

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LONG-TEXT-TO-IMAGE GENERATION VIA COMPOSITIONAL PROMPT DECOMPOSITION

Anonymous authors

Paper under double-blind review

ABSTRACT

While modern text-to-image models excel at generating images from intricate prompts, they struggle to capture the key details when the prompts are expanded into descriptive paragraphs. This limitation stems from the prevalence of short captions in their training data. Existing methods attempt to address this by either fine-tuning on long-prompt data, which generalizes poorly to even longer inputs; or by projecting the oversize inputs into normal-prompt domain and compromising fidelity. We propose a compositional approach that enables pre-trained models to handle long-prompts by breaking it down into manageable components. Specifically, we introduce a trainable PromptComposer module to decompose the long-prompt into a set of distinct sub-prompts. The pre-trained T2I model processes these sub-prompts in parallel, and their corresponding outputs are merged together using concept conjunction. Our compositional long-text-to-image model achieves performance comparable to those with specialized tuning. Meanwhile, our approach demonstrates superior generalization, outperforming other models by 7.4% on prompts over 500 tokens in the challenging DetailMaster benchmark.

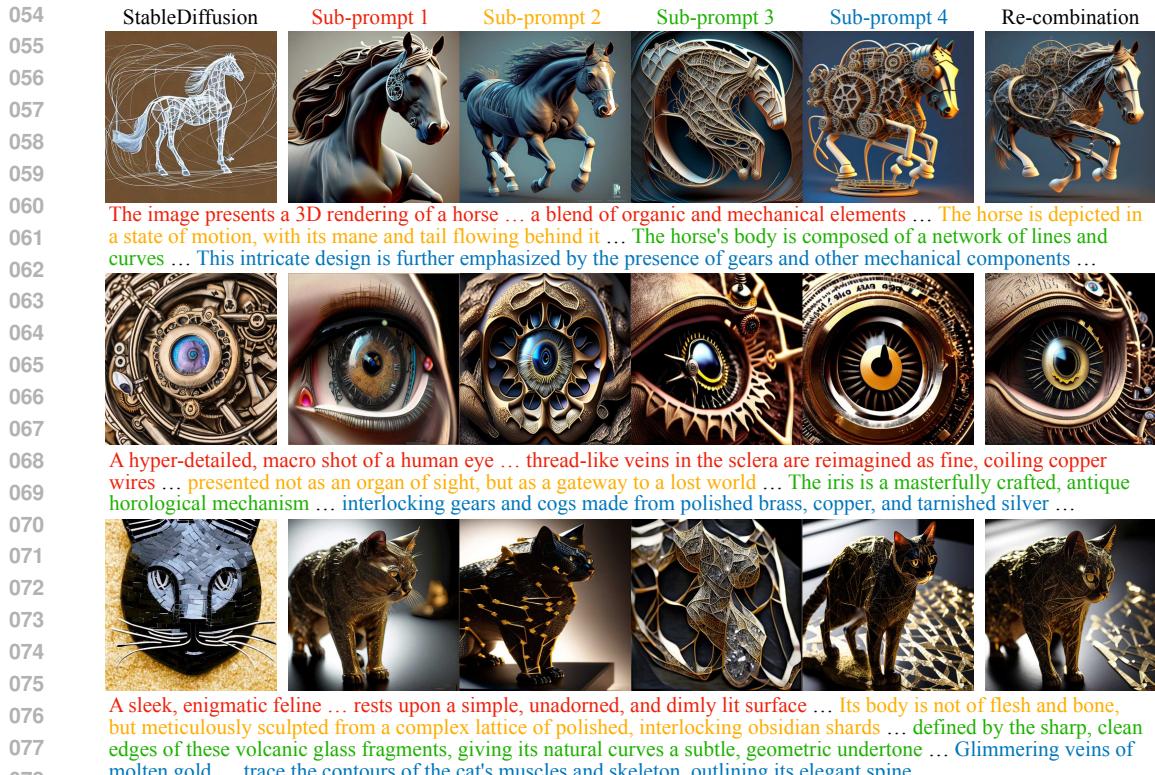
1 INTRODUCTION

Compositionality is fundamental to human intelligence—the ability to understand novel concepts by decomposing them into familiar primitives and to build complex systems from simple components. This “divide and conquer” strategy is also common in creative activities. An artist, for instance, rarely materializes an intricate scene holistically. Instead, they might independently perfect the rendering of a rustic wooden house and the surrounding trees, ensuring each element is realized with care before integrating them into a cohesive whole. In stark contrast, text-to-image (T2I) models (Rombach et al., 2022) attempt to render the entire scene simultaneously in a single, monolithic process.

This paradigm works well for concise prompts but falters when the input becomes a descriptive paragraph. While a model may excel at rendering “a house in the middle of a forest” it often fails when the prompt expands, detailing the terracotta roof tiles, the weathered white panels of the house, and the striking contrast cast by the afternoon sun. This failure stems from a fundamental conflict between the nature of long-form text and the models’ training paradigm. T2I models are predominantly trained on vast datasets of images paired with short, concise captions. They learn to map phrases to visual features but are undertrained on interpreting the narrative flow and distributed details of a paragraph (Bai et al., 2024). Even modern models using powerful text-encoders struggle on these inputs, missing more than a half of the specified objects (Jiao et al., 2025).

Existing methods attempt to bridge this domain gap with two main strategies (Figure 2). The most direct approach involves fine-tuning the T2I model on long-captioned images (Bai et al., 2024; Wu et al., 2025b). This is computationally prohibitive and risks “catastrophic forgetting” of the pre-trained knowledge. Furthermore, these tuned models often generalize poorly to prompts even longer. A second strategy adopts projection-based methods to compress a long-prompt into the compact semantic space that the T2I model understands (Hu et al., 2024; Liu et al., 2025). While efficient, forcing a rich paragraph through a narrow keyhole is inherently lossy, sacrificing the very details that make the long-prompt compelling. These limitations reveal an open question: how to utilize model’s knowledge on short prompts to render the long paragraphs?

In this paper, we advocate the idea of compositionality for long-text-to-image generation. Instead of forcing the pre-trained model to follow the entire paragraph at once, we decompose it into a



079 **Figure 1: Decomposing Long-prompt for Compositional Generation.** We decompose the long-
080 prompt into manageable sub-prompts, each depicting parts of the original input. Model outputs on
081 each of the decomposed sub-prompts are then re-combined into a final, cohesive image.

082 set of manageable sub-prompts. The final image is generated from the factorized distribution of
083 the decomposed sub-prompts. Our approach draws inspiration from the compositional generative
084 modeling, which can generalize constituent models to new tasks beyond individual capacity (Du &
085 Kaelbling, 2024; Du et al., 2023). This compositional strategy offers two unique advantages. First, it
086 allows the pre-trained model to operate within its domain of expertise—processing concise concepts—
087 thereby eliminating the need for expensive tuning and preserving its powerful prior knowledge.
088 Second, it ensures higher fidelity to the original input by distributing the paragraph’s rich information
089 across multiple components.

090 How to obtain such decomposition then becomes the central challenge; a simple linguistic split
091 is insufficient as it loses global context. Our key insight is to directly learn this decomposition in
092 the representation space, guided by the T2I model itself. We introduce *PromptComposer*, an
093 end-to-end trainable module that uses a set of learnable vectors to query and extract sub-prompt
094 representations from the encoded paragraph. A pre-trained T2I model parallelly processes the
095 decomposed representations, with the resulting noise predictions merged into a single coherent
096 update at each denoising step. *PromptComposer* is trained with both the text-encoder and the
097 T2I model frozen, learning to factorize the intricate long-prompt representation into components
098 that are interpretable by the pre-trained model. Our compositional solution delivers performance
099 comparable to tuning-based methods, and crucially, demonstrates superior generalization as prompt
100 length increases, outperforming other methods by **7.4%** on prompts over 500 tokens. Our contribution
101 can be summarized as:

1. We propose a compositional framework for long-text-to-image generation that utilizes pre-trained T2I model without expensive fine-tuning.
2. We introduce a trainable *PromptComposer* module to directly decompose long-prompt representations for compositional generation.
3. Results show our method achieves comparable performance to tuning-based methods on a challenging benchmark, while offering superior generalization to longer inputs.

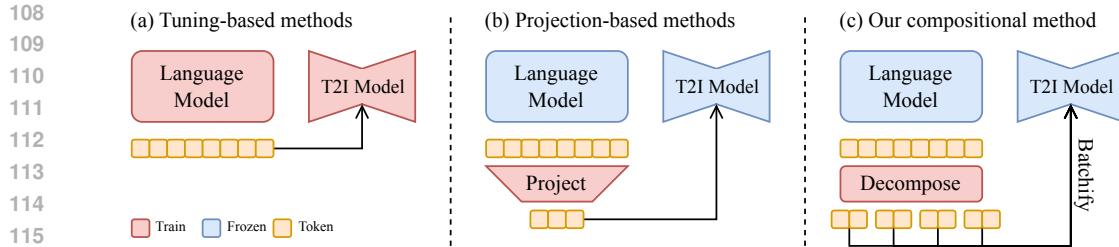


Figure 2: **Long-Text-to-Image Generation Strategies.** (a) Tuning-based methods adapt the T2I model to long-prompt inputs; (b) Projection-based methods map the long-prompt to compact space; (c) We decompose the long-prompt into several sub-prompts for compositional generation.

2 RELATED WORK

2.1 LONG-TEXT-TO-IMAGE GENERATION

Diffusion models (Ho et al., 2020; Sohl-Dickstein et al., 2015) have significantly propelled visual generation. Integrated with text conditioning, these models can generate images with unprecedented diversity and quality from natural language descriptions (Rombach et al., 2022; Ramesh et al., 2022). Recent progress in model architecture (Peebles & Xie, 2023) and theoretical foundations (Liu et al., 2022b; Lipman et al., 2022) have enabled T2I models to scale to billions of parameters (Esser et al., 2024; Batifol et al., 2025). Despite this progress, a key limitation remains their difficulty in interpreting long, descriptive paragraphs (Jiao et al., 2025). This challenge often stems from the fixed context window of the text encoders (e.g., CLIP (Radford et al., 2021)), which can be overcome by using more powerful language models (LMs) (Zhao et al., 2024; Liu et al., 2025). However, adapting to the new input takes intensive tuning. An efficient strategy involves projecting the LM representations into the T2I model’s original text embedding space (Hu et al., 2024; Liu et al., 2025). To systematically evaluate performance on this task, DetailMaster (Jiao et al., 2025) introduces a rigorous benchmark consists of intricate prompts with an average length of 284.9 tokens depicting complex scenes with multiple objects. It also provides a comprehensive, multi-stage evaluation pipeline leveraging multimodal models to analyze visual details.

2.2 COMPOSITIONAL GENERATIVE MODELING

Our work builds on the principle of compositional generative modeling, which constructs complex generative systems by combining simpler, specialized models rather than training a single monolithic one (Du & Kaelbling, 2024; Garipov et al., 2023). Conceptually, this approach treats each model as a soft constraint and uses optimization techniques to find outputs that have a high likelihood across all constituent models (Du et al., 2023; Yang et al., 2023). A key advantage of this approach is its data efficiency and generalization capability; by learning simpler, factorized distributions, a compositional system can generate valid samples for combinations of patterns unseen during training (Mahajan et al., 2024). In vision domain, compositional methods enable the generation of novel images with blended features (Du et al., 2020). For instance, composing T2I diffusion model outputs on different text prompts leads to a sample that is collectively described by all prompts (Liu et al., 2022a; Bradley et al., 2025; Bar-Tal et al., 2023; Yang et al., 2024). It is also possible to train a compositional generative system as a whole. This allows each constituent model to learn a compositional factor from data, which can then be recombined to synthesize novel combinations (Su et al., 2024; Liu et al., 2023). Similarly, we approach the challenge of long-text-to-image generation through a compositional lens, aiming to identify and model the compositional factors within a complex text prompt.

3 METHODOLOGY

Our approach achieves long-text-to-image generation by reframing it as a compositional task. Instead of training a monolithic model to interpret an entire paragraph, we decompose the paragraph into a set of sub-prompts that a pre-trained T2I model can readily understand. The final image is then synthesized by composing the model’s outputs for each sub-prompt, a technique made possible by the insight that diffusion models can be treated as composable energy-based models.

162 3.1 PRELIMINARIES: COMPOSING DIFFUSION MODELS
163

164 **Text-to-Image Diffusion Generation.** A T2I diffusion model, $\epsilon_\theta(\mathbf{x}_t, t, \mathbf{c})$, generates an image
165 \mathbf{x} conditioned on a text prompt \mathbf{c} by progressively denoising the input to decreased noise levels
166 $\{\sigma_t\}_{t=1}^T$ (Ho et al., 2020). The model is trained to predict the noise ϵ_t added to an image \mathbf{x} at
167 timestep t . Generation begins with pure Gaussian noise, $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \sigma_T^2 \mathbf{I})$, which the model
168 iteratively refines by subtracting the predicted noise at each step. This process corresponds to score-
169 based modeling (Song et al., 2020b), where the predicted noise is proportional to the time-dependent
170 score function (the gradient of the log likelihood): $\epsilon_\theta \propto -\nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t | \mathbf{c})$. Generation can thus be
171 viewed as a form of Langevin dynamics (Du & Mordatch, 2019),

$$172 \quad \mathbf{x}_{t-1} = \mathbf{x}_t + \frac{\sigma_t^2}{2} \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t) + \sqrt{\sigma_t} \epsilon. \quad (1)$$

174 where the learned score function at each timestep gradually guides a sample toward a high-density
175 region of the target data distribution $p(\mathbf{x} | \mathbf{c})$.
176

177 **Energy-Based Compositionality.** The score-based view of diffusion models reveals a connection to
178 Energy-Based Models (EBMs). An EBM defines a probability density via an unnormalized energy
179 function, $p_\theta(\mathbf{x}) \propto e^{-E_\theta(\mathbf{x})}$, and uses the gradient of this energy function with Langevin dynamics
180 for generation. A key advantage of EBMs is their inherent compositionality; sampling from a product
181 of multiple data distributions is as simple as summing their energy functions:

$$182 \quad p_{compose}(\mathbf{x}) \propto \prod_i p_\theta^i(\mathbf{x}) \propto e^{-\sum_i E_\theta^i(\mathbf{x})}, \quad (2)$$

184 yielding sample with high-likelihood across all constituent EBMs. As demonstrated by prior work,
185 this logic can be extended to diffusion generation by drawing a line between the diffusion model
186 and the gradient of an implicit energy function, $\epsilon_\theta \approx \nabla_{\mathbf{x}_t} E_\theta(\mathbf{x}_t)$. To sample from the product of
187 two distributions conditioned on \mathbf{c}_1 and \mathbf{c}_2 , one can simply sum their respective noise predictions,
188

$$189 \quad \epsilon_{composed}(\mathbf{x}_t, t) = \epsilon_\theta(\mathbf{x}_t, t, \mathbf{c}_1) + \epsilon_\theta(\mathbf{x}_t, t, \mathbf{c}_2) \propto \nabla_{\mathbf{x}_t} \log (p_t(\mathbf{x}_t | \mathbf{c}_1) \cdot p_t(\mathbf{x}_t | \mathbf{c}_2)), \quad (3)$$

190 in the score function of Equation 1. This operation, known as **concept conjunction** (Liu et al., 2022a),
191 forms a new composite score that guides the generation process toward an image satisfying both
192 prompts simultaneously. Notably, the synthesized sample won't have to be presented in either of the
193 training data in $p(\mathbf{x} | \mathbf{c}_1)$ and $p(\mathbf{x} | \mathbf{c}_2)$. This principle allows us to construct novel scenes from familiar
194 concepts, laying the cornerstone for our approach.
195

196 3.2 COMPOSITIONAL LONG-TEXT-TO-IMAGE GENERATION
197

198 The domain gap in input prompts is the core challenge of long-text-to-image generation. A descriptive
199 paragraph, \mathbf{C} , is fundamentally an out-of-distribution input for pre-trained T2I model $\epsilon_\theta(\mathbf{x}_t, t, \mathbf{c})$.
200 These models are trained on vast datasets like LAION (Schuhmann et al., 2022), which is dominated
201 by short, label-like captions \mathbf{c} . Therefore the models primarily learn to map keywords and short-
202 phrases to visual features, lack the ability of narrative comprehension. Our central hypothesis is
203 that the complex conditional distribution $p(\mathbf{x} | \mathbf{C})$ described by the paragraph \mathbf{C} can be effectively
204 approximated by factorizing into a set of simpler distributions: $p(\mathbf{x} | \mathbf{C}) \propto \prod_i^N p(\mathbf{x} | \mathbf{c}_i)$, where each
205 constituent distribution $p(\mathbf{x} | \mathbf{c}_i)$ is conditioned on a sub-prompt \mathbf{c}_i . Intuitively, a paragraph can be
206 abstracted as a collection of phrases with each capturing a distinct feature. Leveraging the concept
207 conjunction principle in Equation 3, we can construct a long-text-to-image generation model by
208 composing a same pre-trained T2I model ϵ_θ with different sub-prompts:
209

$$210 \quad \epsilon_\theta(\mathbf{x}_t, t, \mathbf{C}) = \sum_{i=1}^N \epsilon_\theta(\mathbf{x}_t, t, \mathbf{c}_i). \quad (4)$$

212 This composite score leads to an image that is collectively described by the sub-prompts $\{\mathbf{c}_1, \dots, \mathbf{c}_N\}$.
213 Because the sub-prompts remain semantically concise, they can be readily processed by the pre-
214 trained T2I model, avoiding resource-intensive fine-tuning. Furthermore, unlike projection-based
215 methods that suffer from information loss, our factorized approach maintains high fidelity to the
original paragraph by distributing its information across multiple sub-prompts $\{\mathbf{c}_1, \dots, \mathbf{c}_N\}$.
216

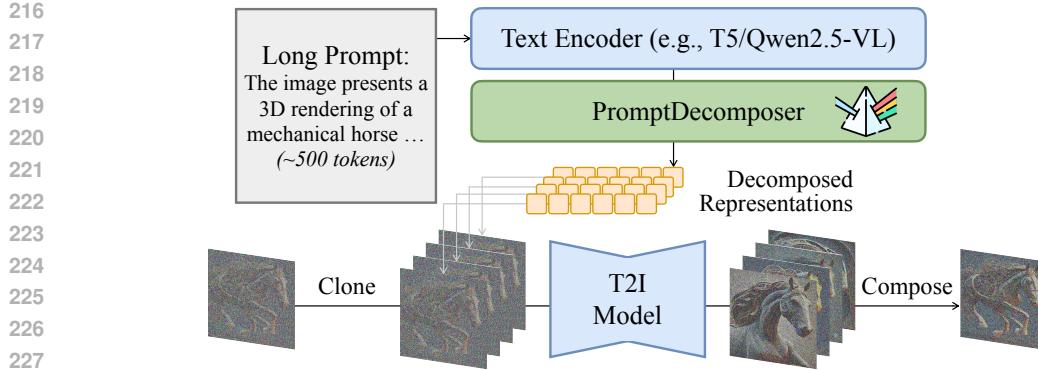


Figure 3: **Compositional Long-Text-to-Image Generation Model.** The input long-prompt is first encoded by the pre-trained T2I model’s text-encoder. Our PromptComposer module then extracts the decomposed sub-prompt representations from the encoded long-prompt. Current noisy latent is first cloned into a batch according to the number of decomposed sub-prompts and parallelly processed by the T2I model. Finally, the noise predictions conditioned on different sub-prompts are merged into a composed diffusion step through concept conjunction.

3.3 UNSUPERVISED LONG-PROMPT DECOMPOSITION

To obtain the sub-prompts $\{c_1, \dots, c_N\}$, one appealing option is to utilize LLMs to analyze and break down the paragraph. However, Equation 3 lacks explicit spatial control over each sub-prompt input, resulting in global context inconsistency and local concept blending. We propose to learn such decomposition directly in the textual representation space via a trainable *PromptComposer* (ψ) module. The T2I model utilizes the module’s output to form the noise prediction as per Equation 4. Crucially, the entire composed model is trained end-to-end in an unsupervised manner, using the diffusion loss calculated on the composite score,

$$\mathcal{L}(\psi) = \mathbb{E}_{x,t} \left[\left| \sum_{i=1}^N \epsilon_{\theta}(x_t, t, c_i) - \epsilon \right|^2 \right], \psi(C_{LM}) = \{c_1, \dots, c_N\}. \quad (5)$$

By training on the frozen T2I model, the PromptComposer learns to distribute the information into sub-prompts $\{c_i\}$ that are explicitly optimized for the compositional generation process in Equation 3. This end-to-end training allows the learned decomposition to effectively capture spatial relationships and global attributes (e.g., lighting, style) that are critical for consistency but lost in linguistic splitting.

3.4 IMPLEMENTATION DETAILS

Our compositional approach functions as a general framework to generalize T2I models to long-prompts outside training data distributions. Here we present two distinct PromptComposer module designs tailored to the type of text-encoder employed by the underlying T2I model.

Bidirectional Text-Encoder. For full attention Transformer text-encoder (Vaswani et al., 2017) like the T5 (Raffel et al., 2020) in Stable Diffusion-3.5 (Peebles & Xie, 2023) or FLUX (Batifol et al., 2025), we implement PromptComposer as a Perceiver network (Jaegle et al., 2021). As illustrated in Figure 10, since the text-encoder outputs a fixed length hidden state, we employ N learnable vectors to query the encoded long-prompt C_{LM} through multiple cross-attention layers. These queries thus learn to extract distinct semantic components from the global context, projecting them into sub-prompt representations optimized for compositional generation.

Decoder-only Language Model. For T2I models built upon decoder-only LLMs, such as Qwen-Image (Wu et al., 2025a) with Qwen2.5-VL (Bai et al., 2025), we leverage the LLM’s inherent reasoning capabilities to generate decomposed representations directly. As illustrated in Figure 11, we replicate the input tokens N times and prepend a trainable component token $\langle|\text{comp}_i|\rangle$ to each segment i . These N segments are concatenated into a single contiguous input sequence, allowing the model to reason over the full context while generating distinct representations for each component. The final output is chunked into N pieces corresponding to the sub-prompt representations.

270 Table 1: **Evaluations on the DetailMaster Benchmark** (Jiao et al., 2025). We perform comparisons
 271 within two groups: Long-Text-to-Image generation methods built on Stable Diffusion-1.5, and state-
 272 of-the-art T2I models including SDXL, Stable Diffusion-3.5, FLUX and Qwen-Image. Numbers are
 273 reported in percentage accuracies and the best results in each group are marked in **Bold**.

274 Model	275 Character Presence	276 Character Attributes			277 Character Location	278 Scene Attributes			279 Spatial Relation
		280 Object	281 Animal	282 Person		283 Background	284 Light	285 Style	
Long-Text-to-Image Methods Built on SD-1.5									
277 StableDiffusion-1.5	19.12	84.40	76.62	80.73	8.66	24.53	69.27	84.47	7.18
278 LLM4GEN	19.43	82.99	78.00	81.67	9.48	28.32	68.08	50.28	8.04
279 LLM Blueprint	18.69	81.40	76.25	76.53	18.40	56.69	83.28	67.07	14.16
280 ELLA	25.57	82.38	78.75	80.33	15.04	69.15	83.12	44.17	15.17
281 LongAlign	25.88	85.54	83.28	83.85	14.12	78.60	87.33	70.49	21.24
282 PromptDecomposer	28.21	84.78	83.24	84.54	16.57	82.45	92.48	64.10	20.88
283 PromptDecomposer _(w/tuning)	25.99	86.05	86.21	86.16	16.21	90.96	91.16	84.93	24.47
State-of-the-art T2I Models with Modern Architectures									
284 ParaDiffusion _(SDXL)	28.63	87.40	85.34	84.66	20.62	84.83	93.59	72.16	25.95
285 StableDiffusion-3.5	39.01	87.60	87.57	89.55	31.91	93.82	92.53	95.31	39.36
286 FLUX-Dev.	42.02	91.14	89.61	90.23	38.18	95.73	96.91	95.28	44.94
287 Qwen-Image	40.46	90.21	89.13	91.29	40.14	92.00	96.93	91.53	47.02
288 PromptDecomposer _(Qwen)	46.84	91.55	90.36	93.53	41.49	94.62	97.32	95.62	49.23

288 Table 2: **Quantitative comparisons of generated image quality**. We employ various models to
 289 assess images based on semantic alignment and human aesthetics. Best results are marked in **Bold**.

290 Model	291 CLIPScore	292 DenScore	293 PickScore	294 VQAScore	295 HPSv3
Long-Text-to-Image Methods					
292 ELLA	30.89	20.34	20.72	73.30	6.78
293 LongAlign	33.43	22.35	24.43	82.01	13.26
294 PromptDecomposer _(SD1.5)	32.56	22.24	24.50	83.22	13.03
State-of-the-art T2I Models					
296 StableDiffusion-3.5	34.97	22.37	21.63	86.12	13.39
297 FLUX-Dev.	33.30	22.56	21.89	86.19	13.17
298 Qwen-Image	33.85	22.25	20.98	85.02	8.56
299 PromptDecomposer _(Qwen)	34.12	22.93	22.04	86.21	12.05

300 4 EXPERIMENT

301 4.1 EXPERIMENTAL SETUP

304 **Training.** We implement our compositional approach on two pre-trained T2I models to demonstrate
 305 generalizability across varying architectures. PromptDecomposer-SD1.5 is built on the widely-used
 306 Stable Diffusion-1.5 (SD-1.5) (Rombach et al., 2022) backbone. Consistent with prior work (Hu et al.,
 307 2024), we replace the original CLIP text-encoder with T5-XL (Raffel et al., 2020) to accommodate the
 308 token length of descriptive paragraphs. We also develop a PromptDecomposer on Qwen-Image (Wu
 309 et al., 2025a) to validate our approach on a large-scale modern architecture.

310 We conduct training on the dataset provided in LongAlign (Bai et al., 2024). This dataset comprises ap-
 311 proximately 2 million images re-captioned by LLaVA-Next (Liu et al., 2024) or ShareCaptioner (Chen
 312 et al., 2024) to ensure descriptive textual input. We adopt an AdamW optimizer (Loshchilov & Hutter,
 313 2017) with batch size 192 and learning rate $1.0e^{-5}$. This training takes about 20 hours on 4
 314 A100 GPUs. For PromptDecomposer-Qwen, we employ LoRA fine-tuning on the text encoder for
 315 approximately 2,500 steps with batch size 24 and learning rate $5.0e^{-5}$.

316 **Evaluation.** We adopt the DetailMaster benchmark (Jiao et al., 2025) to comprehensively assess long-
 317 text-to-image performance. DetailMaster is a challenging benchmark consists of prompts with 284.89
 318 tokens on average, evaluating generation quality across five dimensions. Specifically, **Character**
 319 **Presence** verifies how many characters in the prompt are successfully generated, and **Character**
 320 **Attributes** measures whether their features (e.g., color, shape) match the text description, with the
 321 accuracies computed separately for object, animal, and person categories. **Character Locations**
 322 checks if these characters are positioned correctly. **Scene Attributes** evaluates adherence to overall
 323 scenic instructions in terms of background, lighting, and style. Finally, **Spatial Relation** quantifies
 the model’s ability to reflect the specified spatial and interactive relationships between the characters.

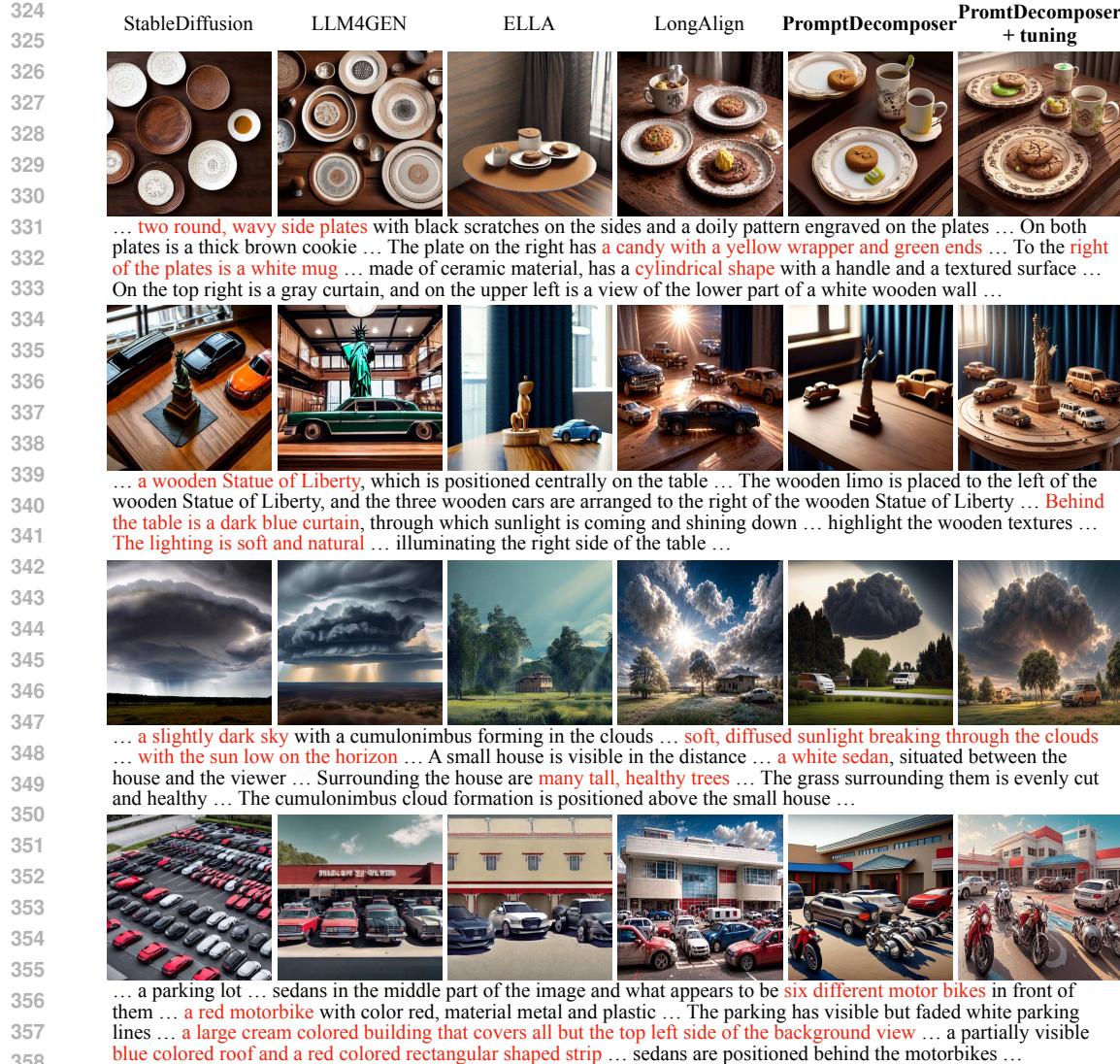


Figure 4: **Long-Text-to-Image Generation Samples.** Our PromptDecomposer accurately captures the attributes and spatial relationships of objects described in the complex scene, with the image quality further enhanced by slightly tuning the T2I model on the decomposed sub-prompts.

4.2 LONG-TEXT-TO-IMAGE GENERATION

Long-prompt Following. Table 1 summarizes the benchmark evaluations of DetailMaster, where we examine the effectiveness of our method against specialized Long-Text-to-Image generation methods and SOTA baselines. PromptDecomposer-SD1.5 outperforms other methods by **2.33% on Character Presence** and **1.53% on Character Location**, demonstrating the efficiency of our PromptDecomposer in processing descriptive paragraphs. Moreover, since the decomposed sub-prompts remain in the pre-trained model’s expected input domain, our method can be used in conjunction with other tuning methods to further enhance the results. Our model outperforms LongAlign across all metrics by 4.65% on average using the same tuning method.

Enhancing SOTA Models. Despite employing powerful text-encoders (eg., T5-XXL or Qwen2.5-VL) in modern architectures, Table 1 also shows that more than a half of the characters described in the prompt are completely omitted by even the strongest FLUX model. Our compositional method can further enhance the performance of these SOTA models. For Qwen-Image that leverages an MLLM as its text-encoder, our method improves the **Character Presence by 6.38%** and **Character Attributes by 1.60%** on average. This highlights the long-text-to-image generation as a fundamental challenge originates from the scarcity of long-captioned training data, instead of the text-encoder.

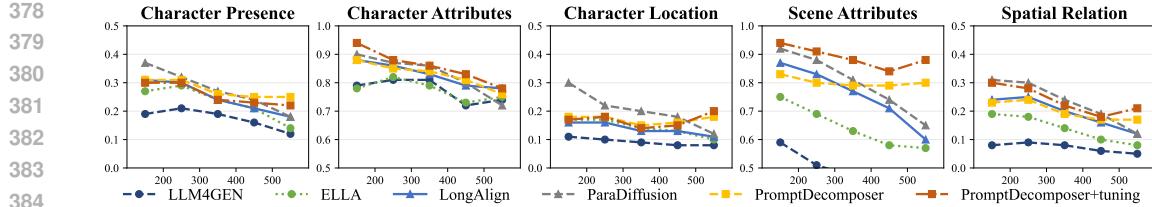


Figure 5: **Generalization to Longer Prompts.** Tuning-based methods (triangle mark) struggle with longer prompts unseen during fine-tuning, and projection-based (round mark) methods suffer from information loss. By decomposing the long input into sub-prompts, our compositional methods (square mark) maintain robust performance across various input lengths.

Figure 6: **Compositional Generalization.** Images are generated from a same prompt rewritten into various lengths. Our method consistently captures the key elements from overwhelmed information.

Image Generation Quality. We employ preference models to assess the generated image quality. We choose three CLIP-based models (CLIPScore (Hessel et al., 2021), DenScore (Bai et al., 2024), PickScore (Kirstain et al., 2023)) to evaluate overall text-image alignment, as well as more powerful MLLMs (VQAScore (Lin et al., 2024), HPSv3 (Ma et al., 2025)) for finer analysis of visual details. Quantitative comparisons are presented in Table 2. On a SD-1.5 backbone, PromptDecomposer-SD1.5 matches the quality of the reward-tuning model LongAlign while consistently surpassing ELLA. Crucially, our approach extends this advantage to SOTA models. **PromptDecomposer-Qwen** achieves the best results among modern baselines on DenScore (22.93), PickScore (22.04), and VQAScore (86.21), outperforming strong baselines including SD-3.5 and FLUX-Dev. Notably, our compositional strategy drastically improves the base Qwen-Image model on **HPSv3 from 8.56 to 12.05**, confirming that our framework effectively resolves the capacity bottleneck in modern foundation models to enhance long-prompt adherence. We present quantitative comparisons in Figure 4 & 7. PromptDecomposer-Qwen successfully interprets the intricate relationships and attributes among six teddy bears while other SOTA models struggling.

4.3 IMPROVED GENERALIZATION TO LONGER PROMPTS

T2I models are known to generalize poorly with long-prompts because of their scarcity in training data. To evaluate such generalization, we analyze the compared long-text-to-image models’ performance according to input prompt length. Specifically, we partition test prompts in DetailMaster into five bins: <200 tokens, 200–300, 300–400, 400–500 and >500 tokens. As shown in Figure 5, LongAlign performs well on prompts under 300 tokens, which constitute the majority of its training data. However, its performance degrades sharply on longer prompts, dropping by up to 30% for those over 500 tokens. Although this degradation is mitigated in projection-based methods, their capacities are constrained by the fixed context window. In contrast, PromptDecomposer maintains robust performance across all prompt lengths despite being trained on the same dataset, achieving an average improvement of **7.4%** on prompts exceeding 500 tokens. This result highlights the improved generalization endowed by compositional generative modeling.

Figure 6 provides a visualization of this improved generalization. We progressively expand a base prompt with more details and compare the generated images. As prompt lengthens, elements such as

432
433
434
435
436
437
438
439
440
441
442
443

... a black figure with no discernible age and no visible clothing details sitting under a tree and looking directly at another silhouette of a humanoid figure blowing bubbles with a bubble wand, ... The black figure sitting under the tree is placed in the lower left part of the image with a fedora style hat on with their elbows resting on their bent knees, ... multicolored flowers and birds in various areas of the branches ... a concrete area with a pool, where a lifeguard is seated on an elevated chair ... The scene is framed by a black metal fence on the right side ...

The image consists of four separate photographs arranged horizontally. Each photo shows a collection of plush teddy bears and small pumpkins on a light-colored wooden desk. The bears are of various colors including yellow, brown, and white, and some are wearing small purple bows. The pumpkins are orange and have different faces. In the first photo, there are four bears and two pumpkins. In the second, there are five bears and three pumpkins. In the third, there are four bears and two pumpkins. In the fourth, there are five bears and three pumpkins. A computer monitor and keyboard are visible in the background of the first and third photos, while a lamp is visible in the background of the fourth photo.

... we can see a yellow color teddy bear with a small teddy bear in front of him ... To the left of the yellow teddy bear, there is a green teddy bear with a pumpkin design ... Next to the green teddy bear, there is a brown teddy bear. On the right side, we can also see a pink color teddy bear. In the lower left part of the image, there is a white teddy bear with a purple ribbon ... In the lower right part of the image, there is a small white teddy bear with a red and yellow dress ... In the background, we can see a computer desktop and a black mouse beside it, suggesting an indoor setting, likely a workspace or home office ...

... six masks of different types, while lights and signs reflect off the glass that covers it ... The first mask on the top left is a white Japanese traditional mask with a small black and red bow on the top of its head, thin black eyebrows, two small red dots on the cheeks, and curvy red lips in a smile ... upper right part of the image, is of an old man with dark, rough skin, long scraggly eyebrows and a blonde mustache ... in the middle, in the lower part of the image, is a vintage Chinese Beijing Opera mask ... gold with an open mouth that has been twisted at the bottom to create a large, thin lip ...

Figure 7: Image Samples from SOTA Models. Our PromptDecomposer can further enhance the long-prompt following ability of the SOTA Qwen-Image to accurately render complex scenes.

466
467
468
469
470
471
472
473
474
475
476
477
478

Figure 8: Semantic Decoupling with Finer Decomposition Granularity. We visualize the recombination and individual generation results of each sub-prompt by using different number of sub-prompts (N). A smaller N requires each sub-prompt to encode more information and incurs semantic coupling, while a large N allowing each sub-prompt to focus on different aspects.

483
484
485

the house and the yard gradually vanish in LongAlign’s outputs. Our model, however, successfully integrates the additional details without overwriting existing concepts, consistently rendering all the key elements regardless of prompt length.

486 4.4 ABLATION STUDY
487

488 **Number of Sub-prompts.** To investigate the impact of decomposition granularity, we conduct an
489 ablation study on the number of sub-prompts (N). We train two additional PromptDecomposer with
490 N=3 and N=5, alongside our primary version with N=4.

491 We quantitatively compare these variants’ long-prompt generalization ability
492 in Figure 9 (solid bars), which
493 demonstrates a clear improvement
494 from more decomposed sub-prompts.
495 We further visualize this trend in Fig-
496 ure 8, where we can see a finer-
497 grained decomposition (N=5) effec-
498 tively reduces the semantic load on
499 each sub-prompt. Conversely, smaller
500 N forces each sub-prompt to encode
501 more information, leads to individual
502 generation with high resemblance to
503 the composite output. This is also con-
504 firmed in their similarity scores to the
505 input long-prompt: a repeated pattern
506 can be observed in the similarity ma-
507 trix of N=3, suggesting a similar con-
508 tent in sub-prompts a diminished ef-
509 fect of decomposition.

510 **Compositionality.** We design non-compositional baselines to isolate the benefit of composition.
511 These baselines are created by training PromptDecomposer with one learnable query which cor-
512 responds to an unitary long-text-to-image generation model. We increase the query vector’s size
513 accordingly to match the total parameter counts. As illustrated in Figure 9, performance of the
514 unitary models (hatched bars) degrades from their compositional counterparts except the case of 3
515 sub-prompts decomposition. This variant has a diminished compositional effect due to the coarse
516 decomposition (see Section 4.3). Consequently, it enjoys less of the benefit from compositional
517 generation. We also compare the performance gain after tuning in Table 3, where we can see tuning
518 the composed model is more effective. This is because the pre-trained T2I model is more familiar
519 with the decomposed sub-prompts, thus it takes less training to align to these inputs.

520 5 CONCLUSION
521

523 In this paper, we address the long-prompt generalization problem in T2I models. This fundamental
524 challenge originates from the scarcity of long-captioned images in training data, which hinders T2I
525 models from learning to render the complex narrative flow of a descriptive paragraph.

526 We propose a compositional approach that leverages pre-trained T2I models’ expertise on concise
527 prompts to extend their capacities. We introduce a trainable PromptDecomposer module to directly
528 extract and decompose sub-prompts in the textual representation space. Crucially, this module is
529 trained in an unsupervised manner on the frozen T2I model. By distributing the rich semantic load
530 across multiple sub-prompts, our approach demonstrates superior adherence to detailed instructions
531 and enhanced generalization to increased prompt lengths. Empirically, PromptDecomposer outper-
532 forms other long-text-to-image generation methods with a 7.4% improvement on the longest prompts
533 in the DetailMaster benchmark. [Furthermore, our approach is also applicable to modern architectures, with non-trivial improvements on the Qwen-Image model which employs an LLM text-encoder.](#)

535 The primary limitation of our method lies in the concept conjunction lacking explicit spatial control
536 over the generation process. As a result, our method remains data-driven for decomposing the
537 generative distributions. Future work could explore more advanced composition approaches. [Another
538 promising direction is to decompose the input prompts adaptively according to their complexity.](#)
539 [Although we find a fixed decomposition granularity is robust in the normal-length prompts, using
fewer components for concise prompts could improve the efficiency of compositional generation.](#)

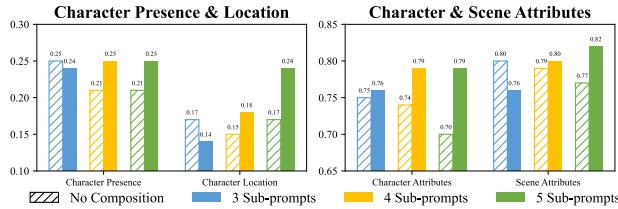


Figure 9: **Improved Generalization from Composition.** We compare model generalization of different numbers of sub-prompts in decomposition (solid bars), as well as the same capacity versions without composition (hatched bars).

Table 3: Ablation Study.

	Character Presence	Character Attributes	Character Location	Scene Attributes	Spatial Relation
w/o Composition	28.98	83.63	16.16	78.92	20.97
w/ Composition	29.49	82.97	17.10	85.34	22.22
Composition via Split	14.01	72.48	6.44	58.69	5.18

540
541
LARGE LANGUAGE MODELS USAGE DISCLOSURE

542 LLMs were employed in a limited capacity for writing optimization. Specifically, the authors
 543 provided their own draft text to the LLM, which in turn suggested improvements such as corrections
 544 of grammatical errors, clearer phrasing, and removal of non-academic expressions. LLMs were also
 545 used to inspire possible titles for the paper. While the system provided suggestions, the final title
 546 was decided and refined by the authors and is not directly taken from any single LLM output. In
 547 addition, LLMs were used as coding assistants during the implementation phase. They provided
 548 code completion and debugging suggestions, but all final implementations, experimental design,
 549 and validation were carried out and verified by the authors. Importantly, LLMs were NOT used
 550 for generating research ideas, designing experiments, or searching and reviewing related work. All
 551 conceptual contributions and experimental designs were fully conceived and executed by the authors.
 552

553
ETHICS STATEMENT

554 This research was conducted in adherence to the ICLR 2026 Code of Ethics. We specifically address
 555 the following ethical considerations:

- 556 • **Data Usage:** Our work utilizes publicly available datasets that have undergone anonymization
 557 to protect individual privacy. We have handled all data in accordance with their specified
 558 terms of use.
- 559 • **Model Bias:** Our method builds upon existing open-source Text-to-Image models. We
 560 acknowledge that these foundational models may reflect societal biases present in their
 561 training data. While a full audit of these biases is beyond the scope of our work, we highlight
 562 the importance of downstream evaluation for fairness before any real-world application of
 563 our method.
- 564 • **Societal Impact:** We recognize that Text-to-Image technology has the potential for misuse,
 565 such as the generation of misinformation. The aim of our research is to contribute positively
 566 to creative applications. We advocate for the responsible development of generative models
 567 and support community-wide efforts to establish safeguards against potential harms.

568
569
REPRODUCIBILITY STATEMENT

570 To ensure the reproducibility of our results, we provide our source code of the implementation of our
 571 proposed method in the supplementary material. All critical hyperparameters, training configurations
 572 and datasets details for our models can be found in Section 4.1. The computational infrastructure
 573 used for our experiments is also detailed in this section.

574
575
REFERENCES

576 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 577 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025.
 578 5

581 Yushi Bai, Xin Lv, Jiajie Zhang, Yuze He, Ji Qi, Lei Hou, Jie Tang, Yuxiao Dong, and Juanzi
 582 Li. Longalign: A recipe for long context alignment of large language models. *arXiv preprint*
 583 *arXiv:2401.18058*, 2024. 1, 6, 8, 16

585 Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel. Multidiffusion: Fusing diffusion paths for
 586 controlled image generation.(2023). *URL https://arxiv. org/abs/2302.08113*, 2023. 3

588 Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril Diagne, Tim Dockhorn,
 589 Jack English, Zion English, Patrick Esser, Sumith Kulal, et al. Flux. 1 kontext: Flow matching for
 590 in-context image generation and editing in latent space. *arXiv e-prints*, pp. arXiv–2506, 2025. 3, 5

591 Arwen Bradley, Preetum Nakkiran, David Berthelot, James Thornton, and Joshua M Susskind.
 592 Mechanisms of projective composition of diffusion models. *arXiv preprint arXiv:2502.04549*,
 593 2025. 3

594 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Conghui He, Jiaqi Wang, Feng Zhao, and Dahua Lin.
 595 Sharegpt4v: Improving large multi-modal models with better captions. In *European Conference*
 596 *on Computer Vision*, pp. 370–387. Springer, 2024. 6

597 Kevin Clark, Paul Vicol, Kevin Swersky, and David J Fleet. Directly fine-tuning diffusion models on
 598 differentiable rewards. *arXiv preprint arXiv:2309.17400*, 2023. 16

599 Yilun Du and Leslie Kaelbling. Compositional generative modeling: A single model is not all you
 600 need. *arXiv preprint arXiv:2402.01103*, 2024. 2, 3

601 Yilun Du and Igor Mordatch. Implicit generation and modeling with energy based models. *Advances*
 602 *in neural information processing systems*, 32, 2019. 4

603 Yilun Du, Shuang Li, and Igor Mordatch. Compositional visual generation with energy based models.
 604 *Advances in Neural Information Processing Systems*, 33:6637–6647, 2020. 3

605 Yilun Du, Conor Durkan, Robin Strudel, Joshua B Tenenbaum, Sander Dieleman, Rob Fergus, Jascha
 606 Sohl-Dickstein, Arnaud Doucet, and Will Sussman Grathwohl. Reduce, reuse, recycle: Composi-
 607 tional generation with energy-based diffusion models and mcmc. In *International conference on*
 608 *machine learning*, pp. 8489–8510. PMLR, 2023. 2, 3

609 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 610 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
 611 high-resolution image synthesis. In *Forty-first international conference on machine learning*, 2024.
 612 3, 15

613 Timur Garipov, Sebastiaan De Peuter, Ge Yang, Vikas Garg, Samuel Kaski, and Tommi Jaakkola.
 614 Compositional sculpting of iterative generative processes. *Advances in neural information process-
 615 ing systems*, 36:12665–12702, 2023. 3

616 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-
 617 free evaluation metric for image captioning. *arXiv preprint arXiv:2104.08718*, 2021. 8

618 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 619 *neural information processing systems*, 33:6840–6851, 2020. 3, 4

620 Xwei Hu, Rui Wang, Yixiao Fang, Bin Fu, Pei Cheng, and Gang Yu. Ella: Equip diffusion models
 621 with llm for enhanced semantic alignment. *arXiv preprint arXiv:2403.05135*, 2024. 1, 3, 6, 15

622 Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira.
 623 Perceiver: General perception with iterative attention. In *International conference on machine*
 624 *learning*, pp. 4651–4664. PMLR, 2021. 5

625 Qirui Jiao, Dao yuan Chen, Yilun Huang, Xika Lin, Ying Shen, and Yaliang Li. Detailmaster: Can
 626 your text-to-image model handle long prompts? *arXiv preprint arXiv:2505.16915*, 2025. 1, 3, 6

627 Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-
 628 a-pic: An open dataset of user preferences for text-to-image generation. *Advances in neural*
 629 *information processing systems*, 36:36652–36663, 2023. 8, 16

630 Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide Xia, Graham Neubig, Pengchuan Zhang, and
 631 Deva Ramanan. Evaluating text-to-visual generation with image-to-text generation. In *European*
 632 *Conference on Computer Vision*, pp. 366–384. Springer, 2024. 8

633 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 634 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022. 3

635 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 636 tuning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 637 pp. 26296–26306, 2024. 6

638 Mushui Liu, Yuhang Ma, Zhen Yang, Jun Dan, Yunlong Yu, Zeng Zhao, Zhipeng Hu, Bai Liu, and
 639 Changjie Fan. Llm4gen: Leveraging semantic representation of llms for text-to-image generation.
 640 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 5523–5531, 2025.
 641 1, 3

648 Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B Tenenbaum. Compositional visual
 649 generation with composable diffusion models. In *European conference on computer vision*, pp.
 650 423–439. Springer, 2022a. 3, 4

651

652 Nan Liu, Yilun Du, Shuang Li, Joshua B Tenenbaum, and Antonio Torralba. Unsupervised composi-
 653 tional concepts discovery with text-to-image generative models. In *Proceedings of the IEEE/CVF*
 654 *International Conference on Computer Vision*, pp. 2085–2095, 2023. 3

655 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 656 transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022b. 3

657

658 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 659 *arXiv:1711.05101*, 2017. 6

660

661 Yuhang Ma, Xiaoshi Wu, Keqiang Sun, and Hongsheng Li. Hpsv3: Towards wide-spectrum human
 662 preference score. *arXiv preprint arXiv:2508.03789*, 2025. 8

663 Divyat Mahajan, Mohammad Pezeshki, Charles Arnal, Ioannis Mitliagkas, Kartik Ahuja, and Pascal
 664 Vincent. Compositional risk minimization. *arXiv preprint arXiv:2410.06303*, 2024. 3

665

666 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 667 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023. 3, 5

668

669 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 670 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 671 models from natural language supervision. In *International conference on machine learning*, pp.
 672 8748–8763. PMLR, 2021. 3

673

674 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 675 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 676 transformer. *Journal of machine learning research*, 21(140):1–67, 2020. 5, 6

677

678 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 679 conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 1(2):3, 2022.
 680 3

681

682 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 683 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 684 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022. 1, 3, 6

685

686 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 687 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
 688 open large-scale dataset for training next generation image-text models. *Advances in neural
 689 information processing systems*, 35:25278–25294, 2022. 4

690

691 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 692 learning using nonequilibrium thermodynamics. In *International conference on machine learning*,
 693 pp. 2256–2265. pmlr, 2015. 3

694

695 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv*
 696 *preprint arXiv:2010.02502*, 2020a. 16

697

698 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 699 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint*
 700 *arXiv:2011.13456*, 2020b. 4

701

702 Jocelin Su, Nan Liu, Yanbo Wang, Joshua B Tenenbaum, and Yilun Du. Compositional image
 703 decomposition with diffusion models. *arXiv preprint arXiv:2406.19298*, 2024. 3

704

705 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 706 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing*
 707 *systems*, 30, 2017. 5

702 Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng-ming Yin, Shuai
703 Bai, Xiao Xu, Yilei Chen, et al. Qwen-image technical report. *arXiv preprint arXiv:2508.02324*,
704 2025a. 5, 6

705 Weijia Wu, Zhuang Li, Yefei He, Mike Zheng Shou, Chunhua Shen, Lele Cheng, Yan Li, Tingting
706 Gao, and Di Zhang. Paragraph-to-image generation with information-enriched diffusion model.
707 *International Journal of Computer Vision*, pp. 1–22, 2025b. 1

708 Xiaoshi Wu, Keqiang Sun, Feng Zhu, Rui Zhao, and Hongsheng Li. Human preference score:
709 Better aligning text-to-image models with human preference. In *Proceedings of the IEEE/CVF*
710 *International Conference on Computer Vision*, pp. 2096–2105, 2023. 16

711 Sherry Yang, Yilun Du, Bo Dai, Dale Schuurmans, Joshua B Tenenbaum, and Pieter Abbeel. Probabilistic
712 adaptation of black-box text-to-video models. In *The Twelfth International Conference on*
713 *Learning Representations*, 2024. 3

714 Zhutian Yang, Jiayuan Mao, Yilun Du, Jiajun Wu, Joshua B Tenenbaum, Tomás Lozano-Pérez,
715 and Leslie Pack Kaelbling. Compositional diffusion-based continuous constraint solvers. *arXiv*
716 *preprint arXiv:2309.00966*, 2023. 3

717 Shihao Zhao, Shaozhe Hao, Bojia Zi, Huaizhe Xu, and Kwan-Yee K Wong. Bridging different lan-
718 guage models and generative vision models for text-to-image generation. In *European Conference*
719 *on Computer Vision*, pp. 70–86. Springer, 2024. 3

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

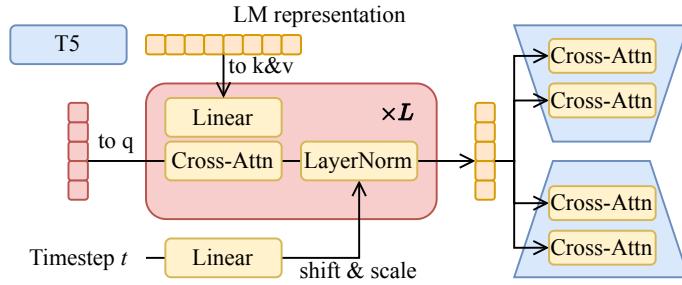


Figure 10: **Architecture Details of our PromptDecomposer.** Our PromptDecomposer is built on the efficient model design of ELLA (Hu et al., 2024), which use a learnable vector to query the long-prompt representation from a LM (T5) through L transformer blocks. The final output is then used as the textual condition in the pre-trained T2I model.

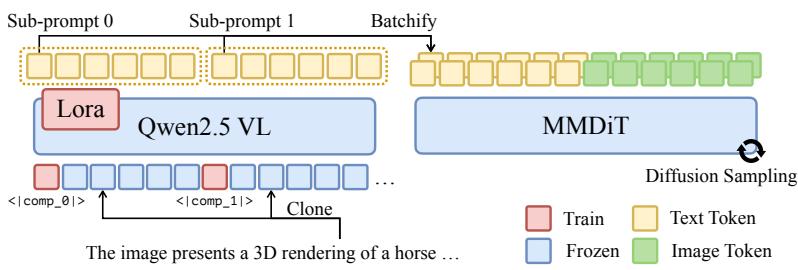


Figure 11: **Applying PromptDecomposer on Qwen-Image.** We leverage the powerful text encoders in modern T2I architecture by applying LoRA and tune these text encoders to directly output decomposed representations using Equation 5.

A IMPLEMENTATION DETAILS

A.1 PROMPTDECOMPOSER ARCHITECTURE

Our PromptDecomposer borrows the model design from ELLA (Hu et al., 2024), which contains a series of transformer blocks with a learnable query and the LM-encoded long-prompt as key-value. This architecture can efficiently extract textual condition for pre-trained T2I model from the intricate LM output. Furthermore, ELLA also introduces a time-aware adaptive layer normalization layer. This component leverages the diffusion timestep to modulate the hidden features within each transformer block, as illustrated in Figure 10. The temporal information facilitates the model to extract fine-grained textual conditions that are specific to different stages of the denoising process. The final output vector from these blocks is then sent to the cross-attention layers in T2I model, serving as the textual condition. We inherit most of their design in our PromptDecomposer, except that we remove the time-aware layer normalization on the query inputs which we found leads to mode collapse in the learnable vectors. For PromptDecomposer-SD1.5, we use a total of 6 transformer blocks and 64 tokens in each of the N learnable queries. As for PromptDecomposer-SD3.5, we add an additional cross-attention layer in each transformer block, as illustrated in Figure 3. This additional layer accommodate the extra textual condition to handle the multi text-encoder in StableDiffusion-3.5 (Esser et al., 2024). We only use 3 transformer blocks to balance the overall parameter count in PromptDecomposer-SD3.5, and 128 tokens in each learnable query.

This design requires the hidden dimension of PromptDecomposer to match that of the T2I model's cross-attention layers. When adapting our method to larger T2I models like StableDiffusion 3.5, which features a 4096-dimensional cross-attention layer, this requirement leads to a substantial increase in module size.

As a workaround, we can amortize the parameters in the PromptDecomposer module by leveraging the capacities of the powerful text encoders in modern T2I architectures. For T2I models built on decoder-only LLMs, such as the Qwen-Image with Qwen2.5-VL, we leverage the LLMs' reasoning capabilities to directly generate decomposed representations. We first replicate the input

tokens of the long prompt by N times. Then, we introduce a set of trainable component tokens, $\langle|\text{comp}_0|\rangle \dots \langle|\text{comp}_{N-1}|\rangle$, which are prepended to each replicated token segment. The expanded prompt is processed as a single contiguous sequence using the causal attention mechanism of Qwen2.5-VL. The output representations are subsequently chunked into N samples corresponding to decomposed representations. Additionally, we introduce LoRAs to the LLM to tune its behavior for this specific task, optimizing the entire system via the compositional objective defined in Equation 5. The entire system is illustrated in Figure 11.

For models relying on T5-XXL (SD3.5 and FLUX), we similarly apply LoRA fine-tuning to the text encoder to directly synthesize decomposed representations. To accommodate the multi-encoder architecture of SD3.5, we let PromptComposer processes CLIP representations separately. The outputs from the T5 encoder are chunked into N segments and concatenated with the processed CLIP embeddings. This configuration is highly parameter-efficient, requiring only 160M trainable parameters, a $10\times$ reduction compared to the prior design, while delivering pronounced improvements under the same training budget.

A.2 REWARD TUNING STRATEGY

Since the decomposed sub-prompts representations from our PromptComposer remain in the pre-trained T2I model’s expected input domain. Our compositional long-text-to-image generation model can be tuned efficiently with other tuning methods. Using reward models for tuning T2I models have been widely explored recently (Kirstain et al., 2023; Wu et al., 2023; Bai et al., 2024). These models are trained on collected human preference data, and are able to measure how well the input image is aligned with text description as well as human aesthetic. We adopt the reward tuning model from LongAlign (Bai et al., 2024), which is optimized on long-caption data to provide more holistic reward signal. We apply the reward tuning algorithm from Clark et al. (2023), which uses gradient-checkpointing to back-propagate the reward signal calculated on the final generation result:

$$\mathcal{L}(\theta) = \mathbb{E}_{\mathbf{x}_0} [1 - \mathcal{R}(\mathbf{x}_0, \mathbf{C})] = \mathbb{E}_{\mathbf{x}_0} [1 - \mathcal{C}_{\text{image}}(\mathbf{x}_0) \cdot \mathcal{C}_{\text{text}}^T(\mathbf{C})], \quad (6)$$

where \mathbf{x}_0 is generated from our compositional long-text-to-image model using a DDIM sampler (Song et al., 2020a). For computational efficiency, we generate images with 50 sampling steps in the training loop, where we randomly choose 5 steps to calculate gradients and update model parameters within the memory constraint of our device.

A.3 INFERENCE EFFICIENCY

We analyze the computational overhead of our proposed compositional generation approach. Theoretically, the default 4-component setting implies a $4\times$ increase in total Floating Point Operations (FLOPs). However, practical inference latency does not scale linearly with FLOPs due to hardware parallelism.

By implementing the compositional generation as a batch operation within the denoising loop, we utilize the GPU’s parallel processing capabilities more effectively. This larger batch size saturates the tensor cores, mitigating the cost of the additional components. Consequently, the actual inference time increases by a factor of roughly $2\times$, rather than the theoretical $4\times$. On our hardware with A100 GPU, our method runs at 10 iterations/second, compared to LongAlign’s speed of 22 iterations/second.

B EVALUATION ON STANDARD T2I BENCHMARK

To verify that our compositional approach effectively handles prompt with standard length, we evaluated its performance on standard T2I benchmarks T2I-CompBench and GenEval. As presented in Table 4, our method demonstrates robust capability in fundamental generation tasks. Specifically, we achieve the best performance on T2I-CompBench, securing the best results in the ‘color’, ‘shape’, and ‘texture’ metrics (ranking first in 3 out of 5 categories). Furthermore, on the GenEval benchmark, our approach remains highly competitive, achieving the second-best result with only a marginal performance difference compared to the leading baseline, LongAlign. These results confirm that our method enhances long-prompt generation capabilities without compromising fidelity or semantic alignment in standard text-to-image tasks.

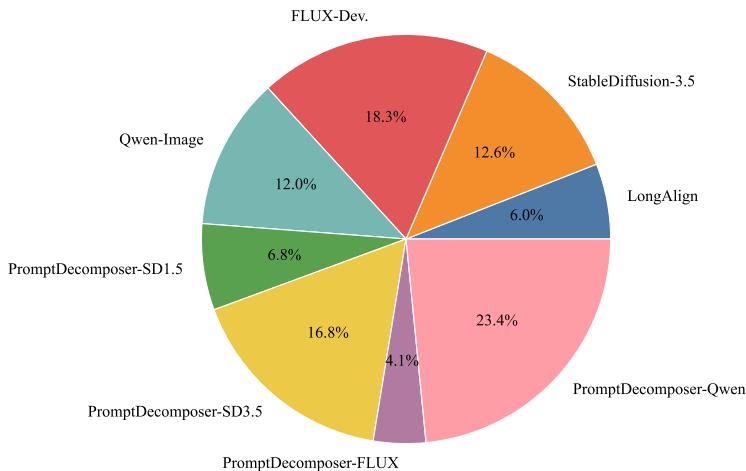
864
865
866 Table 4: Standard T2I benchmark results on T2I-CompBench and GenEval.
867
868
869
870
871

Models	Color	Shape	Texture	Spatial	Numeracy	GenEval
StableDiffusion-1.5	0.3647	0.3768	0.4095	0.5064	0.3197	0.4418
LLM4Gen	0.5084	0.4167	0.5085	0.6254	0.3828	0.4083
ELLA	0.6269	0.4250	0.5585	0.5713	0.3013	0.4971
LongAlign	0.5654	0.4693	0.5259	0.5698	0.3683	0.5075
PromptDecomposer	0.7113	0.5204	0.6253	0.6015	0.3701	0.4960

872
873
874 C ADDITIONAL RESULTS
875

876 As demonstrated in the Table 5, the LoRA-adapted-PromptDecomposers improve their baseline
877 across the DetailMaster benchmark except the some of the scene attribute metrics. This is likely due
878 to the chunk operation on T5 output, which may pose a risk to global information retention. Similarly,
879 we observe slight performance degradation of PromptComposer on the FLUX model. We also
880 attribute this to the chunking operation on T5 outputs. We hypothesize that these limitations can be
881 addressed through advanced module designs or by scaling training resources to support our original
882 token-resampler design (as used in SD-1.5).

883 In Figure 13 we present qualitative comparisons between SD-3.5, FLUX, Qwen-Image and LoRA-
884 adapted PromptComposer applied on these models. Leveraging the powerful Qwen2.5-VL text
885 encoder backbone, PromptComposer-Qwen delivers exceptional long-prompt generation quality
886 with faithful details following. In Table 6 we evaluate images generated on the DetailMaster
887 benchmark using CLIPScore, DenScore, PickScore and HPSv3, where the best results are all
888 obtained by LoRA-adapted PromptComposer except on the CLIPScore metric which is unreliable
889 in capturing long-prompt semantics. Moreover, we conduct an user study on the 40 prompts over
890 400 tokens from the DetailMaster benchmark. Specifically, we shortlist some key concepts from the
891 lengthy prompts, and ask the users to select one best image per group of samples according to human
892 perception quality and adherence to the concepts. Images generated by our PromptComposer-Qwen
893 gains the widest range of popularity (23.4%) compared to the strong baseline presented by FLUX-Dev.
(18.3%).



904
905
906
907
908
909
910 Figure 12: **User Study on the Generation Image Quality.** We shortlist key concepts from each
911 lengthy prompts, and ask the user to select the best image in each batch according to human perception
912 quality and adherence to the key concepts.
913
914
915

D FULL TEXT PROMPTS FOR IMAGE GENERATION

916 In this section we provide the full long-prompt that is used for generating figures in this paper.
917

918
919
Table 5: **DetailMaster** benchmark results of **PromptComposer** on SD1.5, SD3.5, Qwen-Image
920 and FLUX.

Model	Character Presence	Character Attributes			Character Location	Scene Attributes			Spatial Relation
		Object	Animal	Person		Background	Light	Style	
StableDiffusion-1.5	15.26	24.82	11.48	11.99	7.39	22.02	65.81	83.91	5.75
PromptComposer-SD1.5	23.37	28.39	27.95	15.72	15.30	78.17	89.21	74.95	17.33
StableDiffusion-3.5-M	31.19	31.55	32.03	27.54	26.69	87.89	92.32	94.70	28.90
PromptComposer-SD3.5	33.03	30.28	35.37	31.21	27.62	87.16	91.96	92.14	31.98
Qwen-Image	31.63	41.01	36.22	24.15	31.01	92.29	96.34	91.41	37.14
PromptComposer-Qwen	36.84	38.17	40.50	29.95	32.55	85.87	95.43	94.70	37.80
FLUX-Dev.	34.33	38.49	38.40	32.30	31.62	92.84	95.80	94.70	35.31
PromptComposer-FLUX	31.05	36.70	34.46	27.83	26.69	85.69	93.24	91.96	30.29

921
922
923
924
925
926
927
Table 6: Quantitative evaluations of image generation quality on large-scale T2I models.

Models	CLIPScore	DenScore	PickScore	HPSv3
StableDiffusion-3.5 Medium	34.97	22.37	21.63	13.39
PromptComposer-SD3.5	32.97	25.01	21.49	13.52
Qwen-Image	33.85	22.25	20.98	8.556
PromptComposer-Qwen	34.12	22.93	22.04	12.05
FLUX-Dev.	33.30	22.56	21.89	13.17
PromptComposer-FLUX	32.10	22.36	21.63	12.78

930
931
932
933
934
935
936
For generating Figure 1:

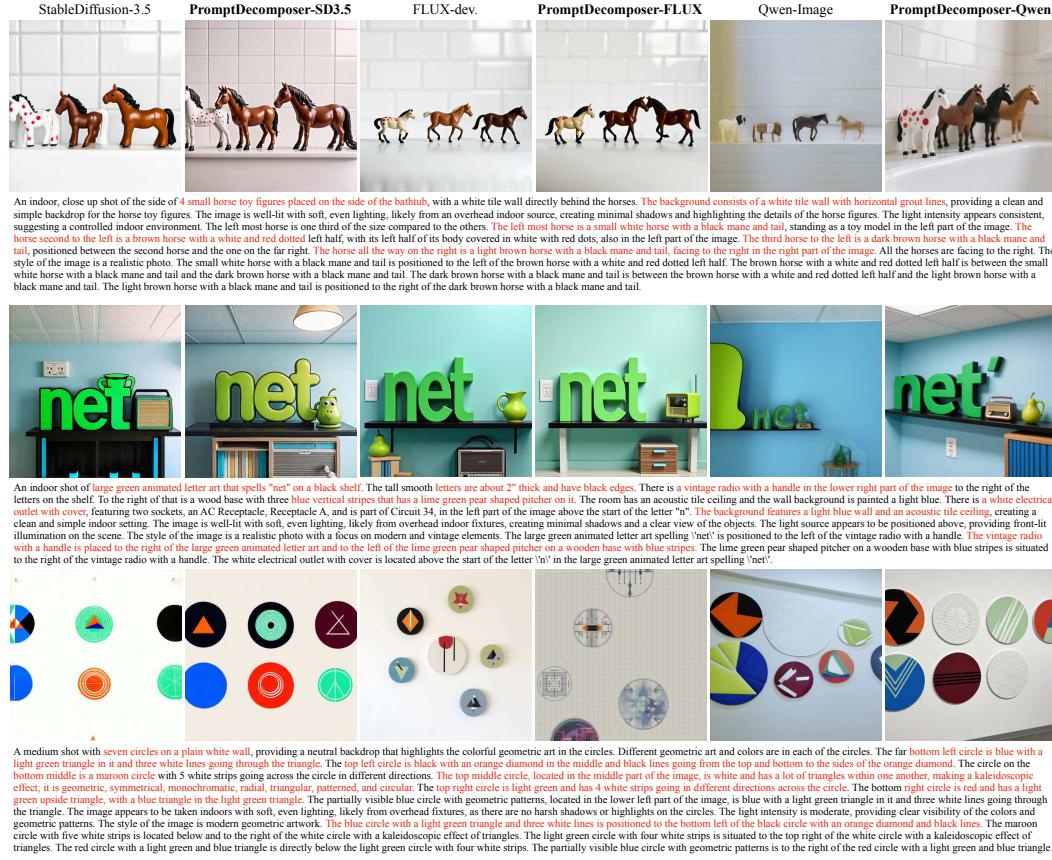
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
1. The image presents a 3D rendering of a horse, captured in a profile view. The horse is depicted in a state of motion, with its mane and tail flowing behind it. The horse's body is composed of a network of lines and curves, suggesting a complex mechanical structure. This intricate design is further emphasized by the presence of gears and other mechanical components, which are integrated into the horse's body. The background of the image is a dark blue, providing a stark contrast to the horse and its mechanical components. The overall composition of the image suggests a blend of organic and mechanical elements, creating a unique and intriguing visual.

2. A hyper-detailed, macro shot of a human eye, presented not as an organ of sight, but as a gateway to a lost world of intricate craftsmanship. The iris is a masterfully crafted, antique horological mechanism, a complex universe of miniature, interlocking gears and cogs made from polished brass, copper, and tarnished silver. Each metallic piece is exquisitely detailed, with tiny, functional teeth that seem to pulse with a slow, rhythmic, and almost imperceptible life. The vibrant color of the iris is replaced by the warm, metallic sheen of the gears, with ruby and sapphire jewels embedded as tiny, gleaming pivots. At the center, the pupil is not a void but the deep, dark face of a miniature clock, its impossibly thin, filigreed hands frozen at a moment of profound significance. The delicate, thread-like veins in the sclera are reimaged as fine, coiling copper wires, connecting the central mechanism to the unseen power source at the edge of the frame. The entire piece is captured under a soft, focused light that highlights the metallic textures and casts deep, dramatic shadows within the complex machinery, suggesting immense depth. The background is a stark, velvety black, ensuring nothing distracts from the mesmerizing, mechanical soul of the eye.

3. A sleek, enigmatic feline, a cat of indeterminate breed, is the central figure, poised in a state of serene contemplation. Its body is not of flesh and bone, but meticulously sculpted from a complex lattice of polished, interlocking obsidian shards. Each piece is perfectly fitted against the next, creating a mosaic of deep, lustrous black that absorbs the light. The cat's form is defined by the sharp, clean edges of these volcanic glass fragments, giving its natural curves a subtle, geometric undertone. Glimmering veins of molten gold run through the cracks between the shards, glowing with a soft, internal heat that pulses rhythmically, like a slow heartbeat. These golden rivers trace the contours of the cat's muscles and skeleton, outlining its elegant spine, the delicate structure of its paws, and the graceful curve of its tail. Its eyes are two brilliant, round-cut rubies, catching an unseen light source and casting a faint, crimson glow. The whiskers are impossibly thin strands of spun platinum, fanning out from its muzzle with metallic precision. The entire figure rests upon a simple,

Table 7: Image Quality Assessment on LongAlign dataset.

Metrics	SD-1.5	LLM4GEN	ELLA	LongAlign	PromptComposer
CLIPScore	0.3462	0.3362	0.3310	0.3568	0.3519
DenScore	0.2047	0.2028	0.2112	0.2587	0.2596
PickScore	0.2083	0.2069	0.2052	0.2306	0.2308
HPSv3	9.174	7.620	5.631	12.72	12.61

Figure 13: **Qualitative Samples on DiT Models.** Leveraging the powerful text encoders in modern architectures, our PromptComposer effectively interpret object attributes and relationships in an intricate paragraph.

unadorned, and dimly lit surface, ensuring that all focus remains on the cat’s extraordinary construction—a masterful fusion of natural grace and exquisite, dark craftsmanship.

For generating Figure 4:

1. A high angle shot of a brown wooden bench with several dishes on top of it. In the center and on the left are two round, wavy side plates with black scratches on the sides and a doily pattern engraved on the plates. On both plates is a thick brown cookie that’s been crosscut at the top, located in the middle part of the image. The plate on the right has a candy with a yellow wrapper and green ends. To the right of the plates is a white mug with whipped cream on top that is similar to the glass plates. The cup, made of ceramic material, has a cylindrical shape with a handle and a textured surface. The white whipped cream on top is frothy and has an embossed design. Surrounding the wooden bench is a dark brown wooden floor. On the top right is a gray curtain, and on the upper left is a view of the lower part of a white wooden wall. The image is taken indoors with soft, warm lighting, likely from an overhead source, creating a cozy and inviting atmosphere. The lighting is evenly distributed,

1026 with no harsh shadows, suggesting a relaxed time of day, possibly evening. The style of
 1027 the image is a realistic photo with a warm, homely aesthetic. The brown wooden bench
 1028 supports the two round, wavy side plates with black scratches and a doily pattern, which are
 1029 placed side by side. The thick brown cookies crosscut at the top are positioned on top of
 1030 the two round, wavy side plates, with one cookie on each plate. The candy with a yellow
 1031 wrapper and green ends is located on the right plate, next to the thick brown cookie. The
 1032 white mug with whipped cream on top is situated to the right of the two round, wavy side
 1033 plates. The two round, wavy side plates are adjacent to each other, with the plate containing
 1034 the candy being closer to the white mug with whipped cream on top.

1035 2. An indoor top-down view of a wooden Statue of Liberty, which is positioned centrally on
 1036 the table, covering a black marking on the table, on a wooden table with 3 wooden cars and
 1037 1 wooden limo next to it. The wooden limo is placed to the left of the wooden Statue of
 1038 Liberty, and the three wooden cars are arranged to the right of the wooden Statue of Liberty.
 1039 On the table, the black marking on the table is partially hidden by the wooden Statue of
 1040 Liberty in the upper part of the image. Behind the table is a dark blue curtain, through which
 1041 sunlight is coming and shining down on the right side of the table, casting a soft glow and
 1042 creating gentle shadows that highlight the wooden textures. The lighting is soft and natural,
 1043 suggesting it is daytime with sunlight filtering through the curtain, illuminating the right
 1044 side of the table. The dark blue curtain is located behind the table, indicating it is not on the
 1045 same plane as the objects on the table, and it is positioned at the back of the image. The
 1046 style of the image is a realistic photo.

1047 3. A long-shot view of a slightly dark sky with a cumulonimbus forming in the clouds, allowing
 1048 rays of sunlight to pierce through, creating a striking contrast against the darkened landscape.
 1049 The sky is bright blue, and the cumulonimbus cloud formation is a dark blue and gray, with
 1050 soft, diffused sunlight breaking through the clouds, suggesting it is either early morning or
 1051 late afternoon, with the sun low on the horizon. A small house is visible in the distance; it
 1052 has tan panels, and it has a white metal roof. Parked in the lower right part of the image in
 1053 front of the house is a white sedan, situated between the house and the viewer. Surrounding
 1054 the house are many tall, healthy trees that are mostly shrouded in shadow; these trees have
 1055 green leaves, a broad canopy, dense foliage, and provide natural shade, located around and
 1056 behind the small house, creating a natural border. The grass surrounding them is evenly cut
 1057 and healthy. The scene is somewhat dark, with rays of sunlight shining through the gathered
 1058 clouds to illuminate the sky from above, enhancing the tranquil yet moody atmosphere.
 1059 The cumulonimbus cloud formation is positioned above the small house, and the rays of
 1060 sunlight are directed towards the area above the house and trees, capturing natural lighting
 1061 and atmospheric conditions in a realistic photo style.

1062 4. A front view of a parking lot with several vehicles parked including two dark colored sedans
 1063 in the middle part of the image and what appears to be six different motorbikes in front
 1064 of them. The bikes seem to range from a red motorbike with color red, material metal and
 1065 plastic, typical features include two wheels, handlebars, seat, engine, exhaust pipe, and
 1066 headlight in the right part of the image, a white motor bike in the left part of the image, a
 1067 silver motor bike, another white motor bike, another silver motorbike that is silver in color,
 1068 and another silver motorbike that is also silver in color. The parking has visible but faded
 1069 white parking lines, and behind all of the vehicles are two handicap parking signs. Behind
 1070 the handicap signs is a large cream colored building that covers all but the top left side of the
 1071 background view, it has a partially visible blue colored roof and a red colored rectangular
 1072 shaped strip that passes along the view of the building a couple of feet below the blue roof.
 1073 The background features a large cream-colored building with a blue roof and a red strip,
 1074 partially obscured by the parked vehicles. Two handicap parking signs are visible on the
 1075 building's facade. The image appears to be taken during the day under natural light, with the
 1076 light source positioned overhead, creating soft shadows beneath the vehicles. The lighting is
 1077 bright and even, suggesting a clear sky with no direct sunlight causing harsh shadows. The
 1078 style of the image is a realistic photo. The two dark colored sedans are positioned behind the
 1079 motorbikes, with one slightly to the left and the other to the right. The red motorbike is to
 the right of the other motorbikes, closer to the right sedan. The white motorbike is to the far
 left, with the silver motorbike next to it. The another white motorbike is positioned between
 the first white motorbike and the silver motorbikes. The another silver motorbike is next
 to the another white motorbike, and the last silver motorbike is next to the red motorbike.

1080
1081 The cream colored building with a blue roof and red strip is behind all the vehicles, with the
1082 handicap signs in front of it.
1083

1084 For generating Figure 6 and Figure 8:

1085 1. A high-angle side view of a black Yamaha Virago motorcycle facing the right side of the
1086 image parked on an black asphalt surface. The front of the motorcycle is turned slightly
1087 toward the top right corner of the image. The fenders, the fuel tank, and the handles of the
1088 motorcycle are black. The motorcycle has a brown leather seat. The engine, exhaust pipes,
1089 and handlebar are gray silver. There is a red tail light attached to the fender over the top of
1090 the rear wheel. The Virago logo is on the side of the gas tank. The motorcycle is facing a
1091 lawn area on the side of a house visible at the top of the image. There is a patch of grass and
1092 a walkway leading to a gray door near the top right corner of the image, there is a window on
1093 each side of the door. There are two blue chairs in the top right corner of the image. Visible
1094 in the top left corner of the image is the right side of the front of a gray Toyota C-HR SUV
1095 with metallic paint, a compact SUV shape, sleek headlights, a Toyota emblem, and a modern
1096 design. The background features a residential setting with a gray house, a lawn, a walkway,
1097 and two blue chairs near the top right corner. A gray Toyota C-HR SUV is partially visible
1098 in the top left corner. The image is taken outdoors under natural daylight, with soft lighting
1099 conditions suggesting it could be morning or late afternoon. The light source is positioned
1100 to the side, creating gentle shadows and highlighting the motorcycle's details. The style of
1101 the image is a realistic photo. The black Yamaha Virago motorcycle is positioned in front
1102 of the lawn area with a gray door and windows, indicating it is closer to the viewer than
1103 the house. The gray Toyota C-HR SUV is located to the left of the black Yamaha Virago
1104 motorcycle, suggesting it is parked parallel to the motorcycle but further away from the
1105 house. The two blue chairs are situated to the right of the lawn area with a gray door and
1106 windows, showing they are placed on the side of the house away from the motorcycle and
1107 the SUV. The lawn area with a gray door and windows is between the motorcycle and the
1108 two blue chairs, establishing it as a central point in the spatial arrangement of the scene.
1109

1110 2. An overhead view of four labradoodle puppies, three puppies are sitting and one puppy
1111 is standing with its right paw resting against the white barrier at the bottom of the image.
1112 The puppies are on a light blue rug placed on a black floor. The puppy standing is a beige
1113 and white puppy with curly fur, dark eyes, a small nose, and a fluffy appearance, its paw
1114 extended. There is a black and white puppy sitting on its hind legs to the right, and to the left
1115 part of the image is another beige puppy sitting on its hind legs as well. Directly behind the
1116 standing puppy, in the upper part of the image, is another light cream colored puppy sitting
1117 on its hind legs, looking toward the bottom right corner of the image. The three puppies in
1118 the front are looking up, the puppy behind them is looking toward the bottom right corner
1119 of the image. There is a blue plush toy in the bottom right corner of the image underneath
1120 the black puppy. The rug the puppies are on is not laying completely flat on the ground, its
1121 unintentionally folded up in some areas and folded over itself in the top right corner of the
1122 image. The background consists of a light blue rug placed on a black floor, with the rug
1123 showing some unintentional folds and overlaps. A blue plush toy is visible in the bottom
1124 right corner under the black puppy. The image is well-lit with soft, even lighting, suggesting
1125 an indoor setting with artificial light sources. The light appears to be front-lit, as there are
1126 no harsh shadows on the puppies. The style of the image is a realistic photo. The beige and
1127 white puppy standing with its right paw resting against the white barrier is in front of the
1128 light cream colored puppy sitting on its hind legs in the back. The black and white puppy
1129 sitting on its hind legs to the right is to the right of the beige and white puppy standing with
1130 its right paw resting against the white barrier. The beige puppy sitting on its hind legs to the
1131 left is to the left of the beige and white puppy standing with its right paw resting against the
1132 white barrier. The light cream colored puppy sitting on its hind legs in the back is behind
1133 the beige and white puppy standing with its right paw resting against the white barrier. The
black and white puppy sitting on its hind legs to the right is next to the beige puppy sitting
on its hind legs to the left.