
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BEP: A BINARY ERROR PROPAGATION ALGORITHM
FOR BINARY NEURAL NETWORKS TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Binary Neural Networks (BNNs), which constrain both weights and activations to
binary values, offer substantial reductions in computational complexity, memory
footprint, and energy consumption. These advantages make them particularly well
suited for deployment on resource-constrained devices. However, training BNNs
via gradient-based optimization remains challenging due to the discrete nature of
their variables. The dominant approach, quantization-aware training, circumvents
this issue by employing surrogate gradients. Yet, this method requires maintaining
latent full-precision parameters and performing the backward pass with floating-
point arithmetic, thereby forfeiting the efficiency of binary operations during
training. While alternative approaches based on local learning rules exist, they are
unsuitable for global credit assignment and for back-propagating errors in multi-
layer architectures. This paper introduces Binary Error Propagation (BEP), the first
learning algorithm to establish a principled, discrete analog of the backpropagation
chain rule. This mechanism enables error signals, represented as binary vectors, to
be propagated backward through multiple layers of a neural network. BEP operates
entirely on binary variables, with all forward and backward computations performed
using only bitwise operations. Crucially, this makes BEP the first solution to enable
end-to-end binary training for recurrent neural network architectures. We validate
the effectiveness of BEP on both multi-layer perceptrons and recurrent neural
networks, demonstrating gains of up to +6.89% and +10.57% in test accuracy,
respectively. The proposed algorithm is released as an open-source repository.

1 INTRODUCTION

The design of Neural Networks (NNs) with weights and activations constrained to binary values,
typically±1, is a promising direction for building models suited to resource-constrained environments.
In particular, Binary Neural Networks (BNNs) offer a compelling solution for deploying Deep
Learning (DL) models on edge devices and specialized hardware, where computational efficiency,
power consumption, and memory footprint are critical design constraints (Courbariaux et al., 2015;
Rastegari et al., 2016; Hubara et al., 2016). Their primary advantage lies in replacing costly Floating-
Point (FP) arithmetic with lightweight bitwise operations such as XNOR and Popcount, resulting in
substantial reductions in computational complexity (Qin et al., 2020; Lucibello et al., 2022).

Despite these advantages, effectively training BNNs remains challenging due to the non-differentiable
nature of their activation functions. Consequently, conventional gradient-based learning algorithms
cannot be directly applied, leading to two main classes of solutions. The most prevalent is Quan-
tization Aware Training (QAT), which formulates the problem within a continuous optimization
framework. In this paradigm, full-precision latent weights are maintained, and non-differentiable
activations are bypassed during the backward pass using the Straight-Through Estimator (STE) (Ben-
gio et al., 2013). However, reliance on real-valued computations for gradient calculation and weight
updates confines the efficiency of binary arithmetic to the forward pass only (Sayed et al., 2023).

An alternative line of research has explored purely binary, gradient-free learning rules, often inspired
by principles from statistical physics (Baldassi et al., 2015; Baldassi, 2009). These methods operate
directly on binary weights and avoid continuous surrogates. A recent extension applied this approach
to binary Multi-Layer Perceptrons (MLPs) by generating local error signals at each layer using fixed
random classifiers (Colombo et al., 2025). However, a fundamental limitation of this approach is

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

that credit assignment remains local and error information does not propagate from the final output
layer through the NN. This constraint makes such rules inapplicable to architectures where learning
depends on end-to-end error propagation across layers, such as Recurrent Neural Networks (RNNs).

From this perspective, this paper addresses the following research question: Is it possible to formulate
a multi-layer, global credit assignment mechanism that back-propagates errors through the NN while
operating exclusively within the binary domain? To the best of our knowledge, we introduce the
first fully binary error Backpropagation (BP) algorithm capable of effectively training BNNs without
relying on FP gradients. The algorithm, called Binary Error Propagation (BEP) hereafter, establishes
a binary analog of the standard BP chain rule, where error signals – represented as binary vectors
– are computed at the output and propagated backward through each layer of the NN. To ensure
learning stability, BEP employs integer-valued hidden weights that provide synaptic inertia and
mitigate catastrophic forgetting (Kirkpatrick et al., 2017). Crucially, the entire forward and backward
passes rely solely on efficient XNOR, Popcount, and increment/decrement operations. In summary,
this work makes the following contributions:

• We formalize a fully binary BP algorithm for BNNs that propagates binary-valued error
signals end-to-end, establishing a discrete analog of the gradient-based BP chain rule.

• We demonstrate that BEP successfully train both MLP and RNN architectures, overcoming
the limitations of prior local and gradient-based learning methods.

As a direct consequence, the proposed BEP algorithm eliminates the need for full-precision gradients
and weight updates, enabling the exclusive use of efficient bitwise operations even during the learning
phase. This drastically reduces both computational complexity and memory footprint. Experimental
evaluations on multi-class classification benchmarks demonstrate test accuracy improvements of up
to +6.89% over the previous State-of-the-Art (SotA) algorithm (Colombo et al., 2025). Furthermore,
BEP is the first solution to enable end-to-end binary training for RNN architectures, outperforming
the QAT-based approach by an average of +10.57% in test accuracy.

The remainder of this paper is organized as follows. Section 2 reviews related work. Section 3
formalizes the proposed BEP algorithm. Section 4 presents experimental results on binary MLP and
RNN architectures. Finally, Section 5 draws conclusions and outlines future research directions.

2 RELATED LITERATURE

The predominant paradigm for training BNNs is QAT (Courbariaux et al., 2015; Hubara et al., 2016;
Rastegari et al., 2016). In this approach, models maintain latent full-precision parameters that are
binarized during the forward pass, while gradients are computed with respect to the latent parameters
using a surrogate gradient, typically a STE (Bengio et al., 2013). The STE approximates the derivative
of the non-differentiable sign function as an identity within a bounded region, enabling the use of
standard BP. Numerous subsequent works have built upon this foundation, introducing improvements
such as learnable representations, enhanced architectures, and strategies to narrow the accuracy gap
with full-precision models (Lin et al., 2017; Liu et al., 2020; Tu et al., 2022; Schiavone et al., 2023).
While QAT has achieved strong empirical results, it remains fundamentally a continuous optimization
method applied to a discrete problem. Training relies on FP arithmetic, which prevents the full
realization of BNN efficiency during learning and introduces a discrepancy between training and
inference dynamics (Yin et al., 2019). Recent work (Liu et al., 2018; Bulat & Tzimiropoulos, 2019;
Vargas et al., 2024) has further refined QAT by incorporating residual connections and improved
surrogate-gradient mechanisms to enhance gradient flow. In contrast, our approach diverges from this
paradigm by eliminating the need for any real-valued parameters or surrogate gradients.

A distinct line of research frames BNN training as a purely binary optimization problem. Early
work in statistical physics explored combinatorial optimization techniques for training single-layer
perceptrons (Gardner, 1988; Engel, 2001), while later studies investigated fully binary training via
global heuristics such as simulated annealing (Kirkpatrick et al., 1983; Hinton, 1990) and evolutionary
strategies (Salimans et al., 2017; Such et al., 2017; Loshchilov & Hutter, 2016). Although these
methods avoid continuous relaxations, they explore the weight space via stochastic perturbations
(e.g., random weight flips) and lack a structured, layer-wise credit assignment comparable to BP,
which limits their scalability and efficiency in deep settings. Our work addresses this limitation by
developing a multi-layer, gradient-free training method with a deterministic error-propagation rule.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

In parallel, research at the intersection of statistical physics and computational neuroscience has
developed efficient local learning rules for binary neurons. Algorithms such as the Clipped Perceptron
with Reinforcement (CP+R) (Baldassi, 2009) and related message-passing approaches (Baldassi et al.,
2007; 2015) introduce integer-valued hidden variables to represent synaptic confidence, demonstrating
that single binary units can learn effectively. Multi-layer extensions of these rules generate layer-wise
local error signals using fixed random classifiers, enabling training of several binary layers but
still lacking end-to-end propagation of task loss (Colombo et al., 2025). This structural constraint
notably precludes their application to a relevant class of recurrent sequential architectures, such as
RNNs. BEP overcomes these shortcomings by introducing a global credit assignment mechanism
that propagates binary error signals end-to-end, bridging the gap between fully binary optimization
and multi-layer training of deep architectures.

3 THE BINARY ERROR PROPAGATION ALGORITHM

In this section, we formalize the BEP algorithm for training multi-layer BNNs using exclusively
binary operations. We consider a supervised learning setting defined by a classification task and a
corresponding dataset X = {xµ, cµ}Nµ=1 of size N , where xµ ∈ RK0 are input patterns of dimension
K0, and cµ ∈ {1, . . . , C} are their corresponding labels, with C denoting the number of classes.
Specifically, Section 3.1 introduces the BNN architecture and forward-pass dynamics. The binary
backward pass for error propagation is described in Section 3.2. The weight-update rule is defined in
Section 3.3, while the analogy with standard full-precision BP is presented in Section 3.4. Finally,
Section 3.5 demonstrates the application of the proposed BEP algorithm to RNN architectures.

3.1 BNN ARCHITECTURE AND FORWARD PROPAGATION

The NN under consideration consists of two main components: a trainable binary backbone that
extracts features, and a fixed task-specific output layer that maps these features to the final prediction,
as shown in Figure 1a. Given a mini-batch x = [. . . ,xµ, . . .] of bs input samples xµ, where
µ ∈ {1, . . . , bs}, we first obtain their binary representations aµ0 = bin(xµ) ∈ {±1}K0 . The
binarization function can be realized via median thresholding for images or thermometer encoding for
tabular data (Bacellar et al., 2024a). The resulting binary batch a0 is then fed to the binary backbone.

Trainable BNN Backbone. The backbone comprises a stack of L fully-connected binary layers.
For each layer l ∈ {1, . . . , L}, its state is defined by two matrices, following prior work on binary
synapses (Baldassi, 2009). The first is the matrix of hidden discrete weights Hl ∈ ZKl×Kl−1 .
These integer-valued weights encode the synaptic inertia of each connection, providing a mechanism
for stable learning and mitigating catastrophic forgetting (Kirkpatrick et al., 2017). Although
formulated as unbounded integers, in practice Hl is constrained to the finite range of a B-bit signed
integer, [−2B−1, 2B−1 − 1]. The second is the matrix of visible binary weights Wl = sign(Hl) ∈
{±1}Kl×Kl−1 , representing the effective weights used during the forward pass. Here, Kl denotes
the number of neurons in layer l, and the sign function is applied component-wise, returning −1 for
negative inputs and +1 otherwise. For each layer l, the pre-activations and activations are computed as
zl = Wlal−1 and al = sign(zl), respectively. The output of the BNN backbone (i.e., the activations
aL) is then fed to the task-specific output layer to produce the final predictions ŷ.

Task-Specific Output Layer. To make predictions, the binary features aµL of each sample µ must
be mapped to the space of target variables yµ. For regression tasks, this layer acts as a binary decoder
{±1}KL → RD, where D is the output dimensionality. For a C-class classification problem, the
goal is to produce a logit vector ŷµ ∈ RC , whose largest component corresponds to the predicted
class. While different mappings can be used, the choice of output layer influences both learning
and accuracy. In this work, we use a linear layer represented by a fixed, randomly initialized matrix
P ∈ {±1}C×KL . This corresponds to associating a prototype vector ρρρc (the c-th row of P) with
each class c ∈ {1, . . . , C} (see Appendix C for the generation method). Providing the backbone
with a stable and geometrically optimal set of target activations – the class prototypes – simplifies
credit assignment during training and consistently yielded the best performance in our experiments.
Although it is possible to train this classifier, we found empirically that keeping it fixed is more
practical and effective. The final logits are computed as ŷ = PaL, and the predicted class for each
sample µ is given by ĉµ = argmaxc ŷ

µ
c .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) BEP applied to a binary MLP (b) BEP applied to a binary RNN

Figure 1: Information flow for a sample µ in an MLP and an RNN trained with BEP. Each model
uses a binary core and a fixed classifier. The forward and backward passes are shown in gray and red.

3.2 BINARY ERROR BACKPROPAGATION

The BEP learning rule is error-driven. A backward update is initiated for each sample µ when the logit
ŷµ
cµ associated with the ground-truth class cµ is not sufficiently larger than the others. Specifically,

an update is triggered if
ŷµ
cµ −max

c̸=cµ
ŷµ
c < rKL, (1)

where r ∈ (0, 1] is a user-specified margin hyperparameter and KL is the size of the last hidden
layer (also representing the maximum possible logit value). Higher values of r enforce a larger gap
between the correct-class logit and all others, thereby encouraging more robust classification.

For clarity, we describe the backward pass for a single training sample µ, although in practice it is
applied to all elements of a mini-batch. When a sample µ meets the update criterion in Eq. 1, BEP
initiates the backward phase to adjust the hidden integer weights Hl so that the final output better
aligns with the correct target. This is accomplished by defining, for each layer l, a binary desired
activation vector a∗µl that is propagated from the output layer L back to the first layer.

Desired Activation at the Last Layer. The backward pass begins at the final layer L of the BNN
backbone. The first step is to determine the desired activation vector a∗µL , which is the ideal binary
vector that maximizes the logit for the correct class cµ. Since the logit is a scalar product between
activations and the class prototypes from the fixed classifier P, the desired activations can be found
analytically. They correspond to the prototype vector ρρρc

µ

for the correct class:

a∗µL := argmax
a∈{±1}KL

⟨a, ρρρc
µ

⟩ = ρρρc
µ

. (2)

Backpropagation of Desired Activations. For each layer l < L, the desired activation vector a∗µl
is obtained by back-propagating the error signal a∗µl+1 from the subsequent layer l + 1. The goal is to
determine activations aµl that maximize alignment with desired activations a∗µl+1:

argmax
a∈{±1}Kl

〈
a∗µl+1, sign(Wl+1 a)

〉
. (3)

Since this is a combinatorial search over 2Kl configurations, BEP solves a relaxed problem by
removing the non-linear sign function and instead maximizing the alignment with the pre-activations:

argmax
a∈{±1}Kl

〈
a∗µl+1, Wl+1a

〉
. (4)

This relaxed objective increases the magnitude of the pre-activations zl+1 while aligning their signs
with a∗µl+1. A global optimum is unnecessary, as the goal is to steer weight updates in the appropriate
direction. As shown in Lemma 1, the solution to this relaxed problem can be derived analytically.

Backward Gating. In addition, we introduce a gating mechanism to regulate the back-propagated
signal. This gate is applied at layer l + 1 to emphasize learning on neurons most amenable to change,
i.e., those with pre-activations zµl+1 = Wl+1a

µ
l near the decision threshold of 0. Neurons with

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

large-magnitude pre-activations (nearly saturated responses) are excluded from the backward pass of
sample µ. This is realized through a binary gating vector gµ

l+1:

(gµ
l+1)i =

{
1, if |zµl+1,i| ≤ νKl

0, otherwise
(5)

where zµl+1,i is the i-th pre-activation at layer l + 1 and ν ∈ [0, 1] is a tunable threshold. More
formally, for a generic gating vector g, we define the gated scalar product as ⟨a,a′⟩g :=

∑
i giaia

′
i.

This modifies the relaxed optimization problem of Eq. 4 to:
argmax
a∈{±1}Kl

〈
a∗µl+1, Wl+1a

〉
gµ
l+1

. (6)

This gating function effectively filters the binary error signal, allowing it to pass only through neurons
close to their activation boundary. This ensures that weight updates are driven by the parts of the
BNN most susceptible to flipping their activations. The solution to Eq. 6 is given by the following
lemma (proved in Appendix A).
Lemma 1 (Desired activations). Consider a binary vector b ∈ {±1}Kb , a binary matrix W ∈
{±1}Kb×Ka , and a gating vector g ∈ {0, 1}Kb . Problem argmaxa∈{±1}Ka ⟨b,Wa⟩g has the
unique solution: a∗ = sign

(
W⊤(g ⊙ b)

)
.

Combining the base case from Eq. 2 with Lemma 1 yields the recursive expression for computing the
desired activation vector at any layer l:

a∗µl =

{
ρρρc

µ

, if l = L

sign
(
W⊤

l+1

(
gµ
l+1 ⊙ a∗µl+1

))
if l < L

, (7)

where ⊙ denotes the element-wise product. This formulation forms the cornerstone of BEP, estab-
lishing a fully binary chain rule for propagating binary error signals throughout the BNN.

3.3 WEIGHT UPDATE MECHANISM

Once the target activation vector a∗µl has been determined for layer l, the corresponding hidden
weights Hl are updated. This update strengthens the association between the incoming activation
vector aµl−1 and the desired output pattern a∗µl . For every sample µ that triggers an update, we first
compute a candidate weight-update matrix from the desired binary weights, following a procedure
similar to that in prior work (Baldassi et al., 2007; Baldassi, 2009; Colombo et al., 2025). In particular,
using the same strategy employed to obtain a∗µl , we maximize ⟨a∗µl ,Wla

µ
l−1⟩ with respect to Wl.

The solution gives the desired direction of change for the integer weights1:

∆Hµ
l = sign

(
a∗µl (aµl−1)

⊤) = a∗µl (aµl−1)
⊤ ∈ {±1}Kl×Kl−1 . (8)

Eq. 8 is the natural matrix generalization of the classical supervised Hebbian perceptron rule (Rosen-
blatt, 1958) and of the Clipped Perceptron (CP) and CP+Reinforcement (CP+R) variants (Baldassi
et al., 2007; Baldassi, 2009). When Kl = 1, the update ∆Hµ

l reduces exactly to the CP update,
which adds (or subtracts) the input vector aµl−1 to the synaptic stability variables whenever the desired
output a∗µl is +1 (or −1). In the multi-layer setting, Eq. 8 applies this outer-product mechanism
independently to each hidden neuron, with the desired activations a∗µl serving as binary targets.

This potential update is then filtered by a binary mask Mµ
l ∈ {0, 1}Kl×Kl−1 that selects which

weights to modify. As shown in Appendix B, the resulting update is locally optimal with respect
to the desired activations a∗µl . Following the sparse update strategy of (Colombo et al., 2025), the
mask is constructed by partitioning the neurons of layer l into subgroups and, within each group,
updating only the incoming weights of the wrong perceptron deemed easiest to correct based on its
pre-activation. This mechanism promotes a more uniform distribution of updates, leading to more
stable training and improved generalization. IfM denotes the set of mini-batch indices that trigger
an update, we first compute each per-sample update ∆Hµ

l using the same pre-update hidden weights
Hl, and then apply the aggregated update as:

Hl ← Hl + 2
∑
µ∈M

(Mµ
l ⊙∆Hµ

l). (9)

1It follows from treating each row of Wl as an independent optimization and swapping a and W in Lemma 1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The binary mask Mµ
l implements a sparse winner-takes-update rule within each neuron group: only

the least stable unit, i.e., the neuron with the smallest signed stability a∗µl Hl,j among the misclassified
ones, is updated. This mechanism bounds the number of synapses modified per pattern and prevents
over-reinforcing neurons that already classify the sample with high confidence, effectively acting as a
discrete, data-dependent form of learning-rate control. Additional analysis of mask density and its
effect on convergence and generalization is provided in Appendix D.5. Finally, a reinforcement step
from the CP+R rule stochastically strengthens existing memory trajectories of each integer weight
h ∈ Hl via the update h ← h + 2sign(h). This occurs with probability pr

√
2/(πKl), where the

reinforcement probability pr is rescaled each epoch by
√
Ee. This mechanism reinforces weights

more frequently when the model is uncertain and balances its effect across layers of different sizes.

While (Colombo et al., 2025) employs a fixed group size γ, corresponding to a constant number
of updates per epoch, BEP uses a scheduled group size. Let Γl = {d ∈ N : d | Kl} denote
the ordered list of positive divisors of Kl. The algorithm begins with a user-defined initial group
size γ0,l ∈ Γl and increases it adaptively based on accuracy. Whenever the generalization error
stagnates for a user-defined number of epochs, the group size is increased to the next larger divisor
γt+1,l = min

{
d ∈ Γl : d > γt,l

}
. If γt,l is already the largest divisor of Kl (the last element

of Γl), it remains fixed. Because only one perceptron per group is updated, enlarging the groups
gradually reduces the number of weight changes at each step, resulting in increasingly sparse updates.
Empirically, this mechanism leads to a more stable optimization process in the later stages of training.

3.4 ANALOGY TO GRADIENT-BASED BACKPROPAGATION

The BEP procedure can be viewed as a binary reformulation of the classical BP computational
graph (Rumelhart et al., 1986). It preserves the global flow of information while substituting real-
valued operations with binary, bit-wise counterparts. In standard BP, the weight update for layer l
follows a gradient-descent form:

Wl ←Wl − η δl a
⊤
l−1,

where η is the learning rate and δl denotes the back-propagated error signal for layer l. This
real-valued signal is computed recursively by the chain rule:

δl =

{
∇aL
L ⊙ σ′(zL), if l = L

(W⊤
l+1δl+1)⊙ σ′(zl), if l < L

. (10)

Each component of BEP mirrors a counterpart in gradient-based BP. The binary desired activation
a∗µl serves as the binary analog of the error signal. Back-projecting it through W⊤

l+1 is structurally
equivalent to the error propagation step in the continuous case. The binary gating function plays the
role of the activation derivative σ′(·), blocking error transmission through saturated neurons as σ′(·)
approaches zero for large inputs. Finally, the sparse mask Ml fulfills the role of the learning rate:
whereas η controls the magnitude of an update, the mask governs its sparsity. These correspondences
show that BEP constitutes a coherent end-to-end binary analog of traditional gradient-based BP.

3.5 APPLYING BEP-TT TO RECURRENT ARCHITECTURES

One of the main strengths of BEP is that its global error-propagation strategy directly extends to
RNNs, a class of models that require explicit temporal credit assignment and is generally intractable
for local learning rules. By unrolling the NN through time, we obtain a binary counterpart of the BP
Through Time (BPTT) algorithm, which we call BEP-TT. Demonstrating its effectiveness provides
key validation of BEP, showing that a global, end-to-end binary error signal can train recurrent
architectures. Accordingly, we employ a binary RNN for many-to-one sequence classification, as
shown in Figure 1b. Given an input sequence xµ = (xµ

1 , . . . ,x
µ
T) of length T , the RNN is defined by

state-to-state weights Hss ∈ ZKs×Ks , input-to-state weights Hxs ∈ ZKs×Kx , and state-to-output
weights Hsy ∈ ZKy×Ks , along with their binary counterparts Wss, Wxs, and Wsy .

Forward Pass Through Time. At each time step t ∈ 1, . . . , T , the state vector sµt ∈ {±1}Ks is
computed from the previous state sµt−1 and the current binarized input aµt ∈ {±1}Kx according to
the recurrence sµt = sign(Wxsa

µ
t +Wsss

µ
t−1). After the final time step T , the state sµT is mapped to

an output activation sµy ∈ {±1}Ky via sµy = sign(Wsys
µ
T). This activation is then passed to the fixed

classifier P to produce the prediction ŷµ, which is used to check the update criterion from Eq. 1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Binary Backpropagation Through Time. When a sequence xµ satisfies the update criterion in
Eq. 1, the BEP-TT procedure is performed. This mechanism parallels BEP’s operation on feedforward
NNs but operates over the unrolled temporal structure, propagating a target state vector s∗µt backward
from time step t = T to t = 1. First, the desired output state is set to the correct class prototype,
s∗µy := ρρρc

µ

, which provides the error signal for the state-to-output layer. Using Eq. 7, this signal is
then back-projected to obtain the desired state at the last time step, s∗µT = sign

(
W⊤

sy (g
µ
y ⊙ s∗µy)

)
.

For preceding time steps t ∈ {T − 1, . . . , 1}, the desired state is propagated recursively:

s∗µt = sign
(
W⊤

ss (g
µ
t+1 ⊙ s∗µt+1)

)
.

Here, gµ
y and gµ

t+1 are the backward gates computed from the pre-activations zµy and zµt+1. This re-
cursion propagates the binary error signal through the sequence, enabling temporal credit assignment.

Accumulated Updates for Shared Weights. Because RNNs share weights across time, the matrices
Hxs and Hss must accumulate updates over all time steps for all samples µ ∈M that triggered an
update. These aggregated updates are then applied to the integer-valued hidden weights using the
corresponding binary masks Mµ

xs and Mµ
ss, as described in Eq. 8 and Eq. 9:

Hxs ← Hxs + 2
∑
µ∈M

Mµ
xs ⊙

T∑
t=1

(
s∗µt (aµt)

⊤) , Hss ← Hss + 2
∑
µ∈M

Mµ
ss ⊙

T∑
t=1

(
s∗µt (sµt−1)

⊤) .
These updates are followed by the reinforcement step described in the previous section. The binary
masks Mµ

xs and Mµ
ss are shared across time steps to preserve weight tying, ensuring masking

commutes with temporal aggregation. Allowing masks to vary with time would violate this property,
effectively training different copies of the same parameter at each time index. The final state-to-output
layer is updated analogously to the feedforward case described in Section 3.2:

Hsy ← Hsy +
∑
µ∈M

(
Mµ

sy ⊙ s∗µy (sµT)
⊤) .

This BEP-TT formulation yields a fully binary training procedure for binary RNNs. Its ability to
perform temporal credit assignment stems from the global error propagation mechanism of BEP, a
key advantage over local learning rules.

4 EXPERIMENTAL EVALUATION

In this section, we empirically evaluate the proposed BEP algorithm. The experiments have two main
objectives: (i) to benchmark BEP against the SotA method for binary training of MLPs (Colombo
et al., 2025), and (ii) to demonstrate the generality of BEP’s global credit assignment by applying it
to binary RNNs, a setting for which local learning methods are unsuited. The Python code used in
our experiments is available in a public repository2. Section 4.1 describes the experimental setup.
Section 4.2 evaluates BEP on binary MLPs against both the SotA approach and QAT-based methods
that rely on full-precision BP. Section 4.3 tests BEP on binary RNNs, contrasting its performance with
QAT. Finally, Section 4.4 explores the effect of the gating hyperparameter ν on training dynamics.

4.1 EXPERIMENTAL SETUP

Our evaluation spans a diverse set of benchmarks. For the feedforward MLPs, we adopt the same
datasets as (Colombo et al., 2025): Random Prototypes, FashionMNIST (Xiao et al., 2017), CIFAR-
10 (Krizhevsky et al., 2009), and Imagenette (Howard, 2019). The Random Prototypes dataset
comprises 20,000 training and 3,000 test samples with input dimension K0 = 1000 and a flip
probability p = 0.46. FashionMNIST contains 50,000 training and 10,000 test grayscale images
of size 28 × 28. For CIFAR-10 and Imagenette, we use the same AlexNet-derived features as
in (Colombo et al., 2025). Both are 10-class datasets; CIFAR-10 has 50,000 training and 10,000 test
samples, while Imagenette has 10,000 training and 1,963 test samples. To evaluate recurrent models,
we use Sequential MNIST (S-MNIST) (Deng, 2012) and 30 real-world time-series classification
tasks from the UCR Archive (Dau et al., 2019), which cover a wide range of sample sizes, feature
dimensions, and class counts. In all experiments, we utilize a fixed output classifier P generated via
the binary equiangular frame method detailed in Appendix C.

2The repository will be made available upon acceptance

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8
Number of parameters 1e5

43.5
46.5
49.5
52.5
55.5
58.5
61.5
64.5
67.5
70.5
73.5
76.5
79.5

Te
st

 a
cc

ur
ac

y

Layers L = 2

BEP
QAT (w/ batchnorm)
(Colombo et al., 2025)

1 3 5 7
1e5

25

45

65

QAT (w/o batchnorm)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Number of parameters 1e6

40.5
43.5
46.5
49.5
52.5
55.5
58.5
61.5
64.5
67.5
70.5
73.5
76.5
79.5

Te
st

 a
cc

ur
ac

y

Layers L = 3

BEP
QAT (w/ batchnorm)
(Colombo et al., 2025)

0.2 0.6 1.0
1e6

15

30

45

QAT (w/o batchnorm)

(a) Random Prototypes

0 1 2 3 4 5 6 7
Number of parameters 1e5

79.0
79.8
80.5
81.2
82.0
82.8
83.5
84.2
85.0
85.8
86.5
87.2

Te
st

 a
cc

ur
ac

y

Layers L = 2

BEP
QAT (w/ batchnorm)
(Colombo et al., 2025)

1 3 5 7
1e5

30

50

70

QAT (w/o batchnorm)

0.0 0.2 0.4 0.6 0.8 1.0
Number of parameters 1e6

79.0
79.8
80.5
81.2
82.0
82.8
83.5
84.2
85.0
85.8
86.5
87.2

Te
st

 a
cc

ur
ac

y

Layers L = 3

BEP
QAT (w/ batchnorm)
(Colombo et al., 2025)

0.2 0.6 1.0
1e6

35

65

50

QAT (w/o batchnorm)

(b) FashionMNIST

0 1 2 3 4 5
Number of parameters 1e6

69.0

70.5

72.0

73.5

75.0

76.5

78.0

79.5

81.0

82.5

84.0

Te
st

 a
cc

ur
ac

y

Layers L = 2

BEP
QAT (w/ batchnorm)
(Colombo et al., 2025)

1 3 5
1e6

10

20

QAT (w/o batchnorm)

0 1 2 3 4 5 6
Number of parameters 1e6

69.0

70.5

72.0

73.5

75.0

76.5

78.0

79.5

81.0

82.5

84.0

Te
st

 a
cc

ur
ac

y

Layers L = 3

BEP
QAT (w/ batchnorm)
(Colombo et al., 2025)

1 3 5
1e6

10

20

QAT (w/o batchnorm)

(c) CIFAR10

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Number of parameters 1e6

78.5

80.0

81.5

83.0

84.5

86.0

87.5

89.0

90.5

Te
st

 a
cc

ur
ac

y

Layers L = 2

BEP
QAT (w/ batchnorm)
(Colombo et al., 2025)

0.2 0.6 1.0 1.4
1e6

60

75

90

QAT (w/o batchnorm)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Number of parameters 1e6

78.0

79.5

81.0

82.5

84.0

85.5

87.0

88.5

90.0

Te
st

 a
cc

ur
ac

y

Layers L = 3

BEP
QAT (w/ batchnorm)
(Colombo et al., 2025)

0.25 0.75 1.25 1.75
1e6

60

70

80

QAT (w/o batchnorm)

(d) Imagenette

Figure 2: Test accuracy as a function of the number of parameters on Random Prototypes, Fashion-
MNIST, CIFAR10, and Imagenette. Results compare BEP with both the SotA approach (Colombo
et al., 2025) and QAT-based methods for binary MLPs with L = 2 and L = 3 hidden layers.

4.2 PERFORMANCE ON BINARY MULTI-LAYER PERCEPTRONS

Our first experiment evaluates BEP against the current SotA approach for binary training of
MLPs (Colombo et al., 2025). Specifically, we considered binary MLPs with two and three hidden
layers, trained using both BEP and the SotA local learning rule. The tuned hyperparameters, across
e = 50 epochs, include the robustness parameter r, reinforcement probability pr, initial group size
γ0,l, and gating threshold ν. For a comprehensive benchmark, we also trained the same architectures
using the QAT implementation from the Larq framework (Geiger & Team, 2020). In this setup, the
forward pass employs binarized weights, while the backward pass updates latent FP parameters with
the Adam optimizer (Kingma & Ba, 2014). To ensure a fair comparison, the main QAT baseline does
not use batch normalization, resulting in a fully binary model at inference. For completeness, we also
report the performance of QAT with batch normalization as a reference point.

Figure 2 reports test accuracy, averaged over 5 runs, on four datasets as a function of the parameter
count. The results show that both fully binary approaches – BEP and the SotA local rule – signifi-
cantly outperform the comparable QAT baseline across all configurations. When comparing binary
methods, BEP consistently surpasses the SotA approach, achieving improvements of up to +6.89%,
+1.22%, +3.70%, and +2.85% on Random Prototypes, FashionMNIST, CIFAR-10, and Imagenette,
respectively, at the smallest parameter configurations. As model size increases, the performance
gap narrows, with BEP matching the local credit assignment rule but falling slightly behind in one
high-parameter setting (CIFAR-10, 3 layers). These findings underscore the importance of global
error propagation for effective credit assignment in binary MLPs, while also showing that BEP
outperforms both local learning rules and standard QAT baselines without relying on FP gradients.

4.3 VALIDATION ON BINARY RECURRENT NEURAL NETWORKS

Our second experiment tests the BEP algorithm on binary RNNs using its time-unrolled variant
BEP-TT described in Section 3.5. The goal is to demonstrate that a global, end-to-end error signal
can effectively train recurrent models, a task typically intractable for purely local learning rules.
Specifically, we evaluate BEP-TT on many-to-one sequence classification tasks across 30 datasets
from the UCR Time Series Archive (Dau et al., 2019), using only the last window of each time series.
All RNN results use 3-fold cross-validation and 3 independent runs with the same hyperparameters:
robustness r = 0.5, reinforcement probability pr = 0.5, initial group size γ0,l = 15, gating threshold
ν = 0.05, hidden and output layer sizes Ks = Ky = 1035, training epochs e = 50, and batch
size bs = N/10. As a baseline, we trained binary RNNs with the same architecture using the QAT
implementation from the Larq framework (Geiger & Team, 2020). As in the previous experiment, no
batch or layer normalization was applied so that the models remain fully binary at inference time.
For completeness, we report the performance of QAT with batch normalization as a reference point.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Test accuracy on 30 UCR datasets. The results compare our BEP algorithm with the
QAT-based training from the Larq framework (Geiger & Team, 2020) for binary RNN architectures.

UCR Dataset BEP QAT w/o
batchnorm

QAT w/
batchnorm

ArticularyWordRec. 81.28 ± 2.99 51.94 ± 3.61 77.62 ± 3.80
Cricket 86.85 ± 4.19 61.30 ± 6.88 86.11 ± 6.03

DistalPOAgeGroup 79.78 ± 2.65 73.84 ± 2.51 76.94 ± 3.27
ECG5000 91.40 ± 0.53 88.20 ± 1.08 92.71 ± 0.74

ECGFiveDays 81.79 ± 1.97 69.42 ± 2.71 95.25 ± 1.45
ERing 82.44 ± 4.90 71.67 ± 3.89 79.11 ± 4.93

Earthquakes 80.34 ± 2.94 79.83 ± 2.83 77.01 ± 2.96
Epilepsy2 92.45 ± 0.53 88.82 ± 0.58 93.72 ± 0.42

FreezerRegularTrain 78.21 ± 1.17 75.26 ± 1.56 85.92 ± 1.06
FreezerSmallTrain 78.16 ± 1.46 75.02 ± 1.44 85.60 ± 1.50

GunPtAgeSpan 86.18 ± 2.27 81.08 ± 4.53 84.11 ± 2.55
GunPtOldVersusYoung 94.01 ± 1.57 91.87 ± 2.91 93.79 ± 1.26
InsectEPGRegularTrain 99.14 ± 0.71 94.64 ± 2.97 99.04 ± 0.64
InsectEPGSmallTrain 99.37 ± 0.56 96.62 ± 2.43 98.75 ± 0.83
ItalyPowerDemand 94.65 ± 1.22 83.18 ± 2.01 96.23 ± 1.01

UCR Dataset BEP QAT w/o
batchnorm

QAT w/
batchnorm

JapaneseVowels 95.47 ± 1.24 84.06 ± 2.92 96.25 ± 1.01
MelbournePedestrian 73.03 ± 4.59 42.83 ± 2.35 90.91 ± 0.90

MoteStrain 78.62 ± 2.29 74.42 ± 1.70 79.82 ± 1.81
MotionSenseHAR 74.25 ± 2.07 67.97 ± 1.80 77.36 ± 1.89

PEMS-SF 86.13 ± 3.66 60.69 ± 4.55 85.83 ± 2.43
PenDigits 97.13 ± 0.21 66.99 ± 1.44 99.00 ± 0.21

ProximalPOAgeGroup 82.64 ± 3.08 77.24 ± 3.64 82.20 ± 2.27
ProximalPOCorrect 78.26 ± 1.09 72.76 ± 2.89 75.68 ± 2.66
ProximalPhalanxTW 79.83 ± 2.66 74.26 ± 5.11 75.59 ± 3.03

SmoothSubspace 89.00 ± 4.24 58.00 ± 4.83 90.33 ± 4.08
SonyAIBORobotSurf1 75.68 ± 2.73 64.14 ± 2.05 80.68 ± 3.04
SonyAIBORobotSurf2 82.04 ± 2.37 73.10 ± 1.71 84.59 ± 2.62

StarLightCurves 82.32 ± 0.34 81.96 ± 0.49 82.68 ± 0.46
Tiselac 81.63 ± 0.47 64.52 ± 0.98 84.81 ± 0.25
Wafer 95.92 ± 0.61 95.25 ± 0.64 97.93 ± 0.24

For all datasets and models, inputs were binarized with a distributive thermometer encoder (Bacellar
et al., 2024a), followed by a fixed ±1 expansion layer projecting the dimension to K0 = 1035. A
hyperparameter search was conducted to tune the sequence window length, defined as the number of
timesteps included in the temporal window, and the number of thermometer bits.

Table 1 presents the test accuracy across the considered UCR tasks. On every dataset, BEP-TT
consistently outperforms the comparable QAT baseline in training fully binary RNNs, achieving
an average test accuracy improvement of +10.57%. These results validate the proposed binary
error propagation mechanism beyond feedforward MLPs. Moreover, because BEP relies on bitwise
operations even during training, it substantially reduces memory and computational costs compared
to QAT, which requires full-precision Adam updates, as discussed in Section 4.5.

4.4 THE ROLE OF THE GATING THRESHOLD ν

A crucial element to the generalization performance of the BEP algorithm is its gating mechanism,
which modulates the backward error signal as described in Section 3.2. In this third experiment, we
examine how varying the threshold ν affects the validation accuracy of a binary RNN on the S-MNIST
dataset. The following hyperparameters are used: robustness r = 0.5, reinforcement probability
pr = 0.5, initial group size γ0,l = 15, layer sizes Ks = Ky = 1875, training epochs e = 50, and
batch size bs = 100. Corresponding results for binary MLPs are provided in Appendix D.1.

Figures 3a and 3b, which show the accuracy averaged over 3 runs as a function of window length
and gating threshold ν, respectively, highlight the crucial role of this mechanism. Its effect becomes
more pronounced as the window length grows (corresponding to deeper backward steps through
time), emphasizing the importance of focusing updates on neurons whose pre-activations lie near the
decision boundary. The results reveal an optimum in ν: very low or very high thresholds degrade
performance, whereas intermediate values (around 10−2) consistently yield the highest accuracy
across different temporal depths. By filtering out saturated neurons from the error signal, the gate
ensures that weight updates focus on parts of the BNN most susceptible to flipping their activations.

4.5 DISCUSSION AND LIMITATIONS

A key advantage of BEP lies in its ability to perform training using only bitwise computations.
Table 2 summarizes the memory footprint and computational complexity of BEP compared with
standard QAT. Relative to QAT-based methods, our approach achieves a 2× reduction in memory
usage for hidden weights and a 32× reduction for error signals and weight updates. Moreover,
Adam-based QAT requires an additional 64 bits per parameter to store its first- and second-order
moment estimates, further increasing its memory demand. From a computational standpoint, we
adopt the hardware-level metric of equivalent Boolean gates (Colombo et al., 2025) to compare the
intrinsic cost of arithmetic operations. All operations in BEP can be implemented using primitives
such as XNOR, Popcount, and increment/decrement operations, which require at most O(10N)
Boolean gates for N -bit operands (Bacellar et al., 2024b). In contrast, IEEE-754 single-precision

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 2: Comparison of memory footprint and computational complexity between QAT (with Adam)
and BEP. Memory is reported in bits per element, and complexity denotes the order of magnitude of
equivalent Boolean-gate operations per element (Colombo et al., 2025). †: This estimate assumes the
absence of batch normalization and full-precision scaling factors commonly used in QAT.

Method
Memory (Bits) Complexity (Boolean gates)

Weights Activations Errors / Gradients Forward Backward Update

QAT (Adam) 32 (FP32) 1 32 + 64 (Moments) ∼10† ∼104 ∼104

BEP 16 (Int16) 1 1 ∼10 ∼10 ∼10

21 22 23 24

Window length

40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0
80.0
85.0
90.0
95.0

100.0

Va
lid

at
io

n
ac

cu
ra

cy

 = 0.001
 = 0.005
 = 0.01
 = 0.1
 = 0.5

(a) Accuracy as a function of window length

10 3 10 2 10 1 100

Pre-activation threshold

40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0
80.0
85.0
90.0
95.0

100.0

WL = 2
WL = 4
WL = 8
WL = 28

(b) Accuracy as a function of gating threshold ν

Figure 3: Validation accuracy of a binary RNN trained with BEP on the S-MNIST dataset for different
values of the gating threshold hyperparameter ν and window length WL.

FP additions and multiplications (876, 2019), which underpin Adam-based QAT, are estimated to
require on the order of 104 Boolean gates each (Luo & Sun, 2024). This comparison highlights the
substantial computational advantage of BEP, which reduces the Boolean-gate cost by approximately
three orders of magnitude relative to FP32 QAT with Adam.

Despite its promising results, our approach has some limitations that suggest natural directions for
future research. First, we focus primarily on binary MLPs and RNNs. Extending BEP to convolutional
or transformer-style models requires a full binary design for these architectures, including handling
binary convolutions, filter-level masking, and additional adaptations to support weight sharing, spatial
structure, and multi-head mechanisms. Second, our experiments are restricted to classification tasks.
Although BEP naturally supports arbitrary binary output vectors and could, in principle, be applied
to multi-label prediction, binary segmentation, or more general binary-vector regression, such tasks
necessitate additional design choices regarding the output encoding. Third, we evaluate BEP on
mid-scale datasets and moderate-depth NNs. Extending BEP to large-scale models (e.g., ImageNet-
level CNNs (Bulat & Tzimiropoulos, 2019; Vargas et al., 2024)) requires substantial architectural
adaptations to convolutional or transformer backbones. Moreover, binary-compatible normalization
mechanisms may become necessary to ensure stable training in such settings.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduced BEP, an algorithm for training multi-layer BNNs using exclusively binary
computations. The central contribution is the formulation of a principled, binary analog of the BP
algorithm. By defining a recursive rule for propagating binary-valued error signals and updating
integer-valued metaplastic weights, BEP bridges the gap between the global credit assignment of
gradient-based learning and the computational efficiency of bitwise operations. Theoretically, this
work shows that effective end-to-end learning in multi-layer binary NNs is possible without relying
on continuous gradients, opening new avenues for analyzing discrete optimization in DL. Practically,
BEP enables efficient training using only XNOR, Popcount, and increment/decrement operations,
making it well-suited for constrained settings such as TinyML (Capogrosso et al., 2024; Pavan et al.,
2024), privacy-preserving DL with homomorphic encryption (Falcetta & Roveri, 2022; Colombo
et al., 2024), and neuromorphic systems (Indiveri & Liu, 2015; Yamazaki et al., 2022). Future work
includes extending BEP to convolutional architectures, refining adaptive strategies for the gating
threshold ν, exploring learnable masking mechanisms, and developing a formal convergence analysis.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Ieee standard for floating-point arithmetic. IEEE Std 754-2019 (Revision of IEEE 754-2008), pp.
1–84, 2019. doi: 10.1109/IEEESTD.2019.8766229.

Alan Tendler Leibel Bacellar, Zachary Susskind, Mauricio Breternitz Jr, Eugene John, Lizy Kurian
John, Priscila Machado Vieira Lima, and Felipe M.G. França. Differentiable weightless neu-
ral networks. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria
Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp.
2277–2295. PMLR, 21–27 Jul 2024a. URL https://proceedings.mlr.press/v235/
bacellar24a.html.

Alan TL Bacellar, Zachary Susskind, Mauricio Breternitz Jr, Eugene John, Lizy K John, Priscila
Lima, and Felipe MG França. Differentiable weightless neural networks. arXiv preprint
arXiv:2410.11112, 2024b.

Carlo Baldassi. Generalization learning in a perceptron with binary synapses. Journal of Statistical
Physics, 136(5):902–916, Sep 2009. ISSN 1572-9613. doi: 10.1007/s10955-009-9822-1. URL
https://doi.org/10.1007/s10955-009-9822-1.

Carlo Baldassi, Alfredo Braunstein, Nicolas Brunel, and Riccardo Zecchina. Efficient supervised
learning in networks with binary synapses. Proceedings of the National Academy of Sciences, 104
(26):11079–11084, 2007. doi: 10.1073/pnas.0700324104. URL https://www.pnas.org/
doi/abs/10.1073/pnas.0700324104.

Carlo Baldassi, Alessandro Ingrosso, Carlo Lucibello, Luca Saglietti, and Riccardo Zecchina. Sub-
dominant dense clusters allow for simple learning and high computational performance in neural
networks with discrete synapses. Physical review letters, 115(12):128101, 2015.

Yoshua Bengio, Nicolas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Adrian Bulat and Georgios Tzimiropoulos. Xnor-net++: Improved binary neural networks.
ArXiv, abs/1909.13863, 2019. URL https://api.semanticscholar.org/CorpusID:
203593135.

Luigi Capogrosso, Federico Cunico, Dong Seon Cheng, Franco Fummi, and Marco Cristani. A
machine learning-oriented survey on tiny machine learning. IEEE Access, 12:23406–23426, 2024.

Luca Colombo, Alessandro Falcetta, and Manuel Roveri. Training encrypted neural networks on
encrypted data with fully homomorphic encryption. WAHC’24, pp. 64, 2024.

Luca Colombo, Fabrizio Pittorino, and Manuel Roveri. Training multi-layer binary neural networks
with random local binary error signals. Machine Learning: Science and Technology, 6(3):035015,
2025.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. In Advances in Neural Information Processing
Systems (NeurIPS), pp. 3123–3131, 2015.

Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh
Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn Keogh. The ucr time series archive.
IEEE/CAA Journal of Automatica Sinica, 6(6):1293–1305, 2019.

Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
web]. IEEE signal processing magazine, 29(6):141–142, 2012.

Andreas Engel. Statistical mechanics of learning. Cambridge University Press, 2001.

Alessandro Falcetta and Manuel Roveri. Privacy-preserving deep learning with homomorphic
encryption: An introduction. IEEE Computational Intelligence Magazine, 17(3):14–25, 2022.

11

https://proceedings.mlr.press/v235/bacellar24a.html
https://proceedings.mlr.press/v235/bacellar24a.html
https://doi.org/10.1007/s10955-009-9822-1
https://www.pnas.org/doi/abs/10.1073/pnas.0700324104
https://www.pnas.org/doi/abs/10.1073/pnas.0700324104
https://api.semanticscholar.org/CorpusID:203593135
https://api.semanticscholar.org/CorpusID:203593135

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Elizabeth Gardner. The space of interactions in neural network models. Journal of physics A:
Mathematical and general, 21(1):257, 1988.

Lukas Geiger and Plumerai Team. Larq: An open-source library for training binarized neural
networks. Journal of Open Source Software, 5(45):1746, 2020.

Geoffrey E Hinton. Connectionist learning procedures. In Machine learning, pp. 555–610. Elsevier,
1990.

Jeremy Howard. imagenette, 2019. URL https://github.com/fastai/imagenette/.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. In Advances in Neural Information Processing Systems (NeurIPS), pp. 4107–4115,
2016.

Giacomo Indiveri and Shih-Chii Liu. Memory and information processing in neuromorphic systems.
Proceedings of the IEEE, 103(8):1379–1397, 2015.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwińska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences
(PNAS), 114(13):3521–3526, 2017.

Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by simulated annealing.
science, 220(4598):671–680, 1983.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images, 2009.

Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate binary convolutional neural network.
Advances in neural information processing systems, 30, 2017.

Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-real net:
Enhancing the performance of 1-bit cnns with improved representational capability and advanced
training algorithm. In Proceedings of the European Conference on Computer Vision (ECCV),
September 2018.

Zechun Liu, Wenhan Luo, Baoyuan Wu, Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-real net:
Binarizing deep network towards real-network performance. International Journal of Computer
Vision, 128:202–219, 2020.

Ilya Loshchilov and Frank Hutter. Cma-es for hyperparameter optimization of deep neural networks.
arXiv preprint arXiv:1604.07269, 2016.

Carlo Lucibello, Fabrizio Pittorino, Gabriele Perugini, and Riccardo Zecchina. Deep learning
via message passing algorithms based on belief propagation. Machine Learning: Science and
Technology, 3(3):035005, 2022.

Hongyin Luo and Wei Sun. Addition is all you need for energy-efficient language models. arXiv
preprint arXiv:2410.00907, 2024.

Vardan Papyan, X. Y. Han, and David L. Donoho. Prevalence of neural collapse during the terminal
phase of deep learning training. Proceedings of the National Academy of Sciences, 117(40):
24652–24663, 2020. doi: 10.1073/pnas.2015509117. URL https://www.pnas.org/doi/
abs/10.1073/pnas.2015509117.

Massimo Pavan, Eugeniu Ostrovan, Armando Caltabiano, and Manuel Roveri. Tybox: An automatic
design and code generation toolbox for tinyml incremental on-device learning. ACM Transactions
on Embedded Computing Systems, 23(3):1–27, 2024.

Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai, Jingkuan Song, and Nicu Sebe. Binary neural
networks: A survey. Pattern Recognition, 105:107281, 2020.

12

https://github.com/fastai/imagenette/
https://www.pnas.org/doi/abs/10.1073/pnas.2015509117
https://www.pnas.org/doi/abs/10.1073/pnas.2015509117

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. XNOR-Net: ImageNet
classification using binary convolutional neural networks. In European Conference on Computer
Vision (ECCV), pp. 525–542, 2016.

F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the
brain. Psychological Review, 65(6):386–408, 1958. ISSN 0033-295X. doi: 10.1037/h0042519.
URL http://dx.doi.org/10.1037/h0042519.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533–536, Oct 1986. ISSN 1476-4687. doi: 10.1038/
323533a0. URL https://doi.org/10.1038/323533a0.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

Ratshih Sayed, Haytham Azmi, Heba Shawkey, Alaa Hussein Khalil, and Mohamed Refky. A
systematic literature review on binary neural networks. IEEE Access, 11:27546–27578, 2023.

Riccardo Schiavone, Francesco Galati, and Maria A Zuluaga. Binary domain generalization for
sparsifying binary neural networks. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 123–140. Springer, 2023.

Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O Stanley, and Jeff
Clune. Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep
neural networks for reinforcement learning. arXiv preprint arXiv:1712.06567, 2017.

Zhijun Tu, Xinghao Chen, Pengju Ren, and Yunhe Wang. Adabin: Improving binary neural networks
with adaptive binary sets. In Computer Vision – ECCV 2022: 17th European Conference, Tel
Aviv, Israel, October 23–27, 2022, Proceedings, Part XI, pp. 379–395, Berlin, Heidelberg, 2022.
Springer-Verlag. ISBN 978-3-031-20082-3. doi: 10.1007/978-3-031-20083-0 23. URL https:
//doi.org/10.1007/978-3-031-20083-0_23.

Edwin Vargas, Claudia V. Correa, Carlos Hinojosa, and Henry Arguello. Biper: Binary neural
networks using a periodic function. In 2024 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 5684–5693, 2024. doi: 10.1109/CVPR52733.2024.00543.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Kashu Yamazaki, Viet-Khoa Vo-Ho, Darshan Bulsara, and Ngan Le. Spiking neural networks and
their applications: A review. Brain sciences, 12(7):863, 2022.

Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher, Yingyong Qi, and Jack Xin. Under-
standing straight-through estimator in training activation quantized neural nets. arXiv preprint
arXiv:1903.05662, 2019.

13

http://dx.doi.org/10.1037/h0042519
https://doi.org/10.1038/323533a0
https://doi.org/10.1007/978-3-031-20083-0_23
https://doi.org/10.1007/978-3-031-20083-0_23

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A ANALYSIS OF THE BACKWARD PASS

It is possible to provide a justification for the core backward propagation rule. In particular, we show
that the recursion for the desired activations is the exact optimizer of a tractable linear surrogate of the
otherwise intractable combinatorial credit-assignment problem. This positions BEP as a principled
binary analog of BP rather than an ad-hoc heuristic. At layer l, one would ideally choose the binary
activation vector a∗µl that, when mapped through Wl+1 and binarized, maximizes alignment with
the upper-layer target a∗µl+1. From Eq. 3:

argmax
a∈{±1}Kl

⟨a∗µl+1, sign(Wl+1a)⟩.

This is a nonconvex combinatorial optimization over the hypercube with a discontinuous objective.
In general, it is NP-hard by reduction from standard binary optimization problems. Therefore, we do
not attempt to solve it exactly. Instead, we consider the linear surrogate obtained by dropping the
nonlinearity inside the inner product. From Eq. 4:

argmax
a∈{±1}Kl

⟨a∗µl+1,Wl+1a⟩.

Equivalently, the set may be relaxed to the hypercube [−1, 1]Kl and the optimum remains at a vertex.
Proposition 1 (BEP back-projection solves the linear surrogate exactly). Let v := W⊤

l+1a
∗µ
l+1 ∈ RKl .

The set of maximizers of Eq. 4 is

a∗µl ∈ sign(v) :=
{
a ∈ {±1}Kl : ai = sign(vi) if vi ̸= 0, ai ∈ {±1} if vi = 0

}
, (11)

i.e., any coordinate-wise sign choice consistent with v. In particular, when no coordinate tie occurs,
a∗µl = sign(W⊤

l+1a
∗µ
l+1), which is exactly the BEP recursion (Eq. 7 without gating).

Proof. By the adjoint identity ⟨u,Av⟩ = ⟨A⊤u,v⟩,

⟨a∗µl+1, Wl+1a⟩ = ⟨W⊤
l+1a

∗µ
l+1, a⟩ =

Kl∑
i=1

viai.

The objective is separable across coordinates on the product set {±1}Kl , so it is maximized by
choosing each ai to maximize viai, i.e., ai = sign(vi) if vi ̸= 0 and any ai ∈ {±1} if vi = 0.

Lemma 2 (Convex relaxation has an integral optimum). The convex relaxation of Eq. 4 with
a ∈ [−1, 1]Kl has the same optimal value, and the set of maximizers is{

a ∈ [−1, 1]Kl : ai = clip
(

vi
|vi|

)}
,

which reduces to Eq. 11 at the vertices. Hence the linear surrogate is solved exactly at a binary point.

Proof. Maximizing a linear function over a hypercube attains the optimum at a vertex. Coordinate-
wise, the same separability argument as above applies.

Including the gate. Recall the binary gate from Eq. 5 and write Dµ
l+1 := diag(gµ

l+1). The BEP
recursion with gating from Eq. 7 replaces a∗µl+1 by Dµ

l+1a
∗µ
l+1, i.e., it solves the masked surrogate

argmax
a∈{±1}Kl

⟨Dµ
l+1a

∗µ
l+1,Wl+1a⟩ =⇒ a∗µl ∈ sign

(
W⊤

l+1D
µ
l+1a

∗µ
l+1

)
. (12)

Thus, the gate simply zeros out saturated coordinates of the upper-layer target before back-projection,
directly mirroring the role of derivative clipping in STE-based BP.

Proposition 1 and Lemma 2 show that the BEP backward rule is the analytical optimizer of a well-
posed linear objective approximating the intractable target-selection in Eq. 3. The gate induces a
diagonal mask in that objective, yielding the exact masked optimizer in Eq. 12. Practically, this
explains why BEP focuses the learning signal on neurons near their decision boundary (unsaturated
coordinates) and provides a principled binary analog of gradient gating used by STE-based methods.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.1 PROOF OF LEMMA 1

Proof. The gated scalar product can be expressed as ⟨b,b′⟩g = ⟨g ⊙ b,b′⟩ and by the adjoint
identity ⟨b,Wa⟩ = ⟨W⊤b,a⟩. Combining these two relations leads to

⟨b,Wa⟩g = ⟨W⊤(g ⊙ b),a⟩.

Denoting W⊤(g ⊙ b) as z of components in Z \ {0}, we reduce to problem argmaxa⟨z,a⟩. The
objective is separable across coordinates: ⟨z,a⟩ =

∑
i ziai, so it is maximized by choosing each ai

to maximize ziai, i.e., ai = sign(zi).

B LOCAL CORRECTNESS OF THE WEIGHT UPDATE

Beyond justifying the backward pass, we also show that the resulting weight update is beneficial in a
layer–local sense. The next lemma proves that, for any sample triggering an update, the modification
to the hidden integers Hl is guaranteed to be corrective: it pushes the neuron stabilities in the direction
of the desired activation and increases an anchored alignment potential by a fixed, known amount.
Lemma 3 (Local update correctness on the stabilities). Fix a sample µ ∈M that triggers an update.
Let l be a layer and j a neuron selected by the neuron-wise mask (i.e., the j-th column). Denote the
hidden weights before and after the update by Hl and H′

l, respectively, and define the stabilities

uµ
l,j := ⟨a

µ
l−1,hl,j⟩, u′µ

l,j := ⟨a
µ
l−1,h

′
l,j⟩.

If the neuron-wise update is ∆hµ
l,j = 2a∗µl,ja

µ
l−1 (and zero otherwise), then the alignment strictly

increases by a fixed amount:

a∗µl,ju
′µ
l,j = a∗µl,ju

µ
l,j + 2Kl−1 > a∗µl,ju

µ
l,j .

Proof.
u′µ
l,j = ⟨a

µ
l−1,hl,j + 2a∗µl,ja

µ
l−1⟩ = uµ

l,j + 2a∗µl,j∥a
µ
l−1∥

2
2.

Since aµl−1 ∈ {±1}Kl−1 , ∥aµl−1∥22 = Kl−1. Multiplying by a∗µl,j ∈ {±1} yields the claim.

Remark 1 (From stability to visible pre-activation). The forward pre-activations use visible weights
Wl = sign(Hl), hence zµl,j = ⟨aµl−1,wl,j⟩ can change discontinuously when entries of hl,j cross
zero. Nevertheless, Lemma 3 implies monotonic drift of each coordinate of hl,j toward the signed
target a∗µl,ja

µ
l−1. After T updates of neuron j, each entry has shifted by 2T in the correct direction.

Consequently, once

T ≥ max
i

⌈
|Hl,ij(0)|+ 1

2

⌉
,

all entries align with a∗µl,ja
µ
l−1,i, and the visible pre-activations satisfy sign(zµl,j) = a∗µl,j and remain

stable under further updates on the anchored desired activations.

Lemma 3 shows that each neuron update yields a strict quantifiable increase of an anchored alignment
by 2Kl−1 (a discrete analog of a guaranteed descent step). Together with Remark 1, this ensures that
repeated anchored updates drive the visible state toward the desired activation and stabilize it once
sufficient integer margin accumulates. A full convergence proof is left for future work.

C GENERATING A FIXED BINARY CLASSIFIER VIA EQUIANGULAR FRAMES

As stated in Section 3, our empirical results show that BEP achieves its best performance when using
a fixed output classifier P whose class prototypes are geometrically well-separated. This approach is
inspired by the concept of Equiangular Tight Frames (ETFs), which have been shown to emerge in the
final layers of deep NNs during a phenomenon known as neural collapse (Papyan et al., 2020). While
a simple, randomly generated classifier offers a baseline, optimizing the structure of these prototypes
significantly improves class separability. This appendix details our method for generating a structured
binary classifier by constructing a set of prototype vectors that are maximally and uniformly distant
from each other in the binary feature space.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Neural collapse describes an empirical phenomenon where, in the terminal phase of training, the
last-layer feature representations for all samples of a given class collapse to a single point (their class
mean). Furthermore, the set of these class-mean vectors, along with the final-layer classifier weights,
form a simplex ETF. A simplex ETF is a geometric configuration of vectors that are maximally
separated from one another, characterized by equal norms and a constant, negative pairwise inner
product. This structure is optimal for linear classification.

The classical ETF is defined in a real-valued vector space RD. In BNNs, we are interested in a binary
analog where the feature vectors and classifier weights lie on the hypercube {±1}D. We define a
Binary Equiangular Frame (BEF) as a set of C binary vectors {ρρρ1, . . . , ρρρC}, where ρρρc ∈ {±1}D,
that satisfy two properties. The first property is high pairwise separation, i.e. the inner product
⟨ρρρi, ρρρj⟩ for i ̸= j should be as small (i.e., as negative) as possible. In the binary domain, this is
equivalent to maximizing the Hamming distance between any two vectors. The second property is
equiangularity, i.e. the inner products for all distinct pairs ⟨ρρρi, ρρρj⟩ should be approximately equal.
Such a frame, when used as the columns of the classifier matrix P, provides a set of target prototypes
that are maximally and uniformly distant from each other in the binary feature space.

Finding an exact BEF is a hard combinatorial problem. However, we can generate a high-quality
approximation using a binary optimization procedure. Given the desired number of classes C and
feature dimension D, we seek to find the set of vectors {ρρρc}Cc=1 that minimizes the cost function

J ({ρρρc}) =
∑
i<j

⟨ρρρi, ρρρj⟩+ α · Vari<j(⟨ρρρi, ρρρj⟩), (13)

where Var(·) is the variance and α ≥ 0 balances the two objectives. The first term encourages all
pairwise inner products to be negative, while the second pushes them toward a common value.

We optimize this objective using a simple iterative local search algorithm, starting from a random
initialization of the C vectors {ρρρc} from {±1}D. For a fixed number of iterations: (i) randomly select
a vector ρρρi and a coordinate k; (ii) compute the change in cost ∆J that would result from flipping
the sign of the k-th element of ρρρi; and (iii) if ∆J < 0, accept the flip. This greedy coordinate-wise
descent procedure rapidly converges to a local minimum of the cost function. The resulting set of
vectors {ρρρc} can then be used to construct the fixed classifier matrix P = [ρρρ1, . . . , ρρρC].

D ABLATION STUDIES

D.1 THE ROLE OF THE GATING THRESHOLD ν ON MLPS

In this section, we present an ablation study on the gating threshold ν for binary MLPs, as shown in
Figure 4. Empirically, across layer sizes, optimal and non-trivial values of ν emerge, with the effect
becoming more pronounced as NN depth increases, consistent with the RNN ablation in Section 4.4.

0.0 0.1 0.2 0.5 1.0
Gating threshold

15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0
80.0

Va
lid

at
io

n
ac

cu
ra

cy

Layers L = 3

Layers: 525 x 3
Layers: 255 x 3
Layers: 135 x 3
Layers: 75 x 3
Layers: 35 x 3

0.0 0.1 0.2 0.5 1.0
Gating threshold

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0
80.0

Va
lid

at
io

n
ac

cu
ra

cy

Layers L = 5

Layers: 525 x 5
Layers: 255 x 5
Layers: 135 x 5
Layers: 75 x 5
Layers: 35 x 5

(a) Random Prototypes

0.0 0.1 0.2 0.5 1.0
Gating threshold

70.0

72.0

74.0

76.0

78.0

80.0

82.0

84.0

86.0

88.0

Va
lid

at
io

n
ac

cu
ra

cy

Layers L = 3

Layers: 525 x 3
Layers: 255 x 3
Layers: 135 x 3
Layers: 75 x 3
Layers: 35 x 3

0.0 0.1 0.2 0.5 1.0
Gating threshold

15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0
80.0
85.0
90.0

Va
lid

at
io

n
ac

cu
ra

cy

Layers L = 5

Layers: 525 x 5
Layers: 255 x 5
Layers: 135 x 5
Layers: 75 x 5
Layers: 35 x 5

(b) FashionMNIST

0.0 0.1 0.2 0.5 1.0
Gating threshold

25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0
80.0
85.0
90.0

Va
lid

at
io

n
ac

cu
ra

cy

Layers L = 3

Layers: 525 x 3
Layers: 255 x 3
Layers: 135 x 3
Layers: 75 x 3
Layers: 35 x 3

0.0 0.1 0.2 0.5 1.0
Gating threshold

5.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0
80.0
85.0

Va
lid

at
io

n
ac

cu
ra

cy

Layers L = 5

Layers: 525 x 5
Layers: 255 x 5
Layers: 135 x 5
Layers: 75 x 5
Layers: 35 x 5

(c) CIFAR10

0.0 0.1 0.2 0.5 1.0
Gating threshold

71.0

73.0

75.0

77.0

79.0

81.0

83.0

85.0

87.0

89.0

91.0

Va
lid

at
io

n
ac

cu
ra

cy

Layers L = 3

Layers: 525 x 3
Layers: 255 x 3
Layers: 135 x 3
Layers: 75 x 3
Layers: 35 x 3

0.0 0.1 0.2 0.5 1.0
Gating threshold

5.0

15.0

25.0

35.0

45.0

55.0

65.0

75.0

85.0

95.0

Va
lid

at
io

n
ac

cu
ra

cy

Layers L = 5

Layers: 525 x 5
Layers: 255 x 5
Layers: 135 x 5
Layers: 75 x 5
Layers: 35 x 5

(d) Imagenette

Figure 4: Validation accuracy as a function of the gating threshold ν on Random Prototypes, Fashion-
MNIST, CIFAR10, and Imagenette for binary MLPs with L = 3 and L = 5 hidden layers.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D.2 THE ROBUSTNESS HYPERPARAMETER r

In this section, we perform an ablation study on the robustness parameter r for binary MLPs, as
shown in Figure 5. Empirically, setting the margin r in the range 0.5–0.75 consistently yields the
best generalization accuracy across the considered tasks and architectures.

0.00 0.25 0.50 0.75 1.00
Robustness r

59.0

61.0

63.0

65.0

67.0

69.0

71.0

73.0

75.0

77.0

79.0

Va
lid

at
io

n
ac

cu
ra

cy

525_525
255_255
135_135
75_75
35_35

(a) Random Prototypes

0.00 0.25 0.50 0.75 1.00
Robustness r

79.0
79.8
80.5
81.2
82.0
82.8
83.5
84.2
85.0
85.8
86.5
87.2

Va
lid

at
io

n
ac

cu
ra

cy

525_525
255_255
135_135
75_75
35_35

(b) FashionMNIST

0.00 0.25 0.50 0.75 1.00
Robustness r

74.0

75.0

76.0

77.0

78.0

79.0

80.0

81.0

82.0

83.0

84.0

Va
lid

at
io

n
ac

cu
ra

cy

525_525
255_255
135_135
75_75
35_35

(c) CIFAR10

0.00 0.25 0.50 0.75 1.00
Robustness r

82.0

83.0

84.0

85.0

86.0

87.0

88.0

89.0

90.0

91.0

Va
lid

at
io

n
ac

cu
ra

cy

525_525
255_255
135_135
75_75
35_35

(d) Imagenette

Figure 5: Validation accuracy as a function of the robustness r on Random Prototypes, FashionMNIST,
CIFAR10, and Imagenette for binary MLPs with L = 2 hidden layers.

D.3 THE REINFORCEMENT PROBABILITY HYPERPARAMETER pr

In this section, we perform an ablation study on the reinforcement probability pr for binary MLPs, as
shown in Figure 6. Empirically, setting the probability pr in the range 0.5–0.75 consistently yields
the highest generalization accuracy across the evaluated tasks and architectures, although its overall
impact remains moderate. Nevertheless, compared to disabling reinforcement entirely, enabling it
provides a measurable improvement, with the effect being more marked in lower-capacity models.

0.00 0.25 0.50 0.75 1.00
Reinforcement probability pr

59.5

61.5

63.5

65.5

67.5

69.5

71.5

73.5

75.5

77.5

79.5

Va
lid

at
io

n
ac

cu
ra

cy

525_525
255_255
135_135
75_75
35_35

(a) Random Prototypes

0.00 0.25 0.50 0.75 1.00
Reinforcement probability pr

81.0

81.8

82.5

83.2

84.0

84.8

85.5

86.2

87.0

Va
lid

at
io

n
ac

cu
ra

cy

525_525
255_255
135_135
75_75
35_35

(b) FashionMNIST

0.00 0.25 0.50 0.75 1.00
Reinforcement probability pr

76.5

77.2

78.0

78.8

79.5

80.2

81.0

81.8

82.5

83.2

Va
lid

at
io

n
ac

cu
ra

cy

525_525
255_255
135_135
75_75
35_35

(c) CIFAR10

0.00 0.25 0.50 0.75 1.00
Reinforcement probability pr

83.5

84.2

85.0

85.8

86.5

87.2

88.0

88.8

89.5

90.2

91.0

Va
lid

at
io

n
ac

cu
ra

cy

525_525
255_255
135_135
75_75
35_35

(d) Imagenette

Figure 6: Validation accuracy as a function of the reinforcement probability pr on Random Prototypes,
FashionMNIST, CIFAR10, and Imagenette for binary MLPs with L = 2 hidden layers.

D.4 ANALYSIS OF BINARIZATION FUNCTION

To examine the sensitivity of BEP to the input binarization method, we compare simple median
thresholding against thermometer encoding on five UCR datasets using binary RNNs. As shown in
Table 3, thermometer encoding significantly outperforms median thresholding on time-series data, as
it preserves coarse magnitude information that is essential for these tasks. In contrast, for image data,
median thresholding is sufficient to achieve SotA performance with BEP.

Table 3: Validation accuracy on five UCR datasets using different thermometer-encoding bits for
input binarization. Notably, using a single bit corresponds to the median-thresholding method.

Dataset
Thermometer-encoding bits

1 10 20 50 100

ArticularyWordRec. 48.98 ± 3.93 81.28 ± 2.99 79.37 ± 2.70 81.16 ± 2.17 81.45 ± 1.85
DistalPOAgeGroup 77.18 ± 2.74 78.92 ± 3.38 78.11 ± 2.03 79.78 ± 2.65 79.78 ± 3.74
ItalyPowerDemand 73.54 ± 2.44 94.65 ± 1.22 94.59 ± 1.13 94.34 ± 1.03 93.92 ± 1.31

PenDigits 61.60 ± 2.05 96.66 ± 0.22 96.79 ± 0.35 96.88 ± 0.26 97.13 ± 0.21
ProximalPOAgeGroup 77.52 ± 3.43 82.31 ± 3.28 82.37 ± 3.36 82.70 ± 2.41 82.53 ± 2.85

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D.5 ANALYSIS OF MASK DENSITY

To substantiate the claim that the sparsity mask fulfills a role analogous to the learning rate, we
evaluate the impact of the group size γ0,l (which determines mask density) on training dynamics for
binary MLPs. Figure 7 shows that smaller group sizes (sparser updates) lead to slower convergence,
whereas larger group sizes (denser updates) accelerate initial learning but may introduce instability.
This behavior mirrors the effect of varying the learning rate in gradient-based optimization.

0 10 20 30 40 50
Epoch e

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

Tr
ai

ni
ng

 a
cc

ur
ac

y

0, l = 15
0, l = 35
0, l = 75
0, l = 105
0, l = 175

0 10 20 30 40 50
Epoch e

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

70.0

75.0

80.0

Va
lid

at
io

n
ac

cu
ra

cy

0, l = 15
0, l = 35
0, l = 75
0, l = 105
0, l = 175

(a) Random Prototypes

0 10 20 30 40 50
Epoch e

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0

Tr
ai

ni
ng

 a
cc

ur
ac

y

0, l = 15
0, l = 35
0, l = 75
0, l = 105
0, l = 175

0 10 20 30 40 50
Epoch e

77.0

78.5

80.0

81.5

83.0

84.5

86.0

87.5

Va
lid

at
io

n
ac

cu
ra

cy

0, l = 15
0, l = 35
0, l = 75
0, l = 105
0, l = 175

(b) FashionMNIST

0 10 20 30 40 50
Epoch e

50.0

55.0

60.0

65.0

70.0

75.0

80.0

85.0

90.0

95.0

100.0

Tr
ai

ni
ng

 a
cc

ur
ac

y

0, l = 15
0, l = 35
0, l = 75
0, l = 105
0, l = 175

0 10 20 30 40 50
Epoch e

66.0
67.5
69.0
70.5
72.0
73.5
75.0
76.5
78.0
79.5
81.0
82.5
84.0

Va
lid

at
io

n
ac

cu
ra

cy

0, l = 15
0, l = 35
0, l = 75
0, l = 105
0, l = 175

(c) CIFAR10

0 10 20 30 40 50
Epoch e

60.0

65.0

70.0

75.0

80.0

85.0

90.0

95.0

100.0

Tr
ai

ni
ng

 a
cc

ur
ac

y

0, l = 15
0, l = 35
0, l = 75
0, l = 105
0, l = 175

0 10 20 30 40 50
Epoch e

72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

Va
lid

at
io

n
ac

cu
ra

cy

0, l = 15
0, l = 35
0, l = 75
0, l = 105
0, l = 175

(d) Imagenette

Figure 7: Training and validation accuracy curves over epochs for different values of the group size
γ0,l on Random Prototypes, FashionMNIST, CIFAR10, and Imagenette.

D.6 SCALING TO DEEPER NETWORKS

To assess whether BEP can propagate informative error signals through deep computational chains,
we evaluate binary RNNs on the S-MNIST dataset while progressively increasing the backward
horizon length (i.e., the number of backpropagated time steps). This setup effectively simulates
deeper networks by extending the length of the backward computational graph while keeping the
temporal window fixed. As shown in Figure 8, performance steadily improves as the backward
horizon increases, indicating that BEP successfully propagates useful binary error information over
many steps without suffering from excessive signal decay.

2 4 8 28
Backward steps through time

50.0

55.0

60.0

65.0

70.0

75.0

80.0

85.0

90.0

95.0

Va
lid

at
io

n
ac

cu
ra

cy

Figure 8: Validation accuracy of a binary RNN trained with BEP on the S-MNIST dataset for different
values of the backward horizon length (depth of backpropagation).

18

	Introduction
	Related Literature
	The Binary Error Propagation Algorithm
	BNN Architecture and Forward Propagation
	Binary Error Backpropagation
	Weight Update Mechanism
	Analogy to Gradient-Based Backpropagation
	Applying BEP-TT to Recurrent Architectures

	Experimental Evaluation
	Experimental Setup
	Performance on Binary Multi-Layer Perceptrons
	Validation on Binary Recurrent Neural Networks
	The Role of the Gating Threshold nu
	Discussion and Limitations

	Conclusion and Future Work
	Analysis of the Backward Pass
	Proof of Lemma 1

	Local Correctness of the Weight Update
	Generating a Fixed Binary Classifier via Equiangular Frames
	Ablation Studies
	The Role of the Gating Threshold nu on MLPs
	The Robustness Hyperparameter r
	The Reinforcement Probability Hyperparameter pr
	Analysis of Binarization Function
	Analysis of Mask Density
	Scaling to Deeper Networks

