LONG-TEXT-TO-IMAGE GENERATION VIA COMPOSITIONAL PROMPT DECOMPOSITION

Anonymous authorsPaper under double-blind review

ABSTRACT

While modern text-to-image models excel at generating images from intricate prompts, they struggle to capture the key details when the prompts are expanded into descriptive paragraphs. This limitation stems from the prevalence of short captions in their training data. Existing methods attempt to address this by either fine-tuning the pre-trained models, which generalizes poorly to even longer inputs; or by projecting the oversize inputs into short-prompt domain and compromising fidelity. We propose a compositional approach that enables pre-trained models to handle long-prompt by breaking it down into manageable components. Specifically, we introduce a trainable PromptDecomposer module to decompose the long-prompt into a set of distinct sub-prompts. The pre-trained T2I model processes these sub-prompts in parallel, and their corresponding outputs are merged together using concept conjunction. Our compositional long-text-to-image model achieves performance comparable to those with specialized tuning. Meanwhile, our approach demonstrates superior generalization, outperforming other models by 7.4% on prompts over 500 tokens in the challenging DetailMaster benchmark.

1 Introduction

Compositionality is fundamental to human intelligence—the ability to understand novel concepts by decomposing them into familiar primitives and to build complex systems from simple components. This "divide and conquer" strategy is also common in creative activities. An artist, for instance, rarely materializes an intricate scene holistically. Instead, they might independently perfect the rendering of a rustic wooden house and the surrounding trees, ensuring each element is realized with care before integrating them into a cohesive whole. In stark contrast, text-to-image (T2I) models (Rombach et al., 2022) attempt to render the entire scene simultaneously in a single, monolithic process.

This paradigm works well for concise prompts but falters when the input becomes a descriptive paragraph. While a model may excel at rendering "a house in the middle of a forest" it often fails when the prompt expands, detailing the terracotta roof tiles and weathered white panels of the house, the broad canopy of the surrounding pine trees, and the striking contrast cast by the afternoon sun. This failure stems from a fundamental conflict between the nature of long-form text and the models' training paradigm. T2I models are predominantly trained on vast datasets of images paired with short, concise captions. They learn to map phrases to visual features but are fundamentally undertrained on interpreting the narrative flow and distributed details of a paragraph (Bai et al., 2024).

Existing methods attempt to bridge this domain gap with two main strategies, each with significant drawbacks (Figure 2). The most direct approach involves fine-tuning the T2I model on long-captioned images (Bai et al., 2024; Wu et al., 2025). This is computationally prohibitive and risks "catastrophic forgetting" of the model's vast pre-trained knowledge. Furthermore, these tuned models often generalize poorly to prompts longer than those seen during their specialized training. A second strategy adopts projection-based methods to compress a long-prompt into the compact semantic space that the T2I model understands (Hu et al., 2024; Liu et al., 2025). While efficient, forcing a rich paragraph through a narrow keyhole is inherently lossy, sacrificing the very details that make the long-prompt compelling. These limitations reveal an open question: how can we enable models trained on short prompts to genuinely comprehend and render long ones?

In this paper, we advocate the idea of compositionality for long-text-to-image generation. Instead of forcing the pre-trained model to follow the entire paragraph at once, we decompose it into a

The image presents a 3D rendering of a horse ... a blend of organic and mechanical elements ... The horse is depicted in a state of motion, with its mane and tail flowing behind it ... The horse's body is composed of a network of lines and curves ... This intricate design is further emphasized by the presence of gears and other mechanical components ...

A hyper-detailed, macro shot of a human eye ... thread-like veins in the sclera are reimagined as fine, coiling copper wires ... presented not as an organ of sight, but as a gateway to a lost world ... The iris is a masterfully crafted, antique horological mechanism ... interlocking gears and cogs made from polished brass, copper, and tarnished silver ...

A sleek, enigmatic feline ... rests upon a simple, unadorned, and dimly lit surface ... Its body is not of flesh and bone, but meticulously sculpted from a complex lattice of polished, interlocking obsidian shards ... defined by the sharp, clean edges of these volcanic glass fragments, giving its natural curves a subtle, geometric undertone ... Glimmering veins of molten gold ... trace the contours of the cat's muscles and skeleton, outlining its elegant spine ...

Figure 1: **Decomposing Long-prompt for Compositional Generation.** We decompose the long-prompt into manageable sub-prompts, each depicting parts of the original input. Model outputs on each of the decomposed sub-prompts are then re-combined into a final, cohesive image.

set of manageable sub-prompts. The final image is generated from the factorized distribution of the decomposed sub-prompts. Our approach draws inspiration from the compositional generative modeling, which can generalize constituent models to new tasks beyond individual capacity (Du & Kaelbling, 2024; Du et al., 2023). This compositional strategy offers two unique advantages. First, it allows the pre-trained model to operate within its domain of expertise—processing concise concepts—thereby eliminating the need for expensive tuning and preserving its powerful prior knowledge. Second, it ensures higher fidelity to the original input by distributing the paragraph's rich information across multiple components.

How to obtain such decomposition then becomes the central challenge; a simple linguistic split is insufficient as it loses global context. Our key insight is to directly learn this decomposition in the representation space, guided by the T2I model itself. We introduce *PromptDecomposer*, an end-to-end trainable module that uses a set of learnable vectors to query and extract sub-prompt representations from the encoded paragraph. A pre-trained T2I model parallelly processes the decomposed representations, with the resulting noise predictions merged into a single coherent update at each denoising step. *PromptDecomposer* is trained with both the text-encoder and the T2I model frozen, learning to factorize the intricate long-prompt representation into components that are interpretable by the pre-trained model. Our compositional solution delivers performance comparable to tuning-based methods, and crucially, demonstrates superior generalization as prompt length increases, outperforming other methods by **7.4**% on prompts over 500 tokens. Our contribution can be summarized as:

- 1. We propose a compositional framework for long-text-to-image generation that utilizes pre-trained T2I model without expensive fine-tuning.
- 2. We introduce a trainable PromptDecomposer module to directly decompose long-prompt representations for compositional generation.
- 3. Results show our method achieves comparable performance to tuning-based methods on a challenging benchmark, while offering superior generalization to longer inputs.

Figure 2: **Long-Text-to-Image Generation Strategies.** (a) Tuning-based methods adapt the T2I model to long-prompt inputs; (b) Projection-based methods map the long-prompt to compact space; (c) We decompose the long-prompt into several sub-prompts for compositional generation.

2 Related Work

2.1 Long-text-to-image Generation

Diffusion models (Ho et al., 2020; Sohl-Dickstein et al., 2015) have significantly propelled visual generation. Integrated with text conditioning, these models can generate images with unprecedented diversity and quality from natural language descriptions (Rombach et al., 2022; Ramesh et al., 2022). Recent progress in model architecture (Peebles & Xie, 2023) and theoretical foundations (Liu et al., 2022b; Lipman et al., 2022) have enabled T2I models to scale to billions of parameters (Esser et al., 2024; Batifol et al., 2025). Despite this progress, a key limitation remains their difficulty in interpreting long, descriptive paragraphs (Jiao et al., 2025). This challenge often stems from the fixed context window of the text encoders (e.g., CLIP (Radford et al., 2021)), which can be overcome by using more powerful language models (LMs) (Zhao et al., 2024; Liu et al., 2025). However, adapting to the new input takes intensive tuning. An efficient strategy involves projecting the LM representations into the T2I model's original text embedding space (Hu et al., 2024; Liu et al., 2025). To systematically evaluate performance on this task, DetailMaster (Jiao et al., 2025) introduces a rigorous benchmark consists of intricate prompts with an average length of 284.9 tokens depicting complex scenes with multiple objects. It also provides a comprehensive, multi-stage evaluation pipeline leveraging multimodal models to analyze visual details.

2.2 Compositional Generative Modeling

Our work builds on the principle of compositional generative modeling, which constructs complex generative systems by combining simpler, specialized models rather than training a single monolithic one (Du & Kaelbling, 2024; Garipov et al., 2023). Conceptually, this approach treats each model as a soft constraint and uses optimization techniques to find outputs that have a high likelihood across all constituent models (Du et al., 2023; Yang et al., 2023). A key advantage of this approach is its data efficiency and generalization capability; by learning simpler, factorized distributions, a compositional system can generate valid samples for combinations of patterns unseen during training (Mahajan et al., 2024). In vision domain, compositional methods enable the generation of novel images with blended features (Du et al., 2020). For instance, composing T2I diffusion model outputs on different text prompts leads to a sample that is collectively described by all prompts (Liu et al., 2022a; Bradley et al., 2025; Bar-Tal et al., 2023; Yang et al., 2024). It is also possible to train a compositional generative system as a whole. This allows each constituent model to learn a compositional factor from data, which can then be recombined to synthesize novel combinations (Su et al., 2024; Liu et al., 2023). Similarly, we approach the challenge of long-text-to-image generation through a compositional lens, aiming to identify and model the compositional factors within a complex text prompt.

3 METHODOLOGY

Our approach achieves long-text-to-image generation by reframing it as a compositional task. Instead of training a monolithic model to interpret an entire paragraph, we decompose the paragraph into a set of sub-prompts that a pre-trained T2I model can readily understand. The final image is then

synthesized by composing the model's outputs for each sub-prompt, a technique made possible by the insight that diffusion models can be treated as composable energy-based models.

3.1 Preliminaries: Composing Diffusion Models

Text-to-Image Diffusion Generation. A T2I diffusion model, $\epsilon_{\theta}(x_t, t, c)$, generates an image x conditioned on a text prompt c by progressively denoising the input to decreased noise levels $\{\sigma_t\}_{t=1}^T$ (Ho et al., 2020). The model is trained to predict the noise ϵ_t added to an image x at timestep t. Generation begins with pure Gaussian noise, $x_T \sim \mathcal{N}(\mathbf{0}, \sigma_T^2 I)$, which the model iteratively refines by subtracting the predicted noise at each step. This process corresponds to scorebased modeling (Song et al., 2020b), where the predicted noise is proportional to the time-dependent score function (the gradient of the log likelihood): $\epsilon_{\theta} \propto -\nabla_{x_t} \log p_t(x_t|c)$. Generation can thus be viewed as a form of Langevin dynamics (Du & Mordatch, 2019),

$$\boldsymbol{x}_{t-1} = \boldsymbol{x}_t + \frac{\sigma_t^2}{2} \nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{x}_t) + \sqrt{\sigma_t} \boldsymbol{\epsilon}. \tag{1}$$

where the learned score function at each timestep gradually guides a sample toward a high-density region of the target data distribution p(x|c).

Energy-Based Compositionality. The score-based view of diffusion models reveals a connection to Energy-Based Models (EBMs). An EBM defines a probability density via an unnormalized energy function, $p_{\theta}(\boldsymbol{x}) \propto e^{-E_{\theta}(\boldsymbol{x})}$, and uses the gradient of this energy function with Langevin dynamics for generation. A key advantage of EBMs is their inherent compositionality; sampling from a product of multiple data distributions is as simple as summing their energy functions:

$$p_{compose}(\boldsymbol{x}) \propto \prod_{i} p_{\theta}^{i}(\boldsymbol{x}) \propto e^{-\sum_{i} E_{\theta}^{i}(\boldsymbol{x})},$$
 (2)

yielding sample with high-likelihood across all constituent EBMs. As demonstrated by prior work, this logic can be extended to diffusion generation by drawing an line between the diffusion model and the gradient of an implicit energy function, $\epsilon_{\theta} \approx \nabla_{x_t} E_{\theta}(x_t)$. To sample from the product of two distributions conditioned on c_1 and c_2 , one can simply sum their respective noise predictions,

$$\epsilon_{composed}(\boldsymbol{x}_t, t) = \epsilon_{\theta}(\boldsymbol{x}_t, t, \boldsymbol{c}_1) + \epsilon_{\theta}(\boldsymbol{x}_t, t, \boldsymbol{c}_2) \propto \nabla_{\boldsymbol{x}_t} \log \left(p_t(\boldsymbol{x}_t | \boldsymbol{c}_1) \cdot p_t(\boldsymbol{x}_t | \boldsymbol{c}_2) \right), \tag{3}$$

in the score function of Equation 1. This operation, known as **concept conjunction** (Liu et al., 2022a), forms a new composite score that guides the generation process toward an image satisfying both prompts simultaneously. Notably, the synthesized sample won't have to be presented in either of the training data in $p(x|c_1)$ and $p(x|c_2)$. This principle allows us to construct novel scenes from familiar concepts, laying the cornerstone for our approach.

3.2 Compositional Long-Text-to-Image Generation

The domain gap in input prompts is the core challenge of long-text-to-image generation. A descriptive paragraph, C, is fundamentally an out-of-distribution input for pre-trained T2I model $\epsilon_{\theta}(x_t, t, c)$. These models are trained on vast datasets like LAION (Schuhmann et al., 2022), which is dominated by short, label-like captions c. Therefore the models primarily learn to map keywords and short-phrases to visual features, lack the ability of narrative comprehension. Our central hypothesis is that the complex conditional distribution p(x|C) described by the paragraph C can be effectively approximated by factorizing into a set of simpler distributions: $p(x|C) \propto \prod_i^N p(x|c_i)$, where each constituent distribution $p(x|c_i)$ is conditioned on a sub-prompt c_i . Intuitively, a paragraph can be abstracted as a collection of phrases with each capturing a distinct feature. Leveraging the concept conjunction principle in Equation 3, we can construct a long-text-to-image generation model by composing a same pre-trained T2I model ϵ_{θ} with different sub-prompts:

$$\epsilon_{\theta}(\boldsymbol{x}_t, t, \boldsymbol{C}) = \sum_{i=1}^{N} \epsilon_{\theta}(\boldsymbol{x}_t, t, \boldsymbol{c}_i).$$
 (4)

This composite score leads to an image that is collectively described by the sub-prompts $\{c_1, \ldots, c_N\}$. Because the sub-prompts remain semantically concise, they can be readily processed by the pretrained T2I model, avoiding resource-intensive fine-tuning. Furthermore, unlike projection-based methods that suffer from information loss, our factorized approach maintains high fidelity to the original paragraph by distributing its information across multiple sub-prompts $\{c_1, \ldots, c_N\}$.

Figure 3: **Our Compositional Long-Text-to-Image Generation Model.** An input long-prompt is first encoded by a T5 (and optionally a CLIP) model, from which the PromptDecomposer uses a set of learnable queries to extract decomposed sub-prompt representations. A pre-trained T2I model parallelly processes these sub-prompt representations as a batch. Finally, these independent noise predictions are merged into a composed diffusion step through concept conjunction.

3.3 Unsupervised Long-Prompt Decomposition

To obtain the sub-prompts $\{c_1,\ldots,c_N\}$, one appealing option is to utilize LLMs to analyze and break down the paragraph. However, using a set of sentences is sub-optimal for Equation 3 as it does not impose explicit spatial control on the noise predictions. This will lead to inconsistency in global context and local concept blending. The decomposition must be learned in a way that is optimized for Equation 3. To this end, we introduce PromptDecomposer (ψ), a trainable module that learns such decomposition directly in the textual representation space. PromptDecomposer employs N learnable vectors to extract N sub-prompt representations by querying the encoded paragraph C_{LM} . The decomposed representations are then used to condition the T2I model to form the noise prediction as per Equation 4. Critically, the entire composed model can be trained end-to-end with both the text-encoder and T2I model frozen. The diffusion loss calculated on the composite score,

$$\mathcal{L}(\boldsymbol{\psi}) = \mathbb{E}_{\boldsymbol{x},t} \left[\left| \sum_{i=1}^{N} \boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\boldsymbol{x}_{t}, t, \boldsymbol{c}_{i}) - \boldsymbol{\epsilon} \right|^{2} \right], \boldsymbol{\psi}(\boldsymbol{C}_{LM}) = \{\boldsymbol{c}_{1}, \dots, \boldsymbol{c}_{N}\}.$$
 (5)

is backpropagated through the frozen denoising network to update PromptDecomposer ψ . Guided by the T2I model, the PromptDecomposer learns to effectively distribute semantics in the paragraph, producing sub-prompts optimized for compositional generation. This end-to-end training also allows the learned decomposition to implicitly handle the complex relationships and spatial information. The full architecture of our compositional method is illustrated in Figure 3.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Training. We implement our compositional approach on two pre-trained Stable Diffusion (SD) (Rombach et al., 2022) models. PromptDecomposer-SD1.5 is built on the widely-used SD-1.5, which employs a U-Net (Ronneberger et al., 2015) denoising network and a CLIP text-encoder. We also develop a PromptDecomposer on the more recent SD-3.5, which has three text-encoders including a T5-XXL (Raffel et al., 2020). For PromptDecomposer-SD1.5, we replace the original CLIP text-encoder with T5-XL to accommodate long-prompts. We use 6 of the transformer blocks illustrated in Figure 3 and 4 learnable queries, corresponding to a 4 sub-prompts decomposition. We primarily present the results of PromptDecomposer-SD1.5 to compare it with other methods, which are also based on the SD-1.5. We provide further analysis on PromptDecomposer-SD3.5 in Appendix A.3.

We conduct training on the dataset from LongAlign (Bai et al., 2024) containing 2 millions images, resized and cropped into 512² resolution. We use an AdamW optimizer (Loshchilov & Hutter, 2017)

Table 1: Percentage accuracies on the DetailMaster Benchmark (Jiao et al., 2025). Model performances are assessed across five aspects: character presence, character attributes, character location, scene attributes, and spatial relation. Best results of SD-1.5 based models are marked in **bold**.

Model	Tuning	Character		acter Attributes		Character	Scene Attributes			Spatial
		Presence	Object	Animal	Person	Location	Background	Light	Style	Relation
StableDiffusion-1.5	X	19.12	84.40	76.62	80.73	8.66	24.53	69.27	84.47	7.18
LLM4GEN	X	19.43	82.99	78.00	81.67	9.48	28.32	68.08	50.28	8.04
ELLA	X	25.57	82.38	78.75	80.33	15.04	69.15	83.12	44.17	15.17
ParaDiffusion(SDXL)	/	28.63	87.40	85.34	84.66	20.62	84.83	93.59	72.16	25.95
LongAlign	/	25.88	85.54	83.28	83.85	14.12	78.60	87.33	70.49	21.24
PromptDecomposer	X	28.21	84.78	83.24	84.54	16.57	82.45	92.48	64.10	20.88
PromptDecomposer	1	25.99	86.05	86.21	86.16	16.21	90.96	91.16	84.93	24.47

Table 2: Quantitative evaluations of image generation quality. We employ various preference models to assess the generated images based on semantic alignment and human aesthetics.

Metrics	SD-1.5	LLM4GEN	ELLA	ParaDiffusion	LongAlign	PromptDecomposer
CLIPScore	33.45	33.28	30.89	31.72	33.43	32.56
PickScore	20.88	21.25	20.34	20.22	22.35	22.24
DenScore	18.67	19.63	20.72	20.39	24.43	24.50
VOAScore	78.67	73.89	73.30	81.76	82.01	83.22
HPSv3	8.834	9.026	6.777	9.032	13.26	13.03

with batch size 192 and learning rate $1.0e^{-5}$. This training takes about 20 hours on 4 A100 GPUs. We also report the reward-tuning results for a more comprehensive comparison, where we apply LoRA (Hu et al., 2022) on the U-Net to tune the T2I model for another 1000 steps.

Evaluation. We adopt the DetailMaster benchmark (Jiao et al., 2025) to comprehensively assess long-text-to-image performance. DetailMaster is a challenging benchmark consists of long prompts with 284.89 tokens on average. It also features a robust evaluation process that systematically assesses generation quality across five critical dimensions. Specifically, **Character Presence** verifies how many characters in the prompt are successfully generated, and **Character Attributes** measures whether their features (e.g., color, shape) match the text description, with the accuracies computed separately for object, animal, and person categories. **Character Locations** checks if these characters are positioned correctly. **Scene Attributes** evaluates adherence to overall scenic instructions in terms of background, lighting, and style. Finally, **Spatial Relation** quantifies the model's ability to reflect the specified spatial and interactive relationships between the characters.

4.2 Long-Text-to-Image Generation

Long-prompt Following. Table 1 summarizes the evaluation results on DetailMaster. Our compositional approach surpasses all projection-based methods and achieves performance comparable to those models tuned specially on long-prompt data, suggesting compositional generation as a more effective strategy for extending T2I models to long-prompt inputs. Our model excels at rendering complex scenes with multiple subjects and distinct attributes. We outperform other models by 2.33% on Character Presence and 1.53% on Character Location, indicating our model not only generates more characters but also places them in the right locations following the text descriptions. Moreover, since the decomposed sub-prompts remain in the pre-trained model's expected input domain, our method can be used in conjunction with other tuning methods to further enhance the results efficiently. Our model outperforms LongAlign across all metrics with an average improvement of 4.65%.

Image Generation Quality. We employ preference models to assess the generated image quality. We choose three CLIP-based models (CLIPScore (Hessel et al., 2021), DenScore (Bai et al., 2024), PickScore (Kirstain et al., 2023)) to evaluate overall text-image alignment, as well as more powerful multimodal LLMs (VQAScore (Lin et al., 2024), HPSv3 (Ma et al., 2025)) for finer analysis of visual details. We present a quantitative comparison in Table 2. The in-distribution sub-prompts allow an efficient application of other tuning methods. Our model achieves image quality comparable to LongAlign with their reward model but less than a half of their training steps. We present some generated samples in Figure 4. Our PromptDecomposer accurately handles the attributes and spatial relationships of multiple objects within complex scenes. Furthermore, slightly tuning the composed model further enhances the generated images' quality, demonstrating a strong capability for high-fidelity long-text-to-image generation with fine-grained text alignment.

... a parking lot ... sedans in the middle part of the image and what appears to be six different motor bikes in front of them ... a red motorbike with color red, material metal and plastic ... The parking has visible but faded white parking lines ... a large cream colored building that covers all but the top left side of the background view ... a partially visible blue colored roof and a red colored rectangular shaped strip ... sedans are positioned behind the motorbikes ...

Figure 4: **Long-Text-to-Image Generation Samples.** Our PromtDecomposer accurately captures the attributes and spatial relationships of objects described in the complex scene, with the image quality further enhanced by slightly tuning the T2I model on the decomposed sub-prompts.

4.3 IMPROVED GENERALIZATION TO LONGER PROMPTS

T2I models are known to generalize poorly with long-prompts because of their scarcity in training data. To evaluate such generalization, we analyze the compared long-text-to-image models' performance according to input prompt length. Specifically, we partition test prompts in DetailMaster into five bins: <200 tokens, 200–300, 300–400, 400–500 and >500 tokens. As shown in Figure 5, LongAlign performs well on prompts under 300 tokens, which constitute the majority of its training data. However, its performance degrades sharply on longer prompts, dropping by up to 30% for those over 500 tokens. Although this degradation is mitigated in projection-based methods, their capacities are constrained by the fixed context window. In contrast, PromptDecomposer maintains robust performance across all prompt lengths despite being trained on the same dataset, achieving an average improvement of 7.4% on prompts exceeding 500 tokens. This result highlights the improved generalization endowed by compositional generative modeling.

Figure 6 provides a visualization of this improved generalization. We progressively expand a base prompt with more details and compare the generated images. As prompt lengthens, elements such as the house and the yard gradually vanish in LongAlign's outputs. Our model, however, successfully

379

380

381

382

384

385 386

387

388

397 398

399 400 401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427 428

429

430

431

Figure 5: **Generalization to Longer Prompts.** Tuning-based methods (triangle mark) struggle with longer prompts unseen during fine-tuning, and projection-based (round mark) methods suffer from information loss. By decomposing the long input into sub-prompts, our compositional methods (square mark) maintain robust performance across various input lengths.

... The motorcycle is facing a lawn area on the side of a house ... The background features a residential setting with a gray house, a lawn ... The gray Toyota C-HR SUV is located to the left of the black Yamaha Virago motorcycle ...

Figure 6: **Compositional Generalization.** Images are generated from a same prompt rewritten into various lengths. Our method consistently captures the key elements from overwhelmed information.

integrates the additional details without overwriting existing concepts, consistently rendering all the key elements regardless of prompt length.

Number of Sub-prompts. To investigate the impact of decomposition granularity, we conduct an ablation study on the number of subprompts (N). We train two additional PromptDecomposer with N=3 and N=5, alongside our primary version with N=4. We quantitatively compare these variants' long-prompt generalization ability in Figure 7 (solid bars), which demonstrates a clear improvement from more decomposed sub-prompts. We further visualize this trend in Figure 8, where we can see a finer-grained decomposition (N=5) effectively reduces the semantic load on each sub-prompt. Conversely, smaller N forces each sub-prompt to encode more information, leads to individual generation with high resemblance to

Figure 7: **Improved Generalization from Composition.** We compare model generalization of different numbers of sub-prompts in decomposition (solid bars), as well as the same capacity versions without composition (hatched bars).

Table 3: Ablation Study.

	Character Presence	Character Attributes	Character Location	Scene Attributes	Spatial Relation
Direct Model Tuning	28.98	83.63	16.16	78.92	20.97
Composition + Tuning	29.49	82.97	17.10	85.34	22.22
Decomposition via Split	14.01	72.48	6.44	58.69	5.18
Decomposition w/o CLIP	24.42	82.54	13.01	68.49	15.81
Decomposition w/ CLIP	24.32	79.81	12.74	66.38	15.42

the composite output. This is also confirmed in their similarity scores to the input long-prompt: a repeated pattern can be observed in the similarity matrix of N=3, suggesting a similar content in sub-prompts a diminished effect of decomposition.

4.4 ABLATION STUDY

Compositionality. We design non-compositional baselines to isolate the benefit of composition. These baselines are created by training PromptDecomposer with one learnable query which corresponds to an unitary long-text-to-image generation model. We increase the query vector's size

Figure 8: **Impact of Decomposition Granularity.** We visualize both the re-combination and individual generation results of PromptDecomposer with different number of sub-prompts (N), as well as the similarity matrix of sub-prompts and input long-prompt. A smaller N requires each sub-prompt to encode more information and diminishes the decomposition effect. Conversely, a large N can effectively distribute the information, allowing each sub-prompt to focus on distinct semantics.

accordingly to match the total parameter counts. As illustrated in Figure 7, performance of the unitary models (hatched bars) degrades from their compositional counterparts except the case of 3 sub-prompts decomposition. This variant has a diminished compositional effect due to the coarse decomposition (see Section 4.3). Consequently, it enjoys less of the benefit from compositional generation. We also compare the performance gain after tuning in Table 3, where we can see tuning the composed model is more effective. This is because the pre-trained T2I model is more familiar with the decomposed sub-prompts, thus it takes less training to align to these inputs.

Decomposition Design Choices. We examine with using sentence splits for decomposing the long-prompt. Since Equation 3 lacks explicit spatial control on the generation process, this training-free version fails to produce reasonable results as shown in Table 3. We also test the impact of CLIP representations in our PromptDecomposer, which has been shown crucial for adapting pre-trained T2I models to long-prompt representation. However, our results show a negligible differences between these two design choices. We hypothesis this is because of our training objective in Eq. 5 encourages each sub-prompt to dedicate to only partial features of the LM representation, preventing the pre-trained T2I model from being overwhelmed by the richer, more detailed conditional inputs.

5 CONCLUSION

We present a compositional approach for long-text-to-image generation. Our method leverages pre-trained T2I model's expertise on concise prompts and extents its capacity to handle descriptive paragraphs. We introduce a trainable PromptDecomposer module to directly decompose and extract sub-prompts representations, which remain in the T2I model's expected input domain. This module can be trained in an unsupervised manner on the frozen T2I model. By distributing the rich semantic load across multiple sub-prompts, our approach demonstrates superior adherence to detailed instructions and enhanced generalization to increased prompt lengths. Empirically, our method achieves a 7.4% performance improvement on the longest prompts in the DetailMaster benchmark. Moreover, our method can be used in conjunction with other tuning methods efficiently, leading to an average improvement of 4.65% over other tuned models.

A key limitation of our approach is that the unsupervised long-prompt decomposition module relies on the pre-trained T2I model for providing training signal. This paradigm becomes problematic when scaling to larger base model to cope with the increased cross-attention dimensions, resulting in a significantly larger PromptDecomposer. A promising future direction is to decouple this process by, for instance, leveraging LLMs to produce the decomposed sub-prompts directly. Moreover, our choice of composition through concept conjunction lacks explicit control on the composite outputs. Future work could explore more advanced techniques in steering the diffusion generation process such as incorporating guidance from discriminative models.

LARGE LANGUAGE MODELS USAGE DISCLOSURE

LLMs were employed in a limited capacity for writing optimization. Specifically, the authors provided their own draft text to the LLM, which in turn suggested improvements such as corrections of grammatical errors, clearer phrasing, and removal of non-academic expressions. LLMs were also used to inspire possible titles for the paper. While the system provided suggestions, the final title was decided and refined by the authors and is not directly taken from any single LLM output. In addition, LLMs were used as coding assistants during the implementation phase. They provided code completion and debugging suggestions, but all final implementations, experimental design, and validation were carried out and verified by the authors. Importantly, LLMs were NOT used for generating research ideas, designing experiments, or searching and reviewing related work. All conceptual contributions and experimental designs were fully conceived and executed by the authors.

ETHICS STATEMENT

This research was conducted in adherence to the ICLR 2026 Code of Ethics. We specifically address the following ethical considerations:

- **Data Usage:** Our work utilizes publicly available datasets that have undergone anonymization to protect individual privacy. We have handled all data in accordance with their specified terms of use.
- Model Bias: Our method builds upon existing open-source Text-to-Image models. We
 acknowledge that these foundational models may reflect societal biases present in their
 training data. While a full audit of these biases is beyond the scope of our work, we highlight
 the importance of downstream evaluation for fairness before any real-world application of
 our method.
- Societal Impact: We recognize that Text-to-Image technology has the potential for misuse, such as the generation of misinformation. The aim of our research is to contribute positively to creative applications. We advocate for the responsible development of generative models and support community-wide efforts to establish safeguards against potential harms.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide our source code of the implementation of our proposed method in the supplementary material. All critical hyperparameters, training configurations and datasets details for our models can be found in Section 4.1. The computational infrastructure used for our experiments is also detailed in this section.

REFERENCES

- Yushi Bai, Xin Lv, Jiajie Zhang, Yuze He, Ji Qi, Lei Hou, Jie Tang, Yuxiao Dong, and Juanzi Li. Longalign: A recipe for long context alignment of large language models. *arXiv preprint arXiv:2401.18058*, 2024. 1, 5, 6, 14
- Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel. Multidiffusion: Fusing diffusion paths for controlled image generation.(2023). *URL https://arxiv. org/abs/2302.08113*, 2023. 3
- Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril Diagne, Tim Dockhorn,
 Jack English, Zion English, Patrick Esser, Sumith Kulal, et al. Flux. 1 kontext: Flow matching for
 in-context image generation and editing in latent space. arXiv e-prints, pp. arXiv-2506, 2025.
- Arwen Bradley, Preetum Nakkiran, David Berthelot, James Thornton, and Joshua M Susskind. Mechanisms of projective composition of diffusion models. *arXiv preprint arXiv:2502.04549*, 2025. 3
- Kevin Clark, Paul Vicol, Kevin Swersky, and David J Fleet. Directly fine-tuning diffusion models on differentiable rewards. arXiv preprint arXiv:2309.17400, 2023. 14
- Yilun Du and Leslie Kaelbling. Compositional generative modeling: A single model is not all you need. *arXiv preprint arXiv:2402.01103*, 2024. 2, 3

- Yilun Du and Igor Mordatch. Implicit generation and modeling with energy based models. *Advances in neural information processing systems*, 32, 2019. 4
 - Yilun Du, Shuang Li, and Igor Mordatch. Compositional visual generation with energy based models. *Advances in Neural Information Processing Systems*, 33:6637–6647, 2020. 3
 - Yilun Du, Conor Durkan, Robin Strudel, Joshua B Tenenbaum, Sander Dieleman, Rob Fergus, Jascha Sohl-Dickstein, Arnaud Doucet, and Will Sussman Grathwohl. Reduce, reuse, recycle: Compositional generation with energy-based diffusion models and mcmc. In *International conference on machine learning*, pp. 8489–8510. PMLR, 2023. 2, 3
 - Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis. In *Forty-first international conference on machine learning*, 2024. 3, 14
 - Timur Garipov, Sebastiaan De Peuter, Ge Yang, Vikas Garg, Samuel Kaski, and Tommi Jaakkola. Compositional sculpting of iterative generative processes. *Advances in neural information processing systems*, 36:12665–12702, 2023. 3
 - Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-free evaluation metric for image captioning. *arXiv preprint arXiv:2104.08718*, 2021. 6
 - Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in neural information processing systems*, 33:6840–6851, 2020. 3, 4
 - Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022. 6
 - Xiwei Hu, Rui Wang, Yixiao Fang, Bin Fu, Pei Cheng, and Gang Yu. Ella: Equip diffusion models with llm for enhanced semantic alignment. *arXiv preprint arXiv:2403.05135*, 2024. 1, 3, 14
 - Qirui Jiao, Daoyuan Chen, Yilun Huang, Xika Lin, Ying Shen, and Yaliang Li. Detailmaster: Can your text-to-image model handle long prompts? *arXiv preprint arXiv:2505.16915*, 2025. 3, 6
 - Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Picka-pic: An open dataset of user preferences for text-to-image generation. *Advances in neural information processing systems*, 36:36652–36663, 2023. 6, 14
 - Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide Xia, Graham Neubig, Pengchuan Zhang, and Deva Ramanan. Evaluating text-to-visual generation with image-to-text generation. In *European Conference on Computer Vision*, pp. 366–384. Springer, 2024. 6
 - Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022. 3
 - Mushui Liu, Yuhang Ma, Zhen Yang, Jun Dan, Yunlong Yu, Zeng Zhao, Zhipeng Hu, Bai Liu, and Changjie Fan. Llm4gen: Leveraging semantic representation of llms for text-to-image generation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 5523–5531, 2025. 1, 3
 - Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B Tenenbaum. Compositional visual generation with composable diffusion models. In *European conference on computer vision*, pp. 423–439. Springer, 2022a. 3, 4
 - Nan Liu, Yilun Du, Shuang Li, Joshua B Tenenbaum, and Antonio Torralba. Unsupervised compositional concepts discovery with text-to-image generative models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 2085–2095, 2023. 3
 - Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022b. 3
 - Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint arXiv:1711.05101*, 2017. 5

- Yuhang Ma, Xiaoshi Wu, Keqiang Sun, and Hongsheng Li. Hpsv3: Towards wide-spectrum human preference score. *arXiv preprint arXiv:2508.03789*, 2025. 6
 - Divyat Mahajan, Mohammad Pezeshki, Charles Arnal, Ioannis Mitliagkas, Kartik Ahuja, and Pascal Vincent. Compositional risk minimization. *arXiv preprint arXiv:2410.06303*, 2024. 3
 - William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023. 3
 - Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *International conference on machine learning*, pp. 8748–8763. PmLR, 2021. 3
 - Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. *Journal of machine learning research*, 21(140):1–67, 2020. 5
 - Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 1(2):3, 2022.
 - Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10684–10695, 2022. 1, 3, 5
 - Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In *International Conference on Medical image computing and computer-assisted intervention*, pp. 234–241. Springer, 2015. 5
 - Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An open large-scale dataset for training next generation image-text models. *Advances in neural information processing systems*, 35:25278–25294, 2022. 4
 - Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning using nonequilibrium thermodynamics. In *International conference on machine learning*, pp. 2256–2265. pmlr, 2015. 3
 - Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv* preprint arXiv:2010.02502, 2020a. 14
 - Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. *arXiv* preprint *arXiv*:2011.13456, 2020b. 4
 - Jocelin Su, Nan Liu, Yanbo Wang, Joshua B Tenenbaum, and Yilun Du. Compositional image decomposition with diffusion models. *arXiv preprint arXiv:2406.19298*, 2024. 3
 - Weijia Wu, Zhuang Li, Yefei He, Mike Zheng Shou, Chunhua Shen, Lele Cheng, Yan Li, Tingting Gao, and Di Zhang. Paragraph-to-image generation with information-enriched diffusion model. *International Journal of Computer Vision*, pp. 1–22, 2025. 1
 - Xiaoshi Wu, Keqiang Sun, Feng Zhu, Rui Zhao, and Hongsheng Li. Human preference score: Better aligning text-to-image models with human preference. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 2096–2105, 2023. 14
 - Sherry Yang, Yilun Du, Bo Dai, Dale Schuurmans, Joshua B Tenenbaum, and Pieter Abbeel. Probabilistic adaptation of black-box text-to-video models. In *The Twelfth International Conference on Learning Representations*, 2024. 3
 - Zhutian Yang, Jiayuan Mao, Yilun Du, Jiajun Wu, Joshua B Tenenbaum, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. Compositional diffusion-based continuous constraint solvers. *arXiv* preprint arXiv:2309.00966, 2023. 3

Shihao Zhao, Shaozhe Hao, Bojia Zi, Huaizhe Xu, and Kwan-Yee K Wong. Bridging different language models and generative vision models for text-to-image generation. In *European Conference on Computer Vision*, pp. 70–86. Springer, 2024. 3

704

705

706

708

709

710

711

712

713

714

715716717

718 719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735 736

737 738

739

740

741

742

743

744

745

746

747 748

749

750

751

752 753

754

755

Figure 9: **Architecture Details of our PromptDecomposer.** Our PromptDecomposer is built on the efficient model design of ELLA (Hu et al., 2024), which use a learnable vector to query the long-prompt representation from a LM (T5) through L transformer blocks. The final output is then used as the textual condition in the pre-trained T2I model.

A IMPLEMENTATION DETAILS

A.1 PROMPTDECOMPOSER ARCHITECTURE

Our PromptDecomposer borrows the model design from ELLA (Hu et al., 2024), which contains a series of transformer blocks with a learnable query and the LM-encoded long-prompt as key-value. This architecture can efficiently extract textual condition for pre-trained T2I model from the intricate LM output. Furthermore, ELLA also introduces a time-aware adaptive layer normalization layer. This component leverages the diffusion timestep to modulate the hidden features within each transformer block, as illustrated in Figure 9. The temporal information facilitates the model to extract fine-grained textual conditions that are specific to different stages of the denoising process. The final output vector from these blocks is then sent to the cross-attention layers in T2I model, serving as the textual condition. We inherit most of their design in our PromptDecomposer, except that we remove the timeaware layer normalization on the query inputs which we found leads to mode collapse in the learnable vectors. For PromptDecomposer-SD1.5, we use a total of 6 transformer blocks and 64 tokens in each of the N learnable queries. As for PromptDecomposer-SD3.5, we add an additional cross-attention layer in each transformer block, as illustrated in Figure 3. This additional layer accommodate the extra textual condition to handle the multi text-encoder in StableDiffusion-3.5 (Esser et al., 2024). We only use 3 transformer blocks to balance the overall parameter count in PromptDecomposer-SD3.5, and 128 tokens in each learnable query.

A.2 REWARD TUNING STRATEGY

Since the decomposed sub-prompts representations from our PromptDecomposer remain in the pre-trained T2I model's expected input domain. Our compositional long-text-to-image generation model can be tuned efficiently with other tuning methods. Using reward models for tuning T2I models have been widely explored recently (Kirstain et al., 2023; Wu et al., 2023; Bai et al., 2024). These models are trained on collected human preference data, and are able to measure how well the input image is aligned with text description as well as human aesthetic. We adopt the reward tuning model from LongAlign (Bai et al., 2024), which is optimized on long-caption data to provide more holistic reward signal. We apply the reward tuning algorithm from Clark et al. (2023), which uses gradient-checkpointing to back-propagate the reward signal calculated on the final generation result:

$$\mathcal{L}(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{x}_0} \left[1 - \mathcal{R}(\boldsymbol{x}_0, \boldsymbol{C}) \right] = \mathbb{E}_{\boldsymbol{x}_0} \left[1 - \mathcal{C}_{image}(\boldsymbol{x}_0) \cdot \mathcal{C}_{text}^T(\boldsymbol{C}) \right], \tag{6}$$

where x_0 is generated from our compositional long-text-to-image model using a DDIM sampler (Song et al., 2020a). For computational efficiency, we generate images with 50 sampling steps in the training loop, where we randomly choose 5 steps to calculate gradients and update model parameters within the memory constraint of our device.

A.3 LIMITATION IN SCALING TO LARGER BASE MODELS

Our PromptDecomposer directly operates on the textual representations with the module output serving as the T2I model's conditional input (see Figure 9). This design requires the hidden dimension

of PromptDecomposer to match that of the T2I model's cross-attention layers. When adapting our method to larger T2I models like StableDiffusion 3.5, which features a 4096-dimensional cross-attention layer, this requirement leads to a substantial increase in module size. Consequently, even after halving the number of transformer blocks, the PromptDecomposer-SD3.5 still contains 1.2B trainable parameters. Besides the increased model size, our training objective in Equation 5 increases the computation batch size by a factor of N (number of decomposed sub-prompts). This also limits the total per device training batch size. Together, these architectural and computational bottlenecks make it challenging to effectively scale PromptDecomposer to larger T2I backbones. As shown in Table 4, only a limited improvement in the generated images' text-alignment can be obtained when apply our method to StableDiffusion-3.5 medium. Further optimization in model architecture and training algorithm is needed for transferring to larger models.

Table 4: Quantitative evaluations of image generation quality on StableDiffusion-3.5 Medium.

	CLIPScore	DenScore	PickScore	HPSv2
StableDiffusion-3.5 Medium	34.97	22.37	21.63	28.86
PromptDecomposer-SD3.5	33.55	22.44	21.49	28.43
PromptDecomposer-SD3.5 + tuning	36.08	25.63	23.51	30.47

B FULL TEXT PROMPTS FOR IMAGE GENERATION

In this section we provide the full long-prompt that is used for generating figures in this paper. For generating Figure 1:

- 1. The image presents a 3D rendering of a horse, captured in a profile view. The horse is depicted in a state of motion, with its mane and tail flowing behind it. The horse's body is composed of a network of lines and curves, suggesting a complex mechanical structure. This intricate design is further emphasized by the presence of gears and other mechanical components, which are integrated into the horse's body. The background of the image is a dark blue, providing a stark contrast to the horse and its mechanical components. The overall composition of the image suggests a blend of organic and mechanical elements, creating a unique and intriguing visual.
- 2. A hyper-detailed, macro shot of a human eye, presented not as an organ of sight, but as a gateway to a lost world of intricate craftsmanship. The iris is a masterfully crafted, antique horological mechanism, a complex universe of miniature, interlocking gears and cogs made from polished brass, copper, and tarnished silver. Each metallic piece is exquisitely detailed, with tiny, functional teeth that seem to pulse with a slow, rhythmic, and almost imperceptible life. The vibrant color of the iris is replaced by the warm, metallic sheen of the gears, with ruby and sapphire jewels embedded as tiny, gleaming pivots. At the center, the pupil is not a void but the deep, dark face of a miniature clock, its impossibly thin, filigreed hands frozen at a moment of profound significance. The delicate, thread-like veins in the sclera are reimagined as fine, coiling copper wires, connecting the central mechanism to the unseen power source at the edge of the frame. The entire piece is captured under a soft, focused light that highlights the metallic textures and casts deep, dramatic shadows within the complex machinery, suggesting immense depth. The background is a stark, velvety black, ensuring nothing distracts from the mesmerizing, mechanical soul of the eye.
- 3. A sleek, enigmatic feline, a cat of indeterminate breed, is the central figure, poised in a state of serene contemplation. Its body is not of flesh and bone, but meticulously sculpted from a complex lattice of polished, interlocking obsidian shards. Each piece is perfectly fitted against the next, creating a mosaic of deep, lustrous black that absorbs the light. The cat's form is defined by the sharp, clean edges of these volcanic glass fragments, giving its natural curves a subtle, geometric undertone. Glimmering veins of molten gold run through the cracks between the shards, glowing with a soft, internal heat that pulses rhythmically, like a slow heartbeat. These golden rivers trace the contours of the cat's muscles and skeleton, outlining its elegant spine, the delicate structure of its paws, and the graceful curve of

its tail. Its eyes are two brilliant, round-cut rubies, catching an unseen light source and casting a faint, crimson glow. The whiskers are impossibly thin strands of spun platinum, fanning out from its muzzle with metallic precision. The entire figure rests upon a simple, unadorned, and dimly lit surface, ensuring that all focus remains on the cat's extraordinary construction—a masterful fusion of natural grace and exquisite, dark craftsmanship.

For generating Figure 4:

- 1. A high angle shot of a brown wooden bench with several dishes on top of it. In the center and on the left are two round, wavy side plates with black scratches on the sides and a doily pattern engraved on the plates. On both plates is a thick brown cookie that's been crosscut at the top, located in the middle part of the image. The plate on the right has a candy with a yellow wrapper and green ends. To the right of the plates is a white mug with whipped cream on top that is similar to the glass plates. The cup, made of ceramic material, has a cylindrical shape with a handle and a textured surface. The white whipped cream on top is frothy and has an embossed design. Surrounding the wooden bench is a dark brown wooden floor. On the top right is a gray curtain, and on the upper left is a view of the lower part of a white wooden wall. The image is taken indoors with soft, warm lighting, likely from an overhead source, creating a cozy and inviting atmosphere. The lighting is evenly distributed, with no harsh shadows, suggesting a relaxed time of day, possibly evening. The style of the image is a realistic photo with a warm, homely aesthetic. The brown wooden bench supports the two round, wavy side plates with black scratches and a doily pattern, which are placed side by side. The thick brown cookies crosscut at the top are positioned on top of the two round, wavy side plates, with one cookie on each plate. The candy with a yellow wrapper and green ends is located on the right plate, next to the thick brown cookie. The white mug with whipped cream on top is situated to the right of the two round, wavy side plates. The two round, wavy side plates are adjacent to each other, with the plate containing the candy being closer to the white mug with whipped cream on top.
- 2. An indoor top-down view of a wooden Statue of Liberty, which is positioned centrally on the table, covering a black marking on the table, on a wooden table with 3 wooden cars and 1 wooden limo next to it. The wooden limo is placed to the left of the wooden Statue of Liberty, and the three wooden cars are arranged to the right of the wooden Statue of Liberty. On the table, the black marking on the table is partially hidden by the wooden Statue of Liberty in the upper part of the image. Behind the table is a dark blue curtain, through which sunlight is coming and shining down on the right side of the table, casting a soft glow and creating gentle shadows that highlight the wooden textures. The lighting is soft and natural, suggesting it is daytime with sunlight filtering through the curtain, illuminating the right side of the table. The dark blue curtain is located behind the table, indicating it is not on the same plane as the objects on the table, and it is positioned at the back of the image. The style of the image is a realistic photo.
- 3. A long-shot view of a slightly dark sky with a cumulonimbus forming in the clouds, allowing rays of sunlight to pierce through, creating a striking contrast against the darkened landscape. The sky is bright blue, and the cumulonimbus cloud formation is a dark blue and gray, with soft, diffused sunlight breaking through the clouds, suggesting it is either early morning or late afternoon, with the sun low on the horizon. A small house is visible in the distance; it has tan panels, and it has a white metal roof. Parked in the lower right part of the image in front of the house is a white sedan, situated between the house and the viewer. Surrounding the house are many tall, healthy trees that are mostly shrouded in shadow; these trees have green leaves, a broad canopy, dense foliage, and provide natural shade, located around and behind the small house, creating a natural border. The grass surrounding them is evenly cut and healthy. The scene is somewhat dark, with rays of sunlight shining through the gathered clouds to illuminate the sky from above, enhancing the tranquil yet moody atmosphere. The cumulonimbus cloud formation is positioned above the small house, and the rays of sunlight are directed towards the area above the house and trees, capturing natural lighting and atmospheric conditions in a realistic photo style.
- 4. A front view of a parking lot with several vehicles parked including two dark colored sedans in the middle part of the image and what appears to be six different motor bikes in front of them. The bikes seem to range from a red motorbike with color red, material metal and

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

881

882

883 884

885

887

889

890

891

892

893

894

897

900

901

902

903

904

905

906

907

908

909

910

911

912

914

915

916

plastic, typical features include two wheels, handlebars, seat, engine, exhaust pipe, and headlight in the right part of the image, a white motor bike in the left part of the image, a silver motor bike, another white motor bike, another silver motorbike that is silver in color, and another silver motorbike that is also silver in color. The parking has visible but faded white parking lines, and behind all of the vehicles are two handicap parking signs. Behind the handicap signs is a large cream colored building that covers all but the top left side of the background view, it has a partially visible blue colored roof and a red colored rectangular shaped strip that passes along the view of the building a couple of feet below the blue roof. The background features a large cream-colored building with a blue roof and a red strip, partially obscured by the parked vehicles. Two handicap parking signs are visible on the building's facade. The image appears to be taken during the day under natural light, with the light source positioned overhead, creating soft shadows beneath the vehicles. The lighting is bright and even, suggesting a clear sky with no direct sunlight causing harsh shadows. The style of the image is a realistic photo. The two dark colored sedans are positioned behind the motorbikes, with one slightly to the left and the other to the right. The red motorbike is to the right of the other motorbikes, closer to the right sedan. The white motorbike is to the far left, with the silver motorbike next to it. The another white motorbike is positioned between the first white motorbike and the silver motorbikes. The another silver motorbike is next to the another white motorbike, and the last silver motorbike is next to the red motorbike. The cream colored building with a blue roof and red strip is behind all the vehicles, with the handicap signs in front of it.

For generating Figure 6 and Figure 8:

- 1. A high-angle side view of a black Yamaha Virago motorcycle facing the right side of the image parked on an black asphalt surface. The front of the motorcycle is turned slightly toward the top right corner of the image. The fenders, the fuel tank, and the handles of the motorcycle are black. The motorcycle has a brown leather seat. The engine, exhaust pipes, and handlebar are gray silver. There is a red tail light attached to the fender over the top of the rear wheel. The Virago logo is on the side of the gas tank. The motorcycle is facing a lawn area on the side of a house visible at the top of the image. There is a patch of grass and a walkway leading to a gray door near the top right corner of the image, there is a window on each side of the door. There are two blue chairs in the top right corner of the image. Visible in the top left corner of the image is the right side of the front of a gray Toyota C-HR SUV with metallic paint, a compact SUV shape, sleek headlights, a Toyota emblem, and a modern design. The background features a residential setting with a gray house, a lawn, a walkway, and two blue chairs near the top right corner. A gray Toyota C-HR SUV is partially visible in the top left corner. The image is taken outdoors under natural daylight, with soft lighting conditions suggesting it could be morning or late afternoon. The light source is positioned to the side, creating gentle shadows and highlighting the motorcycle's details. The style of the image is a realistic photo. The black Yamaha Virago motorcycle is positioned in front of the lawn area with a gray door and windows, indicating it is closer to the viewer than the house. The gray Toyota C-HR SUV is located to the left of the black Yamaha Virago motorcycle, suggesting it is parked parallel to the motorcycle but further away from the house. The two blue chairs are situated to the right of the lawn area with a gray door and windows, showing they are placed on the side of the house away from the motorcycle and the SUV. The lawn area with a gray door and windows is between the motorcycle and the two blue chairs, establishing it as a central point in the spatial arrangement of the scene.
- 2. An overhead view of four labradoodle puppies, three puppies are sitting and one puppy is standing with its right paw resting against the white barrier at the bottom of the image. The puppies are on a light blue rug placed on a black floor. The puppy standing is a beige and white puppy with curly fur, dark eyes, a small nose, and a fluffy appearance, its paw extended. There is a black and white puppy sitting on its hind legs to the right, and to the left part of the image is another beige puppy sitting on its hind legs as well. Directly behind the standing puppy, in the upper part of the image, is another light cream colored puppy sitting on its hind legs, looking toward the bottom right corner of the image. The three puppies in the front are looking up, the puppy behind them is looking toward the bottom right corner of the image. There is a blue plush toy in the bottom right corner of the image underneath the black puppy. The rug the puppies are on is not laying completely flat on the ground, its

unintentionally folded up in some areas and folded over itself in the top right corner of the image. The background consists of a light blue rug placed on a black floor, with the rug showing some unintentional folds and overlaps. A blue plush toy is visible in the bottom right corner under the black puppy. The image is well-lit with soft, even lighting, suggesting an indoor setting with artificial light sources. The light appears to be front-lit, as there are no harsh shadows on the puppies. The style of the image is a realistic photo. The beige and white puppy standing with its right paw resting against the white barrier is in front of the light cream colored puppy sitting on its hind legs in the back. The black and white puppy sitting on its hind legs to the right of the beige and white puppy standing with its right paw resting against the white barrier. The beige puppy sitting on its hind legs to the left is to the left of the beige and white puppy standing with its right paw resting against the white barrier. The light cream colored puppy sitting on its hind legs in the back is behind the beige and white puppy standing with its right paw resting against the white barrier. The black and white puppy sitting on its hind legs to the left.