all configurations. When comparing the two binary methods, BEP consistently surpasses the SotA approach,
achieving improvements of up to +8.70%, +1.53%, +3.87%, and +2.57% in test accuracy on Random Prototypes,
FashionMNIST, CIFAR-10, and Imagenette, respectively, at the smallest parameter configurations. As model size
increases, the performance gap typically narrows, with BEP matching the local credit assignment rule but falling slightly
behind in one high-parameter setting (CIFAR-10, 3 layers). These findings underscore the importance of global error
propagation for effective credit assignment in binary MLPs, while also demonstrating that BEP outperforms both local
learning rules and standard QAT baselines without relying on floating-point gradients.

4.3  VALIDATION ON BINARY RECURRENT NEURAL NETWORKS

Our second experiment tests the BEP algorithm on binary RNNSs using its time-unrolled variant BEP-TT, as described
in Section [3.5] The goal is to demonstrate that a global, end-to-end error signal can effectively train recurrent
models, a task typically intractable for purely local learning rules. Specifically, we evaluate BEP-TT on many-to-one
sequence classification tasks across 30 datasets from the UCR Time Series Archive (Dau et al., 2019)), using only
the last window of each time series. All RNN experiments employ the same hyperparameters: robustness » = 0.5,
reinforcement probability p,. = 0.5, initial group size g ; = 15, gating threshold v = 0.05, hidden and output layer
sizes K, = K, = 1035, training epochs e = 50, and batch size bs = N /10. As a baseline, we trained binary RNNs
with the same architecture using the QAT implementation from the Larg framework (Geiger & Team, |2020). As in the
previous experiment, no batch or layer normalization was applied so that the models remain fully binary at inference
time. For completeness, we report the performance of QAT with batch normalization as a reference point. For all
datasets and models, inputs were binarized with a distributive thermometer encoder (Bacellar et al., 2024)), followed by
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Figure 3: Test accuracy of a binary RNN trained with the proposed BEP algorithm on the S-MNIST dataset for different
values of the gating threshold hyperparameter v and window length WL.

a fixed 1 expansion layer projecting the dimension to Ky = 1035. A hyperparameter search was conducted to tune
the sequence window length and the number of thermometer bits.

Table T| presents the test accuracy across the considered UCR tasks. On every dataset, BEP-TT consistently outperforms
the comparable QAT baseline in training fully binary RNNSs, achieving an average test accuracy improvement of
+12.30%. These results validate the proposed binary error propagation mechanism beyond feedforward MLPs.
Moreover, because BEP relies on bitwise operations even during training, it substantially reduces memory and
computational costs compared to QAT, which requires full-precision Adam updates.

4.4 THE ROLE OF THE GATING THRESHOLD v

A crucial element to the generalization performance of the proposed BEP algorithm is its gating mechanism, which
modulates the backward error signal as described in Section[3.2] In this third experiment, we examine how varying the
threshold v influences the test accuracy of a binary RNN on the S-MNIST dataset. The following hyperparameters are
used: robustness r = 0.5, reinforcement probability p, = 0.5, initial group size o ; = 15, layer sizes K, = K, = 1875,
training epochs e = 50, and batch size bs = 100. Corresponding results for binary MLPs are provided in Appendix

Figures [3al and which show test accuracy as a function of the window length and of the gating threshold v,
respectively, highlight the crucial role of this mechanism. Its effect becomes more pronounced as the window length
increases (corresponding to deeper backward steps through time), emphasizing the importance of focusing updates on
neurons whose pre-activations are near the decision boundary. Furthermore, the results reveal an optimum in v: very
low or very high thresholds degrade performance, whereas intermediate values (around 10~2) consistently yield the
highest accuracy across different temporal depths. By filtering out saturated neurons from the error signal, the gate
ensures that weight updates are concentrated on the parts of the BNN most susceptible to flipping their activations.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduced BEP, an algorithm for training multi-layer BNNs using exclusively binary computations.
The central contribution is the formulation of a principled, binary analog of the BP algorithm. By defining a recursive
rule for propagating binary-valued error signals and updating integer-valued metaplastic weights, BEP bridges the gap
between the global credit assignment of gradient-based learning and the computational efficiency of bitwise operations.
Theoretically, this work demonstrates that effective end-to-end learning in multi-layer binary NN is possible without
relying on continuous gradients, opening new avenues for analyzing discrete optimization in DL. Practically, BEP
enables efficient training using only XNOR, Popcount, and increment/decrement operations, making it well-suited for
constrained settings such as TinyML (Capogrosso et al.,[2024; [Pavan et al.l 2024) and privacy-preserving DL based
on homomorphic encryption (Falcetta & Roveri, 2022} |Colombo et al.,[2024). Future work includes extending BEP
to convolutional architectures, refining adaptive strategies for the gating threshold v, exploring learnable masking
mechanisms, and developing a formal convergence analysis.
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A ANALYSIS OF THE BACKWARD PASS

It is possible to provide a justification for the core backward propagation rule. In particular, we show that the recursion
for the desired activations is the exact optimizer of a tractable linear surrogate of the otherwise intractable combinatorial
credit-assignment problem. This positions BEP as a principled binary analog of BP rather than an ad-hoc heuristic. At
layer [, one would ideally choose the binary activation vector a;”* that, when mapped through W, and binarized,
maximizes alignment with the upper-layer target al*ﬁ ,- From Eq.

arg max (a;}'|, sign(Wiy1a)).

ac{£1}%

This is a nonconvex combinatorial optimization over the hypercube with a discontinuous objective. In general, it is
NP-hard by reduction from standard binary optimization problems. Therefore, we do not attempt to solve it exactly.
Instead, we consider the linear surrogate obtained by dropping the nonlinearity inside the inner product. From Eq. i}

arg max (a;}';, Wi a).
ac{+1}5
Equivalently, the set may be relaxed to the hypercube [—1, 1], The optimum remains at a vertex, as shown below.
Proposition 1 (BEP back-projection solves the linear surrogate exactly). Let v := W1T+1a?<ﬁ1 € R%:. The set of
maximizers of Eq. His
a* € sign(v) = {a€ {1} 1 a; = sign(v;) ifv; #0, a; € {£1} ifv; = 0}, (11)

i.e., any coordinate-wise sign choice consistent with v. In particular, when no coordinate tie occurs, a?” =

sign(WlTJrlaz‘j:l ), which is exactly the BEP recursion (Eq. E]without gating).

Proof. By the adjoint identity (u, Av) = (A Tu,v),
K,
(ajl'y, Wipa) = <WIT+1aZ<j:1, a) = Zviai.
i=1
The objective is separable across coordinates on the product set {£1}%, so it is maximized by choosing each a; to
maximize v;a;, i.e., a; = sign(v;) when v; # 0 and any a; € {41} when v; = 0.

Lemma 2 (Convex relaxation has an integral optimum). The convex relaxation of Eq.{d|with a € [—1,1]%! has the
same optimal value, and the set of maximizers is

{a e[-1,115: a; = clip <|Zl|) } ,

which reduces to Eq.[[1)at the vertices. Hence the linear surrogate is solved exactly at a binary point.

Proof. Maximizing a linear function over a hypercube attains the optimum at a vertex. Coordinate-wise, the same
separability argument as above applies. O

Including the gate. Recall the binary gate from Eq. [5|and write D}’ 4= diag(g)' ‘t1)- The BEP recursion with gating
from Eq. [7|replaces a; ', by D}, a;1, i.e., it solves the masked surrogate

argmax (D} a/¥| Wi 1a) = a/" €sign(W], DI at)). (12)
ac{£1}%
Thus, the gate simply zeros out saturated coordinates of the upper-layer target before back-projection, directly mirroring
the role of derivative clipping in STE-based BP.

Proposition[I]and Lemma [2] show that the BEP backward rule is the analytical optimizer of a well-posed linear objective
approximating the intractable target-selection in Eq.[3] The gate induces a diagonal mask in that objective, yielding
the exact masked optimizer in Eq. Practically, this explains why BEP focuses the learning signal on neurons near
their decision boundary (unsaturated coordinates) and provides a principled binary analog of gradient gating used by
STE-based methods.
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A.1 PROOF OF LEMMAI]

Proof. The gated scalar product can be expressed as (b, b’)g = (g ® b, b’) and by the adjoint identity (b, Wa) =
(W Tb,a). Combining these two relations leads to

(b,Wa)g = (W' (g®b),a).

Denoting W ' (g ® b) as z of components in Z \ {0}, we reduce to problem arg max,(z, a). The objective is separable
across coordinates: (z,a) = ), z;a;, so it is maximized by choosing each a; to maximize z;a;, i.e., a; = sign(z;). O

B LoOCAL CORRECTNESS OF THE WEIGHT UPDATE

Beyond justifying the backward pass, we also show that the resulting weight update is beneficial in a layer—local
sense. The next lemma proves that, for any sample triggering an update, the modification to the hidden integers H; is
guaranteed to be corrective: it pushes the neuron stabilities in the direction of the desired activation and increases an
anchored alignment potential by a fixed, known amount.

Lemma 3 (Local update correctness on the stabilities). Fix a sample . € M that triggers an update. Let | be a layer
and j a neuron selected by the neuron-wise mask (i.e., the j-th column is updated). Denote the hidden weights before
and after the update by H; and H/, respectively, and define the stabilities

up'; o= () ), hy ), u;’; = (a)" 1, hy ;).
14

If the neuron-wise update is Ah!’ = 2a;"al' | (and zero otherwise), then the alignment strictly increases by a fixed

2]
amount:

TR T *pL,
Uy = Uy g+ 281 > a g ;.

Proof.
u;,’; = (a_; hy; + 2azl;'a?—1> = “ﬁj + 2“;’;’”37—1H§

Since aj' | € {£1}Fi1,

a)' ;|3 = Ki—1. Multiplying by o,/ € {£1} yields the claim. O

Remark 1 (From stability to visible pre-activation). The forward pre-activations use visible weights W = sign(H;),
hence z)' = (a)' |, wy ;) can change discontinuously when entries of hy ; cross zero. Nevertheless, Lemma implies
monotonic drift of each coordinate of h; ; toward the signed target a;"; al' |. After T updates of neuron j, each entry
has shifted by 2T in the correct direction. Consequently, once

H,;;; 1
> g [ BOL1],

all entries align with a;’; aé‘_u, and the visible pre-activations satisfy sign(zl*f j) = a;:’; and remain stable under further
updates on the anchored desired activations.

Lemma 3| shows that each neuron update produces a strict quantifiable increase of an anchored alignment by 2K;_; (a
discrete analog of a guaranteed descent step). Together with Remark|T] this certifies that repeated anchored updates drive
the visible state toward the desired activation and stabilize it once sufficient integer margin is accumulated. A formal
convergence proof of the general, single layer and multilayer algorithms on a generic dataset is a highly non-trivial task,
and progress towards it is left for future work.

C GENERATING A FIXED BINARY CLASSIFIER VIA EQUIANGULAR FRAMES

As stated in Section [3] our empirical results show that BEP achieves its best performance when using a fixed output
classifier P whose class prototypes are geometrically well-separated. This approach is inspired by the concept of
Equiangular Tight Frames (ETFs), which have been shown to emerge in the final layers of deep NNs during a
phenomenon known as neural collapse (Papyan et al.,[2020). While a simple, randomly generated classifier offers a
baseline, optimizing the structure of these prototypes significantly improves class separability. This appendix details
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Figure 4: Test accuracy as a function of the gating threshold » on the Random Prototypes, FashionMNIST, CIFAR10,
and Imagenette datasets for binary MLPs with L = 3 and L = 5 hidden layers.

our method for generating a structured binary classifier by constructing a set of prototype vectors that are maximally
and uniformly distant from each other in the binary feature space.

Neural collapse describes an empirical phenomenon where, in the terminal phase of training, the last-layer feature
representations for all samples of a given class collapse to a single point (their class mean). Furthermore, the set of these
class-mean vectors, along with the final-layer classifier weights, form a simplex ETF. A simplex ETF is a geometric
configuration of vectors that are maximally separated from one another, characterized by equal norms and a constant,
negative pairwise inner product. This structure is optimal for linear classification.

The classical ETF is defined in a real-valued vector space R”. In the context of BNNs, we are interested in a binary
analog where the feature vectors and classifier weights are constrained to the vertices of a hypercube, i.e., {£1}”. We
define a Binary Equiangular Frame (BEF) as a set of C binary vectors {p1,...,pc}, where p. € {1}, that satisfy
two properties. The first property is high pairwise separation, i.e. the inner product ( p;, p;) for i # j should be as small
(i.e., as negative) as possible. In the binary domain, this is equivalent to maximizing the Hamming distance between
any two vectors. The second property is equiangularity, i.e. the inner products for all distinct pairs ( p;, p;) should
be approximately equal. Such a frame, when used as the columns of the classifier matrix P, provides a set of target
prototypes that are maximally and uniformly distant from each other in the binary feature space.

Finding an exact BEF is a hard combinatorial problem. However, we can generate a high-quality approximation using a
binary optimization procedure. Given the desired number of classes C' and feature dimension D, we seek to find the set
of vectors {p.}<_; that minimizes the following cost function:

T{pe}) =Y (pirps) + - Varic;((pi,p;)) (13)
i<y

where Var(-) is the variance and « > 0 is a hyperparameter balancing the two objectives. The first term encourages all
pairwise inner products to be negative, while the second term encourages them to be concentrated around a single value.
We optimize this objective using a simple iterative local search algorithm, starting from a random initialization of the C'
vectors {p.} from {+1}. For a fixed number of iterations:

1. Randomly select a vector p; and a coordinate k.

2. Compute the change in cost AJ that would result from flipping the sign of the k-th element of p;.

3. If AJ < 0, accept the flip.

This greedy coordinate-wise descent procedure rapidly converges to a local minimum of the cost function. The resulting
set of vectors {p.} can then be used to construct the fixed classifier matrix P = [p1]| ... |pc].
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D ABLATION STUDIES

D.1 THE ROLE OF THE GATING THRESHOLD v ON MLPSs

In this section, we present an ablation study on the gating threshold v for binary MLPs, as shown in Figure[d} Intriguingly,
across different depths an optimal, non-trivial value of v emerges that remains consistent across layer sizes.
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