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ABSTRACT

While modern text-to-image models excel at generating images from intricate
prompts, they struggle to capture the key details when the prompts are expanded
into descriptive paragraphs. This limitation stems from the prevalence of short
captions in their training data. Existing methods attempt to address this by either
fine-tuning the pre-trained models, which generalizes poorly to even longer inputs;
or by projecting the oversize inputs into short-prompt domain and compromising
fidelity. We propose a compositional approach that enables pre-trained models to
handle long-prompt by breaking it down into manageable components. Specif-
ically, we introduce a trainable PromptDecomposer module to decompose the
long-prompt into a set of distinct sub-prompts. The pre-trained T2I model pro-
cesses these sub-prompts in parallel, and their corresponding outputs are merged
together using concept conjunction. Our compositional long-text-to-image model
achieves performance comparable to those with specialized tuning. Meanwhile,
our approach demonstrates superior generalization, outperforming other models by
7.4% on prompts over 500 tokens in the challenging DetailMaster benchmark.

1 INTRODUCTION

Compositionality is fundamental to human intelligence—the ability to understand novel concepts by
decomposing them into familiar primitives and to build complex systems from simple components.
This “divide and conquer” strategy is also common in creative activities. An artist, for instance, rarely
materializes an intricate scene holistically. Instead, they might independently perfect the rendering of
a rustic wooden house and the surrounding trees, ensuring each element is realized with care before
integrating them into a cohesive whole. In stark contrast, text-to-image (T2I) models (Rombach et al.,
2022) attempt to render the entire scene simultaneously in a single, monolithic process.

This paradigm works well for concise prompts but falters when the input becomes a descriptive
paragraph. While a model may excel at rendering “a house in the middle of a forest” it often fails
when the prompt expands, detailing the terracotta roof tiles and weathered white panels of the house,
the broad canopy of the surrounding pine trees, and the striking contrast cast by the afternoon sun.
This failure stems from a fundamental conflict between the nature of long-form text and the models’
training paradigm. T2I models are predominantly trained on vast datasets of images paired with short,
concise captions. They learn to map phrases to visual features but are fundamentally undertrained on
interpreting the narrative flow and distributed details of a paragraph (Bai et al., 2024).

Existing methods attempt to bridge this domain gap with two main strategies, each with significant
drawbacks (Figure 2). The most direct approach involves fine-tuning the T2I model on long-captioned
images (Bai et al., 2024; Wu et al., 2025). This is computationally prohibitive and risks “catastrophic
forgetting” of the model’s vast pre-trained knowledge. Furthermore, these tuned models often
generalize poorly to prompts longer than those seen during their specialized training. A second
strategy adopts projection-based methods to compress a long-prompt into the compact semantic space
that the T2I model understands (Hu et al., 2024; Liu et al., 2025). While efficient, forcing a rich
paragraph through a narrow keyhole is inherently lossy, sacrificing the very details that make the
long-prompt compelling. These limitations reveal an open question: how can we enable models
trained on short prompts to genuinely comprehend and render long ones?

In this paper, we advocate the idea of compositionality for long-text-to-image generation. Instead
of forcing the pre-trained model to follow the entire paragraph at once, we decompose it into a
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The image presents a 3D rendering of a horse … a blend of organic and mechanical elements … The horse is depicted in 
a state of motion, with its mane and tail flowing behind it … The horse's body is composed of a network of lines and 
curves … This intricate design is further emphasized by the presence of gears and other mechanical components …

StableDiffusion Sub-prompt 1 Sub-prompt 2 Sub-prompt 3 Sub-prompt 4 Re-combination

A sleek, enigmatic feline … rests upon a simple, unadorned, and dimly lit surface … Its body is not of flesh and bone, 
but meticulously sculpted from a complex lattice of polished, interlocking obsidian shards … defined by the sharp, clean 
edges of these volcanic glass fragments, giving its natural curves a subtle, geometric undertone … Glimmering veins of 
molten gold … trace the contours of the cat's muscles and skeleton, outlining its elegant spine …

A hyper-detailed, macro shot of a human eye … thread-like veins in the sclera are reimagined as fine, coiling copper 
wires … presented not as an organ of sight, but as a gateway to a lost world … The iris is a masterfully crafted, antique 
horological mechanism … interlocking gears and cogs made from polished brass, copper, and tarnished silver …

Figure 1: Decomposing Long-prompt for Compositional Generation. We decompose the long-
prompt into manageable sub-prompts, each depicting parts of the original input. Model outputs on
each of the decomposed sub-prompts are then re-combined into a final, cohesive image.

set of manageable sub-prompts. The final image is generated from the factorized distribution of
the decomposed sub-prompts. Our approach draws inspiration from the compositional generative
modeling, which can generalize constituent models to new tasks beyond individual capacity (Du &
Kaelbling, 2024; Du et al., 2023). This compositional strategy offers two unique advantages. First, it
allows the pre-trained model to operate within its domain of expertise—processing concise concepts—
thereby eliminating the need for expensive tuning and preserving its powerful prior knowledge.
Second, it ensures higher fidelity to the original input by distributing the paragraph’s rich information
across multiple components.

How to obtain such decomposition then becomes the central challenge; a simple linguistic split
is insufficient as it loses global context. Our key insight is to directly learn this decomposition in
the representation space, guided by the T2I model itself. We introduce PromptDecomposer, an
end-to-end trainable module that uses a set of learnable vectors to query and extract sub-prompt
representations from the encoded paragraph. A pre-trained T2I model parallelly processes the
decomposed representations, with the resulting noise predictions merged into a single coherent
update at each denoising step. PromptDecomposer is trained with both the text-encoder and the
T2I model frozen, learning to factorize the intricate long-prompt representation into components
that are interpretable by the pre-trained model. Our compositional solution delivers performance
comparable to tuning-based methods, and crucially, demonstrates superior generalization as prompt
length increases, outperforming other methods by 7.4% on prompts over 500 tokens. Our contribution
can be summarized as:

1. We propose a compositional framework for long-text-to-image generation that utilizes
pre-trained T2I model without expensive fine-tuning.

2. We introduce a trainable PromptDecomposer module to directly decompose long-prompt
representations for compositional generation.

3. Results show our method achieves comparable performance to tuning-based methods on a
challenging benchmark, while offering superior generalization to longer inputs.
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Figure 2: Long-Text-to-Image Generation Strategies. (a) Tuning-based methods adapt the T2I
model to long-prompt inputs; (b) Projection-based methods map the long-prompt to compact space;
(c) We decompose the long-prompt into several sub-prompts for compositional generation.

2 RELATED WORK

2.1 LONG-TEXT-TO-IMAGE GENERATION

Diffusion models (Ho et al., 2020; Sohl-Dickstein et al., 2015) have significantly propelled visual
generation. Integrated with text conditioning, these models can generate images with unprecedented
diversity and quality from natural language descriptions (Rombach et al., 2022; Ramesh et al., 2022).
Recent progress in model architecture (Peebles & Xie, 2023) and theoretical foundations (Liu et al.,
2022b; Lipman et al., 2022) have enabled T2I models to scale to billions of parameters (Esser
et al., 2024; Batifol et al., 2025). Despite this progress, a key limitation remains their difficulty in
interpreting long, descriptive paragraphs (Jiao et al., 2025). This challenge often stems from the fixed
context window of the text encoders (e.g., CLIP (Radford et al., 2021)), which can be overcome
by using more powerful language models (LMs) (Zhao et al., 2024; Liu et al., 2025). However,
adapting to the new input takes intensive tuning. An efficient strategy involves projecting the LM
representations into the T2I model’s original text embedding space (Hu et al., 2024; Liu et al., 2025).
To systematically evaluate performance on this task, DetailMaster (Jiao et al., 2025) introduces a
rigorous benchmark consists of intricate prompts with an average length of 284.9 tokens depicting
complex scenes with multiple objects. It also provides a comprehensive, multi-stage evaluation
pipeline leveraging multimodal models to analyze visual details.

2.2 COMPOSITIONAL GENERATIVE MODELING

Our work builds on the principle of compositional generative modeling, which constructs complex
generative systems by combining simpler, specialized models rather than training a single monolithic
one (Du & Kaelbling, 2024; Garipov et al., 2023). Conceptually, this approach treats each model as a
soft constraint and uses optimization techniques to find outputs that have a high likelihood across all
constituent models (Du et al., 2023; Yang et al., 2023). A key advantage of this approach is its data
efficiency and generalization capability; by learning simpler, factorized distributions, a compositional
system can generate valid samples for combinations of patterns unseen during training (Mahajan et al.,
2024). In vision domain, compositional methods enable the generation of novel images with blended
features (Du et al., 2020). For instance, composing T2I diffusion model outputs on different text
prompts leads to a sample that is collectively described by all prompts (Liu et al., 2022a; Bradley et al.,
2025; Bar-Tal et al., 2023; Yang et al., 2024). It is also possible to train a compositional generative
system as a whole. This allows each constituent model to learn a compositional factor from data,
which can then be recombined to synthesize novel combinations (Su et al., 2024; Liu et al., 2023).
Similarly, we approach the challenge of long-text-to-image generation through a compositional lens,
aiming to identify and model the compositional factors within a complex text prompt.

3 METHODOLOGY

Our approach achieves long-text-to-image generation by reframing it as a compositional task. Instead
of training a monolithic model to interpret an entire paragraph, we decompose the paragraph into
a set of sub-prompts that a pre-trained T2I model can readily understand. The final image is then
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synthesized by composing the model’s outputs for each sub-prompt, a technique made possible by
the insight that diffusion models can be treated as composable energy-based models.

3.1 PRELIMINARIES: COMPOSING DIFFUSION MODELS

Text-to-Image Diffusion Generation. A T2I diffusion model, ϵθ(xt, t, c), generates an image
x conditioned on a text prompt c by progressively denoising the input to decreased noise levels
{σt}Tt=1 (Ho et al., 2020). The model is trained to predict the noise ϵt added to an image x at
timestep t. Generation begins with pure Gaussian noise, xT ∼ N (0, σ2

T I), which the model
iteratively refines by subtracting the predicted noise at each step. This process corresponds to score-
based modeling (Song et al., 2020b), where the predicted noise is proportional to the time-dependent
score function (the gradient of the log likelihood): ϵθ ∝ −∇xt

log pt(xt|c). Generation can thus be
viewed as a form of Langevin dynamics (Du & Mordatch, 2019),

xt−1 = xt +
σ2
t

2
∇xt

log pt(xt) +
√
σtϵ. (1)

where the learned score function at each timestep gradually guides a sample toward a high-density
region of the target data distribution p(x|c).
Energy-Based Compositionality. The score-based view of diffusion models reveals a connection to
Energy-Based Models (EBMs). An EBM defines a probability density via an unnormalized energy

function, pθ(x) ∝ e−Eθ(x), and uses the gradient of this energy function with Langevin dynamics
for generation. A key advantage of EBMs is their inherent compositionality; sampling from a product
of multiple data distributions is as simple as summing their energy functions:

pcompose(x) ∝
∏

i

piθ(x) ∝ e−
∑

i
Ei

θ
(x), (2)

yielding sample with high-likelihood across all constituent EBMs. As demonstrated by prior work,
this logic can be extended to diffusion generation by drawing an line between the diffusion model
and the gradient of an implicit energy function, ϵθ ≈ ∇xt

Eθ(xt). To sample from the product of
two distributions conditioned on c1 and c2, one can simply sum their respective noise predictions,

ϵcomposed(xt, t) = ϵθ(xt, t, c1) + ϵθ(xt, t, c2) ∝ ∇xt
log (pt(xt|c1) · pt(xt|c2)) , (3)

in the score function of Equation 1. This operation, known as concept conjunction (Liu et al., 2022a),
forms a new composite score that guides the generation process toward an image satisfying both
prompts simultaneously. Notably, the synthesized sample won’t have to be presented in either of the
training data in p(x|c1) and p(x|c2). This principle allows us to construct novel scenes from familiar
concepts, laying the cornerstone for our approach.

3.2 COMPOSITIONAL LONG-TEXT-TO-IMAGE GENERATION

The domain gap in input prompts is the core challenge of long-text-to-image generation. A descriptive
paragraph, C, is fundamentally an out-of-distribution input for pre-trained T2I model ϵθ(xt, t, c).
These models are trained on vast datasets like LAION (Schuhmann et al., 2022), which is dominated
by short, label-like captions c. Therefore the models primarily learn to map keywords and short-
phrases to visual features, lack the ability of narrative comprehension. Our central hypothesis is
that the complex conditional distribution p(x|C) described by the paragraph C can be effectively

approximated by factorizing into a set of simpler distributions: p(x|C) ∝ ∏N

i p(x|ci), where each
constituent distribution p(x|ci) is conditioned on a sub-prompt ci. Intuitively, a paragraph can be
abstracted as a collection of phrases with each capturing a distinct feature. Leveraging the concept
conjunction principle in Equation 3, we can construct a long-text-to-image generation model by
composing a same pre-trained T2I model ϵθ with different sub-prompts:

ϵθ(xt, t,C) =

N
∑

i=1

ϵθ(xt, t, ci). (4)

This composite score leads to an image that is collectively described by the sub-prompts {c1, . . . , cN}.
Because the sub-prompts remain semantically concise, they can be readily processed by the pre-
trained T2I model, avoiding resource-intensive fine-tuning. Furthermore, unlike projection-based
methods that suffer from information loss, our factorized approach maintains high fidelity to the
original paragraph by distributing its information across multiple sub-prompts {c1, . . . , cN}.
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Figure 3: Our Compositional Long-Text-to-Image Generation Model. An input long-prompt is
first encoded by a T5 (and optionally a CLIP) model, from which the PromptDecomposer uses a set
of learnable queries to extract decomposed sub-prompt representations. A pre-trained T2I model
parallelly processes these sub-prompt representations as a batch. Finally, these independent noise
predictions are merged into a composed diffusion step through concept conjunction.

3.3 UNSUPERVISED LONG-PROMPT DECOMPOSITION

To obtain the sub-prompts {c1, . . . , cN}, one appealing option is to utilize LLMs to analyze and
break down the paragraph. However, using a set of sentences is sub-optimal for Equation 3 as it
does not impose explicit spatial control on the noise predictions. This will lead to inconsistency
in global context and local concept blending. The decomposition must be learned in a way that is
optimized for Equation 3. To this end, we introduce PromptDecomposer (ψ), a trainable module that
learns such decomposition directly in the textual representation space. PromptDecomposer employs
N learnable vectors to extract N sub-prompt representations by querying the encoded paragraph
CLM . The decomposed representations are then used to condition the T2I model to form the noise
prediction as per Equation 4. Critically, the entire composed model can be trained end-to-end with
both the text-encoder and T2I model frozen. The diffusion loss calculated on the composite score,

L(ψ) = Ex,t





∣

∣

∣

∣

∣

N
∑

i=1

ϵθ(xt, t, ci)− ϵ
∣

∣

∣

∣

∣

2


 ,ψ(CLM ) = {c1, . . . , cN}. (5)

is backpropagated through the frozen denoising network to update PromptDecomposer ψ. Guided by
the T2I model, the PromptDecomposer learns to effectively distribute semantics in the paragraph,
producing sub-prompts optimized for compositional generation. This end-to-end training also allows
the learned decomposition to implicitly handle the complex relationships and spatial information.
The full architecture of our compositional method is illustrated in Figure 3.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Training. We implement our compositional approach on two pre-trained Stable Diffusion (SD) (Rom-
bach et al., 2022) models. PromptDecomposer-SD1.5 is built on the widely-used SD-1.5, which
employs a U-Net (Ronneberger et al., 2015) denoising network and a CLIP text-encoder. We also
develop a PromptDecomposer on the more recent SD-3.5, which has three text-encoders including
a T5-XXL (Raffel et al., 2020). For PromptDecomposer-SD1.5, we replace the original CLIP text-
encoder with T5-XL to accommodate long-prompts. We use 6 of the transformer blocks illustrated in
Figure 3 and 4 learnable queries, corresponding to a 4 sub-prompts decomposition. We primarily
present the results of PromptDecomposer-SD1.5 to compare it with other methods, which are also
based on the SD-1.5. We provide further analysis on PromptDecomposer-SD3.5 in Appendix A.3.

We conduct training on the dataset from LongAlign (Bai et al., 2024) containing 2 millions images,
resized and cropped into 5122 resolution. We use an AdamW optimizer (Loshchilov & Hutter, 2017)

5
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Table 1: Percentage accuracies on the DetailMaster Benchmark (Jiao et al., 2025). Model perfor-
mances are assessed across five aspects: character presence, character attributes, character location,
scene attributes, and spatial relation. Best results of SD-1.5 based models are marked in bold.

Model Tuning
Character
Presence

Character Attributes Character
Location

Scene Attributes Spatial

Relation
Object Animal Person Background Light Style

StableDiffusion-1.5 ✗ 19.12 84.40 76.62 80.73 8.66 24.53 69.27 84.47 7.18
LLM4GEN ✗ 19.43 82.99 78.00 81.67 9.48 28.32 68.08 50.28 8.04
ELLA ✗ 25.57 82.38 78.75 80.33 15.04 69.15 83.12 44.17 15.17
ParaDiffusion(SDXL) ✓ 28.63 87.40 85.34 84.66 20.62 84.83 93.59 72.16 25.95
LongAlign ✓ 25.88 85.54 83.28 83.85 14.12 78.60 87.33 70.49 21.24
PromptDecomposer ✗ 28.21 84.78 83.24 84.54 16.57 82.45 92.48 64.10 20.88
PromptDecomposer ✓ 25.99 86.05 86.21 86.16 16.21 90.96 91.16 84.93 24.47

Table 2: Quantitative evaluations of image generation quality. We employ various preference models
to assess the generated images based on semantic alignment and human aesthetics.

Metrics SD-1.5 LLM4GEN ELLA ParaDiffusion LongAlign PromptDecomposer

CLIPScore 33.45 33.28 30.89 31.72 33.43 32.56
PickScore 20.88 21.25 20.34 20.22 22.35 22.24
DenScore 18.67 19.63 20.72 20.39 24.43 24.50
VQAScore 78.67 73.89 73.30 81.76 82.01 83.22
HPSv3 8.834 9.026 6.777 9.032 13.26 13.03

with batch size 192 and learning rate 1.0e−5. This training takes about 20 hours on 4 A100 GPUs.
We also report the reward-tuning results for a more comprehensive comparison, where we apply
LoRA (Hu et al., 2022) on the U-Net to tune the T2I model for another 1000 steps.

Evaluation. We adopt the DetailMaster benchmark (Jiao et al., 2025) to comprehensively assess
long-text-to-image performance. DetailMaster is a challenging benchmark consists of long prompts
with 284.89 tokens on average. It also features a robust evaluation process that systematically assesses
generation quality across five critical dimensions. Specifically, Character Presence verifies how
many characters in the prompt are successfully generated, and Character Attributes measures
whether their features (e.g., color, shape) match the text description, with the accuracies computed
separately for object, animal, and person categories. Character Locations checks if these characters
are positioned correctly. Scene Attributes evaluates adherence to overall scenic instructions in terms
of background, lighting, and style. Finally, Spatial Relation quantifies the model’s ability to reflect
the specified spatial and interactive relationships between the characters.

4.2 LONG-TEXT-TO-IMAGE GENERATION

Long-prompt Following. Table 1 summarizes the evaluation results on DetailMaster. Our compo-
sitional approach surpasses all projection-based methods and achieves performance comparable to
those models tuned specially on long-prompt data, suggesting compositional generation as a more
effective strategy for extending T2I models to long-prompt inputs. Our model excels at rendering
complex scenes with multiple subjects and distinct attributes. We outperform other models by 2.33%
on Character Presence and 1.53% on Character Location, indicating our model not only generates
more characters but also places them in the right locations following the text descriptions. Moreover,
since the decomposed sub-prompts remain in the pre-trained model’s expected input domain, our
method can be used in conjunction with other tuning methods to further enhance the results efficiently.
Our model outperforms LongAlign across all metrics with an average improvement of 4.65%.

Image Generation Quality. We employ preference models to assess the generated image quality.
We choose three CLIP-based models (CLIPScore (Hessel et al., 2021), DenScore (Bai et al., 2024),
PickScore (Kirstain et al., 2023)) to evaluate overall text-image alignment, as well as more powerful
multimodal LLMs (VQAScore (Lin et al., 2024), HPSv3 (Ma et al., 2025)) for finer analysis of
visual details. We present a quantitative comparison in Table 2. The in-distribution sub-prompts
allow an efficient application of other tuning methods. Our model achieves image quality comparable
to LongAlign with their reward model but less than a half of their training steps. We present
some generated samples in Figure 4. Our PromptDecomposer accurately handles the attributes and
spatial relationships of multiple objects within complex scenes. Furthermore, slightly tuning the
composed model further enhances the generated images’ quality, demonstrating a strong capability
for high-fidelity long-text-to-image generation with fine-grained text alignment.
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… a wooden Statue of Liberty, which is positioned centrally on the table … The wooden limo is placed to the left of the 
wooden Statue of Liberty, and the three wooden cars are arranged to the right of the wooden Statue of Liberty … Behind 
the table is a dark blue curtain, through which sunlight is coming and shining down … highlight the wooden textures … 
The lighting is soft and natural … illuminating the right side of the table …

… a slightly dark sky with a cumulonimbus forming in the clouds … soft, diffused sunlight breaking through the clouds 
… with the sun low on the horizon … A small house is visible in the distance … a white sedan, situated between the 
house and the viewer … Surrounding the house are many tall, healthy trees … The grass surrounding them is evenly cut 
and healthy … The cumulonimbus cloud formation is positioned above the small house …

StableDiffusion LLM4GEN ELLA LongAlign PromptDecomposer
PromtDecomposer 

+ tuning

… a parking lot … sedans in the middle part of the image and what appears to be six different motor bikes in front of 
them … a red motorbike with color red, material metal and plastic … The parking has visible but faded white parking 
lines … a large cream colored building that covers all but the top left side of the background view … a partially visible 
blue colored roof and a red colored rectangular shaped strip … sedans are positioned behind the motorbikes …

… two round, wavy side plates with black scratches on the sides and a doily pattern engraved on the plates … On both 
plates is a thick brown cookie … The plate on the right has a candy with a yellow wrapper and green ends … To the right 
of the plates is a white mug … made of ceramic material, has a cylindrical shape with a handle and a textured surface …
On the top right is a gray curtain, and on the upper left is a view of the lower part of a white wooden wall …

Figure 4: Long-Text-to-Image Generation Samples. Our PromtDecomposer accurately captures
the attributes and spatial relationships of objects described in the complex scene, with the image
quality further enhanced by slightly tuning the T2I model on the decomposed sub-prompts.

4.3 IMPROVED GENERALIZATION TO LONGER PROMPTS

T2I models are known to generalize poorly with long-prompts because of their scarcity in training data.
To evaluate such generalization, we analyze the compared long-text-to-image models’ performance
according to input prompt length. Specifically, we partition test prompts in DetailMaster into
five bins: <200 tokens, 200–300, 300–400, 400–500 and >500 tokens. As shown in Figure 5,
LongAlign performs well on prompts under 300 tokens, which constitute the majority of its training
data. However, its performance degrades sharply on longer prompts, dropping by up to 30% for
those over 500 tokens. Although this degradation is mitigated in projection-based methods, their
capacities are constrained by the fixed context window. In contrast, PromptDecomposer maintains
robust performance across all prompt lengths despite being trained on the same dataset, achieving an
average improvement of 7.4% on prompts exceeding 500 tokens. This result highlights the improved
generalization endowed by compositional generative modeling.

Figure 6 provides a visualization of this improved generalization. We progressively expand a base
prompt with more details and compare the generated images. As prompt lengthens, elements such as
the house and the yard gradually vanish in LongAlign’s outputs. Our model, however, successfully
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Figure 5: Generalization to Longer Prompts. Tuning-based methods (triangle mark) struggle with
longer prompts unseen during fine-tuning, and projection-based (round mark) methods suffer from
information loss. By decomposing the long input into sub-prompts, our compositional methods
(square mark) maintain robust performance across various input lengths.
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… The motorcycle is facing a lawn area on the side of a house … The background features a residential setting with a gray house, a lawn 
… The gray Toyota C-HR SUV is located to the left of the black Yamaha Virago motorcycle …

Figure 6: Compositional Generalization. Images are generated from a same prompt rewritten into
various lengths. Our method consistently captures the key elements from overwhelmed information.

integrates the additional details without overwriting existing concepts, consistently rendering all the
key elements regardless of prompt length.

Figure 7: Improved Generalization from Composition.
We compare model generalization of different numbers of
sub-prompts in decomposition (solid bars), as well as the
same capacity versions without composition (hatched bars).

Table 3: Ablation Study.

Character
Presence

Character
Attributes

Character
Location

Scene
Attributes

Spatial

Relation

Direct Model Tuning 28.98 83.63 16.16 78.92 20.97
Composition + Tuning 29.49 82.97 17.10 85.34 22.22
Decomposition via Split 14.01 72.48 6.44 58.69 5.18
Decomposition w/o CLIP 24.42 82.54 13.01 68.49 15.81
Decomposition w/ CLIP 24.32 79.81 12.74 66.38 15.42

Number of Sub-prompts. To in-
vestigate the impact of decomposi-
tion granularity, we conduct an ab-
lation study on the number of sub-
prompts (N). We train two additional
PromptDecomposer with N=3 and
N=5, alongside our primary version
with N=4. We quantitatively com-
pare these variants’ long-prompt gen-
eralization ability in Figure 7 (solid
bars), which demonstrates a clear im-
provement from more decomposed
sub-prompts. We further visualize this
trend in Figure 8, where we can see a
finer-grained decomposition (N=5) ef-
fectively reduces the semantic load on
each sub-prompt. Conversely, smaller
N forces each sub-prompt to encode
more information, leads to individual
generation with high resemblance to
the composite output. This is also confirmed in their similarity scores to the input long-prompt: a
repeated pattern can be observed in the similarity matrix of N=3, suggesting a similar content in
sub-prompts a diminished effect of decomposition.

4.4 ABLATION STUDY

Compositionality. We design non-compositional baselines to isolate the benefit of composition.
These baselines are created by training PromptDecomposer with one learnable query which cor-
responds to an unitary long-text-to-image generation model. We increase the query vector’s size
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An overhead view of four labradoodle puppies … The puppies are 
on a light blue rug placed on a black floor … There is a black and 
white puppy sitting on its hind legs to the right, and to the left part 
of the image is another beige puppy sitting on its hind legs as well 
… Directly behind the standing puppy, in the upper part of the im-
age, is another light cream colored puppy sitting on its hind legs, 

looking toward the bottom right corner of the image … There 
is a blue plush toy in the bottom right corner 
of the image underneath the black puppy … 
The image is well-lit with soft, even lighting, 
suggesting an indoor setting with artificial li-
ght sources.  … The background consists of a 
light blue rug placed on a black floor …The 
black and white puppy sitting on its hind legs 

to the right is to the rig-
ht of the beige and whi-
te puppy …The beige 
puppy sitting on its 
hind legs to the left is 
to the left of the bei-ge 
and white puppy…

Re-combination Sub-prompt 1 Sub-prompt 2 Sub-prompt 3 Sub-prompt 4 Sub-prompt 5

N
=

3
N

=
4

N
=

5

Figure 8: Impact of Decomposition Granularity. We visualize both the re-combination and
individual generation results of PromptDecomposer with different number of sub-prompts (N), as
well as the similarity matrix of sub-prompts and input long-prompt. A smaller N requires each
sub-prompt to encode more information and diminishes the decomposition effect. Conversely, a large
N can effectively distribute the information, allowing each sub-prompt to focus on distinct semantics.

accordingly to match the total parameter counts. As illustrated in Figure 7, performance of the
unitary models (hatched bars) degrades from their compositional counterparts except the case of 3
sub-prompts decomposition. This variant has a diminished compositional effect due to the coarse
decomposition (see Section 4.3). Consequently, it enjoys less of the benefit from compositional
generation. We also compare the performance gain after tuning in Table 3, where we can see tuning
the composed model is more effective. This is because the pre-trained T2I model is more familiar
with the decomposed sub-prompts, thus it takes less training to align to these inputs.

Decomposition Design Choices. We examine with using sentence splits for decomposing the long-
prompt. Since Equation 3 lacks explicit spatial control on the generation process, this training-free
version fails to produce reasonable results as shown in Table 3. We also test the impact of CLIP
representations in our PromptDecomposer, which has been shown crucial for adapting pre-trained
T2I models to long-prompt representation. However, our results show a negligible differences
between these two design choices. We hypothesis this is because of our training objective in Eq. 5
encourages each sub-prompt to dedicate to only partial features of the LM representation, preventing
the pre-trained T2I model from being overwhelmed by the richer, more detailed conditional inputs.

5 CONCLUSION

We present a compositional approach for long-text-to-image generation. Our method leverages
pre-trained T2I model’s expertise on concise prompts and extents its capacity to handle descriptive
paragraphs. We introduce a trainable PromptDecomposer module to directly decompose and extract
sub-prompts representations, which remain in the T2I model’s expected input domain. This module
can be trained in an unsupervised manner on the frozen T2I model. By distributing the rich semantic
load across multiple sub-prompts, our approach demonstrates superior adherence to detailed instruc-
tions and enhanced generalization to increased prompt lengths. Empirically, our method achieves a
7.4% performance improvement on the longest prompts in the DetailMaster benchmark. Moreover,
our method can be used in conjunction with other tuning methods efficiently, leading to an average
improvement of 4.65% over other tuned models.

A key limitation of our approach is that the unsupervised long-prompt decomposition module relies
on the pre-trained T2I model for providing training signal. This paradigm becomes problematic when
scaling to larger base model to cope with the increased cross-attention dimensions, resulting in a
significantly larger PromptDecomposer. A promising future direction is to decouple this process
by, for instance, leveraging LLMs to produce the decomposed sub-prompts directly. Moreover, our
choice of composition through concept conjunction lacks explicit control on the composite outputs.
Future work could explore more advanced techniques in steering the diffusion generation process
such as incorporating guidance from discriminative models.

9
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LARGE LANGUAGE MODELS USAGE DISCLOSURE

LLMs were employed in a limited capacity for writing optimization. Specifically, the authors
provided their own draft text to the LLM, which in turn suggested improvements such as corrections
of grammatical errors, clearer phrasing, and removal of non-academic expressions. LLMs were also
used to inspire possible titles for the paper. While the system provided suggestions, the final title
was decided and refined by the authors and is not directly taken from any single LLM output. In
addition, LLMs were used as coding assistants during the implementation phase. They provided
code completion and debugging suggestions, but all final implementations, experimental design,
and validation were carried out and verified by the authors. Importantly, LLMs were NOT used
for generating research ideas, designing experiments, or searching and reviewing related work. All
conceptual contributions and experimental designs were fully conceived and executed by the authors.

ETHICS STATEMENT

This research was conducted in adherence to the ICLR 2026 Code of Ethics. We specifically address
the following ethical considerations:

• Data Usage: Our work utilizes publicly available datasets that have undergone anonymiza-
tion to protect individual privacy. We have handled all data in accordance with their specified
terms of use.

• Model Bias: Our method builds upon existing open-source Text-to-Image models. We
acknowledge that these foundational models may reflect societal biases present in their
training data. While a full audit of these biases is beyond the scope of our work, we highlight
the importance of downstream evaluation for fairness before any real-world application of
our method.

• Societal Impact: We recognize that Text-to-Image technology has the potential for misuse,
such as the generation of misinformation. The aim of our research is to contribute positively
to creative applications. We advocate for the responsible development of generative models
and support community-wide efforts to establish safeguards against potential harms.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide our source code of the implementation of our
proposed method in the supplementary material. All critical hyperparameters, training configurations
and datasets details for our models can be found in Section 4.1. The computational infrastructure
used for our experiments is also detailed in this section.
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The image presents a 3D rendering of a horse, captured in a profile view. The horse is depicted in a state of motion, with its mane
and tail flowing behind it. The horse's body is composed of a network of lines and curves, suggesting a complex mechanical structure.
This intricate design is further emphasized by the presence of gears and other mechanical components, which are integrated into
the horse's body. The background of the image is a dark blue, providing a stark contrast to the horse and its mechanical components.
The overall composition of the image suggests a blend of organic and mechanical elements, creating a unique and intriguing visual.
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Figure 9: Architecture Details of our PromptDecomposer. Our PromptDecomposer is built on
the efficient model design of ELLA (Hu et al., 2024), which use a learnable vector to query the
long-prompt representation from a LM (T5) through L transformer blocks. The final output is then
used as the textual condition in the pre-trained T2I model.

A IMPLEMENTATION DETAILS

A.1 PROMPTDECOMPOSER ARCHITECTURE

Our PromptDecomposer borrows the model design from ELLA (Hu et al., 2024), which contains a
series of transformer blocks with a learnable query and the LM-encoded long-prompt as key-value.
This architecture can efficiently extract textual condition for pre-trained T2I model from the intricate
LM output. Furthermore, ELLA also introduces a time-aware adaptive layer normalization layer. This
component leverages the diffusion timestep to modulate the hidden features within each transformer
block, as illustrated in Figure 9. The temporal information facilitates the model to extract fine-grained
textual conditions that are specific to different stages of the denoising process. The final output
vector from these blocks is then sent to the cross-attention layers in T2I model, serving as the textual
condition. We inherit most of their design in our PromptDecomposer, except that we remove the time-
aware layer normalization on the query inputs which we found leads to mode collapse in the learnable
vectors. For PromptDecomposer-SD1.5, we use a total of 6 transformer blocks and 64 tokens in each
of the N learnable queries. As for PromptDecomposer-SD3.5, we add an additional cross-attention
layer in each transformer block, as illustrated in Figure 3. This additional layer accommodate the
extra textual condition to handle the multi text-encoder in StableDiffusion-3.5 (Esser et al., 2024). We
only use 3 transformer blocks to balance the overall parameter count in PromptDecomposer-SD3.5,
and 128 tokens in each learnable query.

A.2 REWARD TUNING STRATEGY

Since the decomposed sub-prompts representations from our PromptDecomposer remain in the
pre-trained T2I model’s expected input domain. Our compositional long-text-to-image generation
model can be tuned efficiently with other tuning methods. Using reward models for tuning T2I
models have been widely explored recently (Kirstain et al., 2023; Wu et al., 2023; Bai et al., 2024).
These models are trained on collected human preference data, and are able to measure how well the
input image is aligned with text description as well as human aesthetic. We adopt the reward tuning
model from LongAlign (Bai et al., 2024), which is optimized on long-caption data to provide more
holistic reward signal. We apply the reward tuning algorithm from Clark et al. (2023), which uses
gradient-checkpointing to back-propagate the reward signal calculated on the final generation result:

L(θ) = Ex0
[1−R(x0,C)] = Ex0

[

1− Cimage(x0) · CT
text(C)

]

, (6)

where x0 is generated from our compositional long-text-to-image model using a DDIM sampler (Song
et al., 2020a). For computational efficiency, we generate images with 50 sampling steps in the training
loop, where we randomly choose 5 steps to calculate gradients and update model parameters within
the memory constraint of our device.

A.3 LIMITATION IN SCALING TO LARGER BASE MODELS

Our PromptDecomposer directly operates on the textual representations with the module output
serving as the T2I model’s conditional input (see Figure 9). This design requires the hidden dimension
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of PromptDecomposer to match that of the T2I model’s cross-attention layers. When adapting our
method to larger T2I models like StableDiffusion 3.5, which features a 4096-dimensional cross-
attention layer, this requirement leads to a substantial increase in module size. Consequently, even
after halving the number of transformer blocks, the PromptDecomposer-SD3.5 still contains 1.2B
trainable parameters. Besides the increased model size, our training objective in Equation 5 increases
the computation batch size by a factor of N (number of decomposed sub-prompts). This also limits
the total per device training batch size. Together, these architectural and computational bottlenecks
make it challenging to effectively scale PromptDecomposer to larger T2I backbones. As shown in
Table 4, only a limited improvement in the generated images’ text-alignment can be obtained when
apply our method to StableDiffusion-3.5 medium. Further optimization in model architecture and
training algorithm is needed for transferring to larger models.

Table 4: Quantitative evaluations of image generation quality on StableDiffusion-3.5 Medium.

CLIPScore DenScore PickScore HPSv2

StableDiffusion-3.5 Medium 34.97 22.37 21.63 28.86
PromptDecomposer-SD3.5 33.55 22.44 21.49 28.43
PromptDecomposer-SD3.5 + tuning 36.08 25.63 23.51 30.47

B FULL TEXT PROMPTS FOR IMAGE GENERATION

In this section we provide the full long-prompt that is used for generating figures in this paper.

For generating Figure 1:

1. The image presents a 3D rendering of a horse, captured in a profile view. The horse is
depicted in a state of motion, with its mane and tail flowing behind it. The horse’s body
is composed of a network of lines and curves, suggesting a complex mechanical structure.
This intricate design is further emphasized by the presence of gears and other mechanical
components, which are integrated into the horse’s body. The background of the image is
a dark blue, providing a stark contrast to the horse and its mechanical components. The
overall composition of the image suggests a blend of organic and mechanical elements,
creating a unique and intriguing visual.

2. A hyper-detailed, macro shot of a human eye, presented not as an organ of sight, but as a
gateway to a lost world of intricate craftsmanship. The iris is a masterfully crafted, antique
horological mechanism, a complex universe of miniature, interlocking gears and cogs made
from polished brass, copper, and tarnished silver. Each metallic piece is exquisitely detailed,
with tiny, functional teeth that seem to pulse with a slow, rhythmic, and almost imperceptible
life. The vibrant color of the iris is replaced by the warm, metallic sheen of the gears, with
ruby and sapphire jewels embedded as tiny, gleaming pivots. At the center, the pupil is
not a void but the deep, dark face of a miniature clock, its impossibly thin, filigreed hands
frozen at a moment of profound significance. The delicate, thread-like veins in the sclera are
reimagined as fine, coiling copper wires, connecting the central mechanism to the unseen
power source at the edge of the frame. The entire piece is captured under a soft, focused light
that highlights the metallic textures and casts deep, dramatic shadows within the complex
machinery, suggesting immense depth. The background is a stark, velvety black, ensuring
nothing distracts from the mesmerizing, mechanical soul of the eye.

3. A sleek, enigmatic feline, a cat of indeterminate breed, is the central figure, poised in a state
of serene contemplation. Its body is not of flesh and bone, but meticulously sculpted from
a complex lattice of polished, interlocking obsidian shards. Each piece is perfectly fitted
against the next, creating a mosaic of deep, lustrous black that absorbs the light. The cat’s
form is defined by the sharp, clean edges of these volcanic glass fragments, giving its natural
curves a subtle, geometric undertone. Glimmering veins of molten gold run through the
cracks between the shards, glowing with a soft, internal heat that pulses rhythmically, like
a slow heartbeat. These golden rivers trace the contours of the cat’s muscles and skeleton,
outlining its elegant spine, the delicate structure of its paws, and the graceful curve of
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its tail. Its eyes are two brilliant, round-cut rubies, catching an unseen light source and
casting a faint, crimson glow. The whiskers are impossibly thin strands of spun platinum,
fanning out from its muzzle with metallic precision. The entire figure rests upon a simple,
unadorned, and dimly lit surface, ensuring that all focus remains on the cat’s extraordinary
construction—a masterful fusion of natural grace and exquisite, dark craftsmanship.

For generating Figure 4:

1. A high angle shot of a brown wooden bench with several dishes on top of it. In the center
and on the left are two round, wavy side plates with black scratches on the sides and a doily
pattern engraved on the plates. On both plates is a thick brown cookie that’s been crosscut
at the top, located in the middle part of the image. The plate on the right has a candy with
a yellow wrapper and green ends. To the right of the plates is a white mug with whipped
cream on top that is similar to the glass plates. The cup, made of ceramic material, has a
cylindrical shape with a handle and a textured surface. The white whipped cream on top is
frothy and has an embossed design. Surrounding the wooden bench is a dark brown wooden
floor. On the top right is a gray curtain, and on the upper left is a view of the lower part of
a white wooden wall. The image is taken indoors with soft, warm lighting, likely from an
overhead source, creating a cozy and inviting atmosphere. The lighting is evenly distributed,
with no harsh shadows, suggesting a relaxed time of day, possibly evening. The style of
the image is a realistic photo with a warm, homely aesthetic. The brown wooden bench
supports the two round, wavy side plates with black scratches and a doily pattern, which are
placed side by side. The thick brown cookies crosscut at the top are positioned on top of
the two round, wavy side plates, with one cookie on each plate. The candy with a yellow
wrapper and green ends is located on the right plate, next to the thick brown cookie. The
white mug with whipped cream on top is situated to the right of the two round, wavy side
plates. The two round, wavy side plates are adjacent to each other, with the plate containing
the candy being closer to the white mug with whipped cream on top.

2. An indoor top-down view of a wooden Statue of Liberty, which is positioned centrally on
the table, covering a black marking on the table, on a wooden table with 3 wooden cars and
1 wooden limo next to it. The wooden limo is placed to the left of the wooden Statue of
Liberty, and the three wooden cars are arranged to the right of the wooden Statue of Liberty.
On the table, the black marking on the table is partially hidden by the wooden Statue of
Liberty in the upper part of the image. Behind the table is a dark blue curtain, through which
sunlight is coming and shining down on the right side of the table, casting a soft glow and
creating gentle shadows that highlight the wooden textures. The lighting is soft and natural,
suggesting it is daytime with sunlight filtering through the curtain, illuminating the right
side of the table. The dark blue curtain is located behind the table, indicating it is not on the
same plane as the objects on the table, and it is positioned at the back of the image. The
style of the image is a realistic photo.

3. A long-shot view of a slightly dark sky with a cumulonimbus forming in the clouds, allowing
rays of sunlight to pierce through, creating a striking contrast against the darkened landscape.
The sky is bright blue, and the cumulonimbus cloud formation is a dark blue and gray, with
soft, diffused sunlight breaking through the clouds, suggesting it is either early morning or
late afternoon, with the sun low on the horizon. A small house is visible in the distance; it
has tan panels, and it has a white metal roof. Parked in the lower right part of the image in
front of the house is a white sedan, situated between the house and the viewer. Surrounding
the house are many tall, healthy trees that are mostly shrouded in shadow; these trees have
green leaves, a broad canopy, dense foliage, and provide natural shade, located around and
behind the small house, creating a natural border. The grass surrounding them is evenly cut
and healthy. The scene is somewhat dark, with rays of sunlight shining through the gathered
clouds to illuminate the sky from above, enhancing the tranquil yet moody atmosphere.
The cumulonimbus cloud formation is positioned above the small house, and the rays of
sunlight are directed towards the area above the house and trees, capturing natural lighting
and atmospheric conditions in a realistic photo style.

4. A front view of a parking lot with several vehicles parked including two dark colored sedans
in the middle part of the image and what appears to be six different motor bikes in front
of them. The bikes seem to range from a red motorbike with color red, material metal and
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plastic, typical features include two wheels, handlebars, seat, engine, exhaust pipe, and
headlight in the right part of the image, a white motor bike in the left part of the image, a
silver motor bike, another white motor bike, another silver motorbike that is silver in color,
and another silver motorbike that is also silver in color. The parking has visible but faded
white parking lines, and behind all of the vehicles are two handicap parking signs. Behind
the handicap signs is a large cream colored building that covers all but the top left side of the
background view, it has a partially visible blue colored roof and a red colored rectangular
shaped strip that passes along the view of the building a couple of feet below the blue roof.
The background features a large cream-colored building with a blue roof and a red strip,
partially obscured by the parked vehicles. Two handicap parking signs are visible on the
building’s facade. The image appears to be taken during the day under natural light, with the
light source positioned overhead, creating soft shadows beneath the vehicles. The lighting is
bright and even, suggesting a clear sky with no direct sunlight causing harsh shadows. The
style of the image is a realistic photo. The two dark colored sedans are positioned behind the
motorbikes, with one slightly to the left and the other to the right. The red motorbike is to
the right of the other motorbikes, closer to the right sedan. The white motorbike is to the far
left, with the silver motorbike next to it. The another white motorbike is positioned between
the first white motorbike and the silver motorbikes. The another silver motorbike is next
to the another white motorbike, and the last silver motorbike is next to the red motorbike.
The cream colored building with a blue roof and red strip is behind all the vehicles, with the
handicap signs in front of it.

For generating Figure 6 and Figure 8:

1. A high-angle side view of a black Yamaha Virago motorcycle facing the right side of the
image parked on an black asphalt surface. The front of the motorcycle is turned slightly
toward the top right corner of the image. The fenders, the fuel tank, and the handles of the
motorcycle are black. The motorcycle has a brown leather seat. The engine, exhaust pipes,
and handlebar are gray silver. There is a red tail light attached to the fender over the top of
the rear wheel. The Virago logo is on the side of the gas tank. The motorcycle is facing a
lawn area on the side of a house visible at the top of the image. There is a patch of grass and
a walkway leading to a gray door near the top right corner of the image, there is a window on
each side of the door. There are two blue chairs in the top right corner of the image. Visible
in the top left corner of the image is the right side of the front of a gray Toyota C-HR SUV
with metallic paint, a compact SUV shape, sleek headlights, a Toyota emblem, and a modern
design. The background features a residential setting with a gray house, a lawn, a walkway,
and two blue chairs near the top right corner. A gray Toyota C-HR SUV is partially visible
in the top left corner. The image is taken outdoors under natural daylight, with soft lighting
conditions suggesting it could be morning or late afternoon. The light source is positioned
to the side, creating gentle shadows and highlighting the motorcycle’s details. The style of
the image is a realistic photo. The black Yamaha Virago motorcycle is positioned in front
of the lawn area with a gray door and windows, indicating it is closer to the viewer than
the house. The gray Toyota C-HR SUV is located to the left of the black Yamaha Virago
motorcycle, suggesting it is parked parallel to the motorcycle but further away from the
house. The two blue chairs are situated to the right of the lawn area with a gray door and
windows, showing they are placed on the side of the house away from the motorcycle and
the SUV. The lawn area with a gray door and windows is between the motorcycle and the
two blue chairs, establishing it as a central point in the spatial arrangement of the scene.

2. An overhead view of four labradoodle puppies, three puppies are sitting and one puppy
is standing with its right paw resting against the white barrier at the bottom of the image.
The puppies are on a light blue rug placed on a black floor. The puppy standing is a beige
and white puppy with curly fur, dark eyes, a small nose, and a fluffy appearance, its paw
extended. There is a black and white puppy sitting on its hind legs to the right, and to the left
part of the image is another beige puppy sitting on its hind legs as well. Directly behind the
standing puppy, in the upper part of the image, is another light cream colored puppy sitting
on its hind legs, looking toward the bottom right corner of the image. The three puppies in
the front are looking up, the puppy behind them is looking toward the bottom right corner
of the image. There is a blue plush toy in the bottom right corner of the image underneath
the black puppy. The rug the puppies are on is not laying completely flat on the ground, its
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unintentionally folded up in some areas and folded over itself in the top right corner of the
image. The background consists of a light blue rug placed on a black floor, with the rug
showing some unintentional folds and overlaps. A blue plush toy is visible in the bottom
right corner under the black puppy. The image is well-lit with soft, even lighting, suggesting
an indoor setting with artificial light sources. The light appears to be front-lit, as there are
no harsh shadows on the puppies. The style of the image is a realistic photo. The beige and
white puppy standing with its right paw resting against the white barrier is in front of the
light cream colored puppy sitting on its hind legs in the back. The black and white puppy
sitting on its hind legs to the right is to the right of the beige and white puppy standing with
its right paw resting against the white barrier. The beige puppy sitting on its hind legs to the
left is to the left of the beige and white puppy standing with its right paw resting against the
white barrier. The light cream colored puppy sitting on its hind legs in the back is behind
the beige and white puppy standing with its right paw resting against the white barrier. The
black and white puppy sitting on its hind legs to the right is next to the beige puppy sitting
on its hind legs to the left.
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