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ABSTRACT

While modern text-to-image models excel at generating images from intricate
prompts, they struggle to capture the key details when the prompts are expanded
into descriptive paragraphs. This limitation stems from the prevalence of short
captions in their training data. Existing methods attempt to address this by either
fine-tuning on long-prompt data, which generalizes poorly to even longer inputs;
or by projecting the oversize inputs into normal-prompt domain and compromising
fidelity. We propose a compositional approach that enables pre-trained models to
handle long-prompts by breaking it down into manageable components. Specif-
ically, we introduce a trainable PromptDecomposer module to decompose the
long-prompt into a set of distinct sub-prompts. The pre-trained T2I model pro-
cesses these sub-prompts in parallel, and their corresponding outputs are merged
together using concept conjunction. Our compositional long-text-to-image model
achieves performance comparable to those with specialized tuning. Meanwhile,
our approach demonstrates superior generalization, outperforming other models by
7.4% on prompts over 500 tokens in the challenging DetailMaster benchmark.

1 INTRODUCTION

Compositionality is fundamental to human intelligence—the ability to understand novel concepts by
decomposing them into familiar primitives and to build complex systems from simple components.
This “divide and conquer” strategy is also common in creative activities. An artist, for instance, rarely
materializes an intricate scene holistically. Instead, they might independently perfect the rendering of
a rustic wooden house and the surrounding trees, ensuring each element is realized with care before
integrating them into a cohesive whole. In stark contrast, text-to-image (T2I) models (Rombach et al.,
2022) attempt to render the entire scene simultaneously in a single, monolithic process.

This paradigm works well for concise prompts but falters when the input becomes a descriptive
paragraph. While a model may excel at rendering “a house in the middle of a forest” it often fails
when the prompt expands, detailing the terracotta roof tiles, the weathered white panels of the
house, and the striking contrast cast by the afternoon sun. This failure stems from a fundamental
conflict between the nature of long-form text and the models’ training paradigm. T2I models are
predominantly trained on vast datasets of images paired with short, concise captions. They learn to
map phrases to visual features but are undertrained on interpreting the narrative flow and distributed
details of a paragraph (Bai et al., 2024). Even modern models using powerful text-encoders struggle
on these inputs, missing more than a half of the specified objects (Jiao et al., 2025).

Existing methods attempt to bridge this domain gap with two main strategies (Figure 2). The most
direct approach involves fine-tuning the T2I model on long-captioned images (Bai et al., 2024;
Wu et al., 2025b). This is computationally prohibitive and risks “catastrophic forgetting” of the
pre-trained knowledge. Furthermore, these tuned models often generalize poorly to prompts even
longer. A second strategy adopts projection-based methods to compress a long-prompt into the
compact semantic space that the T2I model understands (Hu et al., 2024; Liu et al., 2025). While
efficient, forcing a rich paragraph through a narrow keyhole is inherently lossy, sacrificing the very
details that make the long-prompt compelling. These limitations reveal an open question: how to
utilize model’s knowledge on short prompts to render the long paragraphs?

In this paper, we advocate the idea of compositionality for long-text-to-image generation. Instead
of forcing the pre-trained model to follow the entire paragraph at once, we decompose it into a
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... defined by the sharp, clean
edges of these volcanic glass fragments, giving its natural curves a subtle, geometric undertone ... Glimmering veins of
molten gold ... trace the contours of the cat's muscles and skeleton, outlining its elegant spine ...

Figure 1: Decomposing Long-prompt for Compositional Generation. We decompose the long-
prompt into manageable sub-prompts, each depicting parts of the original input. Model outputs on
each of the decomposed sub-prompts are then re-combined into a final, cohesive image.

set of manageable sub-prompts. The final image is generated from the factorized distribution of
the decomposed sub-prompts. Our approach draws inspiration from the compositional generative
modeling, which can generalize constituent models to new tasks beyond individual capacity (Du &
Kaelbling, 2024; Du et al., 2023). This compositional strategy offers two unique advantages. First, it
allows the pre-trained model to operate within its domain of expertise—processing concise concepts—
thereby eliminating the need for expensive tuning and preserving its powerful prior knowledge.
Second, it ensures higher fidelity to the original input by distributing the paragraph’s rich information
across multiple components.

How to obtain such decomposition then becomes the central challenge; a simple linguistic split
is insufficient as it loses global context. Our key insight is to directly learn this decomposition in
the representation space, guided by the T2I model itself. We introduce PromptDecomposer, an
end-to-end trainable module that uses a set of learnable vectors to query and extract sub-prompt
representations from the encoded paragraph. A pre-trained T2I model parallelly processes the
decomposed representations, with the resulting noise predictions merged into a single coherent
update at each denoising step. PromptDecomposer is trained with both the text-encoder and the
T2I model frozen, learning to factorize the intricate long-prompt representation into components
that are interpretable by the pre-trained model. Our compositional solution delivers performance
comparable to tuning-based methods, and crucially, demonstrates superior generalization as prompt
length increases, outperforming other methods by 7.4% on prompts over 500 tokens. Our contribution
can be summarized as:

1. We propose a compositional framework for long-text-to-image generation that utilizes
pre-trained T2I model without expensive fine-tuning.

2. We introduce a trainable PromptDecomposer module to directly decompose long-prompt
representations for compositional generation.

3. Results show our method achieves comparable performance to tuning-based methods on a
challenging benchmark, while offering superior generalization to longer inputs.
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Figure 2: Long-Text-to-Image Generation Strategies. (a) Tuning-based methods adapt the T2I
model to long-prompt inputs; (b) Projection-based methods map the long-prompt to compact space;
(c) We decompose the long-prompt into several sub-prompts for compositional generation.

2 RELATED WORK

2.1 LONG-TEXT-TO-IMAGE GENERATION

Diffusion models (Ho et al., 2020; Sohl-Dickstein et al., 2015) have significantly propelled visual
generation. Integrated with text conditioning, these models can generate images with unprecedented
diversity and quality from natural language descriptions (Rombach et al., 2022; Ramesh et al., 2022).
Recent progress in model architecture (Peebles & Xie, 2023) and theoretlcal foundations (L]u et al.,
2022b; Lipman et al., 2022) have enabled T2I models to scale to billions of parameters (Esser
et al., 2024; Batifol et al., 2025). Despite this progress, a key limitation remains their difficulty in
interpreting long, descriptive paragraphs (Jiao et al., 2025). This challenge often stems from the fixed
context window of the text encoders (e.g., CLIP (Radford et al., 2021)), which can be overcome
by using more powerful language models (LMs) (Zhao et al., 2024; Liu et al., 2025). However,
adapting to the new input takes intensive tuning. An efficient strategy involves projecting the LM
representations into the T2I model’s original text embedding space (Hu et al., 2024; Liu et al., 2025).
To systematically evaluate performance on this task, DetailMaster (Jiao et al., 2025) mtroduces a
rigorous benchmark consists of intricate prompts with an average length of 284.9 tokens depicting
complex scenes with multiple objects. It also provides a comprehensive, multi-stage evaluation
pipeline leveraging multimodal models to analyze visual details.

2.2 COMPOSITIONAL GENERATIVE MODELING

Our work builds on the principle of compositional generative modeling, which constructs complex
generative systems by combining simpler, specialized models rather than training a single monolithic
one (Du & Kaelbling, 2024; Garipov et al., 2023). Conceptually, this approach treats each model as a
soft constraint and uses optimization techmques to find outputs that have a high likelihood across all
constituent models (Du et al., 2023; Yang et al., 2023). A key advantage of this approach is its data
efficiency and generalization capability; by learning simpler, factorized distributions, a compositional
system can generate valid samples for combinations of patterns unseen during training (Mahajan et al.,
2024). In vision domain, compositional methods enable the generation of novel images with blended
features (Du et al., 2020). For instance, composing T2I diffusion model outputs on different text
prompts leads to a sample that is collectively described by all prompts (Liu et al., 2022a; Bradley et al.,
2025; Bar-Tal et al., 2023; Yang et al., 2024). It is also possible to train a compositional generative
system as a whole. This allows each constituent model to learn a compositional factor from data,
which can then be recombined to synthesize novel combinations (Su et al., 2024; Liu et al., 2023).
Similarly, we approach the challenge of long-text-to-image generation through a compositional lens,
aiming to identify and model the compositional factors within a complex text prompt.

3 METHODOLOGY

Our approach achieves long-text-to-image generation by reframing it as a compositional task. Instead
of training a monolithic model to interpret an entire paragraph, we decompose the paragraph into
a set of sub-prompts that a pre-trained T2I model can readily understand. The final image is then
synthesized by composing the model’s outputs for each sub-prompt, a technique made possible by
the insight that diffusion models can be treated as composable energy-based models.
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3.1 PRELIMINARIES: COMPOSING DIFFUSION MODELS

Text-to-Image Diffusion Generation. A T2I diffusion model, €y(x;,t, c), generates an image
x conditioned on a text prompt ¢ by progressively denoising the input to decreased noise levels
{Ut}thl (Ho et al., 2020). The model is trained to predict the noise €; added to an image x at
timestep ¢. Generation begins with pure Gaussian noise, xr ~ N(0,02I), which the model
iteratively refines by subtracting the predicted noise at each step. This process corresponds to score-
based modeling (Song et al., 2020b), where the predicted noise is proportional to the time-dependent
score function (the gradient of the log likelihood): €y «x —V 5, log pi(x:|c). Generation can thus be
viewed as a form of Langevin dynamics (Du & Mordatch, 2019),

2
o
Ti_1 =Ty + éth log pi(x¢) + /o€ (1)

where the learned score function at each timestep gradually guides a sample toward a high-density
region of the target data distribution p(x|c).

Energy-Based Compositionality. The score-based view of diffusion models reveals a connection to
Energy-Based Models (EBMs). An EBM defines a probability density via an unnormalized energy
function, py(x) o< e~ (), and uses the gradient of this energy function with Langevin dynamics
for generation. A key advantage of EBMs is their inherent compositionality; sampling from a product
of multiple data distributions is as simple as summing their energy functions:

pcompose(m) o8 sze (CB) xe 2 E;(z)’ )

yielding sample with high-likelihood across all constituent EBMs. As demonstrated by prior work,
this logic can be extended to diffusion generation by drawing an line between the diffusion model
and the gradient of an implicit energy function, €y ~ V, Fy(x:). To sample from the product of
two distributions conditioned on ¢; and c2, one can simply sum their respective noise predictions,

ecomposed(mta t) = €9 (.’Bt, t7 cl) + €9 (mtv ta 62) X vmf, log (Pt (mt‘cl) * Pt (xt|62)) ) (3)

in the score function of Equation 1. This operation, known as concept conjunction (Liu et al., 2022a),
forms a new composite score that guides the generation process toward an image satisfying both
prompts simultaneously. Notably, the synthesized sample won’t have to be presented in either of the
training data in p(x|c;) and p(x|cz). This principle allows us to construct novel scenes from familiar
concepts, laying the cornerstone for our approach.

3.2 COMPOSITIONAL LONG-TEXT-TO-IMAGE GENERATION

The domain gap in input prompts is the core challenge of long-text-to-image generation. A descriptive
paragraph, C, is fundamentally an out-of-distribution input for pre-trained T2I model €y (x;, t, ).
These models are trained on vast datasets like LAION (Schuhmann et al., 2022), which is dominated
by short, label-like captions ¢. Therefore the models primarily learn to map keywords and short-
phrases to visual features, lack the ability of narrative comprehension. Our central hypothesis is
that the complex conditional distribution p(x|C') described by the paragraph C can be effectively

approximated by factorizing into a set of simpler distributions: p(x|C') HZN p(x|c;), where each
constituent distribution p(x|c;) is conditioned on a sub-prompt ¢;. Intuitively, a paragraph can be
abstracted as a collection of phrases with each capturing a distinct feature. Leveraging the concept
conjunction principle in Equation 3, we can construct a long-text-to-image generation model by
composing a same pre-trained T2I model €y with different sub-prompts:

N
ee(wtvtvc) = Zes(wtvtaci)' (4)

i=1
This composite score leads to an image that is collectively described by the sub-prompts {cy, ..., cn}.

Because the sub-prompts remain semantically concise, they can be readily processed by the pre-
trained T2I model, avoiding resource-intensive fine-tuning. Furthermore, unlike projection-based
methods that suffer from information loss, our factorized approach maintains high fidelity to the
original paragraph by distributing its information across multiple sub-prompts {cy,...,cn}.
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Figure 3: Compositional Long-Text-to-Image Generation Model. The input long-prompt is first
encoded by the pre-trained T2I model’s text-encoder. Our PromptDecomposer module then extracts
the decomposed sub-prompt representations from the encoded long-prompt. Current noisy latent is
first cloned into a batch according to the number of decomposed sub-prompts and parallelly processed
by the T2I model. Finally, the noise predictions conditioned on different sub-prompts are merged
into a composed diffusion step through concept conjunction.

3.3 UNSUPERVISED LONG-PROMPT DECOMPOSITION

To obtain the sub-prompts {¢i,...,cy}, one appealing option is to utilize LLMs to analyze and
break down the paragraph. However, Equation 3 lacks explicit spatial control over each sub-prompt
input, resulting in global context inconsistency and local concept blending. We propose to learn such
decomposition directly in the textual representation space via a trainable PromptDecomposer (1))
module. The T2I model utilizes the module’s output to form the noise prediction as per Equation 4.
Crucially, the entire composed model is trained end-to-end in an unsupervised manner, using the
diffusion loss calculated on the composite score,

N
Zﬁe(mt»tv ci) — €
=1

2

L() =Eqg; ,W(Crm) ={c1,...,en} )

By training on the frozen T2I model, the PromptDecomposer learns to distribute the information into
sub-prompts {¢; } that are explicitly optimized for the compositional generation process in Equation 3.
This end-to-end training allows the learned decomposition to effectively capture spatial relationships
and global attributes (eg., lighting, style) that are critical for consistency but lost in linguistic splitting.

3.4 IMPLEMENTATION DETAILS

Our compositional approach functions as a general framework to generalize T2I models to long-
prompts outside training data distributions. Here we present two distinct PromptDecomposer module
designs tailored to the type of text-encoder employed by the underlying T2I model.

Bidirectional Text-Encoder. For full attention Transformer text-encoder (Vaswani et al., 2017)
like the T5 (Raffel et al., 2020) in Stable Diffusion-3.5 (Peebles & Xie, 2023) or FLUX (Batifol
et al., 2025), we implement PromptDecomposer as a Perceiver network (Jacgle et al., 2021). As
illustrated in Figure 10, since the text-encoder outputs a fixed length hidden state, we employ N
learnable vectors to query the encoded long-prompt C'1, 5, through multiple cross-attention layers.
These queries thus learn to extract distinct semantic components from the global context, projecting
them into sub-prompt representations optimized for compositional generation.

Decoder-only Language Model. For T2I models built upon decoder-only LLMs, such as Qwen-
Image (Wu et al., 2025a) with Qwen2.5-VL (Bai et al., 2025), we leverage the LLM’s inherent
reasoning capabilities to generate decomposed representations directly. As illustrated in Figure 11,
we replicate the input tokens NV times and prepend a trainable component token (|comp,|) to each
segment ¢. These NV segments are concatenated into a single contiguous input sequence, allowing the
model to reason over the full context while generating distinct representations for each component.
The final output is chunked into IV pieces corresponding to the sub-prompt representations.
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Table 1: Evaluations on the DetailMaster Benchmark (Jiao et al., 2025). We perform comparisons
within two groups: Long-Text-to-Image generation methods built on Stable Diffusion-1.5, and state-
of-the-art T2I models including SDXL, Stable Diffusion-3.5, FLUX and Qwen-Image. Numbers are
reported in percentage accuracies and the best results in each group are marked in Bold.

Model \ Character Character Attributes Character Scene Attributes Spatial
‘ Presence Object Animal Person Location Background Light Style Relation
Long-Text-to-Image Methods Built on SD-1.5
StableDiffusion-1.5 19.12 8440  76.62 80.73 8.66 24.53 69.27 8447 7.18
LLM4GEN 19.43 82.99 78.00 81.67 9.48 28.32 68.08 50.28 8.04
LLM Blueprint 18.69 8140  76.25 76.53 18.40 56.69 83.28 67.07 14.16
ELLA 25.57 82.38 78.75 80.33 15.04 69.15 83.12 44.17 15.17
LongAlign 25.88 85.54 83.28 83.85 14.12 78.60 87.33  70.49 21.24
PromptDecomposer 28.21 84.78 83.24 84.54 16.57 82.45 9248 64.10  20.88
PromptDecomposer w/ tuning) 25.99 86.05 86.21 86.16 16.21 90.96 91.16 84.93  24.47
State-of-the-art T2I Models with Modern Architectures

ParaDiffusionsoxz) 28.63 87.40 85.34 84.66 20.62 84.83 93.59 72.16 25.95
StableDiffusion-3.5 39.01 87.60 87.57 89.55 31.91 93.82 92.53 95.31 39.36
FLUX-Dev. 42.02 91.14 89.61 90.23 38.18 95.73 96.91 9528 4494
Qwen-Image 40.46 90.21 89.13 91.29 40.14 92.00 96.93 91.53 47.02
PromptDecomposer gwen 46.84 91.55 90.36 93.53 41.49 94.62 97.32 95.62  49.23

Table 2: Quantitative comparisons of generated image quality. We employ various models to
assess images based on semantic alignment and human aesthetics. Best results are marked in Bold.

Model CLIPScore DenScore PickScore VQAScore HPSv3
Long-Text-to-Image Methods

ELLA 30.89 20.34 20.72 73.30 6.78
LongAlign 3343 22.35 24.43 82.01 13.26
PromptDecomposer sp1.s) 32.56 22.24 24.50 83.22 13.03
State-of-the-art T21 Models

StableDiffusion-3.5 34.97 22.37 21.63 86.12 13.39
FLUX-Dev. 33.30 22.56 21.89 86.19 13.17
Qwen-Image 33.85 22.25 20.98 85.02 8.56
PromptDecomposergwen) 34.12 22.93 22.04 86.21 12.05

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Training. We implement our compositional approach on two pre-trained T2I models to demonstrate
generalizability across varying architectures. PromptDecomposer-SD1.5 is built on the widely-used
Stable Diffusion-1.5 (SD-1.5) (Rombach et al., 2022) backbone. Consistent with prior work (Hu et al.,
2024), we replace the original CLIP text-encoder with T5-XL (Raffel et al., 2020) to accommodate the
token length of descriptive paragraphs. We also develop a PromptDecomposer on Qwen-Image (Wu
et al., 2025a) to validate our approach on a large-scale modern architecture.

We conduct training on the dataset provided in LongAlign (Bai et al., 2024). This dataset comprises ap-
proximately 2 million images re-captioned by LLaVA-Next (Liu et al., 2024) or ShareCaptioner (Chen
et al., 2024) to ensure descriptive textual input. We adopt an AdamW optimizer (Loshchilov & Hut-
ter, 2017) with batch size 192 and learning rate 1.0e~°. This training takes about 20 hours on 4
A100 GPUs. For PromptDecomposer-Qwen, we employ LoRA fine-tuning on the text encoder for
approximately 2,500 steps with batch size 24 and learning rate 5.0e~°.

Evaluation. We adopt the DetailMaster benchmark (Jiao et al., 2025) to comprehensively assess long-
text-to-image performance. DetailMaster is a challenging benchmark consists of prompts with 284.89
tokens on average, evaluating generation quality across five dimensions. Specifically, Character
Presence verifies how many characters in the prompt are successfully generated, and Character
Attributes measures whether their features (e.g., color, shape) match the text description, with the
accuracies computed separately for object, animal, and person categories. Character Locations
checks if these characters are positioned correctly. Scene Attributes evaluates adherence to overall
scenic instructions in terms of background, lighting, and style. Finally, Spatial Relation quantifies
the model’s ability to reflect the specified spatial and interactive relationships between the characters.
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... two round, wavy side plates with black scratches on the sides and a doily pattern engraved on the plates ... On both
plates is a thick brown cookie ... The plate on the right has a candy with a yellow wrapper and green ends ... To the right
of the plates is a white mug ... made of ceramic material, has a cylindrical shape with a handle and a textured surface ...
On the top right is a gray curtain, and on the upper left is a view of the lower part of a white wooden wall ...
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... awooden Statue of Liberty, which is positioned centrally on the table ... The wooden limo is placed to the left of the
wooden Statue of Liberty, and the three wooden cars are arranged to the right of the wooden Statue of Liberty ... Behind
the table is a dark blue curtain, through which sunlight is coming and shining down ... highlight the wooden textures ...
The lighting is soft and natural ... illuminating the right side of the table ...

|
==

... aslightly dark sky with a cumulonimbus forming in the clouds ... soft, diffused sunlight breaking through the clouds
... with the sun low on the horizon ... A small house is visible in the distance ... a white sedan, situated between the
house and the viewer ... Surrounding the house are many tall, healthy trees ... The grass surrounding them is evenly cut
and healthy ... The cumulonimbus cloud formation is positioned above the small house ...

... aparking lot ... sedans in the middle part of the image and what appears to be six different motor bikes in front of
them ... a red motorbike with color red, material metal and plastic ... The parking has visible but faded white parking
lines ... a large cream colored building that covers all but the top left side of the background view ... a partially visible
blue colored roof and a red colored rectangular shaped strip ... sedans are positioned behind the motorbikes ...
Figure 4: Long-Text-to-Image Generation Samples. Our PromptDecomposer accurately captures
the attributes and spatial relationships of objects described in the complex scene, with the image
quality further enhanced by slightly tuning the T2I model on the decomposed sub-prompts.

4.2 LONG-TEXT-TO-IMAGE GENERATION

Long-prompt Following. Table 1 summarizes the benchmark evaluations of DetailMaster, where
we examine the effectiveness of our method against specialized Long-Text-to-Image generation
methods and SOTA baselines. PromptDecomposer-SD1.5 outperforms other methods by 2.33%
on Character Presence and 1.53% on Character Location, demonstrating the efficiency of our
PromptDecomposer in processing descriptive paragraphs. Moreover, since the decomposed sub-
prompts remain in the pre-trained model’s expected input domain, our method can be used in
conjunction with other tuning methods to further enhance the results. Our model outperforms
LongAlign across all metrics by 4.65% on average using the same tuning method.

Enhancing SOTA Models. Despite employing powerful text-encoders (eg., T5-XXL or Qwen2.5-
VL) in modern architectures, Table 1 also shows that more than a half of the characters described in
the prompt are completely omitted by even the strongest FLUX model. Our compositional method
can further enhance the performance of these SOTA models. For Qwen-Image that leverages an
MLLM as its text-encoder, our method improves the Character Presence by 6.38% and Character
Attributes by 1.60% on average. This highlights the long-text-to-image generation as a fundamental
challenge originates from the scarcity of long-captioned training data, instead of the text-encoder.
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Figure 5: Generalization to Longer Prompts. Tuning-based methods (triangle mark) struggle with
longer prompts unseen during fine-tuning, and projection-based (round mark) methods suffer from
information loss. By decomposing the long input into sub-prompts, our compositional methods
(square mark) maintain robust performance across various input lengths.

200 ~ 250 tokens 250 ~ 300 tokens 300 ~ 350 tokens 350 ~ 400 tokens 400 ~ 450 tokens 450 ~ 500 tokens > 500 tokens
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LongAlign

PromptDecomposer

... The motorcycle is facing a lawn area on the side of a house ... The background features a residential setting with a gray house, a lawn
... The gray Toyota C-HR SUV is located to the left of the black Yamaha Virago motorcycle ...

Figure 6: Compositional Generalization. Images are generated from a same prompt rewritten into
various lengths. Our method consistently captures the key elements from overwhelmed information.

Image Generation Quality. We employ preference models to assess the generated image quality.
We choose three CLIP-based models (CLIPScore (Hessel et al., 2021), DenScore (Bai et al., 2024),
PickScore (Kirstain et al., 2023)) to evaluate overall text-image alignment, as well as more powerful
MLLMs (VQAScore (Lin et al., 2024), HPSv3 (Ma et al., 2025)) for finer analysis of visual details.
Quantitative comparisons are presented in Table 2. On a SD-1.5 backbone, PromptDecomposer-
SD1.5 matches the quality of the reward-tuning model LongAlign while consistently surpassing
ELLA. Crucially, our approach extends this advantage to SOTA models. PromptDecomposer-Qwen
achieves the best results among modern baselines on DenScore (22.93), PickScore (22.04), and
VQAScore (86.21), outperforming strong baselines including SD-3.5 and FLUX-Dev. Notably,
our compositional strategy drastically improves the base Qwen-Image model on HPSv3 from 8.56
to 12.05, confirming that our framework effectively resolves the capacity bottleneck in modern
foundation models to enhance long-prompt adherence. We present quantitative comparisons in
Figure 4 & 7. PromptDecomposer-Qwen successfully interprets the intricate relationships and
attributes among six teddy bears while other SOTA models struggling.

4.3 IMPROVED GENERALIZATION TO LONGER PROMPTS

T2I models are known to generalize poorly with long-prompts because of their scarcity in training data.
To evaluate such generalization, we analyze the compared long-text-to-image models’ performance
according to input prompt length. Specifically, we partition test prompts in DetailMaster into
five bins: <200 tokens, 200-300, 300—400, 400-500 and >500 tokens. As shown in Figure 5,
LongAlign performs well on prompts under 300 tokens, which constitute the majority of its training
data. However, its performance degrades sharply on longer prompts, dropping by up to 30% for
those over 500 tokens. Although this degradation is mitigated in projection-based methods, their
capacities are constrained by the fixed context window. In contrast, PromptDecomposer maintains
robust performance across all prompt lengths despite being trained on the same dataset, achieving an
average improvement of 7.4% on prompts exceeding 500 tokens. This result highlights the improved
generalization endowed by compositional generative modeling.

Figure 6 provides a visualization of this improved generalization. We progressively expand a base
prompt with more details and compare the generated images. As prompt lengthens, elements such as
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... a black figure with no discernible age and no visible clothing details sitting under a tree and looking directly at another
silhouette of a humanoid figure blowing bubbles with a bubble wand, ... The black figure sitting under the tree is placed in the
lower left part of the image with a fedora style hat on with their elbows resting on their bent knees, ... multicolored flowers and
birds in various areas of the branches ... a concrete area with a pool, where a lifeguard is seated on an elevated chair ... The
scene is framed by a black metal fence on the right side ...

... we can see a yellow color teddy bear with a small teddy bear in front of him ... To the left of the yellow teddy bear, there is a
green teddy bear with a pumpkin design ... Next to the green teddy bear, there is a brown teddy bear. On the right side, we can
also see a pink color teddy bear. In the lower left part of the image, there is a white teddy bear with a purple ribbon ... In the
lower right part of the image, there is a small white teddy bear with a red and yellow dress ... In the background, we can see a
computer desktop and a black mouse bcc it, Sugg es an indoor setting, likely a workspace or home office ...

... six masks of different types, while lights and signs reflect off the glass that covers it ... The first mask on the top left is a
white Japanese traditional mask with a small black and red bow on the top of its head, thin black eyebrows, two small red dots on
the cheeks, and curvy red lips in a smile ... upper right part of the image, is of an old man with dark, rough skin, long scraggly
eyebrows and a blonde mustache ... in the middle, in the lower part of the image, is a vintage Chinese Beijing Opera mask ...
gold with an open mouth that has been twisted at the bottom to create a large, thin lip ...

Figure 7: Image Samples from SOTA Models. Our PromptDecomposer can further enhance the
long-prompt following ability of the SOTA Qwen-Image to accurately render complex scenes.

" An overhead view of four labradoodle puppies ... The puppies are
on a light blue rug placed on a black floor ... There is a black and
white puppy sitting on its hind legs to the right, and to the left part
of the image is another beige puppy sitting on its hind legs as well
... Directly behind the standing puppy, in the upper part of the im-
age, is another light cream colored puppy sitting on its hind legs,

looking toward the bottom right corner of the image ... There
is a blue plush toy in the bottom right corner
of the image underneath the black puppy ...
The image is well-lit with soft, even lighting,
suggesting an indoor setting with artificial li-
ght sources. ... The background consists of a
light blue rug placed on a black floor ...The
black and white puppy sitting on its hind legs
to the right is to the rig-
ht of the beige and whi-
te puppy ...The beige
puppy sitting on its
hind legs to the left is
to the left of the bei-ge
and white puppy...

N=4

Sub-prompt 2

! Re-combination Sub-prompt 1 Sub-prompt 3 Sub-prompt 4 Sub-prompt 5

Figure 8: Semantic Decoupling with Finer Decomposition Granularity. We visualize the re-
combination and individual generation results of each sub-prompt by using different number of
sub-prompts (N). A smaller N requires each sub-prompt to encode more information and incurs
semantic coupling, while a large N allowing each sub-prompt to focus on different aspects.

the house and the yard gradually vanish in LongAlign’s outputs. Our model, however, successfully
integrates the additional details without overwriting existing concepts, consistently rendering all the
key elements regardless of prompt length.
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4.4 ABLATION STUDY

Number of Sub-prompts. To investigate the impact of decomposition granularity, we conduct an
ablation study on the number of sub-prompts (N). We train two additional PromptDecomposer with
N=3 and N=5, alongside our primary version with N=4.

We quantitatively compare these vari- 1z Character Presence & Location  Character & Scene Attributes
ants’ long-prompt generalization abil-
ity in Figure 9 (solid bars), which
demonstrates a clear improvement  °*
from more decomposed sub-prompts. s
We further visualize this trend in Fig- ] ]
ure 8, where we can see a finer- No Compostion  HEE 3 Subeprompts
grained decomposition (N=5) effec-

tively reduces the semantic load on Figure 9: Improved Generalization from Composition.
each sub-prompt. Conversely, smaller We compare model generalization of different numbers of
N forces each sub-prompt to encode sub-prompts in decomposition (solid bars), as well as the
more information, leads to individual same capacity versions without composition (hatched bars).
generation with high resemblance to

Character Attributes Scene Attributes

4 Sub-prompts I 5 Sub-prompts

the composite output. This is also con- Table 3: Ablation Study.

firmed in their similarity scores to the Character Character Character ~ Scene  Spatial

input long—prompt' a repeated pattern Presence  Attributes Location  Attributes Relation
: T _ wlo Composition 28.98 83.63 16.16 78.92 20.97

Cz.ln be observed in t,he sun.lla'nty ma w/ Composition 29.49 82.97 17.10 85.34 2222

trix of N=3, suggesting a similar con-  Composition via Split ~ 14.01 72.48 6.44 58.69 5.18

tent in sub-prompts a diminished ef-
fect of decomposition.

Compositionality. We design non-compositional baselines to isolate the benefit of composition.
These baselines are created by training PromptDecomposer with one learnable query which cor-
responds to an unitary long-text-to-image generation model. We increase the query vector’s size
accordingly to match the total parameter counts. As illustrated in Figure 9, performance of the
unitary models (hatched bars) degrades from their compositional counterparts except the case of 3
sub-prompts decomposition. This variant has a diminished compositional effect due to the coarse
decomposition (see Section 4.3). Consequently, it enjoys less of the benefit from compositional
generation. We also compare the performance gain after tuning in Table 3, where we can see tuning
the composed model is more effective. This is because the pre-trained T2I model is more familiar
with the decomposed sub-prompts, thus it takes less training to align to these inputs.

5 CONCLUSION

In this paper, we address the long-prompt generalization problem in T2I models. This fundamental
challenge originates from the scarcity of long-captioned images in training data, which hinders T2I
models from learning to render the complex narrative flow of a descriptive paragraph.

We propose a compositional approach that leverages pre-trained T2I models’ expertise on concise
prompts to extend their capacities. We introduce a trainable PromptDecomposer module to directly
extract and decompose sub-prompts in the textual representation space. Crucially, this module is
trained in an unsupervised manner on the frozen T2I model. By distributing the rich semantic load
across multiple sub-prompts, our approach demonstrates superior adherence to detailed instructions
and enhanced generalization to increased prompt lengths. Empirically, PromptDecomposer outper-
forms other long-text-to-image generation methods with a 7.4% improvement on the longest prompts
in the DetailMaster benchmark. Furthermore, our approach is also applicable to modern architectures,
with non-trivial improvements on the Qwen-Image model which employs an LLM text-encoder.

The primary limitation of our method lies in the concept conjunction lacking explicit spatial control
over the generation process. As a result, our method remains data-driven for decomposing the
generative distributions. Future work could explore more advanced composition approaches. Another
promising direction is to decompose the input prompts adaptively according to their complexity.
Although we find a fixed decomposition granularity is robust in the normal-length prompts, using
fewer components for concise prompts could improve the efficiency of compositional generation.

10
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LARGE LANGUAGE MODELS USAGE DISCLOSURE

LLMs were employed in a limited capacity for writing optimization. Specifically, the authors
provided their own draft text to the LLM, which in turn suggested improvements such as corrections
of grammatical errors, clearer phrasing, and removal of non-academic expressions. LLMs were also
used to inspire possible titles for the paper. While the system provided suggestions, the final title
was decided and refined by the authors and is not directly taken from any single LLM output. In
addition, LLMs were used as coding assistants during the implementation phase. They provided
code completion and debugging suggestions, but all final implementations, experimental design,
and validation were carried out and verified by the authors. Importantly, LLMs were NOT used
for generating research ideas, designing experiments, or searching and reviewing related work. All
conceptual contributions and experimental designs were fully conceived and executed by the authors.

ETHICS STATEMENT

This research was conducted in adherence to the ICLR 2026 Code of Ethics. We specifically address
the following ethical considerations:

* Data Usage: Our work utilizes publicly available datasets that have undergone anonymiza-
tion to protect individual privacy. We have handled all data in accordance with their specified
terms of use.

* Model Bias: Our method builds upon existing open-source Text-to-Image models. We
acknowledge that these foundational models may reflect societal biases present in their
training data. While a full audit of these biases is beyond the scope of our work, we highlight
the importance of downstream evaluation for fairness before any real-world application of
our method.

* Societal Impact: We recognize that Text-to-Image technology has the potential for misuse,
such as the generation of misinformation. The aim of our research is to contribute positively
to creative applications. We advocate for the responsible development of generative models
and support community-wide efforts to establish safeguards against potential harms.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide our source code of the implementation of our
proposed method in the supplementary material. All critical hyperparameters, training configurations
and datasets details for our models can be found in Section 4.1. The computational infrastructure
used for our experiments is also detailed in this section.
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Figure 10: Architecture Details of our PromptDecomposer. Our PromptDecomposer is built on
the efficient model design of ELLA (Hu et al., 2024), which use a learnable vector to query the
long-prompt representation from a LM (T5) through L transformer blocks. The final output is then
used as the textual condition in the pre-trained T2I model.
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Figure 11: Applying PromptDecomposer on Qwen-Image. We leverage the powerful text encoders
in modern T2I architecture by applying LoRA and tune these text encoders to directly output
decomposed representations using Equation 5.

A IMPLEMENTATION DETAILS

A.1 PROMPTDECOMPOSER ARCHITECTURE

Our PromptDecomposer borrows the model design from ELLA (Hu et al., 2024), which contains a
series of transformer blocks with a learnable query and the LM-encoded long-prompt as key-value.
This architecture can efficiently extract textual condition for pre-trained T2I model from the intricate
LM output. Furthermore, ELLA also introduces a time-aware adaptive layer normalization layer. This
component leverages the diffusion timestep to modulate the hidden features within each transformer
block, as illustrated in Figure 10. The temporal information facilitates the model to extract fine-
grained textual conditions that are specific to different stages of the denoising process. The final
output vector from these blocks is then sent to the cross-attention layers in T2I model, serving as the
textual condition. We inherit most of their design in our PromptDecomposer, except that we remove
the time-aware layer normalization on the query inputs which we found leads to mode collapse
in the learnable vectors. For PromptDecomposer-SD1.5, we use a total of 6 transformer blocks
and 64 tokens in each of the N learnable queries. As for PromptDecomposer-SD3.5, we add an
additional cross-attention layer in each transformer block, as illustrated in Figure 3. This additional
layer accommodate the extra textual condition to handle the multi text-encoder in StableDiffusion-
3.5 (Esser et al., 2024). We only use 3 transformer blocks to balance the overall parameter count in
PromptDecomposer-SD3.5, and 128 tokens in each learnable query.

This design requires the hidden dimension of PromptDecomposer to match that of the T2I model’s
cross-attention layers. When adapting our method to larger T2I models like StableDiffusion 3.5,
which features a 4096-dimensional cross-attention layer, this requirement leads to a substantial
increase in module size.

As a workaround, we can amortize the parameters in the PromptDecomposer module by leveraging
the capacities of the powerful text encoders in modern T2I architectures. For T2I models built
on decoder-only LLLMs, such as the Qwen-Image with Qwen2.5-VL, we leverage the LLMs’ rea-
soning capabilities to directly generate decomposed representations. We first replicate the input
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tokens of the long prompt by N times. Then, we introduce a set of trainable component tokens,
(|compg]) . .. (Jcomp, _,|), which are prepended to each replicated token segment. The expanded
prompt is processed as a single contiguous sequence using the causal attention mechanism of
Qwen2.5-VL. The output representations are subsequently chunked into N samples corresponding to
decomposed representations. Additionally, we introduce LoRAs to the LLM to tune its behavior for
this specific task, optimizing the entire system via the compositional objective defined in Equation 5.
The entire system is illustrated in Figure 11.

For models relying on T5-XXL (SD3.5 and FLUX), we similarly apply LoRA fine-tuning to the
text encoder to directly synthesize decomposed representations. To accommodate the multi-encoder
architecture of SD3.5, we let PromptDecomposer processes CLIP representations separately. The
outputs from the TS encoder are chunked into N segments and concatenated with the processed
CLIP embeddings. This configuration is highly parameter-efficient, requiring only 160M trainable
parameters, a 10x reduction compared to the prior design, while delivering pronounced improvements
under the same training budget.

A.2 REWARD TUNING STRATEGY

Since the decomposed sub-prompts representations from our PromptDecomposer remain in the
pre-trained T2I model’s expected input domain. Our compositional long-text-to-image generation
model can be tuned efficiently with other tuning methods. Using reward models for tuning T2I
models have been widely explored recently (Kirstain et al., 2023; Wu et al., 2023; Bai et al., 2024).
These models are trained on collected human preference data, and are able to measure how well the
input image is aligned with text description as well as human aesthetic. We adopt the reward tuning
model from LongAlign (Bai et al., 2024), which is optimized on long-caption data to provide more
holistic reward signal. We apply the reward tuning algorithm from Clark et al. (2023), which uses
gradient-checkpointing to back-propagate the reward signal calculated on the final generation result:

L(0) = Eg, [1 — R(z0,C)] = Eq, [1 — Cimage(Z0) 'Ctj;wt(c)] ) (6)

where x is generated from our compositional long-text-to-image model using a DDIM sampler (Song
et al., 2020a). For computational efficiency, we generate images with 50 sampling steps in the training
loop, where we randomly choose 5 steps to calculate gradients and update model parameters within
the memory constraint of our device.

A.3 INFERENCE EFFICIENCY

We analyze the computational overhead of our proposed compositional generation approach. Theo-
retically, the default 4-component setting implies a 4x increase in total Floating Point Operations
(FLOPs). However, practical inference latency does not scale linearly with FLOPs due to hardware
parallelism.

By implementing the compositional generation as a batch operation within the denoising loop, we
utilize the GPU’s parallel processing capabilities more effectively. This larger batch size saturates the
tensor cores, mitigating the cost of the additional components. Consequently, the actual inference time
increases by a factor of roughly 2, rather than the theoretical 4 x. On our hardware with A100 GPU,
our method runs at 10 iterations/second, compared to LongAlign’s speed of 22 iterations/second.

B EVALUATION ON STANDARD T2I BENCHMARK

To verify that our compositional approach effectively handles prompt with standard length, we
evaluated its performance on standard T2I benchmarks T2I-CompBench and GenEval. As presented
in Table 4, our method demonstrates robust capability in fundamental generation tasks. Specifically,
we achieve the best performance on T2I-CompBench, securing the best results in the ’color’, ’shape’,
and “texture’ metrics (ranking first in 3 out of 5 categories). Furthermore, on the GenEval benchmark,
our approach remains highly competitive, achieving the second-best result with only a marginal
performance difference compared to the leading baseline, LongAlign. These results confirm that our
method enhances long-prompt generation capabilities without compromising fidelity or semantic
alignment in standard text-to-image tasks.
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Table 4: Standard T2I benchmark results on T2I-CompBench and GenEval.

Models Color ~ Shape Texture Spatial Numeracy | GenEval
StableDiffusion-1.5  0.3647 0.3768 0.4095 0.5064 0.3197 0.4418
LLM4Gen 0.5084 0.4167 0.5085 0.6254 0.3828 0.4083
ELLA 0.6269 0.4250 0.5585 0.5713 0.3013 0.4971
LongAlign 0.5654 0.4693 0.5259  0.5698 0.3683 0.5075

PromptDecomposer 0.7113  0.5204 0.6253 0.6015 0.3701 0.4960

C ADDITIONAL RESULTS

As demonstrated in the Table 5, the LoRA-adapted-PromptDecomposers improve their baseline
across the DetailMaster benchmark except the some of the scene attribute metrics. This is likely due
to the chunk operation on TS output, which may pose a risk to global information retention Similarly,
we observe slight performance degradation of PromptDecomposer on the FLUX model. We also
attribute this to the chunking operation on T5 outputs. We hypothesize that these limitations can be
addressed through advanced module designs or by scaling training resources to support our original
token-resampler design (as used in SD-1.5).

In Figure 13 we present qualitative comparisons between SD-3.5, FLUX, Qwen-Image and LoRA-
adapted PromptDecomposer applied on these models. Leveraging the powerful Qwen2.5-VL text
encoder backbone, PromptDecomposer-Qwen delivers exceptional long-prompt generation quality
with faithful details following. In Table 6 we evaluate images generated on the DetailMaster
benchmark using CLIPScore, DenScore, PickScore and HPSv3, where the best results are all
obtained by LoRA-adapted PromptDecomposer except on the CLIPScore metric which is unreliable
in capturing long-prompt semantics. Moreover, we conduct an user study on the 40 prompts over
400 tokens from the DetailMaster benchmark. Specifically, we shortlist some key concepts from the
lengthy prompts, and ask the users to select one best image per group of samples according to human
perception quality and adherence to the concepts. Images generated by our PromptDecomposer-Qwen
gains the widest range of popularity (23.4%) compared to the strong baseline presented by FLUX-Dev.
(18.3%).

FLUX-Dev.

StableDiffusion-3.5
Qwen-Image
‘ e
PromptDecomposer-SD1.5 7

16.8%
PromptDecomposer-Qwen
PromptDecomposer-SD3.5

PromptDecomposer-FLUX

Figure 12: User Study on the Generation Image Quality. We shortlist key concepts from each
lengthy prompts, and ask the user to select the best image in each batch according to human perception
quality and adherence to the key concepts.

D FULL TEXT PROMPTS FOR IMAGE GENERATION

In this section we provide the full long-prompt that is used for generating figures in this paper.
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Table 5: DetailMaster benchmark results of PromptDecomposer on SD1.5, SD3.5, Qwen-Image
and FLUX.

Model \ Character Character Attributes Chara(_:ter Scene Attributes Spat?a]
\ Presence Object Animal Person Location Background Light Style Relation

StableDiffusion-1.5 15.26 24.82 11.48 11.99 7.39 22.02 65.81 83.91 5.75
PromptDecomposer-SD1.5 23.37 28.39 27.95 15.72 15.30 78.17 89.21 7495 17.33
StableDiffusion-3.5-M 31.19 31.55 32.03 27.54 26.69 87.89 92.32  94.70 28.90
PromptDecomposer-SD3.5 33.03 30.28 35.37 31.21 27.62 87.16 91.96 92.14 31.98
Qwen-Image 31.63 41.01 36.22 24.15 31.01 92.29 96.34 9141 37.14
PromptDecomposer-Qwen 36.84 38.17 40.50 29.95 32.55 85.87 9543  94.70 37.80
FLUX-Dev. 34.33 38.49 38.40 32.30 31.62 92.84 95.80 94.70 35.31
PromptDecomposer-FLUX 31.05 36.70 34.46 27.83 26.69 85.69 93.24 91.96 30.29

Table 6: Quantitative evaluations of image generation quality on large-scale T2I models.

Models CLIPScore DenScore PickScore HPSv3
StableDiffusion-3.5 Medium 34.97 22.37 21.63 13.39
PromptDecomposer-SD3.5 3297 25.01 21.49 13.52
Qwen-Image 33.85 22.25 20.98 8.556
PromptDecomposer-Qwen 34.12 22.93 22.04 12.05
FLUX-Dev. 33.30 22.56 21.89 13.17
PromptDecomposer-FLUX 32.10 22.36 21.63 12.78

For generating Figure 1:

1. The image presents a 3D rendering of a horse, captured in a profile view. The horse is
depicted in a state of motion, with its mane and tail flowing behind it. The horse’s body
is composed of a network of lines and curves, suggesting a complex mechanical structure.
This intricate design is further emphasized by the presence of gears and other mechanical
components, which are integrated into the horse’s body. The background of the image is
a dark blue, providing a stark contrast to the horse and its mechanical components. The
overall composition of the image suggests a blend of organic and mechanical elements,
creating a unique and intriguing visual.

2. A hyper-detailed, macro shot of a human eye, presented not as an organ of sight, but as a
gateway to a lost world of intricate craftsmanship. The iris is a masterfully crafted, antique
horological mechanism, a complex universe of miniature, interlocking gears and cogs made
from polished brass, copper, and tarnished silver. Each metallic piece is exquisitely detailed,
with tiny, functional teeth that seem to pulse with a slow, rhythmic, and almost imperceptible
life. The vibrant color of the iris is replaced by the warm, metallic sheen of the gears, with
ruby and sapphire jewels embedded as tiny, gleaming pivots. At the center, the pupil is
not a void but the deep, dark face of a miniature clock, its impossibly thin, filigreed hands
frozen at a moment of profound significance. The delicate, thread-like veins in the sclera are
reimagined as fine, coiling copper wires, connecting the central mechanism to the unseen
power source at the edge of the frame. The entire piece is captured under a soft, focused light
that highlights the metallic textures and casts deep, dramatic shadows within the complex
machinery, suggesting immense depth. The background is a stark, velvety black, ensuring
nothing distracts from the mesmerizing, mechanical soul of the eye.

3. A sleek, enigmatic feline, a cat of indeterminate breed, is the central figure, poised in a state
of serene contemplation. Its body is not of flesh and bone, but meticulously sculpted from
a complex lattice of polished, interlocking obsidian shards. Each piece is perfectly fitted
against the next, creating a mosaic of deep, lustrous black that absorbs the light. The cat’s
form is defined by the sharp, clean edges of these volcanic glass fragments, giving its natural
curves a subtle, geometric undertone. Glimmering veins of molten gold run through the
cracks between the shards, glowing with a soft, internal heat that pulses rhythmically, like
a slow heartbeat. These golden rivers trace the contours of the cat’s muscles and skeleton,
outlining its elegant spine, the delicate structure of its paws, and the graceful curve of
its tail. Its eyes are two brilliant, round-cut rubies, catching an unseen light source and
casting a faint, crimson glow. The whiskers are impossibly thin strands of spun platinum,
fanning out from its muzzle with metallic precision. The entire figure rests upon a simple,
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Table 7: Image Quality Assessment on LongAlign dataset.

Metrics SD-1.5 LLM4GEN ELLA LongAlign PromptDecomposer

CLIPScore  0.3462 0.3362 0.3310 0.3568 0.3519
DenScore  0.2047 0.2028 0.2112 0.2587 0.2596
PickScore  0.2083 0.2069 0.2052 0.2306 0.2308
HPSv3 9.174 7.620 5.631 12.72 12.61

StableDiffusion-3.5 PromptDecomposer-SD3.5 FLUX-dev. PromptDecomposer-FLUX Qwen-Image PromptDecomposer-Qwen

An indoor, close up shot of the side of 4 small horse toy figures placed on the side of the bathtub, with a white tile wall directly behind the horses. The background consists of a white tile wall with horizontal grout lines, providing a clean and
simple backdrop for the horse toy figures. The image is well-lit with soft, even lighting, likely from an overhead indoor source, creating minimal shadows and highlighting the details of the horse figures. The light intensity appears consistent,
suggesting a controlled indoor environment. The left most horse is one third of the size compared to the others. The left most horse is a small white horse with a black mane and tail, standing as a toy model in the left part of the image. The

horse second to the left is a brown horse with a white and red dotted left half, with its left half of its body covered in white with red dots, also in the left part of the image. The third horse to the left is a dark brown horse with a black mane and
positioned between the second horse and the one on the far right. The horse all the way on the right is a light brown horse with a black mane and tail, facing to the right in the right part of the image. All the horses are facing to the right. The
e of the image is a realistic photo. The small white horse with a black mane and tail is positioned to the left of the brown horse with a white and red dotted left half. The brown horse with a white and red dotted left half is between the small
white horse with a black mane and tail and the dark brown horse with a black mane and tail. The dark brown horse with a black mane and tail is between the brown horse with a white and red dotted left half and the light brown horse with a
black mane and tail. The light brown horse with a black mane and tail is positioned to the right of the dark brown horse with a black mane and tail

An indoor shot of la imated letter art that spells " a el ctter a 'k and have black edges. There is a vint lio with a handle in the low ht part of the image to the right of the
letters on the shelf. To the right of that is a wood base with three blue vertical stripes that has a lim o ed pitcher on it. The room has an acoustic tile ceiling and the wall background is painted a light blue. There is a white electrical
outlet with cover, featuring two sockets, an AC Receptacle, Receptacle A, and is part of Circuit 34, in the left part of the image above the start of the letter "n". The background features a light bluc wall and an acoustic tile ¢ creating a
clean and simple indoor setting. The image is well-lit with soft, even lighting, likely from overhead indoor fixtures, creating minimal shadows and a clear view of the objects. The light source appears to be positioned above, providing front-lit
illumination on the scene. The style of the image is a realistic photo with a focus on modern and vintage elements. The large green animated letter art spelling \'net\' s positioned to the left of the vintage radio with a handle. The vir

with a handle d 10 the right of the large green animated letter art and to the left of the lime green pear shaped pitcher on a wooden base with blue siripes. The lime green pear shaped pitcher on a wooden base with blue stripes is situated
to the right of the vintage radio with a handle. The white electrical outlet with cover is located above the start of the letter \n\'in the large green animated letter art :pel]mg \net!'.

A medium shot with seven circles on a plain whitc wall, providing a neutral backdrop that highlights the colorful geometric art in the circles. Different geometric art and colors are in cach of the circles. The far bottom left circle is blue with a
light green triangle in it and three white lines going through the triangle. The top left circle is black with an orange diamond in the middle and black linc: from the top and bottom to the sides of the orange diamond. The circle on the
with 5 white strips going across the circle in different directions. The top middle circle, located in the middle part of the i s white and has a lot of triangles within one ing a kaleidoscopic
‘monochromatic, radial, triangular, patterned, and circular. The top right circle is light green and has 4 white strips going in different directions across the circle. The bottom right circle is red and has a light
green upside triangle, with a blue triangle in the light green triangle. The partially visible blue circle with geometric patterns, located in the lower left part of the image, is blue with a light green triangle in it and three white lines going through
the triangle. The image appears to be taken indoors with soft, even lighting, likely from overhead fixtures, as there are no harsh shadows or highlights on the circles. The light intensity is moderate, providing clear visibility of the colors and
geometric patterns. The style of the image is modern geometric artwork. The blue circle with a light green triangle and three white lines is positioned to the bottom left of the black circle with an orange diamond and black lines. The maroon
circle with five white strips is located below and to the right of the white circle with a kaleidoscopic effect of triangles. The light green circle with four white strips is situated to the top right of the white circle with a kaleidoscopic effect of
triangles. The red circle with a light green and blue triangle is directly below the light green circle with four white strips. The partially visible blue circle with geometric patterns s to the right of the red circle with a light green and blue triangle.

Figure 13: Qualitative Samples on DiT Models. Leveraging the powerful text encoders in modern
architectures, our PromptDecomposer effectively interpret object attributes and relationships in an
intricate paragraph.

unadorned, and dimly lit surface, ensuring that all focus remains on the cat’s extraordinary
construction—a masterful fusion of natural grace and exquisite, dark craftsmanship.

For generating Figure 4:

1. A high angle shot of a brown wooden bench with several dishes on top of it. In the center
and on the left are two round, wavy side plates with black scratches on the sides and a doily
pattern engraved on the plates. On both plates is a thick brown cookie that’s been crosscut
at the top, located in the middle part of the image. The plate on the right has a candy with
a yellow wrapper and green ends. To the right of the plates is a white mug with whipped
cream on top that is similar to the glass plates. The cup, made of ceramic material, has a
cylindrical shape with a handle and a textured surface. The white whipped cream on top is
frothy and has an embossed design. Surrounding the wooden bench is a dark brown wooden
floor. On the top right is a gray curtain, and on the upper left is a view of the lower part of
a white wooden wall. The image is taken indoors with soft, warm lighting, likely from an
overhead source, creating a cozy and inviting atmosphere. The lighting is evenly distributed,
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with no harsh shadows, suggesting a relaxed time of day, possibly evening. The style of
the image is a realistic photo with a warm, homely aesthetic. The brown wooden bench
supports the two round, wavy side plates with black scratches and a doily pattern, which are
placed side by side. The thick brown cookies crosscut at the top are positioned on top of
the two round, wavy side plates, with one cookie on each plate. The candy with a yellow
wrapper and green ends is located on the right plate, next to the thick brown cookie. The
white mug with whipped cream on top is situated to the right of the two round, wavy side
plates. The two round, wavy side plates are adjacent to each other, with the plate containing
the candy being closer to the white mug with whipped cream on top.

2. An indoor top-down view of a wooden Statue of Liberty, which is positioned centrally on
the table, covering a black marking on the table, on a wooden table with 3 wooden cars and
1 wooden limo next to it. The wooden limo is placed to the left of the wooden Statue of
Liberty, and the three wooden cars are arranged to the right of the wooden Statue of Liberty.
On the table, the black marking on the table is partially hidden by the wooden Statue of
Liberty in the upper part of the image. Behind the table is a dark blue curtain, through which
sunlight is coming and shining down on the right side of the table, casting a soft glow and
creating gentle shadows that highlight the wooden textures. The lighting is soft and natural,
suggesting it is daytime with sunlight filtering through the curtain, illuminating the right
side of the table. The dark blue curtain is located behind the table, indicating it is not on the
same plane as the objects on the table, and it is positioned at the back of the image. The
style of the image is a realistic photo.

3. Along-shot view of a slightly dark sky with a camulonimbus forming in the clouds, allowing
rays of sunlight to pierce through, creating a striking contrast against the darkened landscape.
The sky is bright blue, and the cumulonimbus cloud formation is a dark blue and gray, with
soft, diffused sunlight breaking through the clouds, suggesting it is either early morning or
late afternoon, with the sun low on the horizon. A small house is visible in the distance; it
has tan panels, and it has a white metal roof. Parked in the lower right part of the image in
front of the house is a white sedan, situated between the house and the viewer. Surrounding
the house are many tall, healthy trees that are mostly shrouded in shadow; these trees have
green leaves, a broad canopy, dense foliage, and provide natural shade, located around and
behind the small house, creating a natural border. The grass surrounding them is evenly cut
and healthy. The scene is somewhat dark, with rays of sunlight shining through the gathered
clouds to illuminate the sky from above, enhancing the tranquil yet moody atmosphere.
The cumulonimbus cloud formation is positioned above the small house, and the rays of
sunlight are directed towards the area above the house and trees, capturing natural lighting
and atmospheric conditions in a realistic photo style.

4. A front view of a parking lot with several vehicles parked including two dark colored sedans
in the middle part of the image and what appears to be six different motor bikes in front
of them. The bikes seem to range from a red motorbike with color red, material metal and
plastic, typical features include two wheels, handlebars, seat, engine, exhaust pipe, and
headlight in the right part of the image, a white motor bike in the left part of the image, a
silver motor bike, another white motor bike, another silver motorbike that is silver in color,
and another silver motorbike that is also silver in color. The parking has visible but faded
white parking lines, and behind all of the vehicles are two handicap parking signs. Behind
the handicap signs is a large cream colored building that covers all but the top left side of the
background view, it has a partially visible blue colored roof and a red colored rectangular
shaped strip that passes along the view of the building a couple of feet below the blue roof.
The background features a large cream-colored building with a blue roof and a red strip,
partially obscured by the parked vehicles. Two handicap parking signs are visible on the
building’s facade. The image appears to be taken during the day under natural light, with the
light source positioned overhead, creating soft shadows beneath the vehicles. The lighting is
bright and even, suggesting a clear sky with no direct sunlight causing harsh shadows. The
style of the image is a realistic photo. The two dark colored sedans are positioned behind the
motorbikes, with one slightly to the left and the other to the right. The red motorbike is to
the right of the other motorbikes, closer to the right sedan. The white motorbike is to the far
left, with the silver motorbike next to it. The another white motorbike is positioned between
the first white motorbike and the silver motorbikes. The another silver motorbike is next
to the another white motorbike, and the last silver motorbike is next to the red motorbike.
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The cream colored building with a blue roof and red strip is behind all the vehicles, with the
handicap signs in front of it.

For generating Figure 6 and Figure 8:

1. A high-angle side view of a black Yamaha Virago motorcycle facing the right side of the
image parked on an black asphalt surface. The front of the motorcycle is turned slightly
toward the top right corner of the image. The fenders, the fuel tank, and the handles of the
motorcycle are black. The motorcycle has a brown leather seat. The engine, exhaust pipes,
and handlebar are gray silver. There is a red tail light attached to the fender over the top of
the rear wheel. The Virago logo is on the side of the gas tank. The motorcycle is facing a
lawn area on the side of a house visible at the top of the image. There is a patch of grass and
a walkway leading to a gray door near the top right corner of the image, there is a window on
each side of the door. There are two blue chairs in the top right corner of the image. Visible
in the top left corner of the image is the right side of the front of a gray Toyota C-HR SUV
with metallic paint, a compact SUV shape, sleek headlights, a Toyota emblem, and a modern
design. The background features a residential setting with a gray house, a lawn, a walkway,
and two blue chairs near the top right corner. A gray Toyota C-HR SUV is partially visible
in the top left corner. The image is taken outdoors under natural daylight, with soft lighting
conditions suggesting it could be morning or late afternoon. The light source is positioned
to the side, creating gentle shadows and highlighting the motorcycle’s details. The style of
the image is a realistic photo. The black Yamaha Virago motorcycle is positioned in front
of the lawn area with a gray door and windows, indicating it is closer to the viewer than
the house. The gray Toyota C-HR SUYV is located to the left of the black Yamaha Virago
motorcycle, suggesting it is parked parallel to the motorcycle but further away from the
house. The two blue chairs are situated to the right of the lawn area with a gray door and
windows, showing they are placed on the side of the house away from the motorcycle and
the SUV. The lawn area with a gray door and windows is between the motorcycle and the
two blue chairs, establishing it as a central point in the spatial arrangement of the scene.

2. An overhead view of four labradoodle puppies, three puppies are sitting and one puppy
is standing with its right paw resting against the white barrier at the bottom of the image.
The puppies are on a light blue rug placed on a black floor. The puppy standing is a beige
and white puppy with curly fur, dark eyes, a small nose, and a fluffy appearance, its paw
extended. There is a black and white puppy sitting on its hind legs to the right, and to the left
part of the image is another beige puppy sitting on its hind legs as well. Directly behind the
standing puppy, in the upper part of the image, is another light cream colored puppy sitting
on its hind legs, looking toward the bottom right corner of the image. The three puppies in
the front are looking up, the puppy behind them is looking toward the bottom right corner
of the image. There is a blue plush toy in the bottom right corner of the image underneath
the black puppy. The rug the puppies are on is not laying completely flat on the ground, its
unintentionally folded up in some areas and folded over itself in the top right corner of the
image. The background consists of a light blue rug placed on a black floor, with the rug
showing some unintentional folds and overlaps. A blue plush toy is visible in the bottom
right corner under the black puppy. The image is well-lit with soft, even lighting, suggesting
an indoor setting with artificial light sources. The light appears to be front-lit, as there are
no harsh shadows on the puppies. The style of the image is a realistic photo. The beige and
white puppy standing with its right paw resting against the white barrier is in front of the
light cream colored puppy sitting on its hind legs in the back. The black and white puppy
sitting on its hind legs to the right is to the right of the beige and white puppy standing with
its right paw resting against the white barrier. The beige puppy sitting on its hind legs to the
left is to the left of the beige and white puppy standing with its right paw resting against the
white barrier. The light cream colored puppy sitting on its hind legs in the back is behind
the beige and white puppy standing with its right paw resting against the white barrier. The
black and white puppy sitting on its hind legs to the right is next to the beige puppy sitting
on its hind legs to the left.
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