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Abstract

Large language models (LLMs) have emerged001
as the core controller for various autonomous002
agent systems. In this work, we introduce ETO,003
a method aimed at enhancing the capabilities004
of open-source LLM agents. Unlike previous005
work that solely trains on success expert tra-006
jectories, our approach enables agents to learn007
from exploration failures, leading to improved008
performance through an iterative exploration-009
training framework. During the exploration010
phase, the agent explores the environment, col-011
lecting failure trajectories to construct con-012
trastive trajectory pairs. In the training phase,013
the agent leverages the trajectory contrastive014
information to update its policy. This itera-015
tive process of exploration and training facili-016
tates further improvement for the agents. Ex-017
periments on three agent datasets show our018
method consistently outperforms baselines by019
more than 5% in final rewards. Moreover, anal-020
ysis of task-solving efficiency and the potential021
in scenarios without expert trajectory further022
highlights the effectiveness of our method.1023

1 Introduction024

Large language model (LLM) agents leverage the025

powerful capabilities of LLMs to plan and inter-026

act with external tools or environments (Wang027

et al., 2023a; Xi et al., 2023). By utilizing Chat-028

GPT (OpenAI, 2022) and GPT-4 (OpenAI, 2023)029

as the core controllers, various autonomous agent030

systems have been built to tackle complex inter-031

active tasks, ranging from web browsing (Deng032

et al., 2023; Zhou et al., 2023), embodied house033

holding (Yao et al., 2022b), and even simulated034

science experiments (Lin et al., 2023). However,035

recent studies indicate that open-source LLMs lag036

significantly behind ChatGPT/GPT-4 in terms of037

agent capabilities (Liu et al., 2023; Wang et al.,038

2023d). Furthermore, even among the most ad-039

1The code is released at anonymous link.
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Figure 1: Exploration-based Trajectory Optimization
(ETO) allows an LLM agent to iteratively collect fail-
ure trajectories and update its policy by learning from
contrastive failure-success trajectory pairs.

vanced LLMs, performance still falls short of ex- 040

pectations (Zhou et al., 2023; Mialon et al., 2023) 041

To enhance the capabilities of LLM agents, one 042

effective approach is through imitation learning. 043

For example, behavioral cloning (BC) (Pomerleau, 044

1991) offers a straightforward method to acquire 045

a policy by supervised learning on observation- 046

action pairs from gold expert trajectories. Recently, 047

there have been attempts (Chen et al., 2023; Zeng 048

et al., 2023; Yin et al., 2023) to apply BC to open- 049

source LLM-based agents by directly performing 050

supervised fine-tuning (SFT) on expert trajectories. 051

Taking a step further, Aksitov et al. (2023) refine 052

the agent through iterative BC on success trajecto- 053

ries generated by the previous policy. 054

Existing research primarily concentrates on imi- 055

tation learning from successful expert trajectories. 056

However, relying solely on expert demonstrations 057
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for learning observation-action mappings can result058

in sub-optimal policies due to insufficient explo-059

ration beyond expert demonstrations. It is impor-060

tant to recognize that human learning encompasses061

not just successes but also failures. The underlying062

intuition is that humans can more effectively learn063

policies by exploring both successful and failed tra-064

jectories, contrasting successes with failures. Con-065

sequently, incorporating learning from failures into066

the training process holds the potential to further067

enhance the functionality of LLM agents.068

Inspired by this, we take the spirit of learning by069

trial and error and propose an LLM agent learning070

paradigm called Exploration-based Trajectory071

Optimization (ETO). Different from previous ap-072

proaches which solely use success trajectories, our073

method leverages exploration failures of the cur-074

rent policy to facilitate the agent’s learning pro-075

cess. Specifically, we first employ SFT behavioral076

cloning to establish a base agent. Subsequently,077

the agent undergoes further adaptation in an itera-078

tive exploration-training process. During the explo-079

ration phase, the base agent explores environments080

to gather new trajectories for tasks in the BC train-081

ing data. Failed trajectories are then compared with082

expert trajectories, constructing contrastive trajec-083

tory pair data. In the subsequent training phase, we084

use the contrastive trajectory information and em-085

ploy the DPO loss (Rafailov et al., 2023) to refine086

the LLM policy. The probabilities of success and087

failure trajectories are compared, and a constraint088

term is incorporated to ensure the agent maintains089

its basic policy. The exploration and training pro-090

cesses can be conducted iteratively, leading to fur-091

ther improvement of the LLM agents.092

We evaluate our method on three representative093

datasets: WebShop (Yao et al., 2022a) for web nav-094

igation, ScienceWorld (Wang et al., 2022) for sim-095

ulated science experiments, and ALFWorld (Shrid-096

har et al., 2021) for embodied household tasks.097

Across these datasets, ETO consistently outper-098

forms SFT behavioral cloning and other strong099

baselines by a large margin, demonstrating the ef-100

fectiveness of learning from exploration failures.101

Moreover, our method shows a remarkable perfor-102

mance enhancement of 22% over SFT on the chal-103

lenging out-of-domain test set in ScienceWorld,104

showcasing its strong generalization ability. The105

analysis also reveals the task-solving efficiency of106

our method, which achieves higher rewards with107

fewer action steps. Additionally, in extreme scenar-108

ios where expert trajectories are unavailable, ETO109

can still show impressive performance in a self- 110

play manner, further highlighting the potential of 111

our method. 112

To summarize, our contributions are as follows: 113

• We propose to enhance the capability of LLM 114

agents by learning from exploration failures. 115

To achieve this, we introduce ETO, a learning 116

paradigm which iteratively collects failure tra- 117

jectories and refines the agent policy through 118

learning trajectory contrastive information. 119

• Extensive experiments on three distinct agent 120

datasets show that our method outperforms SFT 121

behavioral cloning and other strong baselines by 122

a large margin. 123

• We conduct in-depth analysis to further validate 124

the effectiveness of ETO, including the general- 125

ization on out-of-domain tasks, the task-solving 126

efficiency, and the potential in scenarios with- 127

out expert trajectory. The analysis further under- 128

scores the effectiveness of our method. 129

2 Task Formulation 130

The agent task with environment feedback can be 131

formalized as a partially observable Markov deci- 132

sion process (POMDP) (U ,S,A,O, T ,R) with in- 133

struction space U , state space S , action space A, ob- 134

servation space O, transition function T : S×A → 135

S, and reward function R : S ×A → [0, 1]. Note 136

that in our LLM-based agent scenario, U ,A,O are 137

subsets of natural language space. 138

Given a task instruction u ∈ U , the LLM 139

agent with parameter θ generates the action a1 ∼ 140

πθ(·|u) ∈ A according to its policy πθ. The action 141

incurs a change in the latent state space st ∈ S , and 142

an execution feedback as observation ot ∈ O. Then 143

the agent generates the corresponding action in the 144

t+ 1 step at+1 ∼ πθ(·|u, a1, o1, ..., ot−1, at) ∈ A. 145

The interaction loop repeats until the task com- 146

pletes or exceeds the maximum steps, and the tra- 147

jectory is denoted as: 148

e = (u, a1, o1, ..., on−1, an) ∼ πθ(e|u), (1) 149

πθ(e|u) =
n∏

j=1

πθ(aj |u, a1, o1, ..., oj−1), (2) 150

where n is the trajectory length. Finally, the final 151

reward r(u, e) ∈ [0, 1] is computed, with 1 repre- 152

senting successful task completion. 153
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3 Method154

Our method, ETO, starts by training a base agent155

through behavioral cloning. Based on the base156

agent, our framework continually enhanced the pol-157

icy from trial and error in an iterative manner.158

3.1 Behavioral Cloning159

Behavioral cloning (BC) has demonstrated promis-160

ing results through supervised fine-tuning on the161

expert interaction trajectory data, serving as a solid162

starting point for building a powerful agent. In this163

work, we employ ReAct-style (Yao et al., 2022b)164

trajectory to conduct BC, which additionally gener-165

ates Chain-of-Thought (CoT) rationales (Wei et al.,166

2022) before each action. Considering that the167

CoT and action are generated together in the ReAct168

framework, we use a to represent the action with169

CoT for simplicity.170

Given an expert trajectory dataset D =171 {
(u, e)(i)

}|D|

i=1
, where |D| is the number of trajec-172

tories, we fine-tune an LLM on auto-regressive loss173

to get the base agent πbase:174

LSFT(πθ) = −Ee∼D [πθ(e|u)] , (3)175

where e = (u, a1, o1, ...on−1, an) ∼ D is an expert176

interaction trajectory.177

Since πθ(e|u) =
∏n

j=1 πθ(aj |u, ..., oj−1), in178

practice, we first concatenate the instruction,179

actions and observations in trajectory e as a text180

sequence t:181

t = concat(u, a1, o1, ..., on−1, an)

= (t1, t2, ..., tl) ,
(4)182

where tk is the k-th token in the result sequence.183

Then the probability of the trajectory in Eq. (3) can184

be obtained by directly computing the probability185

of actions with observation tokens masked:186

πθ(e|u) = −
∑
k

log πθ(tj |t<j)×1(tj ∈ A), (5)187

where 1(tj ∈ A) is an indicator function about188

whether tj is a token belonging to actions produced189

by the agent.190

3.2 Learning From Exploration Failures191

Behavioral cloning exclusively depends on expert192

trajectories and lacks the ability to explore the envi-193

ronment, leading to sub-optimal policies. To train a194

more powerful agent, it is important for the model195

to also explore failure trajectories. To achieve this, 196

a viable approach is reinforcement learning, which 197

empowers agents to actively explore the environ- 198

ment to get rewards and refine the policy through 199

trial and error (Ouyang et al., 2022): 200

max
πθ

Eu∼D,e∼πθ(e|u) [r(u, e)]−

βDKL [πθ(e|u) || πref(e|u)] ,
(6) 201

where the KL term with weighting parameter β 202

controls the deviation from the base reference pol- 203

icy πref , i.e., the base agent πbase. In practice, the 204

agent to be trained πθ is also initialized to πbase. 205

Then the optimization problem in Eq. (6) can be 206

solved via RL methods such as PPO (Schulman 207

et al., 2017; Ouyang et al., 2022). 208

However, directly applying online RL on LLM 209

agents will present practical challenges such as 210

instability and low efficiency (Shen et al., 2023; 211

Rafailov et al., 2023). Therefore, we instead design 212

an iterative offline learning framework and train the 213

agent with contrastive trajectory data. As shown in 214

Algorithm 1, the training process can be formulated 215

in an iterative exploration-training loop. In the 216

exploration phase of ETO, the agent explores the 217

environment to collect failure trajectories. During 218

the training phase, the agent learns the contrastive 219

information from the “failure-success” trajectory 220

pairs to update the policy. 221

Exploration Phase In this phase, the base agent 222

πbase explores the environment to get the trajecto- 223

ries on the instructions of training data for BC: 224

ê = (u, â1, ô1, ..., ôm−1, âm) ∼ πbase(e|u). (7) 225

The environments then return a reward r̂ corre- 226

sponding to the trajectory ê. 227

Then we construct failure-success trajectory 228

pairs, denote as ew ≻ el | u, based on the final 229

rewards. Here, ew and el represent the trajectories 230

with higher and lower rewards, chosen from the 231

expert trajectory e and agent-generated trajectory ê 232

respectively. Note that we only collect pairs where 233

two trajectories have different rewards. If both ê 234

and e successfully complete the task, we simply 235

discard the pair. Finally, we get the contrastive 236

trajectory dataset Dp =
{
(u, ew, el)

(i)
}|Dp|

i=1
. 237

Training Phase In this phase, the agent policy is 238

updated by modeling the contrastive failure-success 239

information in the trajectory pair data. 240
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Algorithm 1: ETO

Input: D =
{
(u, a1, o1, ...on−1, an)

(i)
}

: expert trajectory dataset for behavioral cloning, T1:
number of behavioral cloning steps, I: number of iterations for ETO, T2: number of steps
in training phase, πθ: initial LLM policy.

Output: Final policy πθ
// Behavioral cloning

for i = 1 to T1 do
Optimize θ on BC objective: LSFT(πθ) = −Ee∼D [πθ(e|u)]

// Iteratively learning from exploration failures
for i = 1 to I do

πbase = πθ; πref = πθ
Get base agent trajectories on D: ê = (u, â1, ô1, ..., ôm−1, âm) ∼ πbase(e|u)
Compare rewards of ê with expert trajectory e to get the failure-success pair: ew ≻ el | u
Construct contrastive trajectory dataset: Dp =

{
(u, ew, el)

(i)
}

for j = 1 to T2 do
Optimize θ on trajectory contrastive objective:

LDPO(πθ;πref) = −E(u,ew,el)∼Dp

[
log σ

(
β log πθ(ew|u)

πθ(el|u) − β log πref(ew|u)
πref(el|u)

)]
return πθ

Given trajectory pair ew ≻ el | u, the failure-241

success relation can be modeled via Bradley-Terry242

(BT) (Bradley and Terry, 1952) model:243

p(ew ≻ el|u) =
exp (r(u, ew))

exp (r(u, ew)) + exp (r(u, el))
.

(8)244

On the other hand, under the optimal policy πr(e|u)245

of Eq. (6), the reward function in the environment246

can be written as (Peng et al., 2019; Rafailov et al.,247

2023):248

r(u, e) = β log
πr(e|u)
πref(e|u)

+ β logZ(x), (9)249

where Z(u) =
∑

e πref(e|u) exp
(

1
β r(u, e)

)
is the250

partition function. Substitute Eq. (9) into Eq. (8) to251

get the BT model over policy:252

p(ew ≻ el|u) =

σ

(
β log

πθ(ew|u)
πθ(el|u)

− β log
πref(ew|u)
πref(el|u)

)
,

(10)

253

where σ is the sigmoid function. Then the optimal254

policy πθ can be achieved by applying maximum255

likelihood:256

LDPO(πθ;πref) =

− E(u,ew,el)∼Dp

[
log σ

(
β log

πθ(ew|u)
πθ(el|u)

− β log
πref(ew|u)
πref(el|u)

)]
.

(11)257

This optimization objective aims to increase the 258

likelihood of the success trajectories ew and de- 259

crease the likelihood of failure trajectories el, with 260

a constraint term to maintain the basic agent ca- 261

pabilities. Moreover, as a reformulation of RL 262

objective Eq. (6), Eq. (11) is directly maximizing 263

the final reward while avoiding the need to perform 264

RL optimization. 265

Iteration To further improve the agent’s per- 266

formance, ETO adopts an iterative exploration- 267

training manner. After the training phase, the agent 268

policy can be used to gather new failure cases and 269

create contrastive trajectory pairs. These new data 270

are then used to further enhance the agent through 271

trajectory contrastive learning. 272

4 Experiments 273

In this section, we conduct extensive experiments 274

to validate the effectiveness of ETO. Our method 275

demonstrates superior performance compared to 276

baselines across three datasets, and it exhibits 277

enhanced advantages when dealing with out-of- 278

domain unseen tasks. The analysis further show- 279

cases the efficiency of our method. Furthermore, 280

our method also holds promise in scenarios where 281

expert trajectories are unavailable. 282
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4.1 Experimental Settings283

Datasets We conduct experiments on three rep-284

resentative agent datasets, WebShop (Yao et al.,285

2022a) for web navigation, ScienceWorld (Wang286

et al., 2022) for embodied science experiments, and287

ALFWorld (Shridhar et al., 2021) for embodied288

house holding tasks. Both WebShop and Science-289

World environments provide dense final rewards290

ranging from 0 to 1, while ALFWorld only pro-291

vides binary rewards indicating whether the task is292

completed. All three environments can be formally293

described as partially observable Markov decision294

processes. For details of the datasets and the ex-295

pert trajectory collection process, please refer to296

Appendix A.297

The statistical information of our datasets is pre-298

sented in Table 1. It is important to mention that,299

in addition to the in-distribution test sets, both Sci-300

enceWorld and ALFWorld contain test sets that in-301

clude out-of-distribution unseen variations. These302

additional test sets allow us to assess the general-303

ization capabilities of different agents.304

Training Setup We mainly use Llama-2-7B-305

Chat (Touvron et al., 2023) as the base model for306

building LLM agents. To provide more compre-307

hensive results, we also conduct experiments on308

Llama-2-13B-Chat and Mistral-7B (Jiang et al.,309

2023). We utilize the AdamW optimizer. For the310

SFT phase, the batch size is 64 and the learning311

rate is set to 1e-5 with 3% warm up and a cosine312

scheduler. Then the base agent will explore once313

for each instance in the training set to collect fail-314

ure trajectories. For the training phase of ETO, the315

batch size is 32 and the learning rate is set to 1e-316

6. The β in DPO loss is set to 0.1. The learning317

epochs of SFT phase and training phase in ETO318

are set to 3. The number of iterations of ETO is set319

to 2. All experiments are conducted on 8 NVIDIA320

A100 80G GPUs.321

Baselines We compare ETO with SFT imitation322

learning and other post-imitation baseline meth-323

ods. 1) SFT (Chen et al., 2023; Zeng et al., 2023)324

conducts imitation learning on expert trajectories,325

which is the base agent for ETO and other base-326

lines. 2) Best-of-N sampling employs SFT base327

agent and selects the trajectory with the best re-328

ward within N samplings. Here we set N to 10.329

3) RFT (Rejection sampling Fine-Tuning) (Yuan330

et al., 2023) is a strong baseline which adds the331

success trajectories to the expert trajectory dataset332

Dataset #Train #Test-Seen #Test-Unseen #Turns

WebShop 1938 200 - 4.9
ScienceWorld 1483 194 241 14.4
ALFWorld 3321 140 134 10.1

Table 1: Statistics of datasets. “Test-Seen” and “Test-
Unseen” are test set with seen and unseen scenarios
respectively. “#Turns” denotes the average number of
interaction turns for the expert trajectories.

and trains the agent on new augmented trajectories. 333

4) PPO (Proximal Policy Optimization) (Schulman 334

et al., 2017) is an RL method directly optimizing 335

the SFT agents to maximize the final task reward. 336

We also include GPT-3.5-Turbo (OpenAI, 2022), 337

GPT-4 (OpenAI, 2023), and untuned Llama-2-7B- 338

Chat for comparison. 339

Evaluation All methods are evaluated using the 340

ReAct-style interaction format (Yao et al., 2022b), 341

with CoT rationale generated before the action. See 342

Appendix C for the detailed prompts. We add 1- 343

shot in-context example in the instruction prompt 344

for each task. The decoding temperature of the 345

LLMs is set to be 0.0 for deterministic generation, 346

except for Best-of-N method. We employ Average 347

Reward as the metric, which represents the average 348

reward of all task instances in the test set. 349

4.2 Results 350

Table 2 presents the performance comparison of 351

ETO and baselines on three agent datasets. As 352

shown, ETO demonstrates a significant improve- 353

ment over SFT imitation learning, leading to an 354

average reward increase of 8% and 9.5% for Web- 355

Shop and ScienceWorld. Our method also out- 356

performs all other baselines on all datasets. On 357

WebShop dataset, ETO even outperforms GPT-4 358

on the average reward, showing the extraordinary 359

performance of our method. Although the RFT 360

method also exhibits improvement compared to 361

SFT, its performance remains constrained as it is 362

an augmented version of behavioral cloning and 363

solely learns from success trajectories. This com- 364

parison indicates the comparison between failure 365

and expert trajectories is essential to improve the 366

performance of the agent. Meanwhile, though PPO 367

gains improved performance on WebShop, it strug- 368

gles to achieve satisfactory results on the other two 369

datasets due to the inherent instability in RL op- 370

timization procedures, particularly on ALFWorld 371

dataset which only provides binary final rewards. 372
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Method WebShop ScienceWorld ALFWorld

Seen Unseen Seen Unseen

GPT-4 63.2 64.8 64.4 42.9 38.1
GPT-3.5-Turbo 62.4 16.5 13.0 7.9 10.5

Llama-2-7B-Chat 17.9 3.8 3.1 0.0 0.0
Llama-2-7B-Chat + SFT 63.1 67.4 53.0 60.0 67.2
Llama-2-7B-Chat + Best-of-N 63.8 70.2 57.6 62.1 69.4
Llama-2-7B-Chat + RFT 63.6 71.6 54.3 62.9 66.4
Llama-2-7B-Chat + PPO 64.2 59.4 51.7 22.1 29.1

Llama-2-7B-Chat + ETO (ours) 67.4 73.8 65.0 68.6 72.4

Table 2: The average reward of different methods on three agent datasets. “Seen” denotes the held-out test set with
task types seen during training, while “Unseen” refers to the test set with critical unseen task variations.

Base LLM Method WebShop ScienceWorld

Seen Unseen

Llama-2-13B
SFT 66.3 68.1 57.6
ETO 70.7 71.4 68.6

Mistral-7B
SFT 60.1 63.8 52.2
ETO 66.2 68.5 62.5

Table 3: The average reward of different base LLMs on
WebShop and ScienceWorld.

Notably, our approach showcases enhanced373

advantages in out-of-domain unseen scenarios,374

achieving an impressive performance boost of 20%375

on ScienceWorld-Unseen. Moreover, ETO ex-376

hibits strong effectiveness on the unseen scenarios377

in ALFWorld and outperforms the RFT and PPO378

baselines, both of which suffer from performance379

degradation. These results underscore that learning380

by trial and error can further enhance the agent’s381

generalization capabilities, particularly in out-of-382

distribution unseen scenarios.383

Results on Different LLMs To further demon-384

strate the effectiveness of our method, we present385

the results based on other base LLMs, including386

Llama-2-13B-Chat and Mistral-7B. Table 3 show-387

cases the consistent improvement in agent perfor-388

mance achieved by ETO across different LLMs.389

Notably, when compared to Llama-2-7B, the 13B390

model displays a relatively smaller performance391

gain on both datasets, suggesting that our method392

can provide greater benefits to weaker agents. De-393

spite Mistral-7B is a more powerful LLM than394

Llama-2-13B, it falls short of Llama-2-7B after ei-395

ther SFT or ETO. This finding indicates that there396

is not a strong correlation between the basic LLM397

capabilities and the agent capabilities.398

1-20 2-20 3-16

4-292 7-12 9-474

15-90 19-23 21-78

Figure 2: Cases of ScienceWorld reward trajectory for
ETO, SFT Base Agent and Oracle. X: time steps (0 →
T ); Y : scores (0 → 100). Task IDs are shown at the
bottom-right. Best viewed in color.

Analysis on Efficiency We evaluate the task- 399

solving efficiency of agents in ScienceWorld en- 400

vironment, which provides fine-grained subgoals 401

for each task. The reward of a task is updated 402

upon the accomplishment of a subgoal. By assess- 403

ing the agent’s ability to achieve higher rewards 404

within fewer action steps, we can determine its 405

efficiency. Figure 2 showcases the score trajecto- 406

ries of ScienceWorld-Seen test set, comparing ETO 407

with the SFT base agent, and the oracle agent. As 408

depicted, ETO can reach higher rewards in fewer 409

action steps than the SFT base agent. Interestingly, 410

in certain cases like 15-90 and 19-23, our method 411

outperforms even the oracle agent, reaching a score 412

of 100 earlier. These results demonstrate that by 413

learning from failure trajectories, our method also 414

acquires a more powerful task-solving efficiency. 415

4.3 Ablation of Iterations 416

In this section, we present a study on the impact of 417

iteration numbers in ETO. The results are shown 418

in Figure 3. As depicted, ETO demonstrates the 419
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Figure 3: ETO performance on multiple iterations.

ability to enhance the performance of agents in the420

first two iterations on both the WebShop and Sci-421

enceWorld datasets. However, further increasing422

the iterations does not lead to continuous improve-423

ment. Instead, the performance starts to decline424

after the third iteration. Regarding the ALFWorld425

dataset, only the first iteration of ETO shows an426

improvement. Surprisingly, the performance on the427

second and third iterations even falls behind that of428

the SFT base agent.429

To explain this, it is important to note that the430

learning process of ETO relies on a fixed expert tra-431

jectory set, and the exploration phase of the agent is432

performed on the same training set. Consequently,433

the diversity and quantity of failure-success con-434

trastive trajectory data are constrained. Initially,435

the policy can be improved by learning from past436

mistakes. However, the model gets overfitting on437

the contrastive information in subsequent iterations,438

resulting in a decline in performance. In the case439

of ALFWorld, the coarse-grained binary rewards440

further hinder the agent from getting improvement441

from iterative training. As a potential solution, fu-442

ture work could explore the incorporation of GPT-4443

to dynamically construct more diverse contrastive444

trajectory data.445

4.4 Strategy of Contrastive Data Construction446

In this section, we delve deeper into the contrastive447

trajectory pair construction strategy used in our448

method. In Section 3.2, we directly learn from449

failure-success trajectory pairs (Eq. (11)), referred450

to trajectory-wise contrastive. Alternatively, in-451

spired by previous work (Lightman et al., 2023),452

we introduce a fine-grained variation of ETO that453

captures step-wise contrastive information by com-454

paring “good-bad” action pairs. To achieve this, we455

use the expert trajectory to conduct teacher forc-456

ing for first t − 1 steps, and then have the agent457

Method Level lr β Avg. Reward

SFT - - - 63.1

ETO

Trajectory 1e-6 0.1 67.4
Step 1e-6 0.1 8.3
Step 1e-7 0.5 62.8
Mixture 1e-6 0.1 64.3

Table 4: The average reward on WebShop of agents
trained on different level contrastive data.

predict the action of t-th step. Then the quality of 458

t-th action is determined by the final rewards. We 459

also implement a mixture variation by combining 460

the above two strategies. For further details regard- 461

ing the step-wise variation of ETO, please refer to 462

Appendix B. 463

The comparison of different methods is pre- 464

sented in Table 4. As the results demonstrate, 465

trajectory-wise contrastive yields the best perfor- 466

mance. On the other hand, we observed that step- 467

wise contrastive modeling tends to be less stable, 468

necessitating a lower learning rate and a higher 469

constraint parameter β to maintain the basic ca- 470

pabilities of the agent. This instability may be 471

attributed to the inaccurate estimation of the action 472

quality, as we simply utilize the final rewards to 473

construct step-wise contrastive pairs. Moreover, 474

the performance of mixture strategy also falls short 475

compared to trajectory-level contrastive. 476

4.5 Self-Play w/o Expert Trajectory 477

In this section, we explore a challenging scenario 478

where no expert trajectory is available. In such 479

cases, the agent is compelled to explore the envi- 480

ronment and depend on self-play to enhance its 481

capabilities. To achieve this, we eliminate the be- 482

havioral cloning phase of ETO and allow the LLM 483

agent to explore the environments using a decoding 484

temperature of 1.0. Subsequently, we compare dif- 485

ferent trajectories associated with the same instruc- 486

tion based on their final rewards, creating trajectory 487

preference data. Finally, the agent is trained exclu- 488

sively on the preference data generated by itself. 489

On WebShop, the untuned Llama-2-7B-Chat 490

achieves relatively high rewards. Thus, we use this 491

dataset to conduct the experiment. We also employ 492

rejection sampling fine-tuning (RFT) as a base- 493

line. The results in Table 5 show that ETO alone 494

does not improve performance without behavioral 495

cloning. In contrast, RFT shows promising ability 496

to enhance the agent’s capabilities without relying 497
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Method w/ BC? Avg. Reward

SFT ✓ 63.1
RFT ✓ 63.6
ETO ✓ 67.4

Llama-2-7B-Chat† ✗ 17.9
RFT ✗ 48.4
ETO ✗ 12.5
RFT+ETO ✗ 51.2

Table 5: Performance of self-play without behavioral
cloning from expert trajectories. † means directly
prompting an untuned Llama-2-7B-Chat.

on expert trajectories. However, when combining498

RFT with ETO, we observe a further enhancement499

in the agent’s performance. These findings sug-500

gest that in scenarios without expert trajectories,501

it may be beneficial to first employ RFT and then502

allow the agent to learn from exploration failures.503

These results further highlight the potential of our504

method in scenarios where expert trajectories are505

unavailable.506

5 Related Work507

Imitation Learning Imitation learning is a learn-508

ing paradigm where an agent learns a policy509

by mimicking expert demonstrations (Hussein510

et al., 2017; Fang et al., 2019). A prevalent ap-511

proach in imitation learning is behavioral cloning512

(BC) (Pomerleau, 1991), which utilizes expert tra-513

jectories to learn a direct mapping from states to514

actions. There are various methods to mitigate515

the limitations of BC (Ross et al., 2011; Ross and516

Bagnell, 2014). Our method, ETO, shares a sim-517

ilar spirit with DAgger (Ross et al., 2011), an ap-518

proach used to enhance the agent’s performance519

by learning from failure cases. However, unlike520

DAgger which gathers additional expert trajecto-521

ries on agent-failed cases, ETO improves the policy522

through learning from contrastive trajectory pairs.523

LLM Agents With the various emergent abili-524

ties of LLMs, researchers have explored building525

agent systems based on LLMs (Xi et al., 2023). Re-526

cent projects such as AutoGPT (Richards, 2023),527

BabyAGI (Nakajima, 2023) have employed LLMs528

as core controllers, building powerful agent frame-529

works capable of solving realistic tasks. While530

GPTs have shown strong agent intelligence, open-531

source LLMs still lag far behind (Liu et al., 2023;532

Wang et al., 2023d). To bridge this gap, recent stud-533

ies, including FireAct (Chen et al., 2023), Agent-534

Tuning (Zeng et al., 2023), and Lumos (Yin et al., 535

2023), construct expert trajectory data from teacher 536

agents (e.g., GPT-4) and perform BC on open- 537

source LLMs. Taking a step further, Aksitov et al. 538

(2023) refine the agent through iterative BC on suc- 539

cess trajectories generated by the previous policy. 540

Nonetheless, how to achieve agents with enhanced 541

performance beyond simple behavioral cloning is 542

still under-explore. 543

LLM Policy Learning Learning from preference 544

has shown promise for learning an enhanced LLM 545

policy, particularly in LLM alignment research. 546

Reinforcement Learning from Human Feedback 547

(RLHF) is a method that learns a reward model 548

and then utilizes proximal policy optimization to 549

update the policy model (Christiano et al., 2017; 550

Ouyang et al., 2022). Despite its attractive advan- 551

tages, RLHF presents limitations regarding training 552

efficiency and instability. To address these issues, 553

Rafailov et al. (2023) reformulate the optimization 554

objective of RLHF, introducing the DPO loss to 555

directly model preferences. Similar to our work, 556

ReST (Gulcehre et al., 2023) iteratively generates 557

new samples from the current policy and refines the 558

policy using offline RL methods. Recent studies 559

have explored the application of LLM policy learn- 560

ing in other domains (Lightman et al., 2023; Wang 561

et al., 2023b). For example, Wang et al. (2023c) 562

train a step-wise reward model to improve the per- 563

formance of LLMs in mathematical reasoning. 564

6 Conclusion 565

In this work, we present ETO, a method aimed at 566

enhancing the capabilities of LLM agents. Our 567

approach allows the agent to learn by trial and er- 568

ror, thereby improving the performance of the base 569

agent acquired through behavioral cloning. ETO 570

uses an exploration-training iteration framework. 571

During the exploration phase, the agent explores 572

the environment, gathering failure trajectories and 573

constructing trajectory preference pairs. Subse- 574

quently, in the training phase, the agent learns 575

from the preference information using DPO loss. 576

This iterative process of exploration and training 577

enables further improvement in the agent’s per- 578

formance. Extensive experiments on three agent 579

datasets demonstrate our method outperforms be- 580

havioral cloning and strong baselines by a large 581

margin. Moreover, our method exhibits remarkable 582

efficiency and shows great potential in scenarios 583

where expert trajectories are unavailable. 584
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Limitations585

Our method, ETO, demonstrates effective learning586

of powerful LLM agents through trial and error.587

However, it is important to acknowledge several588

limitations of this work. 1) ETO simplifies the589

comparison of failure-success trajectories by as-590

suming that the agent generates wrong actions right591

from the beginning. However, in realistic cases, the592

agent may start executing incorrect actions from593

some intermediate step. If we can identify when594

the agent makes a bad action (e.g., â3 at 3-th step),595

we should then collect the expert trajectory for the596

remaining actions at>3. Unfortunately, most cur-597

rent environments do not contain such information,598

making it challenging to conduct action-wise or599

process-level reward modeling. A potential solu-600

tion is to employ GPT-4 to identify the bad action601

and construct fine-grained contrastive trajectory602

data. 2) This work primarily focuses on developing603

specialized LLM agents for a specific agent task,604

with limited exploration into the construction of605

strong generalized agents. For future work, we will606

investigate the transferability of the policies trained607

by ETO and try to apply our method in a multi-task608

training scenario.609

Ethics Statement610

This work fully complies with the ACL Ethics Pol-611

icy. We declare that there are no ethical issues in612

this paper, to the best of our knowledge.613
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A Datasets804

WebShop WebShop (Yao et al., 2022a) is an on-805

line shopping website environment where agents806

navigate the platform to make purchases based on807

user instructions. Once the agent selects the "buy"808

action, the environment provides a final reward,809

which is calculated based on the matching heuris-810

tics of the product’s attributes and price.811

ScienceWorld ScienceWorld (Wang et al., 2022)812

is a text-based virtual environment centered around813

accomplishing elementary science experiments, in-814

cluding 10 different task types such as thermody-815

namics and electrical circuits. The agents need816

to be grounded in embodied interactive environ-817

ments to engage with and comprehend scientific818

concepts through practical experience. Each task in819

ScienceWorld includes several optional subgoals,820

and the overall final reward is computed based on821

the achievement of these subgoals.822

The original test set in ScienceWorld consists823

of critical unseen task variations. For instance, in824

the training set, the task may involve boiling wa-825

ter, whereas in the test set, the task is to boil lead.826

Consequently, we employ the original test set to827

evaluate our model’s generalization performance828

on unseen scenarios. We utilize the original de-829

velopment set as our test set with seen scenarios.830

We exclude Task-9 and Task-10 due to their exces-831

sively long task-solving trajectories. Following Lin832

et al. (2023), we use the first 10 instances for task833

types with more than 10 test variations for fair and834

cost-effective comparisons.835

ALFWorld ALFWorld (Shridhar et al., 2021)836

consists of interactive TextWorld environments that837

parallel embodied worlds in the ALFRED (Shrid-838

har et al., 2020) dataset. In this environment, agents839

are required to explore and complete high-level840

house-holding instructions. The original ALF-841

World dataset comprises both seen and unseen842

evaluation sets. The seen set is designed to as-843

sess in-distribution generalization, whereas the un-844

seen set with new task instances measures out-of-845

distribution generalization of the agents.846

CoT Annotation Webshop and ALFWorld pro-847

vide a few human-annotated trajectories for imita-848

tion learning. We also employ GPT-4 as the teacher849

agent to explore in the WebShop environment and850

select trajectories which have a reward greater than851

0.7. ScienceWorld environment provides heuristic852

searching algorithms to generate golden trajectories853

for each sub-task. Since the original trajectories 854

do not contain CoT information for each action 855

step, we further utilize GPT-4 to generate the cor- 856

responding rationales. 857

B Details for Step-Wise Contrastive 858

We implement a variation of ETO which learns 859

from contrastive good-bad action pairs. Specifi- 860

cally, for a task instruction u with expert trajectory 861

e = (u, a1, ..., on−1, an), we utilize teacher forc- 862

ing for the first t − 1 steps (a1, o1, ...at−1, ot−1), 863

and let the agent predict the actions from t-th step 864

to get the trajectory: 865

ê = (u, a1, o1, ..., ot−1, ât, ôt, ..., ôm−1, âm)
(12) 866

The environments return a reward r̂ for the trajec- 867

tory ê. If we denote the golden trajectory for the 868

first t− 1 steps as e(t−1), then the good-bad action 869

pairs aw ≻ al | u, e(t−1) is constructed based on 870

the final rewards. Here, aw and al represent the 871

actions with higher and lower final rewards, chosen 872

from (at, ât) respectively. Then the contrastive re- 873

lation of the action pair can also be utilized in DPO 874

loss to improve the policy: 875

LDPO(πθ;πref) =

− E

[
log σ

(
β log

πθ(aw|u, e(t−1))

πθ(al|u, e(t−1))
− β log

πref(aw|u, e(t−1))

πref(al|u, e(t−1))

)]
.

(13) 876

C Prompt for Evaluation 877

We show the instruction prompts for WebShop, 878

ScienceWorld, ALFWorld in this section. 879
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Instruction Prompt for WebShop

You are doing a web shopping task. I will give you instructions about what to do. You have to
follow the instructions. Every round I will give you an observation and a list of available actions,
you have to respond to an action based on the state and instruction. You can use search action if
search is available. You can click one of the buttons in clickables. An action should be one of the
following structure: search[keywords] or click[value]

If the action is not valid, perform nothing. Keywords in search are up to you, but the value in click
must be a value in the list of available actions. Remember that your keywords in search should be
carefully designed.

Your response should use the following format:
Thought: I think ...
Action: click[something]

880

Instruction Prompt for ScienceWorld

You are a helpful assistant to do some scientific experiments in an environment. In the
environment, there are several rooms: kitchen, foundry, workshop, bathroom, outside, living
room, bedroom, greenhouse, art studio, hallway You should explore the environment and find the
items you need to complete the experiment. You can teleport to any room in one step. All con-
tainers in the environment have already been opened, you can directly get items from the containers.

The available actions are:
open OBJ: open a container
close OBJ: close a container
activate OBJ: activate a device
deactivate OBJ: deactivate a device
connect OBJ to OBJ: connect electrical components
disconnect OBJ: disconnect electrical components
use OBJ [on OBJ]: use a device/item
look around: describe the current room
examine OBJ: describe an object in detail
look at OBJ: describe a container’s contents
read OBJ: read a note or book
move OBJ to OBJ: move an object to a container
pick up OBJ: move an object to the inventory
pour OBJ into OBJ: pour a liquid into a container
mix OBJ: chemically mix a container
teleport to LOC: teleport to a specific room
focus on OBJ: signal intent on a task object
wait: task no action for 10 steps
wait1: task no action for a step

Your response should use the following format:
Thought: <your thoughts>
Action: <your next action>

881
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Instruction Prompt for ALFWorld

Interact with a household to solve a task. Imagine you are an intelligent agent in a household
environment and your target is to perform actions to complete the task goal. At the beginning of
your interactions, you will be given a detailed description of the current environment and your
goal to accomplish.
For each of your turn, you will be given the observation of the last turn. You should first think
about the current condition and plan for your future actions, and then output your action in this
turn. Your output must strictly follow this format:"Thought: your thoughts. Action: your next
action".

The available actions are:
1. go to recep
2. task obj from recep
3. put obj in/on recep
4. open recep
5. close recep
6. toggle obj recep
7. clean obj with recep
8. heat obj with recep
9. cool obj with recep
where obj and recep correspond to objects and receptacles.
After each turn, the environment will give you immediate feedback based on which you plan your
next few steps. if the environment outputs "Nothing happened", that means the previous action is
invalid and you should try more options.

Your response should use the following format:
Thought: <your thoughts>
Action: <your next action>

882
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