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Abstract

Neural Transducer (e.g., RNN-T) has been widely used in automatic speech recog-
nition (ASR) due to its capabilities of efficiently modeling monotonic alignments
between input and output sequences and naturally supporting streaming inputs.
Considering that monotonic alignments are also critical to text to speech (TTS)
synthesis and streaming TTS is also an important application scenario, in this work,
we explore the possibility of applying Transducer to TTS and more. However,
it is challenging because it is difficult to trade off the emission (continuous mel-
spectrogram prediction) probability and transition (ASR Transducer predicts blank
token to indicate transition to next input) probability when calculating the output
probability lattice in Transducer, and it is not easy to learn the alignments between
text and speech through the output probability lattice. We propose SpeechTrans-
ducer (Speech-T for short), a Transformer based Transducer model that 1) uses a
new forward algorithm to separate the transition prediction from the continuous
mel-spectrogram prediction when calculating the output probability lattice, and
uses a diagonal constraint in the probability lattice to help the alignment learning; 2)
supports both full-sentence or streaming TTS by adjusting the look-ahead context;
and 3) further supports both TTS and ASR together for the first time, which enjoys
several advantages including fewer parameters as well as streaming synthesis and
recognition in a single model. Experiments on LJSpeech datasets demonstrate that
Speech-T 1) is more robust than the attention based autoregressive TTS model
due to its inherent monotonic alignments between text and speech; 2) naturally
supports streaming TTS with good voice quality; and 3) enjoys the benefit of joint
modeling TTS and ASR in a single network.

1 Introduction

Transducer [7] is a sequence-to-sequence model widely used in automatic speech recognition
(ASR) [19, 17, 36, 28]. ASR Transducer consists of a speech encoder that converts an input speech
sequence to hidden representations, a text encoder that processes already generated text tokens
autoregressively, and a joint network that predicts the next text token. Transducer networks are
trained to maximize the alignment probability between speech and text sequences, with the help of a
forward algorithm on the output probability lattice (see Figure 1 for more details). The alignments
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learned in the output probability lattice of the Transducer are strictly monotonic, thus well modeling
monotonic alignments between speech and text sequences in ASR. By restricting the speech encoder
only to see the previous speech frames, Transducer naturally supports streaming inputs and is the one
of the most popular solutions for streaming ASR [36, 12, 33, 3].

Although Transducer is originally designed for ASR, clearly, its advantages of modeling mono-
tonic alignments between inputs and outputs and supporting streaming inputs perfectly match the
requirements of text to speech (TTS) synthesis [26, 30, 22, 1, 6, 16, 13, 20, 21, 11]. First, learning
alignments between text and speech is important in TTS [26], and different approaches such as atten-
tion mechanisms [22, 8, 25, 13] or duration prediction [20, 21, 11, 4] have been leveraged to model the
alignments. However, attention mechanisms suffer from unstable alignments with word skipping and
repeating issues [16, 20, 8], and duration prediction suffers from additional complication because of
the training of duration predictor and training-inference mismatch caused by the predictor [20, 21, 11].
Thus, the inherent monotonic alignments in Transducer can be a quite competitive solution for TTS
over previous methods. Second, streaming TTS (or incremental TTS) [14, 5, 23], which aims to
support streaming text inputs, can greatly save the synthesis latency and can be widely used in online
scenarios such as conversations. Unfortunately, existing solutions for streaming TTS [14] mostly rely
on the argmax operation of the encoder-decoder attention values to decide the end of speech frame
corresponding to an input word, which is not accurate and robust. Transducer can naturally support
streaming inputs and can be a better solution compared with previous methods for streaming TTS.
Therefore, we explore the possibility of applying Transducer for TTS in this work.

However, applying Transducer to TTS is challenging due to the distinctive characteristics of speech
(e.g., mel-spectrograms) generation in TTS compared with the text token generation in ASR. First,
there are two actions in the output probability lattice of Transducer [7, 32]: emission that predicts a
text token and transition that predicts a blank token to indicate null outputs in current step and the
transition to the next input speech frame [7]. In ASR Transducer, the blank token is added into the
token vocabulary, which means that the emission (token prediction) and transition (blank prediction)
can be modeled in a unified probability distribution through the softmax on all the vocabulary
tokens. However, mel-spectrograms in TTS are continuous, which makes it hard to trade off the
two probabilities when calculating the output probability lattice in TTS Transducer. As shown in
our experiments, ill tradeoff between the two probabilities causes the failure of alignment learning.
Second, while predicting current mel-spectrogram, previous mel-spectrograms can provide enough
information as they are very similar due to the continuity between consecutive mel-spectrograms [22,
2], which may lead to copying the previous frame instead of learning information from the text
encoder and thus harms alignment learning. Moreover, Transducer learns the appropriate alignment
path from huge candidate paths in the probability lattice, which further causes difficulties in alignment
learning.

In this work, we propose a Transformer [29] based Transducer model, named SpeechTransducer
(Speech-T for short), for TTS. First, we design a lazy forward algorithm that separates transition pre-
diction from mel-spectrogram prediction when deriving the loss function of Transducer. Specifically,
this lazy forward algorithm on the probability lattice only calculates the probability of transition/non-
transition (using a binary classification), without the probability of mel-spectrogram prediction.
Second, we introduce a diagonal constraint [25, 16, 2] in the probability lattice to assist alignment
learning, which ignores the alignment paths that deviate too much from the diagonal. The intuitive
idea behind this design is that the alignments between text and speech should be monotonic, and thus
lie in the diagonal region in the probability lattice. Third, by adjusting the text encoder of Speech-T
to look the whole context or only the previous context, it can support full-sentence TTS or streaming
TTS. Last but not the least, we further extend Speech-T to support both TTS and ASR together
for the first time, which enjoys several advantages including fewer parameters as well as streaming
synthesis and recognition in a single model. Experiment results on LJSpeech datasets demonstrate
that Speech-T 1) is more robust than attention based autoregressive TTS models due to its inherent
monotonic alignments between text and speech, 2) can naturally support streaming TTS with good
voice quality, and 3) enjoys the benefit of joint modeling TTS and ASR in a single network.

The main contributions of this work are summarized as follows:

• To leverage the advantages of Transducer (i.e., monotonic alignment modeling and streaming input
supporting), we propose SpeechTransducer for TTS. To the best of our knowledge, we are the first
to achieve competitive voice quality in TTS and support streaming TTS using Transducer.
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• We design a lazy forward algorithm to trade off the two probabilities of mel-spectrogram prediction
and transition prediction, and design a diagonal constraint to ensure the alignment learning between
text and speech, to ensure the quality of SpeechTransducer.

• We further extend SpeechTransducer to support both TTS and ASR at the same time, which
enjoys several advantages including compact modeling (fewer parameters), streaming synthesis
and recognition, self-ranking, etc. To the best of our knowledge, we are the first to successfully
perform the two tasks with a single model.

2 Background

In this section, we first introduce the basic formulation of neural Transducer, and then describe the
application of Transducer on several sequence-to-sequence tasks.

Formulation of Transducer Neural Transducer is originally proposed to model the sequence
transduction between input speech and output text sequences in ASR [7]. It learns strictly mono-
tonic alignments between speech (e.g., mel-spectrogram) sequence X = {x1, x2, ..., xU} and
output text (e.g., phoneme or character) sequence Y = {y1, y2, ..., yT }, where U and T are
the length of speech and text sequences respectively (U is short for utterance, T is short for
text). A Transducer contains 1) a speech encoder which extracts acoustic representations from
the speech sequence X , 2) a text encoder works autoregressively to extract hidden representations
from the text sequence Y , and 3) a joint network to predict the next token in Y based on the
combination between the output hidden representations of the speech encoder and text encoder.
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Figure 1: The output probability lattice of ASR
Transducer. The red path is a possible align-
ment between the speech and text sequences.

This combination is similar to Cartesian product,
where each hidden representation of speech is con-
catenated with each hidden representation of text
to get a output probability lattice with a shape of
(U, T ), as shown in Figure 1. Each node (m,n) in
the output probability lattice represents that speech
sequence X1:m is aligned to text sequence Y1:n.
Each vertical edge in the lattice represents an emis-
sion (i.e., a normal token prediction) and the prob-
ability of this edge is the corresponding probability
of token prediction. Each horizontal edge repre-
sents a transition to the next input element (i.e., a
blank token is added into the output vocabulary to
represents null output) and the probability of this
edge is the corresponding probability of blank token
prediction. Each path from the bottom left to top
right in the lattice represents a possible alignment between the speech and text sequence.

During the training of Transducer, it marginalizes all the alignments (paths) A between X and Y over
the probability lattice shown in Figure 1 and minimizes the negative log-probability of a conditional
distribution:

Lasr = � logP (Y |X) = � log
X

↵2F�1(y)

P (↵|X), (1)

where F�1 is the inverse function of F that removes the blank token � from each possible alignment
↵ between X and Y . Each ↵ consists of U blanks (�) and T tokens (y1, y2, y3, . . . , yT ). For example,
we refer ↵ = (y1, y2,�,�, y3,�,�) as a possible alignment between X = (x1, x2, x3, x4) and
Y = (y1, y2, y3), then F(↵) becomes Y .

Computing Equation (1) by summing all possible alignments naively is computationally intractable.
Therefore, Graves [7] introduced an efficient forward algorithm to handle this problem. In brief, it
defines a forward variable ↵(u, t) to represent the probability of outputting Y1:t given X1:u. ↵(u, t)
can be obtained by recursive calculation:

↵(u, t) = ↵(u� 1, t)�(u� 1, t) + ↵(u, t� 1)p(u, t� 1), (2)

where �(u� 1, t) represents the transition probability (predicting blank token given xu�1 and yt),
p(u, t� 1) represents the emission probability (predicting token yt given xu and yt�1), and the initial
condition is ↵(1, 0) = 1.
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Application of Transducer Neural Transducer network has several advantages: 1) Monotonic
alignment modeling. The alignment path in the output probability lattice is inherent monotonic from
bottom left to top right, which makes it suitable for the tasks with monotonic alignments between
the input and output sequences, e.g., ASR. 2) Streaming input support. Transducer can generate text
based on streaming speech input, by making the speech encoder only to see the previous speech
context and using the transition (blank token) to determine the finish of text generation based on
current input speech segment. Due to these advantages, Transducer has been widely used in ASR
for streaming scenarios [19, 17, 9]. RNN was used as the backbone of speech encoder and text
encoder in early ASR Transducer (i.e., RNN-T) [7], and then Transformer [29] was introduced into
Transducer (i.e., Transformer-T [36, 28]) to enhance the ability of modeling long-term dependency.
Besides ASR, Transducer can also be applied on other sequence-to-sequence tasks such as text
summarization [34, 35], morphological inflection [34], and machine translation [35].

The application of Transducer on TTS is still under-exploited. Yasuda et al. [32] leveraged the
monotonic alignment of Transducer in TTS, but generated speech with poor voice quality. The
reasons include: 1) It is hard to trade off the probability of transition and emission (mel-spectrogram
prediction) when calculating the output probability lattice, since mel-spectrogram and transition
predictions are modeled separately (mel-spectrogram prediction using regression, while transition
prediction using binary classification). 2) The alignments between speech and text in TTS are more
difficult to learn than those in ASR. The voice generated by Yasuda et al. [32] usually has incorrect
alignments such as extremely long duration for a certain phoneme. In our work, we apply Transducer
to TTS by reformulating the forward algorithm with a lazy probability lattice to avoid the troublesome
probability tradeoff, and adding a diagonal alignment constraint on the loss to facilitate the alignment
learning. We also adjust the Transudcer model to support streaming TTS and further support both
TTS and ASR in a single Transducer model, which can bring many interesting applications to explore.

3 SpeechTransducer

In this section, we first introduce the overall model architecture of our proposed SpeechTransducer
(Speech-T for short) in Section 3.1. Then we introduce our proposed lazy forward algorithm on the
probability lattice in Section 3.2. Next, we propose a diagonal constraint on the alignment paths
to help the alignment learning in Section 3.3. Based on the proposed lazy forward algorithm and
alignment constraint, we derive our loss function of Speech-T in Section 3.4. Moreover, we describe
the design of Speech-T for streaming TTS in Section 3.5. At last, we extend Speech-T to support
both TTS and ASR in a single model in Section 3.6.

3.1 Overall Model Architecture

As shown in Figure 2(a), Speech-T consists of a text encoder that converts an input text (e.g., phoneme)
sequence to hidden representations, a speech encoder that processes already generated speech (e.g.,
mel-spectrogram) frames autoregressively, and a joint network that processes the combination of
text and speech hidden representations to predict the next speech frame. Each token in text sequence
X with length of T is converted into embedding while the speech sequence Y with length of U 1

is processed by a Pre-Net with several convolutional layers, and then taken as input to the text and
speech encoder respectively. As shown in Figure 2(b) and 2(c), both the text and speech encoders are
based on Transformer [29], which consists of several blocks where each block contains a self-attention
network and a 1D convolutional network [20], both followed by a residual connection and a layer
normalization. A difference between the two encoders is that the speech encoder adopts causal
self-attention and convolution to only see the previous context to support the autoregressive prediction
in joint network. As shown in Figure 2(d), the text and speech hidden representations with length
of T and U respectively are processed by a linear layer and then concatenated together in a way of
Cartesian product, resulting in a shape of (T, U), which are further processed by several linear layers
to get the output probability lattice to predict speech frames during training. We describe the specific
designs to train Speech-T in the following subsections.

1In both TTS and ASR, we use T and U to represent the length of text and speech sequence respectively, and
use X and Y to represent the input and output sequence respectively.
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Figure 2: (a) The overall model structure of Speech-T. (b) Text Encoder. (c) Speech Encoder. (d) Joint
Net, whose output dimension is 81, where the first 80 dimension is for mel-spectrogram prediction
and the remaining 1 dimension is for transition prediction.

3.2 Lazy Forward Algorithm

In ASR Transducer (e.g., RNN-T), it is easy to trade off the probability of emission (text token
prediction) and transition (blank token prediction) when calculating the Transducer loss since the
blank token is added into the token vocabulary and all tokens are modeled in a unified probability
distribution through a single softmax operation. However, mel-spectrograms in TTS are continuous
and modeled as a regression problem while transition prediction is modeled as a classification
problem, which makes it hard to trade off the two probabilities in TTS Transducer. Thus, we
design a lazy forward algorithm on the probability lattice to separate transition prediction from
mel-spectrogram prediction when deriving the loss function of Transducer. Specifically, we only
calculate the probability of transition/non-transition (by using a binary classification) to get the
forward variable ↵(t, u), without taking the probability of mel-spectrogram prediction into account:

↵(t, u) = ↵(t� 1, u)�(t� 1, u) + ↵(t, u� 1)(1� �(t, u� 1)), (3)
where �(t� 1, u) is the probability of transition at node (t� 1, u) (i.e., the combination of the hidden
representations corresponding to text token xt�1 and speech frame yu). The forward algorithm
is called lazy because we do not eagerly calculate the exact emission probability in Equation (3).
Instead, we use a probability 1� �(t, u� 1) to represent the overall probability of emission, but do
not care about the exact probability of the specific mel-spectrogram prediction.

There are some previous works [18] also modeling transition/non-transition as a binary classification
in a similar way (Equation 13 and 14 in Raffel et al. [18]). However, there are several differences: 1)
The formulation in Raffel et al. [18] is used to ensure the encoder-decoder attention (e.g., in automatic
speech recognition, text summarization, and neural machine translation) is monotonic, and does
not handle the specific/detailed emission probabilities, i.e., the emission probability of each target
token like we do; 2) Our scenario is different from theirs and they can not address the problems we
handle in text to speech. We also noticed a blog introducing similar formulation during paper rebuttal.
However, there are several differences: 1) The motivation of proposing our lazy forward algorithm is
that we found it is hard to trade off the two probabilities if using traditional Transducer formulation in
our preliminary experiments. Although we tried different weights to balance the two loss terms, we
fail to find a stable one, which motivates us to propose some alternative methods; 2) We model the
transition and emission prediction in a single joint network but not separate networks, and we design
alignment constraint on the lazy forward algorithm to derive the final loss function, since we found it
is hard to converge if not using any constraint on the calculation of the probability lattice, and we also
formulate our Transducer in a streaming way and extend it to model unified TTS/ASR in a single
Transducer model; 3) We conduct comprehensive experimental studies to verify the effectiveness of
the proposed method, but not a pure brainstorming formulation.

3.3 Alignment Constraint

Ideally, the transition prediction can be learned well through the lazy forward algorithm and thus
good alignments can be obtained through the learned transition. However, it is challenging for the
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alignment learning (transition prediction) in TTS, due to several reasons: 1) While predicting current
mel-spectrogram, previous mel-spectrograms can provide enough information as they are very similar
due to the continuity between consecutive mel-spectrograms, which leads to copying the previous
frame instead of learning information from the text encoder and thus harms alignment learning.
Taking the lattice in Figure 3 as an example, due to copy, the learned alignment path may first go up
to reach the top and then go right to reach the end, or first go right to reach the rightmost and then
go up to reach the end, both of which are unreasonable and deviate too much from the diagonal. 2)
Transducer is trained to learn the appropriate alignment path by marginalizing the huge candidate
paths over the probability lattice and thus causes difficulties in alignment learning.

! = #
Text (T)

Sp
ee

ch
 (U

)
Figure 3: The diagonal and banded
region for alignment constraint. We
take ⌧ = 2 as an example.

Based on prior knowledge, the alignment path should be mono-
tonic and lie in the diagonal region in the probability lattice,
which could be a good inductive bias to help the alignment
learning. Thus, we introduce a diagonal constraint in the proba-
bility lattice to assist alignment learning, as shown in Figure 3,
which ignores the alignment paths that deviate too much from
the diagonal. Our alignment constraint works as following
steps: (1) We construct an alignment path, as shown in the
red path in Figure 3, by aligning the text and speech sequence
in training data with some alignment tools (e.g., MFA [15]).
(2) To ensure the flexibility in the constraint, we extend the
alignment path by ⌧ frames in both the left and right along
the horizontal axis to form a diagonal and banded region, as
shown in the green area in Figure 3. (3) We only take the path
within this diagonal and banded region into account for loss
calculation, and thus our Speech-T can learn the alignments
(transition prediction) better.

3.4 Loss Function

Based on the proposed lazy forward algorithm and alignment constraint, we can derive the loss
function of our proposed Speech-T for TTS as

Ltts =
X

t

X

u

I{(t, u) 2 band}↵(t, u)(1� �(t, u))|yu+1 � f(t, u)|, (4)
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Figure 4: k look-ahead mechanism,
where we take k = 1 as an example.
The green part means that the speech
frames can see the context of the corre-
sponding text tokens.

where I{(t, u) 2 band} is an indicator function to indicate
whether the index (t, u) is in the constraint banded region
of the probability lattice or not. We will only calculate
the loss from the indexes that are in the banded region.
↵(t, u) is the forward variable calculated in Equation (3),
and 1 � �(t, u) is the overall probability of emission at
node (t, u). The L1 loss |yu+1 � f(t, u)| (which is calcu-
lated between the ground-truth mel-spectrogram frame yu+1

and the predicted mel-spectrogram f(t, u)) is weighted by
↵(t, u)(1� �(t, u)), where the weight means the probabil-
ity of emission at node (t, u) by taking the forward variable
into account. In this way, we do not need to trade off the
probability of transition and a certain mel-spectrogram pre-
diction. In our implementation, the joint network outputs
a vector with 81 dimension, where the first 80 dimension
is for mel-spectrogram prediction and the last dimension is
followed by a sigmoid function to predict the transition.

3.5 Streaming TTS with Speech-T

Due to the advantage of Transducer architecture used in
Speech-T, it can naturally support streaming TTS [14, 5, 23]. When a text token arrives, Speech-T
predicts mel-spectrogram autoregressively, until a transition is predicted, which indicates the end
of generation for this text token. After that, the Speech-T will wait for the next text token in the
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Figure 5: (a) The overall model structure of Speech-T for unified TTS/ASR. (b) Text/Speech Encoder.
(c) Joint Net, where the output dimension is 81 (same with that in Figure 2) for TTS, and vocabulary
size plus 1 (blank token) for ASR.

streaming inputs. We restrict each token in the encoder to only see the previous tokens. Alternatively,
to trade off the latency and accuracy in streaming TTS, we can allow the token in the encoder to see
k future tokens (k look-ahead, where k = 0 degenerates to only see previous tokens) to extract more
context information. In practice, a word that contains multiple phoneme tokens is coming as a whole
during streaming inputs. Thus, we allow each phoneme token can see all the phoneme tokens in the
current word, and use k to represent the number of words instead of phonemes. We illustrate the k
look-ahead mechanism in Figure 4.

3.6 Unified TTS/ASR with Speech-T

Considering that the text and speech encoder in Transducer can serve for both TTS and ASR, in
this section, we further extend our proposed Speech-T as a unified model to support both TTS and
ASR at the same time. We illustrate the model architecture of Speech-T for unified TTS/ASR in
Figure 5. TTS and ASR share the same text encoder, speech encoder, and also joint network, except
that there are some task specific branchs in the joint network for TTS and ASR individually, as
shown in Figure 5(c). The model structure of the text/speech encoder is shown in Figure 5(b), both
restricting the current token/frame to only see the previous tokens/frames to support the autoregressive
prediction of both speech and text. In this way, both TTS and ASR can support streaming inputs.
The unified TTS/ASR based on Speech-T enjoys several advantages, including compact modeling
(with fewer parameters), streaming synthesis and recognition, self-ranking and speech chain [27] in
a single model. We demonstrate some preliminary experiment results in this paper and leave more
studies on these advantages as future work.

4 Experiments and Results

In this section, we first introduce the experimental setup, and then show the results of our Speech-T
for TTS in terms of audio quality and robustness, and further conduct some studies to evaluate the
effectiveness of the designs in Speech-T. At last, we show the experiment results on unified TTS/ASR
with Speech-T and discuss its potential benefits.

4.1 Experimental Setup

Dataset We conduct experiments on LJSpeech [10], a public speech dataset consisting of 13,100
English audio clips and corresponding text transcripts. The total length of the audio is approximately
24 hours. We randomly split the dataset into three parts: 12500 samples for training, 300 samples
for validation and 300 samples for test. We use 22.05kHz sampling rate, extract the 80-dimensional
mel-spectrogram with 50 ms window size and 12.5 ms hop size, and normalize mel-spectrograms
to have zero mean and unit variance. We convert the text sequence into phoneme sequence with
grapheme-to-phoneme conversion [24].
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Implementation Details We use TransformerTTS [13] as the baseline system, which is an au-
toregressive encoder-attention-decoder model using Transformer [29] as the basic model structure.
Both the encoder and decoder consist of 6 Transformer blocks, each with a self-attention network
and feed-forward network with convolution [20]. The number of self-attention head is set to 2, the
dimension of embedding size and hidden size are both 256, and the inner dimension of feed-forward
network is 1024. We adopt the encoder in TransformerTTS as our speech encoder and text encoder in
Speech-T. According to the requirements in full-sentence TTS and steaming TTS, these encoders
can utilize causal or non-causal self-attention and convolution. We train our model on 8 Tesla V100
GPUs with a batch size of 6 sentences on each GPU. We use the Adam optimizer with �1 = 0.9,
�2 = 0.98, ✏ = 10�9 and follow the same learning rate schedule in [29]. It takes about 3 days for
training. The predicted mel-spectrograms are transformed into audio waveform using a well-trained
Parallel WaveGAN vocoder [31]. More details of the model configurations and training details are
presented in supplemental material (Section A.1).

4.2 Results of Speech-T

Table 1: The MOS results with 95% confi-
dence intervals.

Method MOS

Recording 4.00 ± 0.07
GT+Vocoder 3.85 ± 0.08
TransformerTTS [13] 3.77 ± 0.07

Speech-T 3.74 ± 0.07

Audio Quality We first evaluate the perceptual qual-
ity of Speech-T by mean opinion score (MOS) test,
where 20 native English speakers are involved to give
quality score for the synthesized speech. We compare
Speech-T with other systems: 1) Recording, the ground-
truth speech; 2) GT+Vocoder, where the recording is
converted to mel-spectrograms first and then converted
back to speech by vocoder; 3) TransformerTTS [13],
which is a Transformer based autoregressive TTS model
with high voice quality. All the systems (including
Speech-T) use Parallel WaveGAN [31] as the vocoder for fair comparison. The MOS results are
shown in Table 1. It can be seen that our proposed Speech-T can achieve similar voice quality with
TransformerTTS, demonstrating that we can successfully introduce Transducer into TTS with high
voice quality2.

Table 2: The robustness results of TransformerTTS and Speech-T. The number is calculated in
sentence level (e.g., a sentence that has multiple skipping errors will be counted only once). # Errors
means the number of sentences with either or both repeating and skipping errors.

Method # Repeat # Skip # Errors Error Rate

TransformerTTS 6 15 16 32%

Speech-T 0 0 0 0

Table 3: The MOS results of streaming
TTS with 95% confidence intervals.

Method MOS

Recording 4.02 ± 0.12

Speech-T (k = 1) 3.76 ± 0.11
Speech-T (k = 2) 3.68 ± 0.13
Speech-T (k = 1) 3.44 ± 0.15
Speech-T (k = 0) 3.14 ± 0.19

Robustness Since Speech-T can learn monotonic
alignments between text and speech, which can gen-
erate more robust speech compared with the TTS models
(e.g., TransformerTTS) using attention mechanism for
alignment learning [30, 13]. We conduct the robust test
between Speech-T and TransformerTTS using 50 partic-
ularly hard sentences [20] to measure the ratio of word
skipping and repeating errors3. The results are shown in
Table 2. It can be seen that TransformerTTS, based on
attention mechanism for alignment learning, has a much
higher error ratio. Benefiting from the monotonic align-
ment in Transducer, Speech-T can generate all sentences
with no repeating and skipping errors, achieving highly
robust speech synthesis.

2The audio samples generated by Speech-T and the baseline systems can be found in https://
speechresearch.github.io/speechtransducer/.

3These sentences include spellings, repeated numbers, single letters, and long sentences. We attach the 50
sentences in the supplemental material. (Section A.4)
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Streaming TTS We evaluate our Speech-T for streaming TTS (designed in Section 3.5). We
compare the voice quality in the k look-ahead mechanism with different k. The results are shown in
Table 3. It can be seen that the voice quality increases with the increase of k, at a cost of increased
latency. k = 1 achieves the best quality, which is the full-sentence non-streaming TTS as we study
in Section 4.2. The voice quality of the streaming Speech-T (k = 2) nearly catches up with that of
the non-streaming Speech-T (k = 1) .

4.3 Analysis of Speech-T

In this subsection, we conduct some analyses to verify the effectiveness of the designs in Speech-T,
including the lazy forward algorithm and the alignment constraint.

Table 4: The CMOS results of different for-
ward algorithms.

Method CMOS

Lazy algorithm in Speech-T 0

Default algorithm [7] N/A
GMM based [32] -1.54

Lazy Forward Algorithm We compare our lazy
forward algorithm with two baselines: 1) the de-
fault forward algorithm in Transducer ASR (sim-
ilar to Equation 2 with swapped u and t), where
the emission probability p is obtained from the mel-
spectrogram |yu�f(t, u�1)| loss. 2) the forward al-
gorithm in Yasuda et al. [32], which uses a Gaussian
mixture model (GMM) to calculate the probability
of mel-spectrogram prediction and uses a modified
forward algorithm that still cannot address the prob-
ability tradeoff issue. Note that except for the forward algorithm, all settings are the same to ensure
fair comparison. The CMOS results are shown in Table 4. We can have several observations: 1) the
default forward algorithm in Transducer ASR cannot generate any reasonable speech (we denote the
CMOS as N/A), due to the intractable tradeoff between the probability of transition and emission in
TTS. Our lazy algorithm can avoid the tradeoff issue and generate voice with good quality. 2) The
voice quality by our lazy algorithm is much higher than that by GMM based [32], demonstrating the
effectiveness of our algorithm.

Alignment Constraint We further study the effectiveness of alignment constraint in Speech-T.
We explore two different settings: 1) removing our proposed alignment constraint in Speech-T; 2)
replacing our alignment constraint with a handcrafted alignment constraint, which only differs with
our alignment constraint in step (1) as described in the second paragraph of Section 3.3. Instead of
obtaining accurate alignment from external tool, in the handcrafted constraint, we first calculate the
ratio between the number of mel-spectrogram frames U and number of phoneme tokens T for every
text-speech pair, and use U/T (after rounding) as the duration of each phoneme to get the alignment.

Table 5: The CMOS results on alignment constraint.

Method CMOS

Speech-T 0

Speech-T w/o alignment constraint N/A
Speech-T with handcrafted diagonal constraint -1.33

The CMOS results are shown in Ta-
ble 5. It can be seen that 1) removing
the alignment constraint in Speech-
T cannot generate any reasonable
speech (we denote the CMOS as
N/A), and 2) replacing the align-
ment constraint with handcrafted
constraint can make the voice qual-
ity much worse, demonstrating the
effectiveness of our alignment constraint in Speech-T.

4.4 Results of Unified TTS/ASR
Table 6: Comparison between unified ASR/TTS model
and separate TTS and ASR models.

Method CMOS PER

Speech-T (Unified TTS/ASR) 0 9.0%
Speech-T (TTS only) -0.09 /
Speech-T (ASR only) / 9.7%

We conduct experiments to evaluate our
extended Speech-T for unified TTS/ASR.
The experimental setup follows that in Sec-
tion 4.1. We compare the performance of
both TTS and ASR between our unified
Speech-T and the separate TTS and ASR
models. Since our Speech-T for unified
TTS/ASR works in streaming manner, the
separate models also work in streaming manner (using causal self-attention and convolution both in
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the text and speech encoder) for comparison. We measure phoneme error rate (PER) for ASR and
MOS for TTS, and show the results in Table 6. It can be seen that the unified TTS/ASR achieves
slightly better CMOS and PER compared with the separate streaming models, showing that Speech-T
can not only enjoy compact model parameter by unifying TTS and ASR, but also boost the per-
formance by joint training in a single model. We discuss other benefits of unified TTS/ASR with
Speech-T in supplemental material (Section A.2) due to space limitation.

5 Conclusions and Future Work

Motivated by the advantages of Transducer such as efficiently modeling monotonic alignments
between input and output sequences and naturally supporting streaming inputs, in this work, we
proposed SpeechTransducer, with several designs to address the challenges when applying Transducer
to TTS. Experiment results demonstrate that SpeechTransducer achieves much better robustness due
to the advantages of monotonic alignments while enjoying good voice quality. The extension of
SpeechTransducer to unified TTS/ASR demonstrates the flexibility of Transducer based architecture
and its potential for many applications, such as streaming TTS/ASR, self-reranking, and TTS/ASR
co-adaption for target speakers in a single model. A limitation of SpeechTransducer is that it suffers
from slow inference speed compared with non-autoregressive TTS models. Thus, designing fast
SpeechTransducer models is an interesting direction. Applying SpeechTransducer to more speech
tasks such as voice conversion and speech enhancement will also be interesting areas to explore. We
hope that our SpeechTransducer can inspire the community to explore more possibilities.
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