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Abstract

Top-view perspective denotes a typical way in001
which humans read and reason over different002
types of maps, and it is vital for localization and003
navigation of humans as well as of ‘non-human’004
agents, such as the ones backed by large Vision-005
Language Models (VLMs). Nonetheless, spa-006
tial reasoning capabilities of modern VLMs in007
this setup remain unattested and underexplored.008
In this work, we study their capability to under-009
stand and reason over spatial relations from the010
top view. The focus on top view also enables011
controlled evaluations at different granularity012
of spatial reasoning; we clearly disentangle dif-013
ferent abilities (e.g., recognizing particular ob-014
jects versus understanding their relative posi-015
tions). We introduce the TOPVIEWRS (Top-016
View Reasoning in Space) dataset, consisting017
of 11,384 multiple-choice questions with ei-018
ther realistic or semantic top-view map as vi-019
sual input. We then use it to study and evalu-020
ate VLMs across 4 perception and reasoning021
tasks with different levels of complexity. Eval-022
uation of 10 representative open- and closed-023
source VLMs reveals the gap of more than024
50% compared to average human performance,025
and it is even lower than the random baseline026
in some cases. Although additional experi-027
ments show that Chain-of-Thought reasoning028
can boost model capabilities by 5.82% on aver-029
age, the overall performance of VLMs remains030
limited. Our findings underscore the critical031
need for enhanced model capability in top-view032
spatial reasoning and set a foundation for fur-033
ther research towards human-level proficiency034
of VLMs in real-world multimodal tasks.035

1 Introduction036

Large Language Models (LLMs) such as Llama 2037

and 3 (Touvron et al., 2023), Mistral (Jiang et al.,038

2023), and GPT models (OpenAI, 2022) have de-039

livered impressive performance across a range of040

text-based tasks and applications such as question041

answering, language generation, and arithmetic042

reasoning (Qin et al., 2023a; Zhao et al., 2023). 043

Building on these text-only LLMs, the so-called 044

Vision Language Models (VLMs), equipped with 045

the capability to process and reason over multi- 046

modal vision-language information, have enabled 047

multi-modal processing (Yin et al., 2023; Wu et al., 048

2023). They ground language reasoning ability 049

of LLMs into the information of different modal- 050

ities (Chandu et al., 2021). Prominent examples 051

of VLMs such as LLaVA (Liu et al., 2023b), GPT- 052

4V (OpenAI, 2023), and Gemini (Google, 2024), 053

have demonstrated strong performance across ap- 054

plications such as visual question answering (Li 055

et al., 2023d), image captioning (Diesendruck et al., 056

2024), and object grounding (Zheng et al., 2024). 057

Spatial reasoning, one of the fundamental desir- 058

able properties of and requirements for VLMs, has 059

also gained increased attention recently (Rajabi and 060

Kosecka, 2023; Liu et al., 2023a; Chen et al., 2024). 061

It requires grounding the model’s reasoning ability 062

with natural language into its visual perception of 063

the surrounding environment (Freksa, 1991). In 064

particular, it involves two critical steps: (i) inter- 065

preting the environment visually, and (ii) reasoning 066

over spatial relations. As a fundamental ability for 067

the model to recognize, understand, and navigate 068

through the physical world, it plays a crucial role in 069

various downstream tasks such as vision-language 070

generation (Li et al., 2024a) and embodied AI (Cho 071

et al., 2024). However, previous research has fo- 072

cused on exploring spatial reasoning abilities of 073

VLMs only from a conventional first-person per- 074

spective view (Liu et al., 2023a). In this work, we 075

aim to study and evaluate spatial understanding and 076

reasoning capability of VLMs from the top-view 077

perspective, also referred to as the bird’s-eye view 078

(Li et al., 2024b). 079

When compared to the conventional perspective 080

view, top view offers better natural alignment: it 081

is the typical perspective used for reading maps or 082

presenting floor plans. Moreover, it is inherently 083
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Figure 1: Illustration of the four evaluation tasks with an incremental level of complexity on the two types of
top-view maps (photo-realistic versus semantic maps), covering top-view perception and spatial reasoning abilities,
with 9 sub-tasks in total (red font), focusing on different, well-defined VLM abilities. The radar graphs (top right)
compare the representative models’ performance on all sub-tasks, indicating a large gap with human performance.

more complex: top-view maps encapsulate a wealth084

of information about different scenes, locations,085

objects and their relationships in the environment086

based on a single image. In addition to the photo-087

realistic top-view maps, semantic top-view maps088

(Nanwani et al., 2023; Li et al., 2024a) use different089

colors to represent different types of objects; we090

run experiments with both map types, see Figure 1.091

One advantage of top-view maps is that they092

define a controlled and interpretable experimental093

framework. Indoor scenes, which are the focus094

of this work, typically feature a relatively stable095

set of objects and layouts, making them ideal for096

controlled studies. This allows us to disentangle097

and investigate various aspects of spatial reasoning098

and VLMs’ capabilities in a controlled manner.1099

1For instance, we can apply different interventions (e.g.,
drawing a navigation trajectory in a realistic map, or changing

In this work, we thus investigate the basic top- 100

view spatial understanding and reasoning abilities 101

of current state-of-the-art VLMs across four tasks 102

of gradually increasing complexity, and their finer- 103

grained sub-tasks. The tasks are as follows. 1) 104

Top-View Recognition assesses whether the model 105

can recognize concrete objects and scenes in top- 106

view maps. 2) Top-View Localization evaluates 107

the ability to localize objects or regions on a map 108

based on textual descriptions. (3) Static Spatial 109

Reasoning investigates whether the model can rea- 110

son about spatial relationships among localized 111

objects and regions within the map. (4) Dynamic 112

Spatial Reasoning evaluates reasoning about spatial 113

relations along the points of a dynamic navigation 114

path. Figure 1 illustrates all the tasks with concrete 115

examples. As one key finding of this study, con- 116

the color-object mapping in a semantic top-view map).

2



ducted evaluations reveal that current VLMs lack117

sufficient capability to effectively tackle top-view118

spatial reasoning challenges, indicating substantial119

room for improvement in future research.120

Contributions. 1) We define the top-view spa-121

tial reasoning challenge for VLMs via 4 care-122

fully designed tasks of increasing complexity, also123

encompassing 9 distinct fine-grained sub-tasks124

with a structured design of the questions focus-125

ing on different model abilities. 2) We collect the126

TOPVIEWRS dataset, comprising 11,384 multiple-127

choice questions with either photo-realistic or se-128

mantic top-view maps of real-world scenarios129

through a pipeline of automatic collection followed130

by human alignment. 3) We use TOPVIEWRS to131

evaluate and study 10 VLMs from different model132

families and sizes, highlighting the substantial per-133

formance gap compared to humans.2134

2 Related Work135

Top-View Map Understanding. There are only136

limited studies in NLP focused on the use of top-137

view maps, though considerable research has been138

conducted within the broader AI community on the139

so-called bird’s-eye view, which is an instance of140

top view. This body of work has explored applica-141

tions in autonomous driving (Unger et al., 2023; Li142

et al., 2024c), with contributions on fusing different143

types of views (Qin et al., 2023b) and working with144

arbitrary camera setups (Peng et al., 2023). In other145

application scenarios, Yan et al. (2021) introduce a146

bird’s-eye view person re-identification task.147

Efforts to bridge top-view images with natural148

language in applications beyond the above are less149

diverse. The WAY dataset, proposed by Hahn et al.150

(2020), contains 6,154 dialogs aimed at localizing151

an observer’s position on a top-view map through152

conversations between an observer and a locator.153

This dataset has inspired follow-up research fo-154

cusing on merging vision with dialog information155

(Zhang et al., 2024a) and leveraging pretraining156

strategies to enhance performance (Hahn and Rehg,157

2022). In general, prior research does not assess158

VLMs’ basic spatial reasoning abilities with top-159

view images and lacks fine-grained and control-160

lable analyses of these fundamental abilities.161

Spatial Reasoning on Multi-Modal Vision-Text.162

There has been a body of work on text-only spatial163

reasoning with the advancement of LLMs (Yamada164

2We publicly release (the part of) the dataset and code
online at URL-ANONYMOUS.

et al., 2024), within the context of relative spatial 165

relation recognition (Mirzaee et al., 2021; Shi et al., 166

2022), natural language navigation (Yamada et al., 167

2024), and planning (Momennejad et al., 2023) 168

(see Appendix A for a more complete overview). 169

Cross-modal spatial reasoning puts forward 170

higher requirements for the models in terms of 171

language grounding (Rozanova et al., 2021; Rajabi 172

and Kosecka, 2023). Liu et al. (2023a) investigate 173

spatial reasoning with 2D natural realistic front- 174

view images and Chen et al. (2024) extend the 175

analysis to 3D point clouds. The environmental 176

contexts become more diverse compared to syn- 177

thetic symbols in text-only spatial reasoning, rang- 178

ing from indoor environments (Koch et al., 2024) to 179

outdoor street views (Chen et al., 2019). Regarding 180

typical tasks, visual QA (VQA) is the mainstream 181

task for benchmarking spatial reasoning abilities 182

(Dong et al., 2021; Banerjee et al., 2021; Liu et al., 183

2023a; Li et al., 2023a,b; Kamath et al., 2023), 184

while other tasks include vision-language naviga- 185

tion (Chen et al., 2019; Li et al., 2024a) and user 186

interface grounding (Rozanova et al., 2021).3 187

We stress that none of the prior research efforts 188

allows for disentangled evaluation of models’ spa- 189

tial reasoning abilities. Prior work typically con- 190

flates object recognition with spatial reasoning. We 191

thus design a dataset and conduct a study that not 192

only offers insight into fundamental abilities but 193

also allows for easier interpretation of results (§4). 194

3 Task Definition 195

Following prior work (Li et al., 2023a), we frame 196

all tasks as multiple-choice QA tasks. Given a 197

top-view (realistic or semantic) map of a room M , 198

the model must choose the correct option oi from 199

the four options provided O = {o0, o1, o2, o3} that 200

answers the question.4 This format simplifies the 201

evaluation and interpretation of the results. 202

Top-View Maps. We provide two different types 203

of top-view maps to the models: realistic maps 204

MReal and semantic maps MSem. Realistic maps 205

are constructed by placing a simulated orthographic 206

camera above the scene to capture a photo-realistic 207

top-view image. Semantic maps represent objects 208

3Research on multi-modal spatial reasoning also intersects
with efforts from the computer vision community on scene
understanding (Teney et al., 2017), simultaneous localization
and mapping (Cadena et al., 2016), and combining LLMs with
representations of the 3D physical world (Hong et al., 2023).

4For simplicity, for each question, there is always a single
correct answer.
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in the scene with colored bounding boxes. Each209

object is assigned a specific color and labeled at210

the same relative coordinates on the map to pre-211

serve the object’s semantic information and spa-212

tial allocation. In comparison to realistic maps,213

semantic maps simplify the initial step of spatial214

reasoning (i.e., environment interpretation) by la-215

beling the object types with corresponding colors216

and excluding irrelevant additional details such as217

shape and texture found in realistic top-view maps.218

Given the customizable and flexible nature of color-219

object mapping, the semantic map can also serve220

as an ideal testbed for evaluating models’ out-of-221

distribution (OOD) performance, thereby encour-222

aging further exploration beyond the scope of this223

work. Example maps are in Figure 1.224

Tasks and Sub-Tasks. We define 4 different tasks225

which cover a total of 9 finer-grained sub-tasks,226

with concrete examples shown in Figure 1. The227

tasks are designed to have an increasing level of228

complexity, where each subsequent task depends229

on the abilities measured in the preceding one(s).230

(1) Top-View Recognition evaluates the fundamen-231

tal ability to interpret the input map, and covers two232

sub-tasks: Object Recognition and Scene Recog-233

nition. It does not require the model to identify234

specific locations of objects and rooms.235

(2) Top-View Localization investigates whether the236

model can localize objects or rooms in the top-237

view map based on textual descriptions, including238

Object Localization and Scene Localization as two239

sub-tasks. Beyond understanding the top-view map240

as a whole, it requires the model to ground entities241

in the map, representing the model’s ability to align242

spatial descriptions with corresponding locations.243

(3) Static Spatial Reasoning aims to evaluate the244

model’s spatial reasoning ability with more com-245

plex questions. It includes two sub-tasks: reason-246

ing over Scene Counting and Relative Spatial Rela-247

tions between different objects and rooms. These248

questions require the model to perform multi-step249

reasoning based on the recognition and localization250

of entities in the top-view map.251

(4) Dynamic Spatial Reasoning. Finally, we in-252

troduce a novel task that involves dynamic spatial253

reasoning over top-view maps in the context of254

agent navigation. It requires the model to under-255

stand the sequential relations along the points of the256

navigation path (sub-task Dynamic Action Count-257

ing) and answer spatial questions with regard to258

the dynamic navigation path (sub-task Dynamic259

Relative Spatial Reasoning) and the circumstantial 260

environments (Dynamic Spatial Localization). 261

4 TOPVIEWRS Dataset 262

In order to study and evaluate the abilities of state- 263

of-the-art VLMs on the 4 tasks spanning 9 sub- 264

tasks from §3, we now introduce a novel evaluation 265

dataset, TOPVIEWRS, which focuses on top-view 266

maps of indoor scenes (i.e., houses and rooms), 267

discussed in what follows. 268

Dataset Features. It introduces several advance- 269

ments and innovative features that distinguish it 270

from all prior visual spatial reasoning datasets. 271

1) Multi-Scale Top-View Maps: The selected top- 272

view maps of indoor scenes (see Figure 1) pro- 273

vide a more natural representation of spatial en- 274

vironments that aligns with human cognitive map 275

(Epstein et al., 2017). This makes benchmarking 276

spatial awareness more straightforward and mean- 277

while mitigates spurious correlations in the posi- 278

tions between objects commonly found in realistic 279

front-view images. Compared to the front view, the 280

multi-scale top-view maps of single rooms and full 281

houses add more divergence in the granularity of 282

the entities (objects or rooms) in spatial reasoning. 283

Meanwhile, we provide both realistic maps and 284

semantic maps for more comprehensive evaluation. 285

2) Realistic Environmental Scenarios with Rich 286

Object Sets: We provide real-world environments 287

from indoor scenes, with 80 objects per scene on 288

average, ensuring a natural distribution and com- 289

plexity of object locations. This also sets it apart 290

from existing front-view spatial reasoning datasets, 291

which typically contain only a handful of objects. 292

3) Structured Question Framework: Unlike previ- 293

ous datasets (Li et al., 2023a; Liu et al., 2023a; Ka- 294

math et al., 2023), which conflate spatial reasoning 295

with object recognition, our dataset clearly defines 296

4 tasks including 9 sub-tasks in total using diverse 297

question templates. This structured approach al- 298

lows for a fine-grained evaluation and analysis of 299

models’ capabilities from various perspectives and 300

levels of granularity. 301

Dataset Collection. We employ a two-stage data 302

collection strategy that includes automatic collec- 303

tion from a simulator and alignment through human 304

judgment. First, to approximate real-life scenar- 305

ios, we use the Matterport3D dataset (Chang et al., 306

2017), which includes 90 building-scale scenes 307

with instance-level semantic and room-level region 308
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Figure 2: TOPVIEWRS data statistics, showing distribution of task sizes, objects, regions, spatial and relative spatial
descriptions in realistic and semantic map settings, where the tasks are described with their initials for visualization.

annotations in 3D meshes. We filter these to ex-309

clude multi-floor and low-quality scenes, select-310

ing 7 scenes with an average of 80 objects and 12311

rooms each. Realistic top-view maps are extracted312

using orthographic cameras, and semantic top-view313

maps are constructed using the Habitat (Manolis314

Savva* et al., 2019; Szot et al., 2021) simulation315

environment. We then design a structured question316

framework with 15 templates to minimize human317

labor and standardize the data collection process.318

To ensure quality, a second stage of manual hu-319

man judgment aligns and verifies the data, ensuring320

questions are natural and correct. Participants are321

encouraged to discard or modify data points to im-322

prove quality, maintaining alignment with human323

judgments. We refer readers to Appendix B for fur-324

ther details regarding the data collection process.325

Dataset Statistics. TOPVIEWRS comprises a total326

of 11,384 multiple-choice questions after human327

verification, with 5,539 questions associated with328

realistic top-view maps, and 5,845 with semantic329

top-view maps. Human verification keeps 587/784330

questions from the automatic collection phase for331

Top-View Recognition, 1,077/1,384 for Top-View332

Localization, 2,340/3,080 for Static Spatial Rea-333

soning. The choices are uniformly distributed over334

choices A (25.5%), B (24.6%), C (24.5%) and D335

(25.4%). Figure 2 shows the distribution of differ-336

ent tasks, objects, regions and spatial descriptions.337

The size of each task aligns with its corresponding338

difficulty level, where the easier task comprises339

fewer examples. We provide further insights and340

technical details in Appendix B.4.341

5 Experiments and Results 342

Models and Implementation. We test a repre- 343

sentative selection of both open-sourced and close- 344

sourced models which achieve state-of-the-art per- 345

formance on a range of multimodal benchmarks 346

(Liu et al., 2023c; Li et al., 2023a) in a zero-shot in- 347

ference setup. Regarding open-sourced models, we 348

study and evaluate Idefics (9B & 80B) (Laurençon 349

et al., 2023), LLaVA-Next (7B, 13B & 34B) (Liu 350

et al., 2024), InternLM-XComposer2 (7B) (Dong 351

et al., 2024), Qwen-VL (7B) (Bai et al., 2023). The 352

chosen close-sourced models are GPT-4V (Ope- 353

nAI, 2023) and Gemini (Google, 2024).5 All the 354

models are implemented within the VLMEvalKit 355

framework (OpenCompass Contributors, 2023). 356

Prompts. For realistic maps, we provide the VLMs 357

with the task description along with the multiple- 358

choice question. For semantic maps, in addition to 359

the information above, we also introduce the con- 360

cept of a semantic map to the model and provide 361

the color-object mapping in the prompt in order to 362

facilitate its understanding of the abstract map. We 363

only provide the color-object mappings of the col- 364

ors that are presented in the semantic map as a pre- 365

processing strategy in order to exclude irrelevant 366

information. For the specific prompting templates 367

used in this paper, we refer to Appendix C.2. 368

Evaluation Measures. We measure multiple- 369

choice QA accuracy via Exact Match (EM) and 370

Partial Match (PM). EM measures whether the pre- 371

dicted option indices are exactly the same as the 372

label indices. However, there may be cases where 373

5We use GPT-4-turbo-2024-04-09 of GPT-4V and latest
stable gemini-pro-vision 1.0 of Gemini.
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the correct answer to the question can be consid-374

ered partially correct, e.g., the answer is top right375

while the prediction is top left. PM then calculates376

the proportion of overlapping words between the377

predicted answer and the gold answer. It is calcu-378

lated based on the correctness of the text spans (or379

words) of predicted options, as given by:380

PM =
|{labels} ∩ {predictions}|

max (|{labels}| , |{predictions}|)381

5.1 Results and Discussion382

We first discuss the models’ performance across383

our four tasks, with results summarized in Table 1,384

and fine-grained sub-task performance illustrated385

in Figure 3. We find that the performance of current386

state-of-the-art VLMs is unsatisfactory on the pro-387

posed TOPVIEWRS benchmark with model-wise388

average EM and PM over all tasks below 50%.389

Gemini is the best-performing model for realistic390

maps, while GPT-4V excels in semantic maps. For391

some models, such as Qwen-VL, the results are392

sometimes much worse than the random baseline.393

This issue primarily arises from the models’ diffi-394

culty in following the instructions to choose from395

the four provided options.396

Models perform better on recognition and lo-397

calization tasks compared to reasoning tasks.398

Top-View Recognition consistently demonstrates399

the highest performance across all models. Gemini400

shows human-comparable performance with the401

EM score over 90%. Top-View Localization ex-402

hibits lower performance compared to Top-View403

Recognition, followed by Static Spatial Reasoning.404

The performance difference of various tasks with405

different levels of complexity underscores the ad-406

vantage of our benchmark to capture well-defined407

and disentangled phenomena, which allows for408

controlled studies in controlled environments.409

Regarding Dynamic Spatial Reasoning, models410

perform better on this task than on the previous411

tasks. Fine-grained performance in Figure 3 in-412

dicates that the improved performance primarily413

stems from high accuracy in dynamic action count-414

ing and spatial localization, which constitute 18%415

and 66% of the data respectively for this task. We416

attribute the high accuracy in these areas to the417

equivalence between navigation path symbols and418

visual prompting (Shtedritski et al., 2023). Despite419

these advancements, the overall EM accuracy re-420

mains below 40%, and models still struggle with421

reasoning over dynamic relative spatial relations.422

Larger models do not always show better spa- 423

tial awareness. Surprisingly, our results reveal 424

that larger model sizes do not consistently trans- 425

late to better performance. In Top-View Recogni- 426

tion, closed-source models outperform open-source 427

models by 31.10% EM with realistic maps and 428

29.33% EM with semantic maps. However, the 429

performance gap narrows as the task complexity 430

increases. Using realistic maps as the visual in- 431

put, Gemini stands out by achieving a minimum of 432

5.53% higher EM accuracy in Static Spatial Rea- 433

soning compared to other models, while GPT-4V 434

performs worse than Idefics-9B on both Static and 435

Dynamic Spatial Reasoning tasks. This indicates 436

a lack of significant difference in spatial aware- 437

ness between closed-source and open-source mod- 438

els for tasks with higher complexity, despite the 439

disparity in their model sizes. This trend holds 440

true within open-sourced models as well. Both 441

Idefics and LLaVANext model families in some 442

cases show comparable or worse performance with 443

larger model variants than with smaller ones. Simi- 444

lar observations have been made by previous stud- 445

ies (Zhong et al., 2021; Shi et al., 2024). We con- 446

jecture that this might be caused by inadequate 447

evidence of the scaling law (Kaplan et al., 2020) in 448

the computer vision community (Tian et al., 2024). 449

The results on TOPVIEWRS thus advocate for fur- 450

ther investigation and analysis in this area. 451

Models perform better in easier tasks with se- 452

mantic maps. In simple tasks such as Top-View 453

Recognition, models generally perform better with 454

semantic maps than with realistic maps, except for 455

Qwen-VL, showing an improvement of 20.35%. 456

However, this advantage decreases in more com- 457

plex tasks. For Top-View Localization and Static 458

Spatial Reasoning, models struggle to utilize se- 459

mantic top-view maps, yielding performances akin 460

to random baselines in both EM and PM accuracy. 461

One possible explanation is that the semantic top- 462

view image and the input prompt with color-object 463

mapping deviate too much from the models’ train- 464

ing data distribution. This is further evidenced by 465

the predictions from open-sourced models such as 466

Qwen-VL, which fail to respond to instructions and 467

answer with numbers or RGB values 91.25% of the 468

time for Top-View Localization and 47.65% of the 469

time for Static Spatial Reasoning. 470

Fine-Grained Insights with Sub-Tasks. Models 471

using realistic maps excel more in the sub-task of 472

Scene Recognition, which involves larger entities, 473
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Model Idefics LLaVANext XComposer2 Qwen-VL GPT-4V Gemini
Model Size 9B 80B vicuna 7B mistral 7B vicuna 13B 34B 7B 7B API API
Realistic Map

EM 41.10 26.71 67.47 61.30 61.64 67.81 37.67 27.05 69.52 90.41
Top-View Recognition

PM 41.10 26.88 67.64 61.47 61.99 67.81 37.67 27.26 69.86 90.58
EM 30.39 30.00 42.16 33.92 41.18 50.98 27.84 16.27 46.27 48.24

Top-View Localization
PM 46.42 46.08 56.67 48.63 54.31 61.76 41.86 26.31 60.39 60.98
EM 24.07 26.07 19.87 24.36 20.25 22.73 25.79 14.71 22.16 31.61

Static Spatial Reasoning
PM 33.68 38.52 34.40 37.34 36.26 35.56 38.73 21.15 35.59 45.22
EM 38.10 27.94 38.81 24.31 29.08 23.79 24.07 22.11 30.29 32.60

Dynamic Spatial Reasoning
PM 40.88 30.68 42.15 26.69 32.89 27.28 26.86 24.65 33.86 35.80

Semantic Map
EM 60.68 59.32 88.81 80.00 88.14 94.58 43.05 19.66 97.29 94.92

Top-View Recognition
PM 60.68 59.32 88.81 80.00 88.49 94.58 43.05 20.05 97.29 94.92
EM 31.21 27.34 25.40 32.10 17.28 38.45 24.87 9.70 44.44 35.27

Top-View Localization
PM 47.62 45.41 44.27 47.80 23.66 53.79 41.09 13.99 58.55 49.91
EM 23.82 28.07 18.72 24.28 16.63 18.41 23.05 14.85 21.73 26.22

Static Spatial Reasoning
PM 34.13 38.17 30.57 37.26 29.94 31.22 35.50 21.99 33.09 39.12
EM 36.67 34.55 37.45 26.23 19.92 33.12 21.60 23.55 39.30 31.41

Dynamic Spatial Reasoning
PM 39.92 37.75 40.69 28.89 23.63 36.86 24.32 26.09 43.20 34.86

Table 1: Comparison of 10 models on both realistic and semantic top-view maps. Performance is analysed according
to four tasks with EM and PM. The best performance for each task is illustrated in bold.
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(b) Performance with semantic top-view maps

Figure 3: Visualization of fine-grained comparison with 10 models and humans on 9 sub-tasks using realistic and
semantic top-view maps, demonstrating that most current models perform on par with random baseline in spatial
reasoning and has a large gap with human performance. Exact numbers are reported in Table 15 in the Appendix.

compared to Object Recognition. This gap is also474

evident in a 12.66% and 19.73% performance dif-475

ference between object-level and scene-level local-476

ization with both map types. Conversely, with se-477

mantic maps, the model struggles more with scene-478

level recognition than with realistic maps, showing479

an 11.09% lower performance than object-level480

recognition among closed-source models. Most481

models perform similarly to a random baseline in482

reasoning over spatial relations but show higher483

accuracy in scene counting. This likely occurs be-484

cause 95% of the correct room counts are within485

a narrow range (1 or 2), reflecting real-life dis-486

tributions. Thus, models leverage commonsense487

knowledge as the shortcut for counting, as seen in 488

the 54.73% performance gap (with GPT-4V) be- 489

tween counting scenes and actions. However, the 490

spatial localization and reasoning abilities of both 491

open-source and closed-source models still remain 492

unsatisfactory, even at the level of sub-tasks. 493

5.2 Further Discussion 494

Gap to Human Performance. We now study how 495

humans perform on this dataset and the gap be- 496

tween current models and human performance. To 497

this end, we recruited 4 human participants who 498

were not involved in dataset creation for human 499

evaluation. A total of 60 data points with realistic 500
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Task Ability Size Human GPT-4V

TVR Object Recognition 5 95 100
Scene Recognition 5 100 80

TVL Object Localization 5 95 20
Scene Localization 10 85 60

SSR Scene Counting 5 100 80
Relative Spatial Relation 10 80 0

DSR
Dynamic Action Counting 5 85 0
Dynamic Spatial Localization 10 85 40
Dynamic Relative Spatial Reasoning 5 85 0

Average Score 90.0 42.2

Table 2: Performance (EM) between human and GPT-
4V on all the sub-tasks, demonstrating a huge gap be-
tween GPT-4V and human.

top-view maps are randomly selected from the sub-501

tasks, covering all fine-grained question types.6 We502

use Fleiss Kappa as the measure of inter-annotator503

agreement. The kappa score is 0.747, indicating504

substantial agreement shared by the human partic-505

ipants according to Landis and Koch (1977). The506

average performance of the human participants is507

shown in Table 2. The experimental results show508

that there is still a large gap with human perfor-509

mance by over 50% across all the sub-tasks that510

involve spatial awareness. We also observe that511

with GPT-4V, human performs 47.8% higher than512

the model on average. The gap between human and513

model performance is larger on complex reasoning514

tasks compared to the recognition tasks, indicating515

plenty of room for improvement.516

Chain-of-Thought Helps Elicit Spatial Reason-517

ing. Due to the compositionality of Static Spatial518

Reasoning based on Top-View Recognition and Lo-519

calization in task design, the model is supposed to520

answer the question based on the locations of the521

entities in the top-view map. Inspired by this re-522

quirement, we explored whether Chain-of-Thought523

(CoT) reasoning (Wei et al., 2022) could facilitate524

spatial reasoning by initially prompting the model525

to localize entities before producing the final an-526

swer to the question. To implement this, we mod-527

ified the instruction to include: “You should first528

localize the entity and then answer the question529

based on the locations”, thereby encouraging the530

model to process information and think step by step.531

Considering that CoT has shown effectiveness in532

larger models (Wei et al., 2022; Li et al., 2023c),533

we conducted experiments with GPT-4V and Gem-534

6We did not run human evaluation on semantic maps be-
cause they are inherently easier to reason over; they skip the
process of recognizing the objects before reasoning, which
makes the task simpler but with more sufficient and accurate
information for reasoning.

Model GPT-4V Gemini

w/o. CoT w. CoT ∆ w/o.CoT w. CoT ∆

RGB Overall 22.16 26.74 +4.58 31.61 40.02 +8.41

Scene Counting 76.74 25.58 -51.16 53.49 48.84 -4.65

Relative Spatial Relations 19.82 26.79 +6.97 30.68 39.64 +8.96

Semantic Overall 21.73 28.07 +6.34 26.22 30.16 +3.94

Scene Counting 37.50 47.92 +10.42 20.83 29.17 +8.34

Relative Spatial Relations 21.12 27.31 +6.19 26.43 30.20 +3.77

Table 3: Comparison of model performance (EM) w/
and w/o Chain of Thought (CoT) on Static Spatial Rea-
soning, showing that CoT helps elicit spatial reasoning.

ini to evaluate this hypothesis. As shown in Table 535

3, incorporating CoT into the reasoning process 536

notably enhances performance. Specifically, the 537

models’ accuracy improved by 4.58% when using 538

realistic maps and 6.34% with semantic maps for 539

GPT-4V. This improvement underscores the po- 540

tential of step-by-step reasoning in enhancing the 541

efficacy of spatial reasoning tasks, but there is still 542

a substantial performance gap to the human ceiling. 543

6 Conclusion 544

In this study, we designed four tasks to examine the 545

capabilities of VLMs as top-view spatial reason- 546

ers, progressing from basic top-view map compre- 547

hension to dynamic spatial reasoning along nav- 548

igation paths. To enable investigation into top- 549

view spatial reasoning abilities of VLMs, we col- 550

lected a novel dataset, TOPVIEWRS, which in- 551

cludes 11,384 multiple-choice questions, featuring 552

photo-realistic and semantic top-view maps as the 553

visual input. Our extensive experiments involved 554

evaluating 10 VLMs across various model families 555

and sizes on TOPVIEWRS. The results highlight a 556

critical observation: particularly in complex reason- 557

ing tasks, VLMs frequently perform only as well 558

as a random baseline, with even more pronounced 559

deficits when handling tasks with semantic maps. 560

Moreover, there is a noticeable performance gap 561

compared to human annotators, underscoring the 562

significant potential for further improvements in 563

this area. In response to these findings, we dis- 564

covered that employing chain-of-thought reasoning 565

enhances model performance in spatial reasoning 566

by 5.82%. Despite this progress, the overall perfor- 567

mance of VLMs on spatial reasoning remains less 568

than satisfactory. We hope that our study can set 569

the stage for future research in multimodal spatial 570

reasoning and encourage further investigations into 571

refining the reasoning techniques, moving VLMs 572

closer to human-level proficiency in understanding 573

and reasoning over real-world environments. 574
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Limitations575

The TOPVIEWRS dataset primarily evaluates576

model performance in entity recognition, localiza-577

tion, and spatial reasoning over 2D top-view maps.578

However, it does not yet include task-oriented plan-579

ning with spatial awareness, which involves more580

complex sequential decision-making and dynamic581

interactions.582

Further, our dataset assumes one correct answer583

per question, but exploring scenarios with multiple584

correct answers or no correct answers could further585

challenge systems and provide valuable insights.586

We also advocate for further research to explore587

how spatial awareness in models impacts down-588

stream tasks such as navigation instruction genera-589

tion (Li et al., 2024a) and task completion by lan-590

guage agents in real-world environments (Parashar591

et al., 2023).592

Moreover, our study is currently limited to 2D593

top-view maps, whereas spatial reasoning can en-594

compass a variety of modalities and perspectives,595

such as 3D point clouds.596

From the perspective of the models, the rapid597

progress in VLMs makes it hard to include all598

new releases such as Idefics 2 (Laurençon et al.,599

2024). Additionally, multimodal in-context learn-600

ing (MICL) remains underexplored and is only sup-601

ported by VLMs trained with interleaved image-602

text data (Baldassini et al., 2024). Although not603

universal across all VLMs, MICL has been effec-604

tive in handling out-of-distribution tasks (Zhang605

et al., 2024b), which could also be interesting in606

TOPVIEWRS, especially with semantic maps as607

visual inputs. In future work, we aim to extend608

our analysis to include more modalities, evaluate a609

broader range of models and their capabilities, and610

investigate additional downstream tasks involving611

spatial awareness.612

Ethics Statement613

Our research strictly follows ethical guidelines, fo-614

cusing on data privacy, bias mitigation, and societal615

impact. During the dataset construction, we care-616

fully check the licenses of the software we use617

and follow it strictly. The human participants in618

our study are recruited from our university with619

bachelor’s degree and are guaranteed compensa-620

tion above the local minimum average. They have621

consented to the use of their annotations in our622

research. We do not see any potential risk of our623

project.624

References 625

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, 626
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, 627
and Jingren Zhou. 2023. Qwen-vl: A versatile vision- 628
language model for understanding, localization, text 629
reading, and beyond. Preprint, arXiv:2308.12966. 630

Folco Bertini Baldassini, Mustafa Shukor, Matthieu 631
Cord, Laure Soulier, and Benjamin Piwowarski. 2024. 632
What makes multimodal in-context learning work? 633
Preprint, arXiv:2404.15736. 634

Pratyay Banerjee, Tejas Gokhale, Yezhou Yang, and 635
Chitta Baral. 2021. Weakly supervised relative spa- 636
tial reasoning for visual question answering. In Pro- 637
ceedings of the IEEE/CVF International Conference 638
on Computer Vision (ICCV), pages 1908–1918. 639

Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir 640
Latif, Davide Scaramuzza, Jose Neira, Ian Reid, and 641
John J. Leonard. 2016. Past, present, and future 642
of simultaneous localization and mapping: Toward 643
the robust-perception age. IEEE Transactions on 644
Robotics, 32(6):1309–1332. 645

Khyathi Raghavi Chandu, Yonatan Bisk, and Alan W 646
Black. 2021. Grounding ‘grounding’ in NLP. In 647
Findings of the Association for Computational Lin- 648
guistics: ACL-IJCNLP 2021, pages 4283–4305, On- 649
line. Association for Computational Linguistics. 650

Angel Chang, Angela Dai, Thomas Funkhouser, Maciej 651
Halber, Matthias Niessner, Manolis Savva, Shuran 652
Song, Andy Zeng, and Yinda Zhang. 2017. Mat- 653
terport3d: Learning from rgb-d data in indoor envi- 654
ronments. International Conference on 3D Vision 655
(3DV). 656

Boyuan Chen, Zhuo Xu, Sean Kirmani, Brian Ichter, 657
Danny Driess, Pete Florence, Dorsa Sadigh, Leonidas 658
Guibas, and Fei Xia. 2024. Spatialvlm: Endowing 659
vision-language models with spatial reasoning capa- 660
bilities. Preprint, arXiv:2401.12168. 661

Howard Chen, Alane Suhr, Dipendra Misra, Noah 662
Snavely, and Yoav Artzi. 2019. Touchdown: Natural 663
language navigation and spatial reasoning in visual 664
street environments. In 2019 IEEE/CVF Conference 665
on Computer Vision and Pattern Recognition (CVPR). 666
IEEE. 667

Junmo Cho, Jaesik Yoon, and Sungjin Ahn. 2024. 668
Spatially-aware transformers for embodied agents. 669
In The Twelfth International Conference on Learning 670
Representations. 671

Maurice Diesendruck, Jianzhe Lin, Shima Imani, Gay- 672
athri Mahalingam, Mingyang Xu, and Jie Zhao. 2024. 673
Learning how to ask: Cycle-consistency refines 674
prompts in multimodal foundation models. Preprint, 675
arXiv:2402.08756. 676

Tianai Dong, Alberto Testoni, Luciana Benotti, and Raf- 677
faella Bernardi. 2021. Visually grounded follow-up 678

9

https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2404.15736
https://doi.org/10.1109/tro.2016.2624754
https://doi.org/10.1109/tro.2016.2624754
https://doi.org/10.1109/tro.2016.2624754
https://doi.org/10.1109/tro.2016.2624754
https://doi.org/10.1109/tro.2016.2624754
https://doi.org/10.18653/v1/2021.findings-acl.375
https://arxiv.org/abs/2401.12168
https://arxiv.org/abs/2401.12168
https://arxiv.org/abs/2401.12168
https://arxiv.org/abs/2401.12168
https://arxiv.org/abs/2401.12168
https://doi.org/10.1109/cvpr.2019.01282
https://doi.org/10.1109/cvpr.2019.01282
https://doi.org/10.1109/cvpr.2019.01282
https://doi.org/10.1109/cvpr.2019.01282
https://doi.org/10.1109/cvpr.2019.01282
https://openreview.net/forum?id=Ts95eXsPBc
https://arxiv.org/abs/2402.08756
https://arxiv.org/abs/2402.08756
https://arxiv.org/abs/2402.08756
https://doi.org/10.18653/v1/2021.splurobonlp-1.3
https://doi.org/10.18653/v1/2021.splurobonlp-1.3


questions: a dataset of spatial questions which re-679
quire dialogue history. In Proceedings of Second680
International Combined Workshop on Spatial Lan-681
guage Understanding and Grounded Communication682
for Robotics, pages 22–31, Online. Association for683
Computational Linguistics.684

Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao,685
Bin Wang, Linke Ouyang, Xilin Wei, Songyang686
Zhang, Haodong Duan, Maosong Cao, Wenwei687
Zhang, Yining Li, Hang Yan, Yang Gao, Xinyue688
Zhang, Wei Li, Jingwen Li, Kai Chen, Conghui689
He, Xingcheng Zhang, Yu Qiao, Dahua Lin, and690
Jiaqi Wang. 2024. Internlm-xcomposer2: Master-691
ing free-form text-image composition and compre-692
hension in vision-language large model. Preprint,693
arXiv:2401.16420.694

Russell Epstein, E Z Patai, Joshua Julian, and Hugo695
Spiers. 2017. The cognitive map in humans: Spa-696
tial navigation and beyond. Nature Neuroscience,697
20:1504–1513.698

Christian Freksa. 1991. Qualitative Spatial Reasoning,699
pages 361–372. Springer Netherlands, Dordrecht.700

Gemini Team Google. 2024. Gemini: A family701
of highly capable multimodal models. Preprint,702
arXiv:2312.11805.703

Meera Hahn, Jacob Krantz, Dhruv Batra, Devi Parikh,704
James Rehg, Stefan Lee, and Peter Anderson. 2020.705
Where are you? localization from embodied dialog.706
In Proceedings of the 2020 Conference on Empirical707
Methods in Natural Language Processing (EMNLP),708
pages 806–822, Online. Association for Computa-709
tional Linguistics.710

Meera Hahn and James M. Rehg. 2022. Transformer-711
based localization from embodied dialog with large-712
scale pre-training. In Proceedings of the 2nd Confer-713
ence of the Asia-Pacific Chapter of the Association714
for Computational Linguistics and the 12th Interna-715
tional Joint Conference on Natural Language Pro-716
cessing (Volume 2: Short Papers), pages 295–301,717
Online only. Association for Computational Linguis-718
tics.719

Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong720
Zheng, Yilun Du, Zhenfang Chen, and Chuang Gan.721
2023. 3d-llm: Injecting the 3d world into large lan-722
guage models. Preprint, arXiv:2307.12981.723

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-724
sch, Chris Bamford, Devendra Singh Chaplot, Diego725
de las Casas, Florian Bressand, Gianna Lengyel, Guil-726
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,727
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,728
Thibaut Lavril, Thomas Wang, Timothée Lacroix,729
and William El Sayed. 2023. Mistral 7B. Preprint,730
arXiv:2310.06825.731

Amita Kamath, Jack Hessel, and Kai-Wei Chang. 2023.732
What’s “up” with vision-language models? investi-733
gating their struggle with spatial reasoning. In Pro-734
ceedings of the 2023 Conference on Empirical Meth-735

ods in Natural Language Processing, pages 9161– 736
9175, Singapore. Association for Computational Lin- 737
guistics. 738

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. 739
Brown, Benjamin Chess, Rewon Child, Scott Gray, 740
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. 741
Scaling laws for neural language models. Preprint, 742
arXiv:2001.08361. 743

Sebastian Koch, Narunas Vaskevicius, Mirco Colosi, 744
Pedro Hermosilla, and Timo Ropinski. 2024. 745
Open3dsg: Open-vocabulary 3d scene graphs from 746
point clouds with queryable objects and open-set re- 747
lationships. Preprint, arXiv:2402.12259. 748

J. Richard Landis and Gary G. Koch. 1977. The mea- 749
surement of observer agreement for categorical data. 750
Biometrics, 33(1):159–174. 751

Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas 752
Bekman, Amanpreet Singh, Anton Lozhkov, Thomas 753
Wang, Siddharth Karamcheti, Alexander M. Rush, 754
Douwe Kiela, Matthieu Cord, and Victor Sanh. 755
2023. Obelics: An open web-scale filtered dataset 756
of interleaved image-text documents. Preprint, 757
arXiv:2306.16527. 758

Hugo Laurençon, Léo Tronchon, Matthieu Cord, 759
and Victor Sanh. 2024. What matters when 760
building vision-language models? Preprint, 761
arXiv:2405.02246. 762

Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yix- 763
iao Ge, and Ying Shan. 2023a. Seed-bench: Bench- 764
marking multimodal llms with generative compre- 765
hension. Preprint, arXiv:2307.16125. 766

Chengzu Li, Chao Zhang, Simone Teufel, Rama Sanand 767
Doddipatla, and Svetlana Stoyanchev. 2024a. Seman- 768
tic map-based generation of navigation instructions. 769
Preprint, arXiv:2403.19603. 770

Hao Li, Jinfa Huang, Peng Jin, Guoli Song, Qi Wu, 771
and Jie Chen. 2023b. Weakly-supervised 3d spa- 772
tial reasoning for text-based visual question an- 773
swering. IEEE Transactions on Image Processing, 774
32:3367–3382. 775

Hongyang Li, Chonghao Sima, Jifeng Dai, Wenhai 776
Wang, Lewei Lu, Huijie Wang, Jia Zeng, Zhiqi Li, 777
Jiazhi Yang, Hanming Deng, Hao Tian, Enze Xie, 778
Jiangwei Xie, Li Chen, Tianyu Li, Yang Li, Yulu 779
Gao, Xiaosong Jia, Si Liu, Jianping Shi, Dahua Lin, 780
and Yu Qiao. 2024b. Delving into the devils of bird’s- 781
eye-view perception: A review, evaluation and recipe. 782
IEEE Transactions on Pattern Analysis and Machine 783
Intelligence, 46(4):2151–2170. 784

Hongyang Li, Chonghao Sima, Jifeng Dai, Wenhai 785
Wang, Lewei Lu, Huijie Wang, Jia Zeng, Zhiqi Li, 786
Jiazhi Yang, Hanming Deng, Hao Tian, Enze Xie, 787
Jiangwei Xie, Li Chen, Tianyu Li, Yang Li, Yulu 788
Gao, Xiaosong Jia, Si Liu, Jianping Shi, Dahua Lin, 789
and Yu Qiao. 2024c. Delving into the devils of bird’s- 790
eye-view perception: A review, evaluation and recipe. 791

10

https://doi.org/10.18653/v1/2021.splurobonlp-1.3
https://doi.org/10.18653/v1/2021.splurobonlp-1.3
https://doi.org/10.18653/v1/2021.splurobonlp-1.3
https://arxiv.org/abs/2401.16420
https://arxiv.org/abs/2401.16420
https://arxiv.org/abs/2401.16420
https://arxiv.org/abs/2401.16420
https://arxiv.org/abs/2401.16420
https://doi.org/10.1038/nn.4656
https://doi.org/10.1038/nn.4656
https://doi.org/10.1038/nn.4656
https://doi.org/10.1007/978-94-011-2606-9_20
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://doi.org/10.18653/v1/2020.emnlp-main.59
https://aclanthology.org/2022.aacl-short.36
https://aclanthology.org/2022.aacl-short.36
https://aclanthology.org/2022.aacl-short.36
https://aclanthology.org/2022.aacl-short.36
https://aclanthology.org/2022.aacl-short.36
https://arxiv.org/abs/2307.12981
https://arxiv.org/abs/2307.12981
https://arxiv.org/abs/2307.12981
https://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/2023.emnlp-main.568
https://doi.org/10.18653/v1/2023.emnlp-main.568
https://doi.org/10.18653/v1/2023.emnlp-main.568
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2402.12259
https://arxiv.org/abs/2402.12259
https://arxiv.org/abs/2402.12259
https://arxiv.org/abs/2402.12259
https://arxiv.org/abs/2402.12259
http://www.jstor.org/stable/2529310
http://www.jstor.org/stable/2529310
http://www.jstor.org/stable/2529310
https://arxiv.org/abs/2306.16527
https://arxiv.org/abs/2306.16527
https://arxiv.org/abs/2306.16527
https://arxiv.org/abs/2405.02246
https://arxiv.org/abs/2405.02246
https://arxiv.org/abs/2405.02246
https://arxiv.org/abs/2307.16125
https://arxiv.org/abs/2307.16125
https://arxiv.org/abs/2307.16125
https://arxiv.org/abs/2307.16125
https://arxiv.org/abs/2307.16125
https://arxiv.org/abs/2403.19603
https://arxiv.org/abs/2403.19603
https://arxiv.org/abs/2403.19603
https://doi.org/10.1109/tip.2023.3276570
https://doi.org/10.1109/tip.2023.3276570
https://doi.org/10.1109/tip.2023.3276570
https://doi.org/10.1109/tip.2023.3276570
https://doi.org/10.1109/tip.2023.3276570
https://doi.org/10.1109/tpami.2023.3333838
https://doi.org/10.1109/tpami.2023.3333838
https://doi.org/10.1109/tpami.2023.3333838
https://doi.org/10.1109/tpami.2023.3333838
https://doi.org/10.1109/tpami.2023.3333838
https://doi.org/10.1109/tpami.2023.3333838


IEEE Transactions on Pattern Analysis and Machine792
Intelligence, 46(4):2151–2170.793

Liunian Harold Li, Jack Hessel, Youngjae Yu, Xiang794
Ren, Kai-Wei Chang, and Yejin Choi. 2023c. Sym-795
bolic chain-of-thought distillation: Small models can796
also “think” step-by-step. In Proceedings of the 61st797
Annual Meeting of the Association for Computational798
Linguistics (Volume 1: Long Papers), pages 2665–799
2679, Toronto, Canada. Association for Computa-800
tional Linguistics.801

Yunxin Li, Longyue Wang, Baotian Hu, Xinyu Chen,802
Wanqi Zhong, Chenyang Lyu, Wei Wang, and Min803
Zhang. 2023d. A comprehensive evaluation of gpt-4v804
on knowledge-intensive visual question answering.805
Preprint, arXiv:2311.07536.806

Fangyu Liu, Guy Emerson, and Nigel Collier. 2023a.807
Visual spatial reasoning. Transactions of the Associ-808
ation for Computational Linguistics, 11:635–651.809

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuan-810
han Zhang, Sheng Shen, and Yong Jae Lee. 2024.811
Llava-next: Improved reasoning, OCR, and world812
knowledge.813

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae814
Lee. 2023b. Visual instruction tuning.815

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li,816
Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi817
Wang, Conghui He, Ziwei Liu, Kai Chen, and Dahua818
Lin. 2023c. Mmbench: Is your multi-modal model819
an all-around player? Preprint, arXiv:2307.06281.820

Manolis Savva*, Abhishek Kadian*, Oleksandr821
Maksymets*, Yili Zhao, Erik Wijmans, Bhavana Jain,822
Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Ma-823
lik, Devi Parikh, and Dhruv Batra. 2019. Habitat:824
A Platform for Embodied AI Research. In Proceed-825
ings of the IEEE/CVF International Conference on826
Computer Vision (ICCV).827

Roshanak Mirzaee and Parisa Kordjamshidi. 2022.828
Transfer learning with synthetic corpora for spatial829
role labeling and reasoning. In Proceedings of the830
2022 Conference on Empirical Methods in Natu-831
ral Language Processing, pages 6148–6165, Abu832
Dhabi, United Arab Emirates. Association for Com-833
putational Linguistics.834

Roshanak Mirzaee, Hossein Rajaby Faghihi, Qiang835
Ning, and Parisa Kordjamshidi. 2021. SPARTQA:836
A textual question answering benchmark for spatial837
reasoning. In Proceedings of the 2021 Conference of838
the North American Chapter of the Association for839
Computational Linguistics: Human Language Tech-840
nologies, pages 4582–4598, Online. Association for841
Computational Linguistics.842

Ida Momennejad, Hosein Hasanbeig, Felipe Vieira Fru-843
jeri, Hiteshi Sharma, Nebojsa Jojic, Hamid Palangi,844
Robert Ness, and Jonathan Larson. 2023. Evaluating845
cognitive maps and planning in large language mod-846
els with cogeval. In Advances in Neural Information847

Processing Systems, volume 36, pages 69736–69751. 848
Curran Associates, Inc. 849

Laksh Nanwani, Anmol Agarwal, Kanishk Jain, Raghav 850
Prabhakar, Aaron Monis, Aditya Mathur, Kr- 851
ishna Murthy Jatavallabhula, A. H. Abdul Hafez, 852
Vineet Gandhi, and K. Madhava Krishna. 2023. 853
Instance-level semantic maps for vision language 854
navigation. In 2023 32nd IEEE International Confer- 855
ence on Robot and Human Interactive Communica- 856
tion (RO-MAN). IEEE. 857

OpenAI. 2022. Chatgpt blog post. 858

OpenAI. 2023. GPT-4V(ision) Technical Work and 859
Authors. 860

OpenCompass Contributors. 2023. Opencompass: 861
A universal evaluation platform for foundation 862
models. https://github.com/open-compass/ 863
opencompass. 864

Priyam Parashar, Vidhi Jain, Xiaohan Zhang, Jay Vakil, 865
Sam Powers, Yonatan Bisk, and Chris Paxton. 2023. 866
Slap: Spatial-language attention policies. In Pro- 867
ceedings of The 7th Conference on Robot Learning, 868
volume 229 of Proceedings of Machine Learning 869
Research, pages 3571–3596. PMLR. 870

Lang Peng, Zhirong Chen, Zhangjie Fu, Pengpeng 871
Liang, and Erkang Cheng. 2023. Bevsegformer: 872
Bird’s eye view semantic segmentation from arbitrary 873
camera rigs. In 2023 IEEE/CVF Winter Conference 874
on Applications of Computer Vision (WACV). IEEE. 875

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao 876
Chen, Michihiro Yasunaga, and Diyi Yang. 2023a. 877
Is ChatGPT a general-purpose natural language pro- 878
cessing task solver? In Proceedings of the 2023 Con- 879
ference on Empirical Methods in Natural Language 880
Processing, pages 1339–1384, Singapore. Associa- 881
tion for Computational Linguistics. 882

Zequn Qin, Jingyu Chen, Chao Chen, Xiaozhi Chen, 883
and Xi Li. 2023b. Unifusion: Unified multi-view 884
fusion transformer for spatial-temporal represen- 885
tation in bird’s-eye-view. In Proceedings of the 886
IEEE/CVF International Conference on Computer 887
Vision (ICCV), pages 8690–8699. 888

Navid Rajabi and Jana Kosecka. 2023. Towards 889
grounded visual spatial reasoning in multi-modal vi- 890
sion language models. Preprint, arXiv:2308.09778. 891

Julia Rozanova, Deborah Ferreira, Krishna Dubba, 892
Weiwei Cheng, Dell Zhang, and Andre Freitas. 893
2021. Grounding natural language instructions: Can 894
large language models capture spatial information? 895
Preprint, arXiv:2109.08634. 896

Baifeng Shi, Ziyang Wu, Maolin Mao, Xin Wang, and 897
Trevor Darrell. 2024. When do we not need larger 898
vision models? Preprint, arXiv:2403.13043. 899

11

https://doi.org/10.18653/v1/2023.acl-long.150
https://doi.org/10.18653/v1/2023.acl-long.150
https://doi.org/10.18653/v1/2023.acl-long.150
https://doi.org/10.18653/v1/2023.acl-long.150
https://doi.org/10.18653/v1/2023.acl-long.150
https://arxiv.org/abs/2311.07536
https://arxiv.org/abs/2311.07536
https://arxiv.org/abs/2311.07536
https://doi.org/10.1162/tacl_a_00566
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://arxiv.org/abs/2307.06281
https://arxiv.org/abs/2307.06281
https://arxiv.org/abs/2307.06281
https://doi.org/10.18653/v1/2022.emnlp-main.413
https://doi.org/10.18653/v1/2022.emnlp-main.413
https://doi.org/10.18653/v1/2022.emnlp-main.413
https://doi.org/10.18653/v1/2021.naacl-main.364
https://doi.org/10.18653/v1/2021.naacl-main.364
https://doi.org/10.18653/v1/2021.naacl-main.364
https://doi.org/10.18653/v1/2021.naacl-main.364
https://doi.org/10.18653/v1/2021.naacl-main.364
https://proceedings.neurips.cc/paper_files/paper/2023/file/dc9d5dcf3e86b83e137bad367227c8ca-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/dc9d5dcf3e86b83e137bad367227c8ca-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/dc9d5dcf3e86b83e137bad367227c8ca-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/dc9d5dcf3e86b83e137bad367227c8ca-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/dc9d5dcf3e86b83e137bad367227c8ca-Paper-Conference.pdf
https://doi.org/10.1109/ro-man57019.2023.10309534
https://doi.org/10.1109/ro-man57019.2023.10309534
https://doi.org/10.1109/ro-man57019.2023.10309534
https://openai.com/blog/chatgpt
https://cdn.openai.com/contributions/gpt-4v.pdf
https://cdn.openai.com/contributions/gpt-4v.pdf
https://cdn.openai.com/contributions/gpt-4v.pdf
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://proceedings.mlr.press/v229/parashar23a.html
https://doi.org/10.1109/wacv56688.2023.00588
https://doi.org/10.1109/wacv56688.2023.00588
https://doi.org/10.1109/wacv56688.2023.00588
https://doi.org/10.1109/wacv56688.2023.00588
https://doi.org/10.1109/wacv56688.2023.00588
https://doi.org/10.18653/v1/2023.emnlp-main.85
https://doi.org/10.18653/v1/2023.emnlp-main.85
https://doi.org/10.18653/v1/2023.emnlp-main.85
https://arxiv.org/abs/2308.09778
https://arxiv.org/abs/2308.09778
https://arxiv.org/abs/2308.09778
https://arxiv.org/abs/2308.09778
https://arxiv.org/abs/2308.09778
https://arxiv.org/abs/2109.08634
https://arxiv.org/abs/2109.08634
https://arxiv.org/abs/2109.08634
https://arxiv.org/abs/2403.13043
https://arxiv.org/abs/2403.13043
https://arxiv.org/abs/2403.13043


Zhengxiang Shi, Qiang Zhang, and Aldo Lipani. 2022.900
Stepgame: A new benchmark for robust multi-hop901
spatial reasoning in texts. In Proceedings of the AAAI902
Conference on Artificial Intelligence, volume 36,903
pages 11321–11329.904

Aleksandar Shtedritski, Christian Rupprecht, and An-905
drea Vedaldi. 2023. What does clip know about a red906
circle? visual prompt engineering for vlms. In 2023907
IEEE/CVF International Conference on Computer908
Vision (ICCV). IEEE.909

Andrew Szot, Alex Clegg, Eric Undersander, Erik910
Wijmans, Yili Zhao, John Turner, Noah Maestre,911
Mustafa Mukadam, Devendra Chaplot, Oleksandr912
Maksymets, Aaron Gokaslan, Vladimir Vondrus,913
Sameer Dharur, Franziska Meier, Wojciech Galuba,914
Angel Chang, Zsolt Kira, Vladlen Koltun, Jitendra915
Malik, Manolis Savva, and Dhruv Batra. 2021. Habi-916
tat 2.0: Training home assistants to rearrange their917
habitat. In Advances in Neural Information Process-918
ing Systems (NeurIPS).919

Damien Teney, Lingqiao Liu, and Anton Van Den Hen-920
gel. 2017. Graph-structured representations for vi-921
sual question answering. In 2017 IEEE Conference922
on Computer Vision and Pattern Recognition (CVPR),923
pages 3233–3241.924

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and925
Liwei Wang. 2024. Visual autoregressive modeling:926
Scalable image generation via next-scale prediction.927
Preprint, arXiv:2404.02905.928

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-929
bert, Amjad Almahairi, Yasmine Babaei, Nikolay930
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti931
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton932
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,933
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,934
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-935
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan936
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,937
Isabel Kloumann, Artem Korenev, Punit Singh Koura,938
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-939
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-940
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-941
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-942
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,943
Ruan Silva, Eric Michael Smith, Ranjan Subrama-944
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-945
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,946
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,947
Melanie Kambadur, Sharan Narang, Aurelien Ro-948
driguez, Robert Stojnic, Sergey Edunov, and Thomas949
Scialom. 2023. Llama 2: Open foundation and fine-950
tuned chat models. Preprint, arXiv:2307.09288.951

David Unger, Nikhil Gosala, Varun Ravi Kumar,952
Shubhankar Borse, Abhinav Valada, and Senthil953
Yogamani. 2023. Multi-camera bird’s eye view954
perception for autonomous driving. Preprint,955
arXiv:2309.09080.956

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten957
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,958

and Denny Zhou. 2022. Chain-of-thought prompt- 959
ing elicits reasoning in large language models. In 960
Advances in Neural Information Processing Systems, 961
volume 35, pages 24824–24837. Curran Associates, 962
Inc. 963

Jason Weston, Antoine Bordes, Sumit Chopra, and 964
Tomás Mikolov. 2016. Towards ai-complete question 965
answering: A set of prerequisite toy tasks. In 4th In- 966
ternational Conference on Learning Representations, 967
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, 968
Conference Track Proceedings. 969

Jiayang Wu, Wensheng Gan, Zefeng Chen, Shicheng 970
Wan, and Philip S. Yu. 2023. Multimodal 971
large language models: A survey. Preprint, 972
arXiv:2311.13165. 973

Wenshan Wu, Shaoguang Mao, Yadong Zhang, Yan Xia, 974
Li Dong, Lei Cui, and Furu Wei. 2024. Visualization- 975
of-thought elicits spatial reasoning in large language 976
models. Preprint, arXiv:2404.03622. 977

Yutaro Yamada, Yihan Bao, Andrew Kyle Lampinen, 978
Jungo Kasai, and Ilker Yildirim. 2024. Evaluat- 979
ing spatial understanding of large language models. 980
Transactions on Machine Learning Research. 981

Cheng Yan, Guansong Pang, Lei Wang, Jile Jiao, Xue- 982
tao Feng, Chunhua Shen, and Jingjing Li. 2021. Bv- 983
person: A large-scale dataset for bird-view person 984
re-identification. In Proceedings of the IEEE/CVF In- 985
ternational Conference on Computer Vision (ICCV), 986
pages 10943–10952. 987

Zhun Yang, Adam Ishay, and Joohyung Lee. 2023. Cou- 988
pling large language models with logic programming 989
for robust and general reasoning from text. In Find- 990
ings of the Association for Computational Linguis- 991
tics: ACL 2023, pages 5186–5219, Toronto, Canada. 992
Association for Computational Linguistics. 993

Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing 994
Sun, Tong Xu, and Enhong Chen. 2023. A sur- 995
vey on multimodal large language models. Preprint, 996
arXiv:2306.13549. 997

Chao Zhang, Mohan Li, Ignas Budvytis, and 998
Stephan Liwicki. 2024a. Dialoc: An iterative ap- 999
proach to embodied dialog localization. Preprint, 1000
arXiv:2403.06846. 1001

Xingxuan Zhang, Jiansheng Li, Wenjing Chu, Junjia 1002
Hai, Renzhe Xu, Yuqing Yang, Shikai Guan, Ji- 1003
azheng Xu, and Peng Cui. 2024b. On the out-of- 1004
distribution generalization of multimodal large lan- 1005
guage models. Preprint, arXiv:2402.06599. 1006

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, 1007
Xiaolei Wang, Yupeng Hou, Yingqian Min, Be- 1008
ichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, 1009
Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao 1010
Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang 1011
Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 1012
2023. A survey of large language models. Preprint, 1013
arXiv:2303.18223. 1014

12

https://doi.org/10.1609/aaai.v36i10.21383
https://doi.org/10.1609/aaai.v36i10.21383
https://doi.org/10.1609/aaai.v36i10.21383
https://doi.org/10.1109/iccv51070.2023.01101
https://doi.org/10.1109/iccv51070.2023.01101
https://doi.org/10.1109/iccv51070.2023.01101
https://doi.org/10.1109/CVPR.2017.344
https://doi.org/10.1109/CVPR.2017.344
https://doi.org/10.1109/CVPR.2017.344
https://arxiv.org/abs/2404.02905
https://arxiv.org/abs/2404.02905
https://arxiv.org/abs/2404.02905
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2309.09080
https://arxiv.org/abs/2309.09080
https://arxiv.org/abs/2309.09080
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
http://arxiv.org/abs/1502.05698
http://arxiv.org/abs/1502.05698
http://arxiv.org/abs/1502.05698
https://arxiv.org/abs/2311.13165
https://arxiv.org/abs/2311.13165
https://arxiv.org/abs/2311.13165
https://arxiv.org/abs/2404.03622
https://arxiv.org/abs/2404.03622
https://arxiv.org/abs/2404.03622
https://arxiv.org/abs/2404.03622
https://arxiv.org/abs/2404.03622
https://openreview.net/forum?id=xkiflfKCw3
https://openreview.net/forum?id=xkiflfKCw3
https://openreview.net/forum?id=xkiflfKCw3
https://doi.org/10.18653/v1/2023.findings-acl.321
https://doi.org/10.18653/v1/2023.findings-acl.321
https://doi.org/10.18653/v1/2023.findings-acl.321
https://doi.org/10.18653/v1/2023.findings-acl.321
https://doi.org/10.18653/v1/2023.findings-acl.321
https://arxiv.org/abs/2306.13549
https://arxiv.org/abs/2306.13549
https://arxiv.org/abs/2306.13549
https://arxiv.org/abs/2403.06846
https://arxiv.org/abs/2403.06846
https://arxiv.org/abs/2403.06846
https://arxiv.org/abs/2402.06599
https://arxiv.org/abs/2402.06599
https://arxiv.org/abs/2402.06599
https://arxiv.org/abs/2402.06599
https://arxiv.org/abs/2402.06599
https://arxiv.org/abs/2303.18223


Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and1015
Yu Su. 2024. Gpt-4v(ision) is a generalist web agent,1016
if grounded. Preprint, arXiv:2401.01614.1017

Ruiqi Zhong, Dhruba Ghosh, Dan Klein, and Jacob1018
Steinhardt. 2021. Are larger pretrained language1019
models uniformly better? comparing performance1020
at the instance level. In Findings of the Association1021
for Computational Linguistics: ACL-IJCNLP 2021,1022
pages 3813–3827, Online. Association for Computa-1023
tional Linguistics.1024

13

https://arxiv.org/abs/2401.01614
https://arxiv.org/abs/2401.01614
https://arxiv.org/abs/2401.01614
https://doi.org/10.18653/v1/2021.findings-acl.334
https://doi.org/10.18653/v1/2021.findings-acl.334
https://doi.org/10.18653/v1/2021.findings-acl.334
https://doi.org/10.18653/v1/2021.findings-acl.334
https://doi.org/10.18653/v1/2021.findings-acl.334


A Additional Related Work1025

In addition to Section 2 which provides a brief1026

overview of previous work most relevant to our1027

work, for completeness we also provide additional1028

related work focused on unimodal spatial reasoning1029

from text only.1030

Spatial Reasoning on Text. Spatial reasoning1031

has been investigated with the advancement of1032

LLMs (Yamada et al., 2024). Various benchmarks1033

have been proposed to evaluate models’ spatial rea-1034

soning abilities, including relative spatial relation1035

recognition (Weston et al., 2016; Mirzaee et al.,1036

2021; Shi et al., 2022), natural language navigation1037

(Yamada et al., 2024), and planning (Momennejad1038

et al., 2023). Mirzaee and Kordjamshidi (2022)1039

suggest that introducing synthetic data of spatial1040

reasoning when pre-training helps to improve the1041

spatial awareness of the model. Yang et al. (2023)1042

justify the feasibility of using a logical form as1043

an intermediate representation to improve the spa-1044

tial reasoning ability in easy scenarios. Instead1045

of describing the spatial relations with natural lan-1046

guage, Wu et al. (2024) feed the model with a 2D1047

square grid similar to ASCII-art format and prove1048

that visualising the reasoning procedure explicitly1049

helps to improve the model’s ability in multi-hop1050

spatial reasoning. Constrained by language de-1051

scriptions, most datasets focus on reasoning over1052

symbols within simple scenarios (e.g. grid-based1053

navigation) and are synthetically generated. How-1054

ever, real-life scenarios are often more complex1055

and rich in physical semantics. This raises con-1056

cerns about the models’ actual spatial reasoning1057

abilities compared to their proficiency in under-1058

standing linguistic patterns.1059

B Further Details on Dataset1060

Construction1061

The TOPVIEWRS is derived from Matterport3D1062

(Chang et al., 2017) and is supposed to be used for1063

non-commercial academic use only, under the Term1064

of Use (Matterport End User Licence Agreement1065

For Academic Use of Model Data).1066

In addition to the main content in Section 4, we1067

provide further details with regard to TOPVIEWRS1068

dataset construction in what follows.1069

B.1 Top-View Map Construction1070

To ensure high-quality top-view map representa-1071

tions, we exclude the 3D environments with low1072

coverage of mesh grids. We also prefer environ- 1073

ments that are single-floor, in order to avoid the 1074

obstruction of objects from different floors. Af- 1075

ter manually going through 90 building-scale 3D 1076

environments from Matterport3D (Chang et al., 1077

2017), we select a total of 7 scenes: 17DRP5sb8fy, 1078

2azQ1b91cZZ, 2t7WUuJeko7, 5LpN3gDmAk7, 1079

EU6Fwq7SyZv, 8WUmhLawc2A, i5noydFURQK. 1080

Photo-Realistic Top-View Map. We extract real- 1081

istic top-view maps using MeshLab by placing an 1082

orthographic camera on the top of the 3D scenes 1083

and taking a camera shot. 1084

Semantic Top-View Map. We construct them 1085

using the Habitat simulation environment (Mano- 1086

lis Savva* et al., 2019; Szot et al., 2021). For 1087

each building floor, Matterport3D contains the 2D 1088

and 3D semantic segmentation human annotations, 1089

which can be retrieved to identify the type of ob- 1090

jects as well as the rooms. The 3D coordinates of 1091

the entity’s (object and room) center (xi, yi, hi) and 1092

the size of the entity’s bounding box (wx, wy, wh) 1093

can also be retrieved as part of the circumstantial 1094

information. This information is then used for the 1095

construction of the semantic top-view map. 1096

When we obtain the object information for 1097

the purpose of constructing a top-view seman- 1098

tic map, we design certain rules to exclude spe- 1099

cific types of objects from all 40 object anno- 1100

tation categories of Matterport3D. We believe 1101

these objects could either 1) be less meaningful 1102

in terms of semantics or 2) take up a large area 1103

in the semantic map, which obstructs other ob- 1104

jects beneath. The filtered objects include:‘misc’, 1105

‘ceiling’, ‘objects’, ‘floor’, ‘wall’, 1106

‘void’, ‘curtain’, ‘column’, ‘beam’, 1107

‘board panel’. 1108

We also filter out the objects based on their
heights hobj and sizes wobj compared to the rooms’
heights hroom and sizes wroom. We only keep the
objects if they satisfy the following relations:

0.9× (hroom − 1

2
wroom) ≤ hobj −

1

2
wobj

1.1× (hroom +
1

2
wroom) ≥ hobj +

1

2
wobj

After having all the object annotations, we use 1109

the get_topdown_map API of the Habitat simula- 1110

tor to get the top-down map of the scene, which 1111

describes the navigable area and the overall shape 1112

of the environment, but without any object annota- 1113

tions. Based on this map, we then draw the bound- 1114

ing boxes with different colors to represent the 1115

14
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objects in the environments. Considering that the1116

objects on the top may obstruct the bottom ob-1117

jects in the top-view map, to mimic this characteris-1118

tic, we create the semantic top-view map based on1119

the heights of the objects, where lower objects are1120

drawn first. Table 4 shows the mapping between1121

the RGB values and object types used for the cre-1122

ation of a semantic top-view map in our work.1123

After having the top-view maps of the whole1124

floor, we crop them into smaller rooms according1125

to the region boundaries obtained from the Habitat1126

simulator.1127

B.2 Structured Question Framework Design1128

In order to minimize human labor and standard-1129

ize the collection pipeline, we adopt the template-1130

based question generation method following the1131

practice of Liu et al. (2023a); we design 15 differ-1132

ent templates in total to construct the sub-tasks for1133

each task. In particular, we consider benchmarking1134

different perspectives of the model’s ability within1135

each task in a fine-grained manner when design-1136

ing the templates. The question templates are also1137

multi-scale in terms of objects or rooms with full or1138

partial top-view maps for Top-View Recognition,1139

Top-View Localization and Static Spatial Reason-1140

ing. For Dynamic Spatial Reasoning, the designed1141

questions evaluate the recognition and reasoning1142

from the scale of single navigation points (Dynamic1143

Action Counting and Spatial Localization) to the1144

whole path (Dynamic Relative Spatial Reasoning).1145

Below we provide the designed templates for all1146

9 sub-tasks, with some examples shown in Figure 1.1147

In what follows, we also introduce the logic for se-1148

lecting the correct answer and other wrong choices1149

when constructing the multiple-choice questions.1150

B.2.1 Top-View Recognition1151

Table 5 shows the templates we use for1152

the Top-View Recognition task. Considering1153

that some objects and rooms may be hard1154

to recognize from the top view, in addition1155

to the set of filtered objects, we also re-1156

move some objects (‘picture’, ‘mirror’,1157

‘window’, ‘blinds’, ‘towel’, ‘furniture’,1158

‘door’, ‘tv_monitor’, ‘cabinet’) and rooms1159

(‘hallway’, ‘entryway/foyer/lobby’, ‘tv’)1160

when we use the templates to generate questions.1161

B.2.2 Top-View Localization1162

Table 6 shows the templates for the Top-View1163

Localization task. For the objects, we adopt the1164

RGB Values Label
[31, 119, 180] void
[174, 199, 232] wall
[255, 127, 14] floor
[255, 187, 120] chair
[44, 160, 44] door

[152, 223, 138] table
[214, 39, 40] picture

[255, 152, 150] cabinet
[148, 103, 189] cushion
[197, 176, 213] window
[140, 86, 75] sofa

[196, 156, 148] bed
[227, 119, 194] curtain
[247, 182, 210] chest_of_drawers
[51, 105, 30] plant

[199, 199, 199] sink
[188, 189, 34] stairs
[219, 219, 141] ceiling
[23, 190, 207] toilet
[158, 218, 229] stool
[57, 59, 121] towel
[82, 84, 163] mirror

[107, 110, 207] tv_monitor
[156, 158, 222] shower
[99, 121, 57] column
[140, 162, 82] bathtub
[181, 207, 107] counter
[206, 219, 156] fireplace
[140, 109, 49] lighting
[189, 158, 57] beam
[231, 186, 82] railing
[231, 203, 148] shelving
[132, 60, 57] blinds
[173, 73, 74] gym_equipment
[214, 97, 107] seating
[231, 150, 156] board_panel
[123, 65, 115] furniture
[165, 81, 148] appliances
[206, 109, 189] clothes
[222, 158, 214] objects

Table 4: RGB values and corresponding labels.

same set as for Top-View Recognition. Concern- 1165

ing rooms, we define a set of rooms that are 1166

easy and natural to recognize for humans, span- 1167

ning: ‘office’, ‘workout/gym/exercise’, 1168

‘kitchen’, ‘bedroom’, ‘dining room’, 1169

‘bar’, ‘balcony’, ‘toilet’, ‘bathroom’, 1170
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Object Recognition

Template 1 Which of the following objects
are in the room?

Template 2 Which of the following objects
are not in the room?

Scene Recognition

Template 1 What room is this?

Template 2 What types of rooms are included
in the top-view map below?

Table 5: Templates for Object and Scene Recognition
sub-tasks.

Object Localization

Template 1 Where is the <object> in the top-
down map?

Scene Localization

Template 1 Where is the <room> in the top-
down map?

Template 2 What objects does <room> have?

Table 6: Templates for Object and Scene Localization
sub-tasks.

‘living room’, ‘stairs’.1171

B.2.3 Static Spatial Reasoning1172

Table 7 lists the templates for the Static Spatial1173

Reasoning task. For rooms, we restrict the re-1174

gions within the same range as in Top-View Lo-1175

calization. Concerning objects, we focus on the1176

objects that are common and large enough to rec-1177

ognize in daily life, which includes: ‘chair’,1178

‘table’, ‘cushion’, ‘sofa’, ‘bed’,1179

‘chest_of_drawers’, ‘sink’, ‘toilet’,1180

‘bathtub’, ‘stool’, ‘plant’, ‘stairs’,1181

‘shower’, ‘fireplace’, ‘gym_equipment’,1182

‘seating’.1183

B.2.4 Dynamic Spatial Reasoning1184

For Dynamic Action Counting, we define that a1185

valid turn should involve more than a 30-degree1186

rotation. For Dynamic Relative Spatial Reasoning,1187

the direction is also defined by the relative spatial1188

relation between the starting point and ending point,1189

where the spatial description is determined by 30-1190

degree intervals.1191

Multiple-Choice Question-Answer Pairs. For1192

Scene Counting

Template 1 How many <room> are there in
the map?

Relative Spatial Relation

Template 1 What’s <object1>’s relative spa-
tial relation to <object2>?

Template 2 What’s <room1>’s relative spa-
tial relation to <room2>?

Table 7: Templates for Scene Counting and Relative
Spatial Relation sub-tasks.

Dynamic Action Counting

Template 1 How many turning <action> are
there along the path?

Dynamic Relative Spatial Reasoning

Template 1 Which direction does the naviga-
tion path head for?

Dynamic Spatial Localization

Template 1 What rooms does the navigation
path pass by?

Template 2 At which room does the naviga-
tion path <action>?

Template 3 At which object does the naviga-
tion path <action>?

Table 8: Templates for Dynamic Action Counting, Dy-
namic Relative Spatial Reasoning, and Dynamic Spatial
Localization sub-tasks

the answer to the questions, because we have all 1193

the spatial information and semantic annotation of 1194

the objects in the scene, we write a set of rules 1195

with code for each type of question in order to 1196

automatically obtain the golden answer according 1197

to the simulation environments. For all the wrong 1198

choices in the multiple-choice settings, they are 1199

randomly chosen from other possible candidates of 1200

the same kind (e.g. objects, rooms, numbers, etc.). 1201

After having all the options for multiple-choice 1202

questions, we randomize the order of the options to 1203

make the correct choices evenly distributed among 1204

possible options A, B, C, and D. 1205

B.3 Alignment with Human Judgments 1206

In our preliminary quality control, we realized that 1207

semantic annotations of environments may some- 1208
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times be inaccurate. Moreover, even though we1209

exclude some unreasonable objects, the top view1210

of certain objects can sometimes be challenging1211

to recognize, even for humans. To address these1212

issues, we have implemented a second stage in our1213

dataset creation process: alignment and verification1214

based on human judgments.1215

When validating the automatically collected1216

data, the human participants are supposed to check1217

the correctness of the question-answer pair and1218

choose one of the following four actions according1219

to their own judgments: 1) skip the instance if it1220

cannot be repaired and/or looks strange, 2) modify1221

the pair by replacing the options or the entities in1222

the question in order to make it answerable by hu-1223

mans, 3) correct the answer if it is wrong, 4) keep1224

the data if it is answerable by humans and correct.1225

In order to ensure the quality of the dataset, we1226

communicated to the human participants that they1227

are supposed to be cautious when ‘accepting’ a data1228

point/instance. On a practical level, the participants1229

may either discard this data point or modify the op-1230

tions of this data to make the correct choice more1231

distinguishable by humans. This helps to exclude1232

the data points where different human judges may1233

diverge and thus ensure the alignment between the1234

dataset and general human judgments. We assure1235

that the alignment process does not include any1236

information with regard to personal identification1237

or offensive content.1238

In our experiments, we also provide the corre-1239

sponding rules of how we obtain the answer for the1240

model with textual description in the prompt (see1241

Appendix C.2).1242

B.4 Dataset Statistics1243

We provide further insight into different portions of1244

the TOPVIEWRS dataset with regard to the object1245

and room distribution in Figure 4, whereas statistics1246

over different sub-tasks are provided in Table 9.1247

The visualization demonstrates that the objects1248

or regions that are hard to recognize (e.g. gym1249

equipment, utility room, etc.) have fewer occur-1250

rences in the dataset compared to those which are1251

easier to identify and typically more common (e.g.1252

bed, table, bedroom, etc.). Bed, chair and table1253

are the top-3 most frequently mentioned objects1254

and bedroom, dining room and living room are the1255

most common regions in the dataset. Among all the1256

spatial descriptions, the diagonal spatial relations1257

(e.g. top right, up left) are more frequently referred1258

to as the correct choice as relative spatial descrip-1259

tions in Static Spatial Reasoning while being less 1260

frequently used as absolute spatial descriptions in 1261

Top-View Localization. 1262

Regarding the dataset size per each sub-task, 1263

object-level recognition and localization take a 1264

large portion of data in the Top-View Recognition 1265

and Localization tasks. For Static Spatial Reason- 1266

ing, reasoning over relative spatial relations takes 1267

the main part of the data. Dynamic Spatial Local- 1268

ization has the largest number of data instances 1269

overall. The numbers are different with realistic 1270

maps and semantic maps for each task. The dispar- 1271

ity stems from the second stage of dataset creation, 1272

where the human annotators have excluded more 1273

data points associated with more complex, photo- 1274

realistic maps due to various possible reasons. 1275

C Experiments: Additional Information 1276

C.1 Inference Parameters 1277

We adopt most of the inference parameters for each 1278

model from the implementations of VLMEvalKit 1279

(OpenCompass Contributors, 2023). Table 10 1280

shows the configuration of the inference process 1281

for different models. If not specified in Table 10, 1282

we use the default configuration in Huggingface. 1283

C.2 Prompts 1284

Table 11 and 12 show the prompt templates of each 1285

task used in the main experiments (Table 1) with re- 1286

alistic and semantic top-view maps as visual input, 1287

respectively. Table 13 and 14 show the prompt tem- 1288

plates used for Chain-of-Thought reasoning using 1289

realistic and semantic top-view maps (Table 3). 1290

Within the prompt templates, <QUESTION> and 1291

<OPTIONS> are replaced with the question and op- 1292

tion list O = {o0, o1, o2, o3} (e.g. “A. bed; B. 1293

chair; C. table; D. cushion”). For semantic top- 1294

view maps, <MAPPING> is replaced with the RGB- 1295

object mapping, as shown below. 1296

(196, 156, 148) -> bed 1297

(44, 160, 44) -> door 1298

... 1299

In the task of Dynamic Spatial Reasoning, 1300

<TASK-SPECIFIC INSTRUCTION> contains the 1301

rules of how we obtain the answer from the sim- 1302

ulator for the sub-task Dynamic Action Counting, 1303

which is described as follows. 1304

Suppose you are a navigation agent tracing 1305

the path. Your job is to assess whether 1306

there's a turn at each intermediate point 1307
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Figure 4: Additional statistics of the TOPVIEWRS dataset.

Task Sub-Task Realistic Semantic
TVR Object Recognition 195 198

Scene Recognition 97 97

TVL Object Localization 410 470
Scene Localization 100 97

SSR Scene Counting 43 48
Relative Spatial Relation 1,004 1,245

DSR Dynamic Action Counting 668 668
Dynamic Spatial Localization 2,436 2,436
Dynamic Relative Spatial Reasoning 586 586

Total 5,539 5,845

Table 9: Distribution of sub-tasks with realistic and semantic top-view maps.
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Idefics 9B&80B
max_new_tokens 20
LLaVANext 7B&13B&34 B

temperature 0
num_beams 1

max_new_tokens 20
do_sample False

top_p None
XComposer2

temperature 1
beams 5

max_token 20
repetition_penalty 1

do_sample False
Qwen-VL

max_new_tokens 20
GPT4V

temperature 0
max_tokens 1024

img_size 512
img_detail low

Gemini
temperature 0
max_tokens 1024

Table 10: Configurations of inference parameters.

and sum up the total turns for the final1308

outcome.1309

For other sub-tasks in Dynamic Spatial Reason-1310

ing, <TASK-SPECIFIC INSTRUCTION> is replaced1311

with an empty string.1312

C.3 Additional Experimental Results1313

Table 15 shows the fine-grained sub-task perfor-1314

mance of all the models, which corresponds to1315

Figure 3 in the main paper.1316
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Realistic Top-View Maps

Top-View Recognition, Top-View Localization and Static Spatial Reasoning

This is a top-view map of a room. Please respond to the question below by selecting one choice
from a list of available options provided. Your response should only include the letter of the chosen
option (A, B, C, or D) with no additional explanation.
Question: <QUESTION>
Options: <OPTIONS>;
Answer:

Dynamic Spatial Reasoning

This is a top-view map of a room with the navigation path. The path starts from the green triangle
(RGB [0, 255, 0]) and ends at the red star (RGB [255, 0, 0]). The direction of the path is denoted
by a series of yellow arrows (RGB [255, 255, 0]), with intermediate points highlighted in RGB
[25, 255, 255]. <TASK-SPECIFIC INSTRUCTION> Please respond to the question below by
selecting one choice from a list of available options provided. Your response should only include
the letter of the chosen option (A, B, C, or D) with no additional explanation.
Question: <QUESTION>
Options: <OPTIONS>;
Answer:

Table 11: Prompt templates for main experiments with realistic top-view maps.

20



Semantic Top-View Maps

Top-View Recognition, Top-View Localization and Static Spatial Reasoning

This is a semantic top-view map of a room. Various objects are depicted by colored bounding
boxes, each with its corresponding color, and there may be instances of overlap between them.
Below are the RGB color codes associated with each object, presented in the format RGB ->
Object:
<MAPPING>
Please respond to the question below by selecting one choice from a list of available options
provided. Your response should only include the letter of the chosen option (A, B, C, or D) with
no additional explanation.
Question: <QUESTION>
Options: <OPTIONS>;
Answer:

Dynamic Spatial Reasoning

This is a semantic top-view map of a room with the navigation path. In the semantic map, various
objects are depicted by colored bounding boxes, each with its corresponding color, and there may
be instances of overlap between them. The navigation path starts from the green triangle (RGB [0,
255, 0]) and ends at the red star (RGB [255, 0, 0]). The direction of the path is denoted by a series
of yellow arrows (RGB [255, 255, 0]), with intermediate points highlighted in RGB [25, 255, 255].
Below are the RGB color codes associated with each object and symbol, presented in the format
RGB -> Object:
<MAPPING>
<TASK-SPECIFIC INSTRUCTION> Please respond to the question below by selecting one choice
from a list of available options provided. Your response should only include the letter of the chosen
option (A, B, C, or D) with no additional explanation.
Question: <QUESTION>
Options: <OPTIONS>;
Answer:

Table 12: Prompt templates for main experiments with semantic top-view maps.

Realistic Top-View Maps

Static Spatial Reasoning

This is a top-view map of a room. Please respond to the question below by selecting one choice
from a list of available options provided. You should explain your reasoning step-by-step by first
localizing the entities and then reasoning over the question based on the locations. You should
conclude your chosen option (A, B, C, or D) starting with ’The answer is ’.
Question: <QUESTION>
Options: <OPTIONS>;
Answer: Let’s think step by step.

Table 13: Prompt templates for Chain-of-Thought experiments with realistic top-view maps.
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Semantic Top-View Maps

Static Spatial Reasoning

This is a semantic top-view map of a room. Various objects are depicted by colored bounding
boxes, each with its corresponding color, and there may be instances of overlap between them.
Below are the RGB color codes associated with each object, presented in the format RGB ->
Object:
<MAPPING>
Please respond to the question below by selecting one choice from a list of available options
provided. You should explain your reasoning step-by-step by first localizing the entities and then
reasoning over the question based on the locations. You should conclude your chosen option (A, B,
C, or D) starting with ’The answer is ’.
Question: <QUESTION>
Options: <OPTIONS>;
Answer: Let’s think step by step.

Table 14: Prompt templates for Chain-of-Thought experiments with semantic top-view maps.

Idefics LLaVANext XComposer2 Qwen-VL GPT-4V Gemini

Model Size 9B 80B vicuna 7B mistral 7B vicuna 13B 34B 7B 7B API API

Realistic Map

TVR
Object Recognition 32.31 25.64 66.15 61.03 58.97 65.64 38.97 17.95 68.21 89.23

Scene Recognition 58.76 28.87 70.10 61.86 67.01 72.16 35.05 45.36 72.16 92.78

TVL
Object Localization 26.83 26.10 40.24 30.24 40.00 50.49 26.34 16.34 40.73 45.21

Scene Localization 45.00 46.00 50.00 49.00 46.00 53.00 34.00 16.00 69.00 61.00

SSR
Scene Counting 25.58 32.56 16.28 18.60 2.33 16.28 25.58 48.84 76.74 53.49

Relative Spatial Relations 24.00 25.80 20.02 24.60 21.02 23.01 25.80 13.25 19.82 30.68

DSR

Dynamic Action Counting 31.89 26.80 27.54 26.95 25.30 27.40 27.54 32.34 22.01 26.95

Dynamic Spatial Localization 42.57 29.27 45.03 23.89 32.88 24.63 22.62 20.11 34.15 35.30

Dynamic Relative Spatial Reasoning 26.62 23.72 25.77 23.04 17.58 16.21 26.11 18.77 23.72 27.82

Semantic Map

TVR
Object Recognition 54.55 51.01 92.93 87.37 92.42 98.48 50.00 12.63 100.00 99.49

Scene Recognition 73.20 76.29 80.41 64.95 79.38 86.60 28.87 34.02 91.75 85.57

TVL
Object Localization 28.51 23.19 22.98 28.94 10.85 34.47 24.47 6.17 41.49 31.28

Scene Localization 44.33 47.42 37.11 47.42 48.45 57.73 26.80 26.80 58.76 54.64

SSR
Scene Counting 37.50 50.00 12.50 10.42 6.25 4.17 14.58 22.92 37.50 20.83

Relative Spatial Relations 23.29 27.23 18.96 24.82 17.03 18.96 23.37 14.54 21.12 26.43

DSR

Dynamic Action Counting 36.68 27.69 33.38 26.80 28.89 25.30 27.25 30.39 22.90 26.95

Dynamic Spatial Localization 39.20 38.79 41.87 25.82 17.98 39.00 19.46 22.95 47.17 33.42

Dynamic Relative Spatial Reasoning 26.11 24.74 23.72 27.30 17.75 17.58 24.06 18.26 25.26 28.16

Table 15: Fine-grained results of 10 VLMs on different sub-tasks, corresponding to the visualization in Figure 3.
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