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Abstract

Bayesian deep learning seeks to equip deep neural networks with the ability to
precisely quantify their predictive uncertainty, and has promised to make deep
learning more reliable for safety-critical real-world applications. Yet, existing
Bayesian deep learning methods fall short of this promise; new methods continue
to be evaluated on unrealistic test beds that do not reflect the complexities of
downstream real-world tasks that would benefit most from reliable uncertainty
quantification. We propose the RETINA Benchmark, a set of real-world tasks that
accurately reflect such complexities and are designed to assess the reliability of
predictive models in safety-critical scenarios. Specifically, we curate two publicly
available datasets of high-resolution human retina images exhibiting varying de-
grees of diabetic retinopathy, a medical condition that can lead to blindness, and use
them to design a suite of automated diagnosis tasks that require reliable predictive
uncertainty quantification. We use these tasks to benchmark well-established and
state-of-the-art Bayesian deep learning methods on task-specific evaluation metrics.
We provide an easy-to-use codebase for fast and easy benchmarking following
reproducibility and software design principles. We provide implementations of
all methods included in the benchmark as well as results computed over 100 TPU
days, 20 GPU days, 400 hyperparameter configurations, and evaluation on at least
6 random seeds each.

1 Introduction

Bayesian deep learning has been applied successfully to a wide range of real-world prediction
problems such as medical diagnosis [8, 28, 36, 65], computer vision [29, 30, 32], scientific discov-
ery [37, 42], and autonomous driving [2, 17, 27, 30–32, 41].

Despite the demonstrated usefulness of Bayesian deep learning for such practical applications and a
growing literature on inference methods [6, 14, 19, 21, 46, 47, 52, 61, 66], there exists no standardized
benchmarking task that reflects the complexities and challenges of safety-critical real-world tasks
while adequately accounting for the reliability of models’ predictive uncertainty estimates.

To make meaningful progress in the development and successful deployment of reliable Bayesian
deep learning methods, we need easy-to-use benchmarking tasks that reflect the real world and hence
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serve as a legitimate litmus test for practitioners that aim to deploy their models in safety-critical
settings. Further, such tasks ought to be usable without the extensive domain expertise often necessary
for appropriate experiment design and data preprocessing. Lastly, any such benchmarking task must
include evaluation methods that test for predictive performance and assess different properties of
models’ predictive uncertainty estimates, while taking into account application-specific constraints.

(a) Retina images exhibiting non-sight-threatening diabetic retinopathy (y = 0).

(b) Retina images exhibiting sight-threatening diabetic retinopathy (y = 1).

Figure 1: Samples of retina scans from the EyePACS dataset showing varying degrees of diabetic retinopathy.
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Figure 2: Automated diagnosis pipeline: For a
given input, a model provides a prediction and a
corresponding uncertainty estimate; if the uncer-
tainty estimate is below a certain reference thresh-
old γ (indicating a low degree of uncertainty) the
diagnosis is processed without further review; oth-
erwise, it is referred to a medical expert.

In this paper, we propose a set of realistic safety-
critical downstream tasks that respect these desiderata
and use them to benchmark well-established and state-
of-the-art Bayesian deep learning methods. To do so,
we consider the problem of using machine learning
to detect diabetic retinopathy, a medical condition
considered the leading cause of vision impairment
and blindness [54]. Unlike in prior works on diabetic
retinopathy detection, the benchmarking tasks pre-
sented in this paper are specifically designed to assess
the reliability of machine learning models and the
quality of their predictive uncertainty estimates using
both aleatoric and epistemic uncertainty estimates.

Medical diagnosis problems are particularly well-
suited to assess reliability due to the severe harm
caused by predictive models that make confident but
poor predictions (for example, when a disease is not
recognized). As a general desideratum, we want a
model’s predictive uncertainty to correlate with the
correctness of its predictions. Good predictive uncer-
tainty estimates can be a fail-safe against incorrect predictions. If a given data point might result in an
incorrect prediction because it is meaningfully different from data in the training set—for example,
because it shows signs of the disease not captured there, exhibits visual artifacts, or was obtained
using different measurement devices—a good predictive model will express a high level of predictive
uncertainty and flag the example for further review by a medical expert.

Contributions. We present the RETINA Benchmark: an easy-to-use, expert-guided, open-source
suite of diabetic retinopathy detection benchmarking tasks for Bayesian deep learning. In particular,
we design safety-critical downstream tasks from publicly available datasets. On these downstream
tasks, we evaluate well-established and state-of-the-art Bayesian and non-Bayesian methods on a
set of task-specific reliability and performance metrics. Lastly, we provide a modular and extensible
implementation of the benchmarking tasks and methods, as well as pre-trained models obtained from
an extensive hyperparameter optimization over more than 400 total configurations and evaluation,
using over 100 TPU days and 20 GPU days of compute. Code to reproduce our results and benchmark
new methods is available at:

github.com/google/uncertainty-baselines/.../diabetic_retinopathy_detection.
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2 Downstream Benchmarking Tasks for Diabetic Retinopathy Detection

In this section, we present two real-world scenarios in diabetic retinopathy detection and describe
how we merge two publicly available datasets to design corresponding prediction tasks.

2.1 Data and Preprocessing

No DR (73.7%)
Mild DR (7.0%)
Moderate DR (14.8%)
Severe DR (2.4%)
Proliferative DR (2.2%)

(a) EyePACS [13].

No DR (49.3%)
Mild DR (10.1%)
Moderate DR (27.3%)
Severe DR (5.3%)
Proliferative DR (8.1%)

(b) APTOS [3].

Figure 3: Data class labels.

EyePACS Dataset. We construct training datasets for different tasks
from the EyePACS dataset, previously used for the Kaggle Diabetic
Retinopathy Detection Challenge [13]. It contains high-resolution
labeled images of human retinas exhibiting varying degrees of diabetic
retinopathy. The dataset consists of 35,126 training, 10,906 validation,
and 42,670 test images, each an RGB image of a human retina graded
by a medical expert on the following scale: 0 (no diabetic retinopathy), 1
(mild diabetic retinopathy), 2 (moderate diabetic retinopathy), 3 (severe
diabetic retinopathy), and 4 (proliferative diabetic retinopathy).

APTOS Dataset. To construct tasks that assess model performance
under distribution shift, we use the APTOS 2019 Blindness Detection
dataset [3]. The dataset also contains labeled images of human retinas
exhibiting varying degrees of diabetic retinopathy, but was collected
in India, from a different patient population, using different medical
equipment. We use 80% of the images (2,929 images) as a test set and
the other 20% (733 images) as a secondary validation set. Moreover,
the images are significantly noisier than the images in the EyePACS
dataset, with distinct visual artifacts (cf. Figure 7, Appendix A.8). Each
image was graded on the same 0-to-4 scale as the EyePACS dataset.

Prediction Targets. We follow Leibig et al. [36] and binarize all examples from both the EyePACS
and APTOS datasets by dividing the classes up into sight-threatening diabetic retinopathy—defined
as moderate diabetic retinopathy or worse (classes {2, 3, 4})—and non-sight-threatening diabetic
retinopathy—defined as no or mild diabetic retinopathy (classes {0, 1}). By international guidelines,
this is the threshold at which a case should be referred to an ophthalmologist [64]. Example EyePACS
retina images from the two classes are shown in Figure 1. Reflecting real-world challenges, the
datasets are unbalanced—e.g., for EyePACS, only 19.6% of the training set and 19.2% of the test set
have a positive label—and images have visual artifacts and noisy labels (some labels are incorrect).

Data Preprocessing. Data preprocessing on examples from both the EyePACS and APTOS datasets
follows the winning entry of the Kaggle Challenge [13]: Images are rescaled such that retinas have a
radius of 300 pixels, are smoothed using local Gaussian blur, and finally, are clipped to 90% size to
remove boundary effects. Examples of original and corresponding processed images are provided in
Figure 6 (Appendix A.8). We conduct an empirical study investigating how varying the strength of the
Gaussian blur smoothing affects downstream performance and uncertainty quality in Appendix B.6.

2.2 Diabetic Retinopathy Detection under Severity Shift

Diabetes and diabetes-related illnesses such as diabetic retinopathy are becoming widespread. Yet
cases of sight-threatening diabetic retinopathy are still relatively rare, and scans of retinas exhibiting
signs of no or mild diabetic retinopathy are more easily obtainable. As a result, predictive models for
detecting diabetic retinopathy may be trained on only a very small number of retina images showing
signs of severe or proliferative retinopathy.

We design a prediction task that simulates this setting and allows us to assess the reliability of
predictive models when they are evaluated on images that have been assigned a severity higher than
any encountered in the training data. Specifically, we train models only on retina images showing
signs of at most moderate diabetic retinopathy and evaluate them on retina images showing signs of
severe or proliferative diabetic retinopathy. Given that many signs of moderate diabetic retinopathy
are similar in appearance to signs of severe or proliferative diabetic retinopathy (just weaker), we
would expect a good predictive model to be able to correctly classify the latter, but to exhibit increased
predictive uncertainty. There are certain features of diabetic retinopathy progression that are unique to
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more severe cases, such as vitreous hemorrhage, or bleeding into the vitreous humor [12]. However,
we consider uncertainty-aware downstream tasks that tolerate such unfamiliar cases (cf. Section 2.4).

In this Severity Shift task, we partition the EyePACS dataset into a subset containing all retina images
labeled as no, mild, or moderate diabetic retinopathy (original classes {0, 1, 2}) and a subset of retina
images labeled as severe or proliferative diabetic retinopathy (original classes {3, 4}). Next, the
samples in each subset are binarized (cf. Section 2.1): The subset of retina images showing signs of at
most moderate diabetic retinopathy (subset “moderate”) contains images of binarized classes {0, 1};
and the subset of retina images showing signs of severe or proliferative diabetic retinopathy (subset
“severe”) only contains the binarized class 1. This results in 33,545 images in the training set, and
40,727 and 3,524 images in the in-domain and distributionally shifted evaluation sets, respectively.

2.3 Diabetic Retinopathy Detection under Country Shift

Similar to the scarcity of scans of sight-threatening diabetic retinopathy, the availability of retina
scans is limited in countries without widespread screening. Hence, a predictive model may be trained
on images collected in the United States—where many scans are performed—and used to evaluate
scans from another country, where scans are rarer and performed using different medical devices.

We design a prediction task that simulates this setting and allows us to evaluate the reliability of
predictive models when the training and test data are not obtained from the same patient population
nor collected with the same medical equipment. In this Country Shift task, we train models on retina
images from the EyePACS dataset and evaluate them on retina images from the APTOS dataset. We
use the entire training and test data provided in the EyePACS dataset and convert the task into binary
classification as described in Section 2.1. This results in 35,126 images in the training set, and 42,670
and 2,929 images in the in-domain and distributionally shifted evaluation sets, respectively.

2.4 Downstream Task: Selective Prediction and Expert Referral

In real-world settings where the evaluation data may be sampled from a shifted distribution, incorrect
predictions may become increasingly likely. To account for that possibility, predictive uncertainty
estimates can be used to identify datapoints where the likelihood of an incorrect prediction is particu-
larly high and refer them for further review as described in Figure 2. We consider a corresponding
selective prediction task, where the predictive performance of a given model is evaluated for varying
expert referral rates. That is, for a given referral rate of τ ∈ [0, 1], a model’s predictive uncertainty is
used to identify the τ proportion of images in the evaluation set for which the model’s predictions
are most uncertain. Those images are referred to a medical professional for further review, and the
model is assessed on its predictions on the remaining (1− τ) proportion of images. By repeating this
process for all possible referral rates and assessing the model’s predictive performance on the retained
images, we estimate how reliable it would be in a safety-critical downstream task, where predictive
uncertainty estimates are used in conjunction with human expertise to avoid harmful predictions.

Importantly, selective prediction tolerates out-of-distribution examples. For example, even if un-
familiar vitreous hemorrhages appear in certain Severity Shift images (cf. Section 2.2), a model
with reliable uncertainty estimates will perform better in selective prediction by assigning these
images high epistemic (and predictive) uncertainty, therefore referring them to an expert at a lower τ .
Appendix A.6 discusses best- and worst-case uncertainty estimates for the selective prediction task.

To assess how well different models’ predictive uncertainty estimates can be used to separate correct
from incorrect diagnoses, we perform selective prediction on three different evaluation settings for
the prediction problems described in Sections 2.2 and 2.3, to account for the possibility that the
evaluation dataset may contain samples from the in-domain distribution, a shifted distribution, or
both.

2.5 Model Diagnostic: Predictive Uncertainty Histograms

We may also investigate how a model’s predictive uncertainty estimates vary with respect to the
ground-truth clinical label (0-to-4). For each task (Country or Severity Shift) and each uncertainty
quantification method (cf. Section 5), we bin examples by their ground-truth clinical label. Then, for
each (task, method, clinical label) tuple, we plot the distribution of predictive uncertainty estimates
for correctly and incorrectly predicted examples (in blue and red, respectively). See Appendix B.1
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for further setup details and plots for both tasks. A model that produces reliable uncertainty estimates
should assign low predictive uncertainty to examples that it classifies correctly (the blue distribution
should have most of its mass near x = 0) and high predictive uncertainty to examples that it classifies
incorrectly (the red distribution should have its mass concentrated at a higher x-value).

3 Related Work

RETINA builds on prior works that demonstrated the usefulness of predictive uncertainty estimates
in diabetic retinopathy detection and related downstream tasks [36]. We significantly extend the
empirical evaluation in Leibig et al. [36] by designing new prediction problems and corresponding
safety-critical downstream tasks for diabetic retinopathy detection, benchmarking a wide array of
Bayesian deep learning methods, and providing a modular, extensible, and easy-to-use codebase. We
also significantly extend Filos et al. [16] (of which this paper is a direct extension; with contributions
from some of the authors), which does not consider severity shifts, only compares two variational
inference methods, uses an outdated neural network architecture (with only ≈10% of the parameters
of the ResNet-50 architecture used in this work), and considers only a small subset of the evaluation
procedures included in RETINA (cf. Appendix B.4 for the full set of results).

Previous works have evaluated methods by predictive performance and quality of their predictive
uncertainty estimates on curated datasets such as CIFAR-10 and FashionMNIST [47, 48, 24, 52].
Some prior works provide datasets and benchmarks for robustness and uncertainty quantification in
real-world settings but have significant shortcomings. Le et al. [35] considers object detection using
a real-world dataset [20] but benchmarks only two methods, neither of which can quantify epistemic
uncertainty (cf. Section 4), and does not consider distribution shifts. Other works [5, 15] use methods
which quantify both epistemic and aleatoric uncertainty, and consider distribution shifts, but use
performance metrics which do not assess quality of uncertainty estimates, such as average precision
and log-likelihood (cf. Section 6.3). Finally, Koh et al. [33] considers real-world datasets in domain
adaptation problems, but restrictively assumes that the training data is composed of multiple training
distributions with domain labels, and does not take into account models’ predictive uncertainty.

In contrast, RETINA (i) considers real-world safety-critical tasks and accompanying uncertainty-aware
metrics in an important application domain, (ii) is composed of large amounts of high-dimensional
data (>80 GB), (iii) compares a larger set of methods than prior works and incorporates both aleatoric
and epistemic uncertainty, and is implemented in adherence to the Uncertainty Baselines repository3

practices for easy future use and extension, making it easier to benchmark other Bayesian deep
learning methods not only on the tasks presented but also on a range of other datasets.

4 Uncertainty Estimation

Predictive models’ total uncertainty can be decomposed into aleatoric and epistemic uncertainty. A
model’s aleatoric uncertainty is an estimate of the uncertainty inherent in the data (e.g., due to noisy
inputs or targets), whereas a model’s epistemic uncertainty is an estimate of the uncertainty due to
constraints on the model (e.g., due to model misspecification) or the training process (e.g., due to
convergence to bad local optima) [10]. Optimal uncertainty estimates would be perfectly correlated
with the model error. Hence, because both aleatoric and epistemic uncertainty may contribute to
an incorrect prediction, total uncertainty is our uncertainty measure of choice. For a model with
stochastic parameters Θ, pre-likelihood outputs f(X;Θ), and a likelihood function p(y∗ |x∗; θ),
the model’s predictive uncertainty can be decomposed as

H(E[p(y∗ | f(x∗;θ))])︸ ︷︷ ︸
Total Uncertainty

= E[H(p(y∗ | f(x∗;θ)))]︸ ︷︷ ︸
Aleatoric Uncertainty

+ I(y∗; Θ)︸ ︷︷ ︸
Epistemic Uncertainty

, (1)

where the expectation is taken with respect to the distribution over the model parameters,H(·) is the
entropy functional, and I(y∗; Θ) is the mutual information between the model parameters and its
predictions [9, 55].

3See https://github.com/google/uncertainty-baselines.
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In binary classification settings with classes {0, 1}, the total predictive uncertainty is given by

H(E[p(y∗ | f(x∗;θ))]) = −
∑

c∈{0,1}

E[p(y∗ = c | f(x∗;θ))] logE[p(y∗ = c | f(x∗;θ))], (2)

where f(x∗;θ) are logits and p(y∗ = c | f(x∗;θ)) is a binary cross-entropy likelihood function. The
total predictive uncertainty is high when either the aleatoric uncertainty is high (e.g., because the
input is noisy), or when the epistemic uncertainty is high (e.g., because the model has many possible
explanations for the input). In practice, the total predictive uncertainty H(E[p(y∗ | f(x∗;θ))]) is
computed with a Monte Carlo estimator E[p(y∗ | f(x∗;θ))] ≈ 1

S

∑S
i p(y∗ | f(x∗;θ(i))), where

parameter realizations {θ(i)}Si=1 are sampled from some distribution over the network parameters,
and p(y∗ | f(x∗;θ(i))) denotes the predictive distribution given parameter realization θ(i).

5 Methods

Estimating a model’s predictive uncertainty in terms of both aleatoric and epistemic uncertainty
requires a distribution over predictive functions. Such a distribution over predictive functions can
be obtained by treating the parameters of a neural network as random variables and inferring a
posterior distribution p(θ | D)—a distribution over the network parameters conditioned on a set
of training data D = (XD,yD)—according to the rules of Bayesian inference. Neural networks
with such distributions over the network parameters—referred to as a Bayesian neural networks
(BNN)—induce distributions over functions that are able to capture both aleatoric and epistemic
uncertainty [18, 38, 45]. Unfortunately, computing a posterior distribution over the parameters of a
neural network according to the rule of Bayesian inference is analytically intractable and requires
the use of approximate inference methods [18, 21, 25, 45, 50]. Below, we describe baseline and
state-of-the-art methods for which we implemented standardized and optimized runscripts that are
readily extensible for experimentation and deployment in application settings.

5.1 Maximum A Posteriori Estimation in Bayesian Neural Networks

As an alternative to inferring a posterior distribution over neural network parameters, maximum a
posteriori (MAP) estimation yields network parameter values equal to the mode of the exact posterior
distribution. For a prior distribution over network parameters with zero mean and precision λ, the
maximum a posteriori estimate is equal to the solution of the `2-regularized optimization problem
argminθ{− log p(yD | f(X;θ)) + λ||θ||22}, and as such is equivalent to parameter values obtained
by training a neural network with weight decay. Since MAP estimation yields a point estimate of
the MAP parameters, the MAP solution defines a deterministic neural network and is thus unable
to capture any epistemic uncertainty. In classification tasks, they represent aleatoric uncertainty
estimates via the predicted class probabilities [31]. We use neural networks with MAP estimation as a
baseline for the benchmark.

5.2 Variational Inference in Bayesian Neural Networks

Variational inference is an approximate inference method that seeks to sidestep the intractability
of exact posterior inference over the network parameters by framing posterior inference as a varia-
tional optimization problem. In particular, variational inference in neural networks seeks to find an
approximation to the posterior distribution over parameters by solving the optimization problem

argmaxq∈Q{Eq[log p(yD | f(XD;θ))]− DKL(q ‖ p)}, (3)

where Q is a variational family of distributions and p is a prior distribution.

Gaussian Mean-Field Variational Inference. If p =̇ pΘ and q =̇ qΘ are distributions over pa-
rameters, Q is the family of mean-field (i.e., fully-factorized) Gaussian distributions, and the prior
distribution over parameters pΘ is also a diagonal Gaussian, the resulting variational objective is
amenable to stochastic variational inference and can be optimized using stochastic gradient meth-
ods [6, 21, 25, 26, 59]. Henceforth, we refer to BNN inference methods that make these variational
assumptions as mean-field variational inference. To optimize this objective, the expectation is esti-
mated using Monte Carlo sampling and the network parameters are reparameterized as Θ =̇µ+σ�ε
with ε ∼ N (0, I). Throughout, we use the flipout estimator [61] to reduce the variance of the gradient
estimates, and temper the Kullback-Leibler divergence term in the variational objective [62].
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Radial-Gaussian Mean-Field Variational Inference. Radial-Gaussian mean-field variational
inference [14] uses the same variational objective, prior, and variational distribution as standard
Gaussian mean-field variational inference, but uses an alternative gradient estimator to obtain an
improved signal-to-noise ratio in the gradient estimates. Specifically, the network parameters are
reparameterized as Θ =̇µ+ σ � ε

||ε||2 · |r| with ε ∼ N (0, I) and r ∼ N (0, 1).

Function-Space Variational Inference. Rudner et al. [52] proposed a tractable function-space
variational objective for Bayesian neural networks. If p =̇ pf([XD,XI ];Θ) and q =̇ qf([XD,XI ];Θ) are
distributions over functions evaluated at the training inputs XD and at a set of inducing inputs XI ,Q
is the family of distributions over functions induced by some distribution over network parameters,
and the Kullback-Leibler divergence between distributions over functions evaluated at [XD,XI ]
is approximated by a linearization of the neural network mapping, then the resulting variational
objective is amenable to stochastic variational inference [52, 53]. In RETINA, we define a Gaussian
mean-field distribution over the final layer of the neural network and reparameterize the parameters
as Θ =̇µ+ σ � ε with ε ∼ N (0, I).

Monte Carlo Dropout. Gal and Ghahramani [19] showed that training a deterministic neu-
ral network with `2- and dropout regularization [57], that is, solving the optimization problem
argminθ{−Eq[log p(yD | f(X;θ))] + λ||θ||22}, where qΘ is the distribution over parameters ob-
tained by applying dropout with a given dropout rate, approximately corresponds to variational
inference in a Bayesian neural network. To sample from the approximate posterior predictive distri-
bution, dropout is applied to the deterministic network parameters. To optimize the objective above,
the expectation is estimated using a single Monte Carlo sample (i.e., by applying dropout).

Rank-1 Parameterization. Dusenberry et al. [11] propose a rank-1 parameterization of Bayesian
neural networks, where each weight matrix involves only a distribution on a rank-1 subspace, that is,
each stochastic weight matrix is defined as W′

k = Wk � rks>k , where Wk is a deterministic set of
weights, and rk and sk are random vectors of parameters. Variational distributions over rk and sk and
a Dirac delta distribution over Wk for all layers k are obtained by optimizing a variational objective.

5.3 Model Ensembling

Deep Ensembles. A deep ensemble [34] is a mixture of multiple independently-trained deterministic
neural networks. As such, unlike BNNs, deep ensembles do not explicitly infer a distribution over the
parameters of a single neural network. Instead, they marginalize over multiple deterministic models
to obtain a predictive distribution that captures both aleatoric and epistemic uncertainty. We construct
deep ensembles from multiple MAP neural networks trained with different random seeds.

Ensembles of Bayesian Neural Networks. Ensembles of Bayesian neural networks [16, 52, 56]
are mixtures of multiple independently-trained Bayesian neural networks. They can account for the
possibility that any individual approximate posterior distribution obtained via variational inference
may be a poor approximation to the exact posterior distribution and may hence yield a poor predictive
distribution. A common issue in the Bayesian deep learning literature is that ensembles are frequently
compared to single models, often due to computational constraints. In RETINA, we provide a unified
comparison and construct ensembles for all predictive models, including BNNs.

6 RETINA Benchmark
6.1 Evaluation Protocol

Network Architecture. We use a ResNet-50 architecture for all experiments [22]. A sigmoid trans-
formation is applied to the final linear layer of all networks to obtain class probabilities corresponding
to the outcomes of the binary classification problems described in Sections 2.2 and 2.3.

Validation Data, Hyperparameter Tuning, and Monte Carlo Estimation. Reliable uncertainty
estimation on data points from shifted distributions is the central challenge for Bayesian deep learning
methods. In training and evaluating such methods, practitioners must decide how they should choose
validation data: specifically, in which settings they would benefit from using “out-of-distribution”
data points for hyperparameter tuning. We consider two real-world settings: (i) No distributionally
shifted data is available during hyperparameter tuning. This setting reflects scenarios in which
practitioners do not know what data or distributional shift they might encounter during deployment
and hence cannot make assumptions about it at training time. (ii) Shifted validation data is available
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(a) ROC: In-Domain
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(b) ROC: Joint
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(c) Selective Prediction
Accuracy: In-Domain
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(d) Selective Prediction
Accuracy: Severity Shift

Figure 4: Severity Shift. We jointly assess model predictive performance and uncertainty quantification on
the in-domain test dataset composed only of cases with either no, mild, or moderate diabetic retinopathy, and
the Severity Shift evaluation set composed only of severe and proliferative cases. Left: The receiver operating
characteristic curve (ROC) for (a) in-domain diagnosis and for (b) a joint dataset composed of examples from
both the in-domain and Severity Shift evaluation sets. The dot in black denotes the NHS-recommended 85%
sensitivity and 80% specificity ratios [63]. Right: Selective prediction on accuracy in the (c) in-domain and (d)
Severity Shift settings. Shading denotes standard error computed over six random seeds. See Section 6.2.

for hyperparameter tuning. This setting reflects scenarios in which practitioners may intend to train
a model on data collected from one subpopulation and deploy it on data collected from another
subpopulation, but are able to acquire a small number of examples from the deployment subpopulation
for use in tuning to improve generalization. Prior works on out-of-distribution detection [23] and
uncertainty quantification [39] have considered setting (ii), but have not provided a comparative
analysis, which would inform practitioners on when they ought to collect shifted validation data for
tuning. We rigorously investigate the two settings across downstream tasks in Appendix B.4. In the
main paper, we report results for models tuned under setting (i). Lastly, for all evaluations, we use
five Monte Carlo samples per model to estimate predictive means (e.g., the MC DROPOUT ENSEMBLE
with K = 3 ensemble members uses a total of S = 15 Monte Carlo samples).

The aim of the RETINA Benchmark is to adequately represent the challenges of real-world distri-
butional shift, and rigorously assess the reliability of (Bayesian) uncertainty quantification in deep
learning. Our selective prediction downstream tasks demonstrate two real-world use cases:

• Tuning Referral Thresholds. On the Severity Shift task, models demonstrate reasonable uncer-
tainty estimates: predictive performance increases monotonically with an increasing referral rate τ .
Therefore, practitioners can infer which referral rate will lead to a desired predictive performance,
or infer the performance for a predetermined referral rate (i.e., respecting a budget of expert time).

• Detecting Low-Quality Predictive Uncertainty. On the Country Shift task, most methods fail:
predictive performance on the shifted dataset declines as τ increases, indicating that the quality of
uncertainty estimates is no better than random referral. Importantly, this failure is not reflected in
the standard performance measure for retinopathy diagnosis, the receiver operating characteristic
(ROC) curve [36]—the area under the ROC curve (AUC) is higher on the shifted evaluation dataset
than the in-domain dataset—meaning that a practitioner using only AUC might wrongly conclude
that these models would perform well as part of an automated diagnosis pipeline (cf. Figure 2) on
distributionally shifted data.

For each method, we assess both AUC and accuracy as a function of the referral rate τ , evaluating the
models’ predictions for the (1− τ) proportion of cases on which they are most certain, as indicated
by their predictive uncertainty estimates. We additionally examine predictive uncertainty histograms
for each task, method, and ground-truth clinical label (cf. Section 2.5, Appendix B.1) to determine if
methods have particularly good or bad uncertainty estimates at particular severity levels. We also
investigate other metrics to assess the reliability of models’ uncertainty estimates, including expected
calibration error and out-of-distribution detection AUC, in Appendix B.4.

6.2 Severity Shift

On the Severity Shift task (Figure 4, Table 2), models are trained on EyePACS images that show signs
of at most moderate diabetic retinopathy. We assess their ability to generalize to images showing
signs of severe or proliferative retinopathy. Surprisingly, we find that models generalize well from
cases with no worse than moderate diabetic retinopathy (in-domain) (Figure 4(a)) to severe cases
(Figure 4(b)), improving their AUC under the distribution shift.
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(b) ROC: Country Shift
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(d) Selective Prediction
AUC: Country Shift

Figure 5: Country Shift. We jointly assess model predictive performance and uncertainty quantification on
both in-domain and distributionally shifted data. Left: The receiver operating characteristic curve (ROC) for
in-population diagnosis on the (a) EyePACS [13] test set and for (b) changing medical equipment and patient
populations on the APTOS [3] test set. The dot in black denotes the NHS-recommended 85% sensitivity and
80% specificity ratios [63]. Right: selective prediction on AUC in the (c) EyePACS [13] and the (d) APTOS [3]
settings. Shading denotes standard error computed over six random seeds. See Section 6.3.

Methods Generalize Reasonably Well Under Severity Shift. Reliable predictive uncertainty
estimates correlate with predictive error, and therefore we would expect a model’s performance (e.g.,
measured in terms of accuracy or AUC) to increase as more examples on which the model exhibits
high uncertainty are referred to an expert. On both the in-domain and Severity Shift evaluation sets
(Figures 4(c) and (d)), models demonstrate reasonable uncertainty in that accuracy monotonically
increases as τ increases. This highlights two ways that practitioners may use selective prediction
to prepare models for a real-world deployment in the presence of potential distribution shifts. First,
given a performance target (e.g., ≥ 95% accuracy) the referral curve can be used to determine the
minimum τ achieving this target, estimating a medical experts’ workload. Second, for a maximum
acceptable referral rate (e.g., a clinic has medical experts to handle referral of τ ≤ 20% of patients)
the referral curve can be used to determine the optimal τ value and the corresponding performance.
For monotonically increasing referral curves, the optimal τ is uniquely the maximum acceptable
referral rate.

Taking into Account Epistemic Uncertainty Can Improve Reliability. On the Severity Shift
task (Figure 4(d)) many models achieve near-perfect accuracy well before all examples have been
referred. For example, MC DROPOUT, which incorporates both epistemic and aleatoric uncertainty
(cf. Section 4), achieves 100% predictive accuracy near the 50% referral rate—nearly 20% lower
than the referral rate at which a deterministic neural network (MAP), which only represents aleatoric
uncertainty, achieves this level of accuracy. Other variational inference methods underperform MAP,
underscoring the importance of continued work on approximate inference in BNNs.

Predictive Uncertainty Histograms Identify Harmful Uncertainty Quantification. In Figure 8
(Appendix B.1), we find that MAP, RANK-1, and MFVI generate worse uncertainty estimates than
other methods on the shifted data (labels 3 and 4); many of their incorrect predictions are assigned low
predictive uncertainty (i.e., the red distribution is concentrated near 0). These include false negatives
with low uncertainty which are particularly dangerous in automated diagnosis settings (cf. Figure 2),
as a medical expert would not be able to catch the model’s failure to recognize the condition.

6.3 Country Shift

In the Country Shift task (Figure 5, Table 1), we consider the performance of models trained on the
US EyePACS [13] dataset and evaluated under distributional shift, on the Indian APTOS dataset [3].
The left two plots of Figure 5 present the ROC curves of methods evaluated on the in-domain (a) and
Country Shift (b) evaluation datasets. The black dot in Figures 5(a) and (b) denotes the minimum
sensitivity–specificity threshold for the deployment of automated diabetic retinopathy diagnosis
systems set by the British National Health Service (NHS) [63]. On the in-domain test dataset, only
the MC DROPOUT variants meet the NHS standard; on the APTOS dataset, essentially all methods
surpass the standard.4 Hence, practitioners using only the ROC curve and its AUC (cf. Table 1) might
conclude that their model generalizes under the distribution shift although the ROC curve provides
no information on the application of uncertainty estimates to real-world scenarios (cf. Figure 2).

Selective Prediction Can Indicate Failures in Uncertainty Estimation. Unlike the ROC curve,
the selective prediction metric conveys how a model would perform in an automated diagnosis

4We investigate this in Appendix B.5 and find that class proportions do not account for the improved
predictive performance on APTOS, implying other contributing factors such as demographics or camera type.
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Table 1: Country Shift. Prediction and uncertainty quality of baseline methods in terms of the area under the
receiver operating characteristic curve (AUC) and classification accuracy, as a function of the proportion of data
referred to a medical expert. All methods are tuned on in-domain validation AUC, and ensembles have K = 3
constituent models (true for all subsequent tables unless specified otherwise). On in-domain data, MC DROPOUT
performs best across all thresholds. On distributionally shifted data, no method consistently performs best.

No Referral 50% Data Referred 70% Data Referred

Method AUC (%) ↑ Accuracy (%) ↑ AUC (%) ↑ Accuracy (%) ↑ AUC (%) ↑ Accuracy ↑
EyePACS Dataset (In-Domain)

MAP (Deterministic) 87.4±1.3 88.6±0.7 91.1±1.8 95.9±0.4 94.9±1.1 96.5±0.3
MFVI 83.3±0.2 85.7±0.1 85.5±0.7 94.5±0.1 88.2±0.7 95.9±0.1
RADIAL-MFVI 83.2±0.5 74.2±5.0 88.9±0.9 81.8±6.0 91.2±1.3 83.8±5.5
FSVI 88.5±0.1 89.8±0.0 91.0±0.4 96.4±0.0 94.3±0.3 97.2±0.1
MC DROPOUT 91.4±0.2 90.9±0.1 95.3±0.2 97.4±0.1 97.4±0.1 98.1±0.0
RANK-1 85.6±1.4 87.7±0.8 87.1±2.3 95.3±0.5 90.9±2.0 96.4±0.4
DEEP ENSEMBLE 90.3±0.2 90.3±0.3 91.7±0.6 97.2±0.0 95.0±0.5 97.9±0.0
MFVI ENSEMBLE 85.4±0.0 87.8±0.0 86.3±0.4 95.4±0.0 89.2±0.4 96.7±0.1
RADIAL-MFVI ENSEMBLE 84.9±0.1 74.2±1.5 91.4±0.2 83.4±1.7 93.3±0.3 85.9±1.6
FSVI ENSEMBLE 90.3±0.1 90.6±0.0 92.1±0.2 97.1±0.0 95.2±0.2 97.8±0.1
MC DROPOUT ENSEMBLE 92.5±0.0 91.6±0.0 95.8±0.1 97.8±0.0 97.7±0.1 98.4±0.0

RANK-1 ENSEMBLE 89.5±0.8 89.3±0.4 88.5±1.3 96.9±0.3 91.6±1.2 97.6±0.3

APTOS 2019 Dataset (Population Shift)

MAP (Deterministic) 92.2±0.2 86.2±0.6 80.1±3.6 87.6±1.5 55.4±4.3 85.4±1.2
MFVI 91.4±0.2 84.1±0.3 93.8±0.4 92.1±0.5 93.0±0.6 92.7±0.5
RADIAL-MFVI 90.7±0.7 71.8±4.6 82.0±2.5 81.5±2.7 66.4±2.1 85.9±1.0
FSVI 94.1±0.1 87.6±0.5 90.6±0.9 90.7±0.7 77.2±4.6 89.8±0.3
MC DROPOUT 94.0±0.2 86.8±0.2 87.4±0.3 88.1±0.2 65.3±1.7 88.2±0.4
RANK-1 92.5±0.3 86.2±0.5 90.1±2.5 91.4±1.1 75.1±7.8 89.5±1.5
DEEP ENSEMBLE 94.2±0.2 87.5±0.1 91.2±1.9 92.4±0.9 67.4±7.3 90.1±1.2
MFVI ENSEMBLE 93.2±0.1 87.0±0.2 94.9±0.3 93.7±0.3 94.2±0.3 94.0±0.3

RADIAL-MFVI ENSEMBLE 91.8±0.2 69.0±1.9 78.6±0.6 79.8±0.9 60.9±0.3 86.7±0.2
FSVI ENSEMBLE 94.6±0.1 88.9±0.2 90.7±0.5 91.1±0.6 74.1±3.4 89.8±0.2
MC DROPOUT ENSEMBLE 94.1±0.1 87.6±0.1 86.8±0.2 88.0±0.2 62.3±0.4 87.7±0.2
RANK-1 ENSEMBLE 94.1±0.2 88.3±0.2 94.9±0.4 93.5±0.3 92.4±1.5 93.8±0.3

pipeline in which the reliability of models’ uncertainty estimates directly impacts performance
(cf. Figure 2). Recall that if a model generates reliable predictive uncertainty estimates, the AUC
should increase as more patients with uncertain predictions are referred for expert review. This
mechanism is illustrated well by the application of MFVI to the Country Shift task (Figure 5(d) and
Table 1), since the AUC improves from an initial 91.4% up to 93.8% when referring 50% of the
patients, but then deteriorates as the model is forced to refer patients on which it is both certain and
correct. In contrast, other models’ AUCs trend downwards; using uncertainty to refer patients actively
hurts model performance on this shifted dataset.

Different Prediction Tasks Yield Different Method Rankings. In Figure 5(c), variational infer-
ence methods, including MC DROPOUT, FSVI, and DEEP ENSEMBLE, outperform MAP inference. This
highlights that rankings are task-dependent, and underscores the importance of generic evaluation
frameworks to enable rapid benchmarking on many tasks.

7 Conclusions

The deployment of modern machine learning models in safety-critical real-world settings necessitates
trust in the reliability of the models’ predictions.

To encourage the development of Bayesian deep learning methods that are capable of generating
reliable uncertainty estimates about their predictions, we introduced the RETINA Benchmark, a
set of safety-critical real-world clinical prediction tasks which highlight various shortcomings of
existing uncertainty quantification methods. We demonstrate that by taking into account the quality
of predictive uncertainty estimates, selective prediction can help identify whether methods might fail
when deployed as part of an automated diagnosis pipeline (cf. Figure 2), whereas standard metrics
such as ROC curves cannot.

While no single set of benchmarking tasks is a panacea, we hope that the tasks and evaluation methods
presented in RETINA will significantly lower the barrier for assessing the reliability of Bayesian deep
learning methods on safety-critical real-world prediction tasks.
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