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ABSTRACT

Communication is a powerful tool for coordination in multi-agent RL. Inducing
an effective, common language has been a difficult challenge, particularly in the
decentralized setting. In this work, we introduce an alternative perspective where
communicative messages sent between agents are considered as different incom-
plete views of the environment state. Based on this perspective, we propose to
learn to communicate using contrastive learning by maximizing the mutual infor-
mation between messages of a given trajectory. In communication-essential envi-
ronments, our method outperforms previous work in both performance and learn-
ing speed. Using qualitative metrics and representation probing, we show that
our method induces more symmetric communication and captures task-relevant
information from the environment. Finally, we demonstrate promising results on
zero-shot communication, a first for MARL. Overall, we show the power of con-
trastive learning, and self-supervised learning in general, as a method for learning
to communicate.

1 INTRODUCTION

Figure 1: Multi-view contrastive learning and CACL, contrastive learning for multi-agent communi-
cation. In multi-view learning, augmentations of the original image or “views” are positive samples
to contrastively learn features. In CACL, different agents’ views of the same environment states are
considered positive samples and messages are contrastively learned as encodings of the state.

Communication between agents is a key capability necessary for effective coordination among
agents in partially observable environments. In multi-agent reinforcement (MARL) (Sutton & Barto,
2018), agents can use their actions to transmit information (Grupen et al., 2020) but continuous or
discrete messages on a communication channel (Foerster et al., 2016), also known as linguistic
communication (Lazaridou & Baroni, 2020), is more flexible and powerful. To successfully com-
municate, a speaker and a listener must share a common language with a shared understanding of the
symbols being used (Skyrms, 2010; Dafoe et al., 2020). Learning a common protocol, or emergent
communication (Wagner et al., 2003; Lazaridou & Baroni, 2020), is a thriving research direction but
many works focus on simple, single-turn, sender-receiver games (Lazaridou et al., 2018; Chaabouni
et al., 2019). In more visually and structurally complex MARL environments (Samvelyan et al.,
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2019), existing approaches often rely on centralized learning mechanisms by sharing models (Lowe
et al., 2017) or gradients (Sukhbaatar et al., 2016).

However, a centralized controller is impractical in many real-world environments (Mai et al., 2021;
Jung et al., 2021) and centralized training with decentralized execution (CTDE) (Lowe et al., 2017)
may not perform better than purely decentralized training (Lyu et al., 2021). Furthermore, the decen-
tralized setting is more flexible and requires fewer assumptions about other agents, making it more
realistic in many real-world scenarios (Li et al., 2020). The decentralized setting also scales better,
as a centralized controller will suffer from the curse of dimensionality: as the number of agents it
must control increases, there is an exponential increase in the amount of communication between
agents to process (Jin et al., 2021). Hence, this work explores learning to communicate in order to
coordinate agents in the decentralized setting. In MARL, this means each agent will have its own
model to decide how to act and communicate, and no agents share parameters or gradients.

Normal RL approaches to decentralized communication are known to perform poorly even in sim-
ple tasks (Foerster et al., 2016). The main challenge lies in the large space of communication to
explore, the high variance of RL, and a lack of common grounding to base communication on (Lin
et al., 2021). Earlier work leveraged how communication influences other agents (Jaques et al.,
2018; Eccles et al., 2019) to learn the protocol. Most recently, Lin et al. (2021) proposed agents that
autoencode their observations and simply use the encodings as communication, using the shared en-
vironment as the common grounding. We propose to use the shared environment and the knowledge
that all agents are communicating to ground a protocol. If, like Lin et al. (2021), we consider our
agents’ messages to be encodings of their observations then agents in similar states should produce
similar messages. This perspective leads to a simple method based on contrastive learning to ground
communication.

Inspired by the literature in representation learning that uses different “views” of a data sample
(Bachman et al., 2019), for a given trajectory, we propose that an agent’s observation is a “view” of
some environment states. Therefore, different agents’ messages are encodings of different “views”
of the same underlying state. From this perspective, messages within a trajectory should be more
similar to each other than to messages from another trajectory. We visually show our perspective in
Figure 1. We propose that each agent use contrastive learning between sent and received messages
to learn to communicate, which we term Communication Alignment Contrastive Learning (CACL).

We experimentally validate our method in three communication-essential environments and empir-
ically show how our method leads to improved performance and speed, outperforming state-of-the-
art decentralized MARL communication algorithms. To understand CACL’s success, we propose a
suite of qualitative and quantitative metrics. We demonstrate that CACL leads to more symmetric
communication, allowing agents to be more mutually intelligible. By treating our messages as rep-
resentations, we show that CACL’s messages capture task-relevant semantic information about the
environment better than baselines. Finally, we look at zero-shot cooperation with partners unseen
at training time, a first for MARL communication. Despite the difficulty of the task, we demon-
strate the first promising results in this direction. Overall, we argue that self-supervised learning is
a powerful direction for multi-agent communication.

2 RELATED WORK

Learning to coordinate multiple RL agents is a challenging and unsolved task where naively applying
single-agent RL algorithms often fails (Foerster et al., 2016). Recent approaches focus on agents
parameterized by neural networks (Goodfellow et al., 2016) augmented with a message channel so
that they can develop a common communication protocol (Lazaridou & Baroni, 2020). To solve
issues of non-stationarity, some work focuses on centralized learning approaches that globally share
models (Foerster et al., 2016), training procedures (Lowe et al., 2017), or gradients (Sukhbaatar
et al., 2016) among agents. This simplifies optimization issues can still be sub-optimal (Foerster
et al., 2016; Lin et al., 2021). This also violates independence assumptions, effectively modelling
the multi-agent scenario as a single agent (Eccles et al., 2019).

This work focuses on independent, decentralized agents and non-differentiable communication. In
previous work, Jaques et al. (2018) propose a loss to influence other agents but require explicit
and complex models of other agents and their experiments focus on mixed cooperative-competitive
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scenarios. Eccles et al. (2019) build on this and add biases to each agent’s loss function that sep-
arately encourage positive listening and positive signaling. Their method is simpler but requires
task-specific hyperparameter tuning to achieve reasonable performance and still underperforms in
sensory-rich environments (Lin et al., 2021). Our work is closest to Lin et al. (2021), who leverage
autoencoding as their method to learn a message protocol. Agent learn to reconstruct their obser-
vations and simply communicate their autoencoding. The authors find that it outperforms previous
methods while being algorithmically and conceptually simpler. Our setup differs from Eccles et al.
(2019); Lin et al. (2021) by using continuous instead of discrete messages. This choice is standard
in contrastive learning (Chopra et al., 2005; He et al., 2020; Chen et al., 2020a) and common in em-
bodied multi-agent communication (Sukhbaatar et al., 2016; Singh et al., 2018; Jiang & Lu, 2018;
Das et al., 2019). As well, our representation learning task requires no extra learning parameters
that are discarded at test time, whereas Lin et al. (2021) discard their decoder network.

Autoencoding is a form of generative self-supervised learning (SSL) (Doersch et al., 2015). We
propose to use another form of SSL, contrastive learning (Chen et al., 2020a), as the basis for learn-
ing communication. We are motivated by recent work that achieves state-of-the-art representation
learning on images using contrastive learning methods (Chen et al., 2020b) and leverages multi-
ple ”views” of the data. Whereas negative samples are simply different images, positive samples
are image data augmentations or “views” of the original image (Bachman et al., 2019). Since our
setup includes supervised labels, we base our method on SupCon (Supervised Contrastive Learning)
(Khosla et al., 2020) which modifies the classic contrastive objective to use account for multiple
positive samples. Also related is Dessı̀ et al. (2021) who propose discrete two-agent communication
as a contrastive learning task, we do the opposite and leverage contrastive learning for multi-agent
communication.

3 PRELIMINARIES

We base our investigations on decentralized partially observable Markov decision processes (Dec-
POMDPs) with N agents to describe a fully cooperative multi-agent task (Oliehoek & Amato, 2016).
A Dec-POMDP consists of a tuple G = ⟨S,A, P,R,Z,Ω, n, γ⟩. s ∈ S is the true state of the
environment. At each time step, each agent i ∈ N chooses an action a ∈ Ai to form a joint
action a ∈ A ≡ A1 × A2...× AN . It leads to an environment transition according to the transition
function P (s′|s, a1, ...aN ) : S × A × S → [0, 1]. All agents share the same reward function
R(s, a) : S×A → R. γ ∈ [0, 1) is a discount factor. As the environment is partially observable, each
agent i receives individual observations z ∈ Z based on the observation function Ωi(s) : S → Z.

We denote the environment trajectory and the action-observation history (AOH) of an agent i as
τt = s0, a0, ....st, at and τ it = Ωi(s0), a

i
0, ....Ω

i(st), a
i
t ∈ T ≡ (Z ×A)∗ respectively. A stochastic

policy π(ai|τ i) : T ×A → [0, 1] conditions on AOH. The joint policy π has a corresponding action-
value function Qπ(st, at) = Est+1:∞,at+1:∞ [Rt|st, at], where Rt =

∑∞
i=0 γ

irt+i is the discounted
return. rt+i is the reward obtained at time t+ i from the reward function R.

To account for communication, similar to Lin et al. (2021), at each time step t, an agent i takes
an action ait and produces a message mi

t = Ψi(Ωi(st)) after receiving its observation Ωi(st) and
messages sent at the previous time step m−1

t−1, where Ψi is agent i’s function to produce a message
given its observation and m−1

t−1 refers to messages sent by agents other than agent i. The messages
are continuous vectors of dimensionality D.

4 METHODOLOGY

We propose a different perspective on the message space used for communication. At each time
step t for a given trajectory τ , a message mi

t of an agent i can be viewed as an incomplete view of
the environment state st because it is a function of the environment state as formulated in section 3.
Naturally, messages of all the agents at are different incomplete perspectives of st. To ground decen-
tralized communication, we hypothesize that we could leverage this relationship between messages
from similar states to encourage consistency and proximity of the messages across agents. Specif-
ically, we propose maximizing the mutual information using contrastive learning which aligns the
message space by pushing messages from similar states closer together and messages of different
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states further apart. As a heuristic for state similarity, we consider a window of timesteps within a
trajectory to be all similar states i.e. positive samples of each other. To guarantee dissimilar negative
samples (Schroff et al., 2015), we use states from other trajectories as negatives.

We extend the recent supervised contrastive learning method SupCon (Khosla et al., 2020) to the
MARL setting by considering multiple trajectories during learning. We refer to this loss formulation
as Communication Alignment Contrastive Learning (CACL). In this case, we consider messages
within a trajectory to be different views of the same data sample with the same label.

Let H be a batch of trajectories with messages M . Let Mτ be the messages in trajectory τ . For
an agent i, let mi

t ∈ Mτ be its message at time t and other messages in trajectory τ be Aτ (m
i
t) ≡

{m′ ∈ Mτ : m′ ̸= mi
t}. Therefore, positives for a message mi

t given a timestep window w are
P (mi

t) ≡ {mj
t′ ∈ Aτ (m

i
t) : t

′ ∈ [t− w, t+ w]}. Formally, the contrastive loss is:

LCACL =
∑
m∈M

−1

|P (m)|
∑

mp∈P (m)

log
exp(m ·mp/η)∑

ma∈M\m exp(m ·ma/η)
(1)

Where η ∈ R+ is a scalar temperature and |P (m)| is the cardinality.

Practically, each agent has a replay buffer that maintains a batch of trajectory data containing mes-
sages received during training to compute the CACL loss. Following Khosla et al. (2020), messages
are normalized before the loss computation and a low temperature (i.e. η = 0.1) is used as it
empirically benefits performance and training stability. The total loss for each agent is a reinforce-
ment learning loss LRL using the reward to learn a policy (but not message head) and a separate
contrastive loss LCACL to learn just the message head, formulated as follows:

L = LRL + κLCACL (2)

where κ ∈ R+ is a hyperparameter to scale the CACL loss.

5 EXPERIMENTS AND RESULTS

5.1 EXPERIMENTAL SETUP

We evaluate our method on three multi-agent environments with communication channels. Given
the limited information each agent observes themselves, agents are encouraged to meaningfully
communicate in order to improve task performance.

Predator-Prey: A variant of the classic game (Benda et al., 1986; Barrett et al., 2011) based on
Koul (2019) where 4 agents (i.e. predators) have the cooperative goal to capture 2 randomly-moving
prey by surrounding each prey with more than one predator. We devise a more difficult variation
where agents are required to entirely surround a prey on all four sides for it to be captured and they
cannot see each other in their fields of view. Therefore, it is essential for agents to communicate their
positions and actions in order to coordinate their attacks. We evaluate each algorithm with episodic
rewards during evaluation episodes.

Find-Goal: Proposed by Lin et al. (2021), agents’ goal is to reach the green goal location as fast as
possible in a grid environment with obstacles. We use 3 agents and ,at each time step, each agents
observes a partial view of the environment centered at its current position. Unlike in Lin et al. (2021),
we use a field of view of 3× 3 instead of 5× 5 to make the problem harder. Each agents receives an
individual reward of 1 for reaching the goal and an additional reward of 5 when all of them reach the
goal. Hence, it is beneficial for an agent to communicate the goal location once it observes the goal.
As in Lin et al. (2021), we measure performance using episode length. An episode ends quicker if
agents can communicate goal locations to each other more efficiently. Hence, a method has better
performance if it has shorter episode lengths.

Traffic-Junction: Proposed by Sukhbaatar et al. (2016), it consists of A 4-way traffic junction
with cars entering and leaving the grid. The goal is to avoid collision when crossing the junction.
We use 5 agents with a vision of 1. Although not necessary, given the limited vision in agents,
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communication could help in solving the task. We evaluate each algorithm with success rate during
evaluation episodes.

All results are averaged over 12 evaluation episodes and over 6 random seeds. More details of the
environments and parameters can be found in appendix A.1.

5.2 TRAINING DETAILS

We compare CACL to the state-of-the-art independent, decentralized method, autoencoded com-
munication (AEComm; Lin et al., 2021), which grounds communication by reconstructing encoded
observations. We also compare to baselines from previous work: independent actor critic without
communication (IAC) and positive listening (PL; Eccles et al., 2019) which encourages agents to act
differently when receiving different messages. We do not include the positive signalling loss (Eccles
et al., 2019) because extending it to continuous messages is non-trivial but note that AEComm out-
performs it in the discrete case (Lin et al., 2021). We also compare to DIAL (Foerster et al., 2016)
which learns to communicate through differentiable communication and is therefore decentralized
but not independent.

All methods use the same architecture based on the IAC algorithm with n-step returns and asyn-
chronous environments (Mnih et al., 2016). Each agent has an encoder for observations and received
messages. For methods with communication, each agent has a communication head to produce
messages based on encoded observations. For policy learning, a GRU (Cho et al., 2014) is used
to generate a hidden representation from a history of observations and messages. Agents use the
hidden state for their the policy and value heads, which are 3-layer fully-connected neural networks.
We perform spectral normalization (Gogianu et al., 2021) in the penultimate layer for each head to
improve training stability . The architecture is shown in Figure 6 and hyperparameters are further
described, both in Appendix A.2.

5.3 TASK PERFORMANCE

Figure 2: CACL (red) outperforms all other methods on Predator-Prey (left), Traffic-Junction (cen-
ter) and Find-Goal (right). Predator-Prey shows evaluation reward, higher is better. Traffic-Junction
plots the percent of successful episodes, higher is better. Find-Goal plots the length of the episode
until the goal is reached, lower is better. Standard errors are plotted as shaded areas and the perfor-
mance curves are smoothed by a factor of 0.5. .

We run all methods on Predator-Prey, Find-Goal, and Traffic-Junction and plot results in Figure 2.
Our proposed method CACL outperforms all baseline methods in terms of both final performance
and learning speed and, consistent with previous results (Lin et al., 2021), AEComm is the strongest
baseline. The largest performance increase from CACL is in FindGoal where partial observability
is most prominent because of agents’ small field-of-view which makes communication more neces-
sary (hence why IAC performs worst). These results show the effectiveness self-supervised methods
for learning communication in the fully-decentralized setting, as they both outperform DIAL which,
notably, backpropogates gradients through other agents. Furthermore, it demonstrates CACL’s con-
trastive learning as a more powerful alternative to AEComm’s autoencoding for coordinating agents
with communication.
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Table 1: Success rate in Predator-Prey: the percentage of final evaluation runs that captured no prey,
one prey, or both prey. Average and standard deviation over 6 random seeds.

No-Prey One-Prey Two-Preys
IAC 36.67%± 7.50 20.00%± 4.70 48.33%± 6.83
DIAL 63.33%± 7.56 3.33%± 1.24 33.33%± 7.86
PL 50.00%± 8.33 0.00%± 0.00 51.67%± 8.63
AEComm 41.67%± 7.48 11.67%± 2.79 51.67%± 7.60
CACL (Ours) 33.33%± 7.86 0.00%± 0.00 68.33%± 8.07

To give practical context to our reward curves, we assess the algorithms from the perspective of task
completion. In Predatory-Prey, we compute the percentages of evaluation episodes that capture no-
prey, one-prey and two-preys, where capturing two preys is a successful. We average over 6 random
seeds and, as shown in Table 1, CACL outperforms all baselines and not only solves the complete
task more robustly, but also completely fails less frequently.

5.4 PROTOCOL SYMMETRY

To explain CACL’s improved performance over the baselines, we hypothesize that it induces a more
consistent, communal language that is shared among agents. More specifically, we consider a lan-
guage’s consistency to be how similarly agents communicate (i.e., sending similar messages) when
faced with the same observations. A consistent protocol can reduce the optimization complexity
since agents only need to learn one protocol for the whole group and it also makes agents more
mutually intelligible.

To evaluate consistency, we measure protocol symmetry (Graesser et al., 2019) so if an agent swaps
observations and trajectory with another agent, it should produce a similar message as what the other
agent produced. We extend this metric from previous work to the continuous, embodied case and
measure the pairwise cosine similarities of messages sent by different agents for the same observa-
tion. Let

(
N
k

)
denote the set of all k-agent subset of a set of N agents. Given a trajectory τ and

{t ∈ T} as a set of time steps of τ , protocol symmetry (protocol sym) is written as:

protocol sym(τ) =
1

|T |
∑
i∈T

1

|N |
∑
i∈N

1

|
(
N
k

)
|

∑
j,k∈(Nk)

mj ·mj

∥mj∥∥mk∥
(3)

Therefore, a more consistent protocol has higher symmetry. We swap agent trajectory and observa-
tions and compute this metric over 10 sampled evaluation episodes for 6 random seeds, and show
results in Table 2.

Table 2: Protocol symmetry across environments, average and standard deviation over 10 episodes
and 6 random seeds. CACL consistently learns the most symmetric protocol.

DIAL PL AEComm CACL (Ours)
Predator-Prey 0.66± 0.07 0.66± 0.06 0.89± 0.01 0.95± 0.01
FindGoal 0.50± 0.05 0.49± 0.04 0.85± 0.02 0.92± 0.01
Traffic Junction 0.69± 0.01 0.61± 0.04 0.80± 0.01 0.98± 0.002

The self-supervised methods (CACL and AEComm) clearly outperform the others (DIAL and PL)
implying that SSL is better for learning consistent representations in decentralized MARL. Further-
more, CACL’s protocol is very highly symmetric, clearly outperforming all others. Each AEComm
agent autoencodes their own observation without considering the messages of other agents, leading
to the formation of multiple protocols between agents. In contrast, CACL induces a common proto-
col by casting the problem in the multi-view perspective and implicitly aligning agents’ messages.
The possible correlation between protocol symmetry and overall performance and speed further
indicates the benefits of learning a common language in the decentralized setting.
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Figure 3: DBSCAN (Ester et al., 1996) clustering results of messages produced by CACL after
reduced in dimensions using t-SNE (Van der Maaten & Hinton, 2008). Exemplary clusters are shown
with their corresponding observational patterns. Specifically, two clusters correspond to messages
sent when the goal is visible and another agent is visible respectively. The other two clusters of
when only individual agents are visible.

5.5 PROTOCOL REPRESENTATION PROBING

To further investigate how informative our protocols are, we propose a suite of qualitative and quan-
titative representation probing tests based on message clustering and classification, respectively. We
perform these tests on the protocols learned in the Find-Goal environment.

Similar to Lin et al. (2021), we perform message clustering on messages generated from 10 evalua-
tion episodes to qualitatively assess whether CACL can learn an informative protocol. The messages
are first compressed to a dimension of 2 using t-SNE (Van der Maaten & Hinton, 2008) and then
clustered using DBSCAN (Ester et al., 1996). We look at each cluster’s messages and their corre-
sponding observations to extract any patterns and semantics captured. As shown in Figure 3, we
observe a cluster of messages for observations when the goal is visible and a cluster for observa-
tions when another agent is visible. Two clusters correspond to agents seeing neither the goal nor
another agent. This indicates that CACL learns to compress meaningful, task-relevant information
in messages and allows agents to reasonably learn this semantic information.

Table 3: Classification results of the two probing tests in the Find-Goal environment, comparing
all methods with communication. All methods perform similarly in the easier Goal Visibility Test
while CACL outperforms the baselines significantly in the more difficult Goal Location Test.

DIAL PL AEComm CACL (Ours)
Goal Visibility 99.45%± 2.68 98.87%± 0.67 99.75%± 0.04 97.75%± 0.69
Goal Location 68.15%± 1.76 78.31%± 2.39 76.14%± 3.36 91.28%± 1.71

To quantitatively evaluate the informativeness of learned protocols, we propose to treat messages as
representations and follow literature in representation learning for RL (Lazaridou et al., 2018; Anand
et al., 2019) to learn a classifier on top of the messages. Since FindGoal is focused on reaching a
goal, intuitively, agents should communicate whether they have found the goal and, if so, where
other agents should go to reach the goal. Therefore, we propose to probe the goal visibility and goal
location. The former uses the messages to classify whether the goal is visible in observations or not
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(i.e. a binary classification). The latter uses messages where the goal is visible in the observations to
classify the general location of the goal (i.e. a 5-class classification: Top-Left, Top-Right, Bottom-
Left, Bottom-Right and Middle). Goal location is more difficult to predict than goal visibility as
it requires detailed, spatial information. We use 30 evaluation episodes per method to generate
messages for our experiments but different methods may have different numbers of messages that
are acceptable for our probing task (e.g. a limited number of messages where the goal is visible for
predicting goal location). To ensure fair comparison, we choose an equal number of samples per
class (i.e. ,positive/negative, 5-class location) for all methods and use a 70%/30% random split for
training and testing. We use a two-layer fully-connected neural network to test each method, as this
corresponds to the same network that agents use to encode each others’ messages as part of their
observations.

Table 3 shows the classification results for the two probing tests. For goal visibility, the easier
task, all methods’ messages can be effectively used to interpret whether a goal is visible in the
observations or not. In the more difficult prediction of goal location, all methods perform above
chance (20%) but CACL’s protocol significantly outperforms baselines. Contrastive learning across
different agents’ messages can enable CACL to learn a more global understanding of location. By
encoding the goal’s spatial information, CACL agents are more likely able to move directly towards
it, and reduce episode length. If other methods simply communicate that a goal is found, agents
know to change their search but are not as precise in direction. This explains why AEComm, PL,
and DIAL perform better than IAC but worse than CACL, which also learns much quicker as shown
in Figure 2. For completeness, we also provide classification results with a one-layer (linear) probe
with similar results in Appendix A.4

5.6 ZERO-SHOT CROSS-PLAY

Table 4: Zero-shot cross-play performance in Predator-Prey. Intra-method results are bolded.
CACL AEComm PL DIAL

CACL (Ours) −17.20± 5.14 −28.49± 2.78 −24.61± 5.77 −28.78± 3.99
AEComm −37.86± 7.20 −31.56± 3.76 −29.73± 3.66
PL −27.07± 2.94 −22.89± 3.98
DIAL −22.85± 2.04

Table 5: Zero-shot cross-play performance in Find-Goal. Intra-method results are bolded.
CACL AEComm PL DIAL

CACL (Ours) 468.75± 15.32 471.66± 13.54 487.56± 8.61 488.28± 16.60
AEComm 479.96± 14.96 440.18± 23.04 472.85± 16.77
PL 492.08± 5.67 486.41± 10.46
DIAL 476.07± 15.89

An advanced form of coordination is working with partners you have not seen during training (Hu
et al., 2020). Previous work has focused on coordination through actions (Carroll et al., 2019;
Lupu et al., 2021) but to our knowledge, no previous work has succeeded in learning a linguistic
communication protocol that is robust to zero-shot partners. To assess this advanced robustness, we
take trained agents from different methods and random seeds and evaluate them with each other (i.e.,
zero-shot cross-play) in Predator-Prey and Find-Goal. Given two communication learning methods,
m1 and m2, we sample two agents from each method for Predator-Prey and for Find-Goal, we
average over sampling two agents from one method and one agent from the other and vice-versa.
For intra-method cross-play, m1 = m2, we evaluate agents that were trained with the same method
but from different random seeds, so they have not been trained with each other. For inter-method
cross-play, m1 ̸= m2, we sample agents from two different methods and pair them with each other.
Each pairing is evaluated for 10 random seeds each with 10 evaluation episodes. Given that agents
are trained in self-play (Tesauro, 1994) without regard for cross-play, we expect severe performance
dips.

We show mean and standard deviation across random seeds for Predator-Prey and Find-Goal in
Tables 4 and 5, respectively. As expected, all pairings take a significant dip in performance when
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compared with the main results. Inter-method cross-play performance is particularly bad across
all algorithms. However, notably, CACL outperforms other methods in intra-method cross-play,
indicating that the protocols learned by CACL are generally more robust even across random seeds.
In general, zero-shot linguistic communication is incredibly difficult and our results are quite weak.
Still, CACL shows promise and demonstrates that contrastive SSL methods can lead to better zero-
shot communication and coordination.

5.7 PROTOCOL REPRESENTATION LEARNING WITH REINFORCEMENT LEARNING

Figure 4: Comparing CACL and AEComm with their respective variants when combined with
DIAL. Variants with DIAL have generally worse performance.

Given the overall improved performance of our method, a natural question is whether we can achieve
even better results if we use the reward to optimize our message as well. To answer this question,
we add DIAL to both CACL and the next best method, AEComm, and evaluate in the three envi-
ronments. This is equivalent to backpropogating LRL from Equation 2 through agents to learn the
message head. In this way, both RL and SSL (contrastive or autoencoding) signals are used to learn
the protocol.

Figure 4 compares the performance of CACL and AEComm with their DIAL-augmented variants.
We observe that augmenting either SSL method with DIAL performs generally worse, except in
Find-Goal, where performances is similar but not better. These findings are consistent with Lin
et al. (2021), who find that mixing SSL and RL objectives are detrimental to performance. We
hypothesize that decentralized DIAL is a complex, and high-variance optimization that is difficult to
stabilize. DIAL’s gradient updates may clash with CACL and result in neither a useful contrastive
representation, nor a strong reward-oriented one.

6 CONCLUSION AND FUTURE WORK

In this work, we introduce an alternative perspective in learning to communicate in decentralized
MARL by considering the relationship between messages sent and received within a trajectory.
Inspired by multi-view learning, we propose to ground communication using contrastive learning
by considering agents’ messages to be encoded views of the same state. First, we empirically show
that our method leads to better performance and a more consistent, common language among agents.
Then, we qualitatively and quantitatively probe our messages as learned representations to show that
our method more consistently captures task-relevant information. We also test our method on zero-
shot cross-play, a first for MARL communication, and demonstrate promising results. Finally, we
show that our SSL objective is not improved by further optimizing with RL, in line with previous
work. We believe this work solidifies SSL as an effective method for learning to communicate in
decentralized MARL. Furthermore, we have demonstrated a link between multi-view SSL which
has been focused on images and communicative MARL. We hope this inspires more investigation
at the intersection of these two research directions.
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A APPENDIX

A.1 ENVIRONMENT DETAILS

Figure A.1 provides a visual illustration of the environments used.

Figure 5: Visual illustration of the environments used. Left: Predator-Prey, taken from Koul (2019).
Middle: Find-Goal, taken from Lin et al. (2021). Right: Traffic-Junction, taken from Singh et al.
(2018)

A.1.1 PREDATOR-PREY

We modify the Predator-Prey implementation by Koul (2019). Our Predator-Prey has a higher com-
munication and coordination requirement than the original Predator-Prey environment. Specifically,
for a prey to be captured, it has to be entirely surrounded (i.e. the prey cannot move to another grid
position in any actions).

Here, we use an 7x7 gridworld. In each agent’s observation, it can only see the prey if it is within
the field of view (3x3) and cannot see where other agents are. A shared reward of 10 is given for a
successful capture and A penalty of -0.5 is given for a failed attempt. A -0.01 step penalty is also
applied per step. Each agent has the actions of LEFT, RIGHT, UP. DOWN and NO-OP. The prey has
the movement probability vector of [0.175, 0.175, 0.175, 0.175, 0.3] with each value corresponding
to the probability of each action taken.

All algorithms are trained for 30 million environment steps with a maximum of 200 steps per
episode.

A.1.2 FIND-GOAL

We use the Find-Goal environment implementation provided by Lin et al. (2021). The agents have
the goal to find where the goal is in a 15x15 grid world with obstacles.

Unlike in Lin et al. (2021), each agent has a 3x3 field of view (instead of 7x7) to make the task more
difficult. Each agent receives a reward of 1 for reaching a goal and an additional reward of 5 if all
agents reach the goal. We use a step penalty of -0.01 and an obstackle density of 0.15.

All algorithms are trained for 40 million environment steps with a maximum of 512 steps per
episode.

A.1.3 TRAFFIC-JUNCTION

We use the Traffic-Junction environment implementation provided by Singh et al. (2018). The grid-
world is 8x8 with 1 traffic junction. The rate of cars being added has a minimum and maximum
of 0.1 and 0.3. We use the easy version with two arrival points and 5 agents. Agents are heavily
penalized if a collision happens and have only two actions, namely gas and brake.

All algorithms are trained for 20 million environment steps with a maximum of 20 steps per episode.
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A.2 ARCHITECTURE AND HYPERPARAMETERS

Figure 6: Architectural illustration for algorithms with communication. To remove communication,
the message head is disabled. Grounding module is only relevant to CACL and AEComm. The
former is a loss function and the latter is a decoder to reconstruct the encoded observation.

Figure 6 illustrates the components of the architecture used in this work, similar to (Lin et al., 2021).
A message head is only used for algorithms with communication, namely CACL, AEComm, PL
and DIAL. The Grounding Module refers to mechanisms to ground the messages produced by the
message head, used in CACL and AEComm. Unless specified otherwise, we fix all hidden layers to
be a size of 32.

We experimented with using the output of the GRU, or hidden state, to condition the message head.
Empirically we found that directly conditioning on the observation encoding, as in Lin et al. (2021),
lead to more stable learning dynamics.

The observation encoder output values of size 32. For Predator-Prey and Traffic Junction, a one-
layer fully-connected neural network is used as observation encoder. For Find-Goal, same as Lin
et al. (2021), we use a two-layer convolutional neural network followed by a 3-layer fully-connected
neural network.

For the message encoder, it outputs values of size 8 in Predator-Prey and Find-Goal with one hidden
layer. It outputs values of size 16 in Traffic-Junction with two hidden layers. These configurations
are selected based on the best performance of the baseline communication learning algorithm used
- DIAL. Messages received are concatenated before passing to message encoders. For all the meth-
ods with communication, they produce messages of length 4 (D = 4) with a sigmoid function as
activation. All models are trained with the Adam optimizer (Kingma & Ba, 2014).

Table 6 lists out the hyperparameters used for all the methods.

A.3 POSITIVE LISTENING

This section describes the loss function we implemented for positive listening, based on Eccles et al.
(2019). Given two policies πi and πi of agent i where the latter is the policy with messages zeroed
out in the observations, and a trajectory τ of length T , the positive listening loss is written as:
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Learning Rate 0.0003
Epsilon for Adam Optimizer 0.001
γ 0.99
Entropy Coefficient 0.01
Value Loss Coefficient 0.5
Gradient Clipping 2500
η for CACL 0.1
κ for CACL 0.5
Loss Coefficient for PL 0.01
Number of Asynchronous Processes 12
N-step Returns 5

Table 6: Table for hyperparameters used across methods

LPL = − 1

|T |

T∑
j

[∑
a∈Ai

(|πi(a|τ ij)− πi(a|τ ij)|) + (πi(a|τ ij) log(πi(a|τ ij))

]
(4)

where in inner summation, the first term is the L1 Norm and the second term is the cross entropy
loss.

A.4 PROTOCOL REPRESENTATION PROBING: 1-LAYER

Table 7: Classification results of the two probing tests in the Find-Goal environment, comparing all
methods with communication. 1-layer neural networks are used for probing

DIAL PL AEComm CACL
Goal Visibility Test 94.21%± 2.68 96.93%± 3.14 96.27%± 3.98 87.65%± 3.86
Goal Location Test 52.29%± 5.25 53.65%± 9.60 48.16%± 7.34 79.18%± 5.63

Table 7 shows the same results for the two probing tests in section 5.5 except here we use a 1-layer
neural network instead of 2 layers. We observe significant dips in performance across all methods.
Particularly, CACL becomes worse than the baselines in the easier Goal Visibility Test. However,
CACL remains superior in the more difficult Goal Location test by an even bigger margin than the
results in table 3.
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