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Figure 1. Lifting by Gaussians (LBG). LBG utilizes 2D foundation model masks to segment any pretrained 3DGS field into objects, parts,
and subparts without gradient-based learning. For each frame, 2D segmentations are lifted onto the per-pixel max-contributor Gaussian,
producing object fragments. These fragments are then merged into coherent, scene-level objects based on both geometric and semantic
overlap. Through a hierarchical application of this process, LBG extracts high-quality 3D objects, parts, and subparts. In contrast to
learning-based methods, LBG achieves this segmentation an order of magnitude faster, enabling new applications like object manipulation
in augmented reality.

Abstract

We introduce Lifting By Gaussians (LBG), a novel ap-
proach for open-world instance segmentation of 3D Gaus-
sian Splatted Radiance Fields (3DGS). Recently, 3DGS
Fields have emerged as a highly efficient and explicit al-
ternative to Neural Field-based methods for high-quality
Novel View Synthesis. Our 3D instance segmentation
method leverages existing 2D foundation models like SAM,
CLIP, and DINO to directly fuse 2D segmentation masks
and dense features onto a 3DGS field. Unlike previous ap-
proaches, LBG requires no per-scene training, allowing it
to operate seamlessly on any existing 3DGS reconstruction.
Our approach is not only an order of magnitude faster and
simpler than existing approaches; it is also highly modu-
lar, enabling 3D semantic segmentation of existing 3DGS
fields without requiring a specific parametrization of the
3D Gaussians. Furthermore, our technique achieves su-
perior semantic segmentation for 2D semantic novel view
synthesis and 3D asset extraction results while maintaining

flexibility and efficiency. We further introduce a novel ap-
proach to evaluate individually segmented 3D assets from
3D radiance field segmentation methods.

1. Introduction

Semantic scene understanding — segmenting a 3D scene
into its constituent objects — is a fundamental challenge in
Computer Vision, with wide-ranging applications in Aug-
mented and Virtual Reality (AR/VR), robotics, and au-
tonomous vehicles. In this paper, we introduce a novel
3D scene segmentation method that leverages 2D semantic
maps to segment any given 3DGS field [17].

2D segmentation has seen rapid advancements, particu-
larly by developing robust 2D foundation models such as
the Segment Anything model (SAM) [20]. However, creat-
ing a 3D foundation model that can similarly segment any
3D scene robustly has proven elusive due to the scarcity
of annotated 3D data. To bypass the need for annotated
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3D data, prior works on 3D segmentation [18, 36, 38, 51]
instead opt to lift multi-view 2D image segmentation data
onto 3D Neural Radiance Fields (NeRF) [32] or 3DGS [17].
Early techniques focused on a closed set of labels [7], while
more recent work has leveraged open-vocabulary models
like CLIP [37] and DINO features [1] for 2D segmenta-
tion. These approaches demonstrate that dense semantic
labels optimized via inverse rendering-based formulations
can effectively mitigate noisy ground-truth labels. While
prior work has achieved great success in embedding 2D se-
mantics onto 3D radiance fields, they either rely on expen-
sive preprocessing steps to enforce multi-view consistency
of the semantic images [46] or suffer from poor quality and
long training times due to entanglement of 3D reconstruc-
tion and semantic segmentation [9, 19, 39, 47].

With an ever-growing corpus of existing 3DGS recon-
structions, we are interested in quickly segmenting any ex-
isting Gaussian Radiance Field into its object, part, and
subpart components. Our proposed method LBG accepts
two inputs: 1) posed 2D image data, 2) a pre-trained 3DGS
field. Using a 2D foundation model, we extract per-image
2D segmentation masks. We then employ a 2D-to-3D lift-
ing approach to assign unique object IDs to Gaussians, cre-
ating per-image object fragments in 3D. We then use an
incremental merging approach to sequentially merge these
object fragments into coherent, scene-level objects. This
method enables the segmentation of any existing 3DGS
field with significantly reduced processing time compared
to contrastive learning methods while delivering higher-
quality results as seen in Table 1.

We validate our approach using standard benchmarks
that assess the model’s ability to render high-quality se-
mantic maps from novel views. However, similar to [21],
we argue that the ultimate goal of 3D radiance field seg-
mentation is to generate high-quality 3D assets rather than
merely produce compelling 2D segmentation masks. Con-
sequently, we introduce a new evaluation protocol that as-
sesses the rendering quality of individually segmented 3D
objects, providing a more accurate measure of 3D segmen-
tation quality. Upon acceptance, we will release the code
for our method and evaluation protocol along with our pro-
posed 3D ground-truth datasets.

Our contributions can be summarized as follows:

• A training-free 3D instance segmentation approach
that utilizes a novel 2D-to-3D lifting strategy to assign
Gaussian semantics and an incremental merging pro-
cedure based on geometric and semantic overlap crite-
ria. Our approach enables fast 3D segmentation of any
existing 3DGS field without needing costly optimiza-
tion of the 3D semantic field.

• A 3D segmentation refinement step that allows ex-
traction of visually appealing 3D assets from existing

Table 1. Training time breakdown (in seconds) of state-of-the-art
methods. All timings were benchmarked on a single RTX 3090
GPU. Preprocessing time includes loading the models, extracting
2D masks and computing foundation model features. Our method
requires 10x less time to achieve similar or higher 3D segmenta-
tion quality.

Methods Preprocessing 3D Segmentation Total

Gaussian Grouping [46] 293.44 s 3629.23 s 3922.67 s

SAGA [2] 1917.66 s 3289.08 s 5206.74 s

Ours 422.89 s 27.07 s 449.96 s

3DGS fields.

• A novel 3D semantic segmentation dataset and a quan-
titative evaluation protocol for evaluating the fidelity
of individually extracted 3D assets.

2. Related Work
This section reviews key literature on 3D Gaussian Splat-

ting for novel view synthesis and 3D scene segmentation
techniques. For a comprehensive survey, we refer readers
to [33].

Radiance Fields. Gaussian Splatting (3DGS) [17], in-
troduced in 2023, has rapidly gained prominence as a real-
time method for novel view synthesis, offering superior
quality and speed compared to traditional Neural Radiance
Fields (NeRFs) [32]. Since its inception, 3DGS has spurred
research across various domains, including Simultaneous
Localization and Mapping (SLAM) [13,16,30,44], dynamic
scene reconstruction [28, 43, 45], generative 3D/4D content
creation [24,27,41], and meshing [10,11,48] among others.
This surge of research has led to the development of vari-
ous parameterizations of 3DGS [11, 17]. In this work, we
introduce versatile semantic segmentation capabilities that
can be seamlessly applied to any existing 3DGS field, re-
gardless of the chosen parameterization, enabling semantic
scene understanding for the growing corpus of 3DGS fields.

3D Scene Understanding. Understanding 3D scenes in-
volves inferring the semantic properties of all objects within
a scene — a fundamental challenge in 3D computer vision.
Early approaches relied heavily on limited 3D ground truth
data for tasks like object detection, localization, and seg-
mentation [3,4,25]. To circumvent the scarcity of annotated
3D datasets, more recent work has increasingly leveraged
2D supervision [7], which gets fused onto the 3D represen-
tation. The advent of large foundation models [20, 37] has
further enabled a shift from closed-set segmentation to an
open-world framework, where a broader range of labels can
be recognized and utilized [22, 23]. These developments
in open-world segmentation of neural fields can be broadly
categorized into feature distillation and mask-lifting tech-
niques.



Figure 2. LBG constructs an open-vocabulary 3D instance segmentation from a sequence of posed RGB images. A generic 2D instance
segmentation model is used to segment objects, parts, and subparts in each RGB image. Semantic feature vectors are extracted for each
region, and the masks are lifted to the per-pixel max-contributing Gaussian, generating per-frame 3D object fragments. These fragments
are incrementally merged into coherent, scene-level 3D objects. By applying this process hierarchically to the part and subpart masks,
LBG produces a hierarchical decomposition of any 3DGS scene.

3D Segmentation through Feature distillation. Fea-
ture distillation [38, 51] aims to lift 2D features from
computer vision foundation models such as CLIP [37],
DINO [1]/DINO v2 [34] or SAM [20] onto the 3D repre-
sentation. This is typically achieved through inverse ren-
dering [38, 51] or feature aggregation [8, 14, 35, 40]. How-
ever, using inverse rendering to learn high-dimensional vec-
tors on each Gaussians in a 3DGS field is computation-
ally expensive, requiring substantial GPU memory and disk
storage space, and often results in slower rendering speeds.
Langsplat [36] mitigates some of these issues by compress-
ing latent vectors specific to each scene, albeit at the cost
of a lengthy preprocessing step. Moreover, direct aggrega-
tion on point clouds lacks the fidelity needed for photore-
alistic view synthesis. In contrast, our work demonstrates
that high-quality 3D segmentation of 3DGS fields can be
achieved without learning, offering a faster and more ef-
ficient alternative by directly aggregating semantics onto
Gaussians.

3D Segmentation through 2D Mask lifting. Another
line of research involves lifting 2D segmentation masks
from foundation models like SAM [20] into 3D space [2,
9, 19, 39, 46, 47]. A primary challenge in these meth-
ods is achieving multi-view consistent segmentation masks.
Gaussian Grouping [46] addresses this issue by using a
tracking algorithm, though it struggles with errors under
significant viewpoint changes. Other methods rely on con-
trastive learning to decompose and reconstruct the 3DGS

field with semantic information [9, 19, 39, 47]. These ap-
proaches are data-intensive, computationally expensive, and
often entangle the 3D reconstruction with semantic learn-
ing. Our approach offers a more efficient alternative by
fusing semantics directly onto the Gaussian field, signif-
icantly reducing computational costs and memory usage
while maintaining or exceeding the segmentation quality of
existing methods.

3. Method

We present Lifting-by-Gaussians (LBG), a novel and ef-
ficient method for rapidly lifting 2D semantic information
onto any existing 3D Gaussian Splatting reconstruction.
Given a set of posed RGB frames, our approach semanti-
cally decomposes a 3D environment within minutes. Using
a 2D segmentation model, we identify object candidates and
associate them across multiple views by applying semantic
and geometric similarity measures to the lifted 3D Gaus-
sians. To achieve fine-grained segmentation, we apply this
lifting process hierarchically across multiple 2D segmenta-
tion scales. Our approach is illustrated in Figure 2.

A key advantage of LBG is its independence from
gradient-based optimization, allowing seamless integration
with any scene representation that uses 3D Gaussians, re-
gardless of parameterization (e.g., 3DGS, 2DGS) and with-
out needing to modify the underlying source code. Further-
more, our innovative 2D-to-3D lifting strategy enables di-



rect incorporation of pretrained 2D features, such as those
from DINOv2 [34], CLIP [37], and SAM [20], onto the 3D
Gaussians. This bypasses the need for costly training typi-
cally required to learn 3D-consistent features, making LBG
a powerful and flexible solution for 3D scene understand-
ing.

3.1. 3D Gaussian Splatting

3D Gaussian Splatting (3DGS) [17] represents a scene
as a set of colored 3D Gaussian primitives. Unlike Neu-
ral Radiance Fields (NeRFs) [32], which have an implicit
nature, 3DGS is an explicit representation, where each
Gaussian gi is parameterized by a position µ ∈ R3, scale
S ∈ R3, rotation R ∈ R4, opacity α ∈ [0, 1] and color
c ∈ R3 represented as three degrees of spherical harmonics
(SH) coefficients. mages are rendered efficiently by splat-
ting these 3D Gaussians onto the image plane using the
approach from [52], and the resulting 2D projections are
alpha-composited in a depth-first order. The color of a ren-
dered pixel is then computed as:

c =

N∑
i=1

ciα
′
i

i−1∏
j=1

(1− α′
i), (1)

where α′
i = αi · e−

1
2 (x

′−µ′)TΣ′−1(x′−µ′) defines the con-
tribution of each splatted Gaussian to the pixel. The covari-
ance matrix Σ is approximated as Σ = RSSTRT to ensure
positive semi-definiteness during optimization.

3.2. 2D-to-3D Lifting

Given a sequence of RGB images I = {I1, I2, . . . It}
and a pretrained 3DGS field G, our goal is to generate
a 3D semantic segmentation of the 3DGS field. LBG
achieves this by incrementally creating a 3D semantic
map of the scene. For each frame It at time, the Gaussian
field G is segmented into a set of objects Ot. Each object
otj = ⟨Gt

j , f
t
j ⟩ is characterized by a set of Gaussians Gt

j ⊂ G
and a semantic feature vector f t

j . Objects otj from every
new frame It are merged into the existing semantic map
Ot−1 by either adding to existing objects or instantiating
new ones.

2D Mask and Feature Extraction: LBG begins
by extracting class-agnostic 2D segmentation masks
{mt

j}j=1,...,M using the Segment Anything (SAM) [20]
model. SAM provides 2D segmentation masks at three
semantic levels - whole, part, and subpart. For each
extracted mask mt

j we also extract semantic features f t
j

using CLIP [37] and DINO [34]. Since SAM masks
lack inter-frame consistency, a mask fusion strategy is
implemented using the learned 3D Gaussians to achieve
consistent results across multiple frames.

Single frame 2D Mask to Gaussian Assignment:
Previous methods [29] have used pixel-Gaussian as-
sociations to lift 2D segmentations into 3D. However,
these approaches typically assign object IDs to multiple
alpha-blended Gaussians based on a threshold, leading
to semantic bleeding artifacts. In contrast, LBG follows
a pixel-to-Gaussian mapping inspired by [5], where each
pixel is associated with the Gaussian that has the maximum
alpha-blending weight. For each pixel p ∈ mt

j , we identify
the Gaussian i∗ = argmaxi(α

′
i

∏i−1
j=1(1 − α′

i)) and assign
a unique ID to both the 2D mask and its corresponding 3D
Gaussians. This approach creates precise object segments
otj in 3D while minimizing semantic bleed-through.

Incremental Merging of 3D Object Fragments: For
each new frame It, LBG merges the detected object
fragments otj = ⟨Gt

j , f
t
j ⟩ with the existing object map

Ot−1
j , constructed from the previous frames. We first

compute the geometric overlap ratio between Gaussians
belonging to object fragments from the current and pre-

vious frames as ϕgeom(i, j) =
|Gt

i ∩ Gt−1
j |

|Gt
i |

. Specifically,

we count the number of overlapping Gaussians in both
object maps. We further compute semantic similarity as the
normalized cosine similarity between the feature vectors

ϕsem(f t
i , f

t−1
j ) =

f t
i · f

t−1
j

2
. Using these metrics , LBG

greedily merges new object fragments with existing objects
based on the highest similarity scores. If no suitable match
is found, a new object is instantiated. Once merged, the
Gaussian object segment ids are updated as Gt

i ∪ Gt−1
j , and

the semantic feature is updated using a running average:

foj =
nojf

t−1
j + f t

j

noj + 1
, where noj represents the number of

fragments associated with object oj so far.

Hierarchical Decomposition: Initially, LBG uses
SAM’s object-level masks to create a high-level scene
decomposition. Once the object map Ot is constructed,
each object is further split into parts and subparts using
incremental merges applied at lower segmentation scales.
This hierarchical decomposition is repeated across different
levels of granularity, resulting in a scene graph that includes
objects, parts, and subparts.

3.3. Post-Processing

While our maximum-contributor assignment strategy
significantly reduces semantic bleeding, some label noise
may persist. To generate clean 3D object assets, we in-
clude an optional post-processing step. This involves statis-
tical outlier removal, similar to [2,15,46], alongside a split-



and-merge operation. Under-segmented fragments are split
using 3D connected component analysis to identify salient
clusters. Unassigned clusters are then merged with salient
clusters based on their nearest-neighbor distance and over-
lap ratio, resulting in refined object segmentations.

4. Experiments
This section discusses the experimental setup, including

datasets, evaluation metrics, and baselines. We then intro-
duce our novel 3D asset segmentation evaluation protocol
and show results on 2D mask rendering. Finally, we ana-
lyze our method’s design choices to justify our approach.

4.1. Experimental Setup

Datasets: We evaluate our method using two distinct
datasets. The first is the LERF dataset [18], which features
in-the-wild scenarios captured with a standard iPhone cam-
era. The second dataset is 3D-OVS [26], which includes a
collection of long-tail object categories. For evaluating 2D
mask segmentation performance on the 3D-OVS dataset,
we adhere to the evaluation protocol outlined in [26]. For
the LERF dataset, we address labeling biases present in
earlier annotations [36, 46], which previously focused on
a limited number of central objects per scene. We re-
annotate three scenes—figurines, ramen, and teatime —
with a denser set of 2D instance labels. We annotate salient
objects with 2D instance-level masks and open-world vo-
cabulary annotations for our 2D mask rendering evalua-
tions. Additionally, we use the LERF scenes in our 3D asset
segmentation experiments. For these experiments, we first
train a high-fidelity 3DGS field for each scene using [5] and
then manually clean and refine the 3DGS field by selecting
or removing Gaussians to generate a high-quality radiance
field for each object.

Metrics: We assess our method’s performance on both
2D and 3D semantic segmentation tasks. For novel view
synthesis of 2D masks, we use the established evaluation
protocols from prior work [18, 29, 36, 46] and report the
mean Intersection over Union (mIoU). In our 3D segmenta-
tion evaluations, we aim to measure how photorealistically
a 3D segmented asset is compared to the underlying 3D
model of the object. To evaluate this, we propose to 3D
segment the 3DGS scene into individual objects and render
50 images of each object from various angles on a view-
ing hemisphere on a white background. To asses visual
quality we compute perceptual similarity metrics such as
peak signal-to-noise ratio (PSNR), structural similarity in-
dex (SSIM) [42], and Learned Perceptual Image Patch Sim-
ilarity (LPIPS) [49] to compare the ground truth and pre-
dicted images.

Implementation Details: Our approach builds upon the
Gaussian Splatting (3DGS) framework [17]. Through our
experiments, we identified two key characteristics neces-

sary for accurate 3D asset extraction: minimal noise in
the 3DGS field and fewer Gaussians to expedite object
segmentation. To address these needs, we adopt Mini-
Splatting [5] as our primary 3DGS representation. Mini-
Splatting provides a compressed 3DGS model by signif-
icantly reducing the number of Gaussians through depth-
based re-initialization and re-sampling, achieving a 10x
reduction without degrading novel-view synthesis quality.
We further enhance Mini-Splatting by incorporating a view
consistency score to down-weight Gaussians visible from
only a single camera, as these often include artifacts. Vi-
sualizations of our improved importance sampling can be
found in the appendix.

For our experiments, we train Mini-Splatting [5] 3DGS
for 30K iterations. Gaussian Grouping [46] is trained for
30K iterations across all scenes. For SAGA [2], we test
two scenarios: 1) training a standard 3DGS representa-
tion for 30K iterations before training the semantic features
of SAGA from scratch for 10K iterations and 2) training
SAGA on top of our enhanced Mini-Splatting representa-
tion for 10K iterations.

Our 2D segmentation model uses SAM with the ViT-H
backbone. For CLIP, we utilize the ViT-L/14 variant [37],
and for DINOv2, we use the model described in [6].

Table 2. Quanitative results on photorealistic 3D asset segmen-
tation. LBG outperforms previous approaches by better removing
spurious Gaussians from the 3D object segmentation.

Dataset Methods PSNR ↑ SSIM ↑ LPIPS ↓

Figurines
Gaussian Grouping [46] 16.622 0.743 0.381

SAGA [2] 19.574 0.836 0.243
Ours 28.689 0.934 0.065

Ramen
Gaussian Grouping [46] 16.586 0.732 0.367

SAGA [2] 15.570 0.693 0.444
Ours 23.778 0.893 0.013

Teatime
Gaussian Grouping [46] 17.002 0.748 0.383

SAGA [2] 16.072 0.740 0.395
Ours 26.020 0.880 0.117

4.2. Photorealistic 3D Asset Extraction

Similar to [21], we argue that the ultimate goal of any
3D segmentation method is to extract clean, photorealistic
3D assets. However, the prevailing benchmark metrics in
the literature mainly measure the ability of a method to ren-
der accurate 2D masks. We argue that rendering 2D masks,
especially in the context of 3DGS, can hide small inaccu-
racies that average out through the alpha-blending process.
We, therefore, propose a new evaluation protocol to mea-
sure how well any method performs in extracting photo-
realistic 3D assets. We use a subset of objects from the
annotated 3DGS fields for this evaluation. We first match



Figure 3. Qualitative comparison on the LERF dataset for 3D Asset extraction. We show three extracted objects per scene, with two
different views for each object. Compared to prior methods, the objects extracted from LBG are much cleaner and have fewer noisy
artifacts. 3D objects from SAGA and Gaussian Grouping have missing parts and are of lower quality overall.

ground-truth and predicted objects by comparing their ren-
dered 2D mask projections across all training views and se-

lecting the one with the smallest average MSE. We extract
3D segmentations for Gaussian Grouping by applying the



Table 3. 2D Novel View Synthesis of 2D Instance Segmentation Masks. We report mIoU (↑) on the LERF dataset [18] (left) and the 3D-
OVS dataset [26]. Best results are highlighted as first , second and third . In contrast to the baselines, our method was not optimized
for this task, but it still performs comparably. Numbers with * are taken from [2]

Methods figurines ramen teatime
Gaussian Grouping [46] 0.697 0.458 0.619
SAGA-MS [2] 0.838 0.583 0.673
SAGA-3DGS [2] 0.860 0.803 0.874
Ours 0.822 0.732 0.866

Methods Avg. bed bench room lawn sofa
LSEG [22] 56.0 6.0 19.2 4.5 17.5 20.6
OVSeg [23] 79.8 88.9 71.4 66.1 81.2 77.5
LERF [18] 73.5 53.2 46.6 27.0 73.7 54.8
3D-OVS [26] 89.5 89.3 92.8 74.0 88.2 86.8
LangSplat [36] 73.02 77.8 77.3 58.4 90.9 60.2
Gaussian Grouping [46] 88.96 64.5 95.6 96.4 97.0 91.3
SAGA [2] * 96.0 97.4 95.4 96.8 96.6 93.5
Ours 94.9 97.7 96.3 95.9 97.3 87.4

learned object classifier on each 3D Gaussian. For SAGA,
we follow the proposed protocol [2] of clustering the 3D
feature field using HDBSCAN [31].

As shown in Figure 3 and Table 2, our method outper-
forms all baselines on this task by a large margin. This
can be largely attributed to our simple but effective lifting
strategy that avoids bleeding artifacts arising from alpha-
blending-based learning on 2D features. Additionally, our
merge procedure relies on spatial and feature proximity.
By only looking at objects accumulated until the previous
frame for the merge, we ensure that disconnected Gaussians
do not receive spurious labels. Gaussian Grouping suffers
from noisy mask predictions and inconsistent segmentation
scales. For example, in the ramen scene, the method fails
to distinguish between objects in the ramen bowl. Similarly
in the figurines and teatime scenes, Gaussian Grouping pro-
duces very noisy 3D assets that do not resemble coherent
objects. In contrast, SAGA shows much cleaner bound-
aries in 3D. However, the absence of a well-defined scale
hierarchy produces incomplete segmentations like the par-
tial camera segmentation in figurines. Consequently, SAGA
often tends to over-segment objects into much smaller clus-
ters. Additionally, 3D segmentations extracted from SAGA
contain many spurious Gaussians, as can be seen across all
three scenes in Figure 3.

4.3. Novel View Synthesis of 2D Instance Segmen-
tation Masks

We further evaluate LBG on novel view synthesis of
2D instance masks on two datasets, LERF [18] and 3D-
OVS [26]. On the LERF dataset, we compare our method
against Gaussian Grouping [46] and SAGA [2]. As each
method produces 3D instance segmentation labels differ-
ently, we first match ground truth masks to predicted masks
by finding the prediction with maximum IoU overlap. To
compare fine-grained instance segmentation, we extract
multi-level masks where possible. Gaussian Grouping does
not provide a hierarchical decomposition of the scene; we
only use object-level masks. For SAGA, we compute three
segmentation levels, as shown in their paper, namely 0.1,
0.5, and 1.0. For our method, we use the object, part, and

subpart hierarchy.

In Table 3 and Figure 4 we show quantitative and quali-
tative results. Note that while all the baselines are optimized
to perform well on the 2D instance mask novel view synthe-
sis task, ours is not. Even so, our method shows competitive
performance across the board compared to other approaches
(Table 3). As in the 3D segmentation case, Gaussian Group-
ing can sometimes not distinguish between different object
scales, such as in the Ramen bowl in Figure 4 (middle).
Comparing SAGA and our method, we see that both gener-
ate different failure cases. SAGA fails to detect some small
objects like the spatula and camera body in figurines and
part of the pork belly and green onions in ramen entirely.
Our method generates a complete segmentation map. How-
ever, in some cases, LBG fails to achieve the desired seg-
mentation granularity. For example, in the figurines scene,
our method segments the container, Twizzlers, and Waldo
together. This can be attributed to inconsistent object seg-
mentation masks from SAM. For additional qualitative re-
sults, please see the appendix.

Figure 4. Qualitative comparison on novel view synthesis for
2D instance masks. Black regions are unassigned. We see that
our 2D masks are on par with other methods. LBG picks out in-
stances across segmentation scales better than Gaussian Grouping.
Compared to SAGA, our method provides more complete masks.



4.4. Ablations

We conduct a series of ablations in Table 4 to evaluate
the effect of each design component in LBG. Specifically,
we ablate the features of the foundation model used to
compute the similarity score in the merging step and
the 3DGS reconstruction methods. From Figure 5, we
see that feature selection is critical in merging correct
objects. Our post-processing that filters outlier Gaussians
provides a slight improvement in segmentation quality.
Finally, we evaluate our method with a different choice of
a segmentation model [50]).

Table 4. Ablation experiments. We show the impact of different
design choices on the final 2D instance semgnetation result. We
report mIoU (↑) on the LERF figurines dataset.

Ablation mIoU
Ours, full 0.822
w/o filtering 0.815
w/o CLIP feat. 0.782
w/o minisplatting GS 0.781
w/o DINO feat. 0.779
w/ Fast-SAM [50] 0.608

Effect of post-processing: Quantitatively, post-
processing has only a minimal effect on the 2D instance
segmentation results. However, we observe certain cases,
where the post-processing step correctly cleans up over-
segmented regions and merges them with the correct object.

Effect of CLIP and DINO features: Using just the
exact Gaussian overlap as a similarity score tends to
aggregate partially overlapping objects as shown in Fig. 5
disregarding their semantic difference. This issue is
particularly pronounced for smaller objects, which tend
to merge into larger object clusters nearby. This issue is
alleviated when considering feature similarity as part of the
similarity score.

Choice of 3DGS representation: We observe that
the choice of 3DGS representation significantly impacts
the final performance. This can be attributed to the post-
processing step that scales with the number of Gaussians
in the scene. Minisplatting reduces floaters and cloudy
artifacts prevalent in vanilla 3DGS reconstructions and has
10x fewer Gaussians. This, in turn, reduces the number
of mislabeled Gaussians. Additionally, a smaller GS field
allows our algorithm to run much quicker.

Choice of segmentation model: Since our approach
is agnostic to the segmentation model used, we apply a
faster SAM-variant in our mask extraction step. This speeds

up our performance by 4x while providing reasonable 3D
segmentations. For more results, please see the appendix.

Figure 5. Ablation on using CLIP features for merging. Using
only spatial proximity leads to nearby objects being grouped together
(red dashed boxes). When using DINO features together with CLIP
this error is fixed.

5. Conclusion

In this work, we presented LBG, a novel framework
for generating high-quality 3D segmentations from any
trained 3D Gaussian Splatting (3DGS) field. Our approach
uniquely lifts off-the-shelf 2D segmentation masks onto
the corresponding per-pixel max-contributor Gaussians, fol-
lowed by an incremental merging process that consolidates
object fragments across frames. By leveraging the max-
contributor Gaussians for this 2D-to-3D lifting, LBG signif-
icantly mitigates semantic bleeding issues that have plagued
prior methods, ensuring more accurate and clean object
boundaries in the 3D domain.

Experimental results demonstrate that LBG not only pro-
duces superior 3D assets but also does so at a speed that is
an order of magnitude faster than state-of-the-art methods.
This substantial improvement in efficiency, combined with
high-quality outputs, highlights the transformative potential
of LBG for large-scale 3D scene segmentation and recon-
struction tasks. Moreover, despite not being specifically op-
timized for novel view synthesis of 2D instance masks, our
method delivers competitive performance on 2D instance
mask generation, showcasing its versatility across multiple
applications.

5.1. Limitations and Future Work
While LBG achieves efficient, high-quality results,

several limitations remain. First, the model loading
times hinder real-time applications, which future work
could address through optimization or model compression
techniques. Second, our method occasionally struggles
with segmenting small objects, as the current merging
approach may not capture them. A potential solution
would involve incorporating a fine-tuning step with mini-
mal training iterations to refine these initial segmentations.
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A. Appendix
In this appendix, we provide further experimental re-

sults, including additional 3D segmentation comparisons in
Section B, a qualitative comparison with SAGA [2] on ren-
dering of 2D masks at novel views through different scales
in Section C.1 and qualitative results on the 3D-OVS [26]
dataset in Section C.2. We further show that our method
can be used to 3D segment 2DGS fields without modifica-
tion in Section D. Finally, we show some intuition into our
improvements of the Mini-Splatting importance sampling
in Section F and conclude by showing an application of our
method to lift 2D feature maps, such as DINO, into 3D in
Section G.

B. Additional 3D results
We show additional results of extracted 3D objects from

our LBG method in Figure 6. Contrastive methods like
SAGA require a 3D feature clustering step to extract ob-
jects, which is prone to floaters and noise. Gaussian Group-
ing also requires a 3D clustering step which produces noisy
3D objects. Our 3D objects are more coherent and have
cleaner boundaries than other methods due to our simple
lifting and mask merging strategy.



Figure 6. Additional 3D segmentation results on LERF dataset.



C. Additional 2D results
C.1. LERF

We show mask novel view synthesis results on the three
LERF scenes in Figure 7. Specifically, we compare SAGA
and LBG. For SAGA, we show images rendered at three
levels: 0.1 (left), 0.5 (middle), and 1.0 (right). For our
method, we show object level (left), part level (middle), and
subpart level (right).

Figure 7. Additional results on novel view synthesis for 2D
instance masks. For SAGA, we show images rendered at three
levels: 0.1 (left), 0.5 (middle), and 1.0 (right). For our method,
we show object level (left), part level (middle), and subpart level
(right).

Even though our method is not optimized on the task of
novel view synthesis for 2D masks, it performs well, es-
pecially on the object level. We can see that SAGA often
breaks up objects into parts, even on the top level (camera in
figurines, bear in teatime). This is largely due to SAGA us-
ing metric diagonal measurements to determine scale with-
out associating these scales back to object/part/subpart de-
compositions. We argue that instead of using such arbitrary
scales it is much more intuitive to break a scene into it’s

logical parts, starting from complete objects.

C.2. 3DOVS

We compare our method for segmentation against prior
methods, such as LSEG [22] and OVSeg [23]. The num-
bers for these methods are taken from [36]. We found that
LangSplat evaluations, as described in the paper, led to sub-
optimal performance due to limited contrast in the learned
feature representation. To improve performance, we modi-
fied the protocol described in the paper and used a per-scene
threshold.

Figure 8. Qualitative comparison on the 3DOVS dataset. Black
regions are unassigned. In the bed scene, Gaussian Grouping
merges hand and banana objects together, resulting in segmenta-
tion failure. Similarly, LangSplat fails to segment the white sheet
due to low contrast in the feature space. Our method shows cleaner
boundaries compared to both baselines.

On the 3DOVS dataset (Fig. 8), our method demon-
strates superior performance across the board against most
methods and is comparable to SAGA. Notably, LangSplat
overlooks the background in the bed scene and exhibits gaps
in the lawn scene, attributed to inconsistencies in thresholds
and noise within the subpart level of the language embed-
dings. While Gaussian Grouping yields results similar to
our method, it often produces less defined boundaries due
to tendencies towards over-segmentation. Regions in black
are segmentations that were not detected during the evalua-
tion.

D. Applying our method on 2DGS
As our method, LBG can consume any Gaussian

Splatting-based reconstruction, we apply our method on a
scene reconstructed using 2DGS [12] without any modifi-
cation. As a consequence of using [12], we can produce
meshes of the individual segmented objects. Results are
shown in Figure 9.

E. Additional Ablations
We present additional ablation results using our method

with Fast-SAM instead of the standard Segment Anything



Figure 9. LBG Segmentation on 2DGS. 2DGS with colored
Gaussians according to instance IDs (left) and individually ex-
tracted meshes (right).

Model for mask extraction. While the Fast-SAM model
provides results in near real-time, which is desirable for
most applications in robotics and AR, Figure 10 shows
that the results are much worse. We can see that the seg-
mentation lifted with Fast-SAM masks struggles to keep
clean object boundaries. Furthermore, even with our post-
processing step that merges adjoining clusters, we can see
that the Fast-SAM model still contains many objects that
cannot be merged using a purely geometric approach.

Figure 10. Additional ablation results. We show performance of
our method using the standard SAM model (left) and Fast-SAM
(right).

F. Improvements to Mini-Splatting

We adopted a technique similar to Mini-splatting to re-
move floaters from Gaussian Splatting reconstructions. 3D
Gaussians are removed based on a probability dictated by
an importance score. Initially, we found that using opac-
ity contribution as the basis for this score was insufficient,
as it assigned small values to floaters. Many floaters, we
discovered, resulted from over-fitting to a single view (see
Figure 11). To address this, we augmented the probabil-
ity score by considering the number of views a 3D Gaus-
sian maximally contributes to, through a log multiplier on
the number of views. This modification, combined with the
pruning and resampling strategy from Mini-splatting, effec-
tively reduces floaters, particularly those caused by single-
view over-fitting.

Figure 11. Visualization of the number of views which see each
Gaussian. Notice how many structured floaters are only seen by
a single view, showcasing visual artifacts from single-view over-
fitting.

G. DINO Feature lifting
Our approach to lift 2D masks to 3D Gaussian Splatting

fields can also lift any 2D foundation model features onto
3D Gaussians using the same strategy. Consequently, we
lift DINOv2 [34] features onto a 3DGS field using our LBG
approach. We visualize the first 24 PCA components of the
features in Figure 12.

Figure 12. Lifting DINOv2 features onto Gaussians. Using our
Lifting-by-Gaussians approach, we lift DINOv2 features and vi-
sualize the first 24 PCA components.
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