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Abstract
Market ecology views financial markets as ecosys-
tems of diverse, interacting and evolving trading
strategies. We present a heterogeneous, empiri-
cally calibrated multi-agent market ecology agent-
based model. We outline its potential as a valuable
and challenging training ground for optimising
trading and investment strategies using machine
learning algorithms.

1. Introduction
1.1. Motivation

The theory of market ecology (Farmer, 2002; LeBaron,
2002; Musciotto et al., 2018; Lo, 2019; Levin & Lo, 2021;
Scholl et al., 2021) borrows concepts from ecology and
biology to study financial markets. Trading strategies are
analogous to biological species: they exploit market inef-
ficiencies and compete for survival or profit. (Scholl et al.,
2021) has highlighted the nature of interactions between
common trading strategies and the strong density depen-
dence of their returns.

1.2. Related work

This article is in the continuity of the rich area of financial
agent-based models, and market selection with heteroge-
neous beliefs (Blume & Easley, 1992; 2006). For example,
several ABMs have recently been introduced for market-
making optimisation (Spooner et al., 2018), understanding
flash crashes (Paulin et al., 2019) and providing sophisti-
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cated financial architectures for trading training (Byrd et al.,
2019). We attempt to develop the complementary approach
of market ecology (Scholl et al., 2021) by focusing on the
ecological interactions between the different types of agents
and strategies. Our contribution to the existing literature
is thus on the interactivity and heterogeneity of the finan-
cial agents in a more simplified, low-frequency financial
environment with a low-dimensional action space.

1.3. Contribution

In this article, we present Evology: an empirically-calibrated
market ecology agent-based model (ABM), in the continuity
of the market ecology perspective. We contribute to the mar-
ket ecology literature (Farmer, 2002; Scholl et al., 2021) by
featuring heterogeneous strategy types and sub-strategies:
pessimistic and optimistic noise traders and value investors,
and trend followers trading over various time horizons. We
improve the realism of the resulting wealth flows by vali-
dating the model with stylised facts and calibrating investor
behaviour. We describe how some particular results of the
market ecology model provide a new, exciting challenge
for optimising trading strategies using machine learning al-
gorithms. Such simulation-based training can account for
interactions and density dependence effects that could be
significant and overlooked by traditional time-series train-
ing.

2. Model
We consider a population of n agents, acting as investment
funds, who trade shares of a single representative asset and
cash in the form of a bond. Every period-day t, the funds can
buy, sell and short-sell shares of the asset in constant supply.
Asset shares pay daily dividends δ(t) following an autocor-
related Geometric Brownian Motion. Cash/bond yields an
interest rate r paid daily. We build over the foundational
model of (Scholl et al., 2021), with notable improvements
in the heterogeneity of strategies and empirical calibration
and adding a new strategy evolution component described
in Section 5. We show an example simulation run in the
Supplementary Information.
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Figure 1. Visual summary of the model components.

2.1. Trading strategies and signals

Like real markets, our financial market model features a di-
verse sample of stylised versions of the most common funds’
trading strategies (Scholl et al., 2021), adding heterogeneous
sub-strategies. Value investors (VI) form heterogeneous sub-
jective valuations Vi of the asset based on discounted sums
of dividends. Noise traders (NT) trade on a similar valuation
perturbed by a mean-reverting Ornstein Uhlenbeck process
X(t), mimicking exogenous sentiment dynamics. We cali-
brate the parameters of the Ornstein Uhlenbeck process to
match empirical excess volatility (Scholl et al., 2021). Trend
followers (TF) trade on the existence of trends in the asset
price over various time horizons. Agents’ trading strategies
are represented by their trading signals ϕ(t).

ϕNT
i (t) = log2 (Xi(t)Vi(t)/p(t)) (1)

ϕVI
i (t) = log2 (Vi(t)/p(t)) (2)

ϕTF
i (t) = log2 (p(t− 1)/p(t− θi)) (3)

2.2. Asset demand

The funds’ daily trading signals are inputs of the demand
function for the asset (Scholl et al., 2021). The demand
function expresses the demand of the fund for the asset
as a function of the unknown price p(t). Fund wealth W
is the sum of agent cash, present value of asset shares and
liabilities. Our demand function features maximum leverage
λ and strategy aggression β. Our demand function simply
represents an investor with budget λW (t) spending a share
ϕ̃(t) of her budget on the asset, and 1 − ϕ̃(t) on the bond
(Poledna et al., 2014; Scholl et al., 2021).

D(t, p(t)) = ϕ̃(t)
λW (t)

p(t)
(4)

For ϕ̃(t) = tanh(βϕ(t)): the tanh function smooths and
bounds the trading signal in the range [−1, 1], so that the
demand never exceeds the agent budget including leverage.

This demand function is continuous, allows short-selling,
enforces deleveraging & margin calls1, and always deliver
orders that respect the budget constraint.

2.3. Market-clearing

The market-clearing process finds the price for which the
sum of the funds’ demands equals the fixed asset supply
Q, demand matching supply (Poledna et al., 2014). This
is equivalent to the alternative market-clearing procedure
of finding the root of the excess demand function (Scholl
et al., 2021). The market-clearing condition here is thus:∑

i Di(t, p(t)) = Q.

2.4. Dividends, interest and investment flows

After computing the clearing price, funds execute the result-
ing demand orders. Agents receive earnings: the dividends
δ(t) and interest r corresponding to their new positions.
The actions of external investors play an essential role in the
wealth dynamics of mutual funds. Depending on the perfor-
mance of the funds, external investors can choose to redeem
their shares or invest. Our model models those inflows and
outflows in the investment module according to empirical
data on fund flows.

2.5. Bankruptcy

Funds with negative wealth enter bankruptcy and exit the
market. An administrator slowly liquidates their shares. The
wealthiest fund will split into several identical, equal-sized
entities to fill the vacant spot. This mechanism keeps the
number of funds and asset shares constant and limits market
perturbations due to insolvencies.

2.6. Strategy evolution

We distinguish two regimes in our simulation based on the
role of strategy evolution. Environment 1 lets funds’ strate-
gies fixed: funds are not adaptive and will not change their
strategy type (NT, VI, TF) or their sub-strategy (e.g. the
time horizon). Strategy optimisation entails understanding
the inner dynamics of the ecology. This first environment
is simpler but not fully static: as funds interact, wealth is
reallocated between funds and (sub)strategies, constituting
a form of evolution (Farmer, 2002). The asymptotic wealth
distributions evolved in market ecologies is an important
topic beyond this article’s subject. This non-adaptive setting

1Previous designs of the demand function in our model tended
to generate huge short positions. Because of the embedded delever-
aging, i.e. reduction of short positions in case of price increase,
this demand function over the simulation test run gives an aver-
age short position size equivalent to 1.03% of asset supply. This
level is in line with top10 NASDAQ stocks (1.17% of float on
average). If leverage increases, the short ratio increases to riskier
stock levels.
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has some empirical justification since real funds usually
are committed to their strategy toward their investors, and
managers seldom change their investment style. However,
a small minority of funds display such adaptive behaviour.
Environment 2 features a small percentage of funds display-
ing adaptive behaviour. Indeed, actively managed and hedge
funds are more likely than other fund types to change or
discover trading strategies. From the perspective of trading
strategy optimisation of a single fund, Environment 2 offers
a much more complicated problem to solve, as the environ-
ment shows coevolution. There are many ways to represent
this adaptive behaviour, from simple random choice mod-
els to deep neural networks within each adaptive fund. A
simple and satisfying way to model this online adaptation
may use Genetic Algorithms with agents optimising the
sub-strategy parameter (e.g. bullishness for VI or time hori-
zon for TFs) or Genetic Programming to simulate strategy
innovation beyond user-defined types (Subramanian et al.,
2006; Fernández-Blanco et al., 2008; de Almeida & Neves,
2022; Long et al., 2022).

3. Calibration and Validation
Calibration and validation of agent-based models (ABMs)
are crucial (Paulin et al., 2018). A common criticism of
ABMs is that they often have too many parameters and risk
being unrealistic. By calibration, we tune the external invest-
ment system to represent realistic investor behaviour. We
validate the model showing that it reproduces the stylised
financial properties of asset returns (Cont, 2001; 2007).

3.1. Reproducing stylised facts of financial markets

Generating the so-called financial “stylised facts” is a popu-
lar requirement for validating financial ABMs. Our model
reproduces the main stylised facts of asset prices (Cont,
2001). Our log prices display intermittency. The log price
returns do not show significant linear autocorrelations past
trivial frequencies. Returns show heavy tail distributions
with excess kurtosis compared to a normal distribution. We
can also reproduce the leverage effect -negative correla-
tion between price returns and volatility- a positive volume-
volatility correlation and slow decay of autocorrelation in
absolute returns. We provide more details and comment on
improving this calibration with simulation-based inference
in the supplementary information.

3.2. Calibrating Investment flows

We calibrate investment flows to ensure that funds’ returns
lead to realistic redemption flows, as these flows represent
a significant share of funds’ net value. To correctly assess
a given strategy’s profitability, a realistic mapping from
returns to investment flows is thus necessary. Investment
companies are subject to reporting requirements of their

assets, redemptions, sales, and other indicators through vari-
ous SEC forms. (Ha & Ko, 2019) analysed N-SAR reports
and fund returns and identified a linear, positive relationship
between funds’ excess return and investment flow, suggest-
ing that external investors are chasing returns, confirming
earlier results (Chevalier & Ellison, 1997). We estimated
the linear relationship between fund returns and net flows
based on the combined data and a noise term calibrated on
the data variance to introduce this data-driven investment
flow module into our simulation.

4. Results
We present some vanilla dynamics of the Evology ABM
without strategy evolution: the asymptotic distribution of
wealth between strategies. We are interested in their depen-
dency on the initial wealth distribution. On each point of a
uniform sample of 500 points in the three-dimensional sim-
plex, we run the simulation 10 times for 150 years of trading.
We measure the average wealth share of the last 10, 000 days
of trading. This sampling ensures convergence in wealth
distributions and accounts for stochasticity. The returns
and wealth shares of the strategies significantly vary with
their position in the simplex, showing density-dependence
(Farmer, 2002; Scholl et al., 2021). Experiment parameters
ensure that we observe the asymptotic wealth shares after
convergence. Figure 2 provides an example of the price and
dividend series generated during a single simulation run,
and Table 1 presents the performance of the base strategies
in the example run.

Figures 3-5 show the final wealth shares of each strategy
after 150 years, depending on the initial condition. Outside
a specific corner of the simplex, the wealth percentage of
noise traders goes down to negligible levels of 5 to 20%.
Value investors are almost absent from the left boundary
but dominate most of the simplex configurations with a
majority of 70% of the wealth. Trend followers dominate
the unstable top region and are absent around the bottom
axis. Early extinction of the other strategies characterises
this unstable top region: if initialised in high proportion to
other strategies, TFs are detrimental to the other species.
This stability and diversity are desirable: actual markets
feature a variety of profitable strategies.

5. Trading Strategy Optimisation in Evology
Trading strategy search is a popular topic for applying ma-
chine learning. Quantitative trading systems driven by lin-
ear & logistic regression, support vector machines, rein-
forcement learning, deep neural networks, random forests,
genetic algorithms, and genetic programming have suc-
cessfully created profitable strategies (Allen & Karjalainen,
1999; Dempster & Jones, 2001; Zhang & Maringer, 2016;
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Ta et al., 2018; Hasan et al., 2020). Derivative-free methods
are relevant since the profit objective usually cannot be re-
duced to an explicit, derivable objective function. Evolution
strategies and program synthesis can also be particularly
performant for this task.

The returns of a trading strategy depend on the wealth dis-
tribution of the market, i.e. the wealth shares owned by
the different strategies (Scholl et al., 2021), challenging op-
timisation. Strategies experience crowding: their returns
decrease as their size grows and exceeds the carrying capac-
ity of their niche (Farmer, 2002; Scholl et al., 2021). Offline
tuning, which assumes no interactions between the strategy
and the training data, can overlook this effect. These addi-
tional difficulties invite reassessing the performance of those
popular machine learning approaches for trading strategy
search in a simulation environment. In addition, provided
that the simulation environment is realistic enough, training
on the data generating process behind market dynamics can
lead to more robust strategies than training on single sample
paths of this market process.

5.1. Benchmark learning tasks

General challenges Beyond the tasks described below,
the strategies evolved in Evology should satisfy some higher-
end goals. We do not desire the machine learning algorithms
to result in incomprehensible, over-fitting strategies to max-
imise profits. For the trained strategies to be interesting, they
need to be interpretable -display some level of economic
insight- and robust -successfully operate under various mar-
ket conditions-. We develop in more detail those general
challenges and provide more details on the tasks mentioned
below in the supplementary information.

Environments As described in Section 2.6, we can con-
sider two different environments: an environment of stable
strategies where the strategies of all the agents (except the
optimising agent) stay fixed over time. The alternative is a
coevolution setting where a small fraction of the population
is adaptive, imitating the activity of actively managed/hedge
funds. This adaptation could use an extensive range of
models from the intensity of choice and imitation to more
sophisticated evolutionary or machine learning approaches.
This coevolution setting brings an additional challenge to
strategy optimisation.

Task 1: Trading strategy optimisation We are interested
in an individual fund optimising its trading strategy ϕ(t)
to maximise profits during a T -period market run, using a
profit measure such as the cumulative return or the Sharpe
ratio. The baseline levels to achieve would be i) become
more profitable than the base strategies and ii) become more
profitable as empirical strategies.

Task 2: Investment strategy optimisation We are inter-
ested in an individual investor optimising its investment
strategy. The investor is learning how to invest, i.e. a
function ν mapping the various fund characteristics (re-
turn, size...) to positive or negative investment amounts,
intending to maximise the profitability of their investments.

6. Conclusion
Conclusion We present Evology, an empirically cali-
brated financial agent-based model grounded on the market
ecology perspective. In particular, Evology features het-
erogeneous trading strategies, a representative asset and
realistic investment flows. The complexity of strategies’
interactions and the density-dependence of returns make
this specific optimisation problem challenging for search
algorithms: dynamic, deceptive, and no clear optimal solu-
tion. This multi-agent model has the potential to become a
new training ground of interest for trading strategy search
with machine learning methods. We outline several direc-
tions for developing the financial ABM environment. We
propose a set of strategy tasks in Evology for trading and
investment. We define the first baseline as evolving better
strategies than the base ones in static and coevolution cases
and under coevolution, improving strategies’ interpretability
and robustness and obtaining real-world level strategy per-
formance. We further discuss the model limitations and next
steps to address them in the supplementary information.

Software and Data
The Evology ABM is available open-source2. For simu-
lation efficiency and object-oriented design, it is coded in
Python and Cython (Behnel et al., 2010). Calibration proce-
dures use SEC Form 13F and Form N-PORT data that are
publicly available3.
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Supplementary information
.1. Model validation - Empirical stylised facts of asset

prices (Cont, 2001)

The following figures related to stylised facts of asset prices
use data from a single simulation run, starting from the
[1/3, 1/3, 1/3] initial condition on wealth shares. The inter-
est rate equals 0.01, external investment is inactive, and the
random seed is equal to 0 for reproducibility of the dividend
and noise processes.

Absence of autocorrelations Autocorrelations of asset
returns should be insignificant except for very small time
scales, in which the microstructure has some impact.

Figure 2. Daily log returns of the asset price. For a price p(t), the
log return at the daily timescale is r(t) = ln p(t)− ln p(t− 1).

Figure 3. Autocorrelation function of log returns of the asset price
for up to 21 periods. After a short timescale of 5 periods, autocor-
relations are not significant from zero, which confirms the absence
of autocorrelations.

Heavy tails The unconditional distribution of returns
should display a power-law or a Pareto tail, with finite vari-
ance, excluding the normal distribution.

Figure 4. Histogram of the daily log price returns shows heavy tails.
The Fisher’s (or excess) kurtosis (κ) value for the series is 1.3,
which is superior to Fisher’s kurtosis of the normal distribution,
which is equal to 0. κ = E

[(
X−µ

σ

)4]− 3.

Gain/loss asymmetry One should observe large draw-
downs in stock prices without equally large upward move-
ments.
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Figure 5. Asset price series of the simulation run. Graphical analy-
sis highlights faster downward than upward price movements: it
usually takes more time periods to recover from a drawdown than
the drawdown duration.

Aggregational Gaussianity As we increase the timescale
for calculating the returns, their distribution should look
more and more like a normal distribution.

Figure 6. Distribution of yearly log price returns is closer to a
normal distribution than the distribution of daily log price returns
in Figure 4. Quantitatively, the excess kurtosis for monthly returns
is lower, equal to 0.85, and the excess kurtosis of yearly returns is
even lower at 0.32. Hence, we establish aggregational Gaussianity.

Intermittency Returns should display high variability,
visible by the presence of irregular bursts in time series of
volatility estimators.

Figure 7. 5-year moving average volatility over time show inter-
mittency. We attribute the relatively higher level of volatility in
the early steps from the runs to the transient period due to the
agent-based model initialisation. However, the irregular bursts in
the log-returns of Figure 2 are not obvious, perhaps given the large
number of periods represented.

Volatility clustering and slow decay of autocorrelation
in absolute returns Different volatility measures should
display a positive autocorrelation over several days, showing
that high-volatility events tend to cluster over time. We can
observe this volatility clustering from the slow decay of the
autocorrelation function of absolute returns.

Figure 8. Autocorrelation function of absolute log price returns
show long range dependence and slow decay as a function of time.
The autocorrelation remains significantly positive over many time
lags, showing volatility clustering (Cont, 2007).

Leverage effect Measures of asset volatility should neg-
atively correlate with the asset returns. Over our simula-
tion run, this Pearson correlation is negative and equal to
−0.005.
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Volume/volatility correlation Trading volume should cor-
relate with volatility measures. Over our simulation run, this
Pearson correlation is positive and equal to 0.48. In addition,
volume positively correlates with price returns (0.001).

.2. Simulation run example

Figure 9. Price, fundamental value, volume and strategy types
wealth shares during a 50,000-day (around 200 years) simula-
tion run, starting from the initial coordinates [1/3, 1/3, 1/3].

Figure 10. Noise traders’ final wealth share

Table 1. Returns (daily and yearly geometric mean, in %) and
Sharpe ratios (daily and yearly for 252 trading days) of base strate-
gies at the initial coordinates [1/3, 1/3, 1/3]. Base strategies are:
NT, VI, TF, BH (buy and hold), IR (interest rate). The IR strategy
has constant returns hence no standard deviation.

NT VI TF BH IR

RETURNS (D) 0.007 0.007 0.006 0.007 0.004
RETURNS (Y) 1.668 1.806 1.424 1.687 1.005
SHARPE (D) 0.029 0.026 0.02 0.14 NA
SHARPE (Y) 0.463 0.41 0.317 0.222 NA

Figure 11. Value investors’ final wealth share

Figure 12. Trend followers’ final wealth share
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.3. Supplementary details on the benchmark learning
tasks

.4. Interpretability and robustness

Although interpretability in this context requires further def-
inition, we can start by observing that real-world strategies
usually rest on some economic reasoning. For example,
trend followers assume that price trends are persistent. In-
terpretable strategies should exhibit a generalisable “model”
of the financial market. As for robustness, the strategies
can readily train on various market initial conditions or face
unseen policy interventions and structural model changes,
which are easy to implement in the ABM. For example, in
the current context of rising interest rates, we could train a
strategy on a probability distribution of interest rates rather
than on a single interest rate value. Finally, the Evology
environment would be more useful if its insights could gen-
erate useful signals for trading in real markets, an additional
challenge to robustness and ABM realism. Since the Lu-
cas critique, we know that changes in economic policies
can lead to structural changes in modelling and optimal
behaviour. Since we are in a simulation environment, we
can alter market conditions, and training can include those
changes. It is easy to implement changes in the interest
rates, dividend policies and other interventions in an ABM.
For example, Central Banks’ quantitative easing can involve
a fictitious agent with a constant positive excess demand for
the asset.

.5. Task 1: trading strategy

The trading is simplified to arbitrage between the asset and
the bond/cash. Given a set of market conditions M , the ac-
tion space available to our adaptive fund is a T -dimensional
vector Φ of trading signal values. On each day t, the fund
decides if it is buying or selling asset shares.

Φ = [ϕ(0), ϕ(1), . . . , ϕ(T )], ϕ(t) ∈ [−1, 1] ∀t (5)

The optimisation problem faced by the adaptive fund con-
sists in finding the sequence of trading signals Φ that max-
imises some measure of performance P , typically a measure
of profits such as the Sharpe ratio (geometric mean of re-
turns divided by the standard deviation of returns) or wealth
multipliers (ratio of increase of the funds’ wealth after T
simulation steps).

max
Φ

P (6)

The baselines to beat are first the performance of the base
strategies introduced in the model. The first definition of
success for the adaptive fund optimising a trading strategy
is to achieve better performance than the NT, VI and TF

strategies present in the model, under the same bounded
rationality limitations. This environment requires the agent
to understand its market impact and the returns landscape
and to learn to mitigate the effect of its size on its returns.
Once we achieve this target, setting a benchmark for sim-
ulation performance is more difficult as this benchmark is
new. However, obtaining Sharpe ratios superior to empirical
hedge fund levels, i.e. 10 or 20, would be a good starting
point.

There are several interesting extensions of this task. The
first is to evaluate the performance of different optimisation
goals P . Does profit maximisation lead to the highest profits,
or is the problem so deceptive that other metrics, multi-
objective fitness, or even novelty search (Lehman & Stanley,
2011) can lead to better strategies? We can also consider
two sub-tasks for Task 1. The optimised trading strategy
could be a single trading signal function ϕ(t) kept fixed
during each evaluation: this would be a static task. In a
more dynamic approach, the agent could instead evolve a
sequence of different trading signal functions. Learning thus
would focus on the meta-strategy that governs the adoption
at any period of a specific trading signal.

Task 2: investment strategy optimisation The investor is
learning what characteristics of the funds should determine
their inflows and outflows so that the investor achieves the
highest return on their investment. Using a similar choice
of the performance measure P , the investor maximisation
problem is:

max
ν

P (7)

Where ν is a function that maps an investment decision (the
quantity of money to invest in or out of a fund) based on
some fund characteristics x, including measures of fund
return at various timescales, the statistical significance of
those returns, fund size, fund strategy... It will be fascinating
to consider how this evolved investor behaves concerning
timescales (Scholl et al., 2021), compare its performance to
typical investment firms and how statistically significant are
their actions. The first baseline will be to achieve a higher
success (e.g. profitability or rationality) than the average
investor behaviour implemented in the model and derived
from empirical data (Ha & Ko, 2019).

.6. Supplementary conclusion

Limitations The model presented here presents several
limitations concerning market behaviour that future updates
will tackle. Built on improvements to previous market ecol-
ogy and financial ABMs, it is a stepping stone towards
a more realistic and complex market ecology simulation.
First, the single-asset setup limits the dimensionality of the
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action space. Future updates should extend the model to
several assets with different classes (e.g. small, mid, big
cap) and attached to companies with dividend life cycles.
Several classes of strategies representing significant frac-
tions of market capitalisation are missing from the model,
such as market making, passive investing, dividend/yield,
growth, growth & income. Future research will identify
more scalable representations of trading strategies to avoid
an explosion of types that undermines the simulation devel-
opment and analysis. Our funds lack market entry, ageing
and exit dynamics beyond mere bankruptcies, which may
make the ecology more stable than it should be. Monetary
policy and dividend policies are currently exogenous: the
interest rate and dividend are exogenous and disconnected
from the financial market dynamics, which invites future
updates to consider a more macroeconomic integrated and
dynamical way of setting those model inputs. Leverage, sub-
strategies and activity timescales, which vary considerably
among agents (Preis et al., 2011), should also be calibrated
to the corresponding strategies in future updates. It is pos-
sible that this push for realism also necessitates switching
from market-clearing to a limit-order book system.

Next steps A potential goal for this simulation could be
to become an easy-to-use toolkit for developing machine
learning algorithms, just like the Open AI gym (Brockman
et al., 2016). It is thus essential that the environment of-
fers sufficient complexity to be of interest to the machine
learning community and is realistic enough for its insights
to be potentially transferable to the real world. The sim-
ulation should be efficient enough to allow training, e.g.
through developing a GPU implementation. Calibration
and validation efforts should continue to emulate market
environments, mainly populating the ecology with realis-
tic strategies reconstructed from actual portfolios (Scholl
et al., 2021). Thanks to publicly available SEC data, model
calibration constitutes a benchmark task of interest. One
task of potential interest that is not mentioned yet in the
model is the optimisation of financial regulation: we could
easily add to the model described in Figure 1 an additional
regulation component in which a policy-maker observes the
market and attempts to limit volatility, inflation or other
measures of concern, by restricting agent behaviour through
maximum leverage, price interventions such as quantitative
easing or tightening. This addition would open a new task in
which a machine learning algorithm can attempt to optimise
financial regulation to achieve those goals.

Next-level calibration with simulation-based inference
Although we have reduced the number of free parameters
in the model, we are left with several free parameters of
importance. We assumed that the various heterogeneous
sub-strategies (e.g. time horizon θi, required rates of return
r̃i) are uniform within arbitrary ranges. The leverage of the

various strategies is also significant to the ecology dynamics
as they impact the system’s position in the profit landscape.
Several of the abovementioned updates may also bring more
free parameters to tackle. A poor choice of summary statis-
tics can lead to losing information from the empirical data
and reduce the quality of calibration (Dyer et al., 2022),
which motivates alternatives such as simulation-based infer-
ence using graph neural networks. These procedures will
likely require further exploration of empirical data, such as
the N-PORT forms and 13F filings.


