
Under review as a conference paper at ICLR 2024

Human Pose Estimation via Parse Graph of Body Struc-
ture

Anonymous authors
Paper under double-blind review

Abstract

When observing a person’s body, humans can extract the structured repre-
sentation of the body called a parse graph, which includes the hierarchical
decompositions from the entire body to parts and primitives and the con-
text relations by horizontal links between the body parts. This ability helps
humans better locate body structures at different levels. In order for the
model to have this ability for human pose estimation (HPE), we design a
hierarchical network to model the context relations and hierarchical struc-
ture in the parsing graph by convolutional neural networks. It overcomes
the problem that most methods ignore context relations in the inference
of hierarchical structure for HPE. Our network contains bottom-up and
top-down stages. In the bottom-up stage, the structural features of the
hierarchy are captured from primitives to parts and the entire body. Then
in the top-down stage, with the context information of each body part, the
structural features of the body parts are refined separately rather than to-
gether from the entire body to parts and primitives. Experiments show that
our model enhances the reasonableness of predictions and achieves superior
results on the COCO keypoint detection and MPII human pose datasets.

1 Introduction

The main task of 2D human pose estimation (HPE) is to locate the joints position of each
person from a single image, such as wrists, ankles, knees, etc. It is divided into single-
person pose estimation and multi-person pose estimation. We focus on single-person pose
estimation.
When watching a person’s body, humans can quickly extract its structured representation,
which can be represented by a parse graph. It enables humans to better finish the task
of HPE. The parse graph includes hierarchical structure in vertical direction and context
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Figure 1: (a) The parse graph of body structure. It includes a tree-structured decomposition
in vertical arrows and context relations in horizontal arrows. (b) Overview of our method.
It includes bottom-up and top-down two stages. In the bottom-up stage, the network learns
hierarchical structure features supervised by heatmaps. In the top-down stage, the context
information and coarse prediction results of each body part is obtained from the bottom-up
stage (horizontal red dotted line).
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relations in horizontal direction (Zhu et al., 2007). The hierarchical structure is a tree
structure that represents the hierarchical decompositions from the entire body to parts and
primitives, which allows models to capture high-order relationships between parts (Tian
et al., 2012) and prevents models over-fit due to the existence of structural imformation (Zhu
et al., 2007). The context relations is the relation between parts at the same level such as
spatial and functional relations, which ensures good spatial relationships between parts at
the same level (Zhu et al., 2007).
The hierarchical structure and the context relations have been used for some tasks, such
as object detection (Chen et al., 2014; Sudderth et al., 2005; Zhu et al., 2010), segmenta-
tion (Ding et al., 2023) and HPE (Tang et al., 2018; Yang & Ramanan, 2012; Chen & Yuille,
2014; Chu et al., 2016b; Tompson et al., 2014; Zhang et al., 2019; Yang et al., 2016; Chu
et al., 2016a; De Bem et al., 2018; Tian et al., 2012; Wang et al., 2011; Rothrock et al.,
2013; Sun & Savarese, 2011; Park et al., 2017). However, most of them (Chen et al., 2014;
Zhu et al., 2010; Ding et al., 2023; Tang et al., 2018; Yang & Ramanan, 2012; Chen &
Yuille, 2014; Chu et al., 2016b; Tompson et al., 2014; Zhang et al., 2019; Yang et al., 2016;
Chu et al., 2016a; De Bem et al., 2018; Tian et al., 2012; Sun & Savarese, 2011) always
ignore one of the Hierarchical structure and the context relations or learn them implicitly.
Tang et al. (Tang et al., 2018) argue that some method (Wang et al., 2011; Rothrock et al.,
2013; Sun & Savarese, 2011; Park et al., 2017; Johnson & Everingham, 2010) have diffi-
culty describing the complex compositional relationships among body parts due to some
unreasonable assumptions. Moreover, Some methods use simple algorithms to model the
hierarchical structure and the context relations, which has poor performance in complex
scenarios. For example, Chen et al. (Chen et al., 2014) uses segDPM (Fidler et al., 2013) to
model various parts and Sudderth et al. (Sudderth et al., 2005) uses Gibbs sampler to learn-
ing the parameters of hierarchical probabilistic model. Fortunately, in recent years, many
methods (Tang et al., 2018; De Bem et al., 2018; Zhuang et al., 2019; Ai et al., 2017; Jun
et al., 2020) make appearance representations for body parts and use them for supervision
of convolutional neural networks (CNNs). In this way, the hierarchical structure and the
context relations can be modeled easily.
To solve the above issues, we design a hierarchical network for HPE based on the parse graph
of body structure. The parse graph of body structure we designed is shown in Fig. 1(a),
it contains a hierarchical structure and context relations. With the parse graph, the in-
formation about the entire body can be obtained by recursively predicting the state of
their sub-parts in a bottom-up way, and then, with context relations, low-level parts can
be refined by updating high-level parts states in advance in a top-down way. This global
adjustment enables pose estimates to optimally satisfy the constraints of hierarchical and
context relations.
An overview of our approach as shown in Fig. 1(b), which includes bottom-up/top-down
inference stages. In the bottom-up stage, the features and coarse prediction results of
hierarchical structures are obtained. More importantly, in the top-down stage, different from
other methods, our network learns the features of the human body structure by grouping
so multiple branches structure is adopted, which can avoid over-fit. Each branch obtains
corresponding context information and coarse prediction results from the previous stage to
help refine the corresponding part. Our main contributions are as follows:

• We design a novel and valid architecture to learn the hierarchical structure and
context relations in the parse graph via CNNs.

• We propose a novel approach to model context relations for each body part and
obtain the context information of each body part to help refine them.

• Our proposed approach is highly interpretable, and the effectiveness of our method
is demonstrated on the COCO keypoint detection (Lin et al., 2014), MPII human
pose (Andriluka et al., 2014) and Crowdpose (Li et al., 2019) datasets.
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2 Related work

Parse graphs. As shown in Fig. 1(a), the parse graph includes a tree-structured decomposi-
tion in the vertical direction and context relations, such as spatial and functional relations,
in the horizontal direction (Zhu et al., 2007). Some methods (Han & Zhu, 2008; Wu &
Zhu, 2011; Zhu et al., 2007) parse images into their corresponding visual patterns and make
inference through bottom-up and top-down stages, and are exploited in HPE (Yang & Ra-
manan, 2012; Chen & Yuille, 2014; Chu et al., 2016b; Tompson et al., 2014; Zhang et al.,
2019; Yang et al., 2016; Chu et al., 2016a; Tian et al., 2012; Wang et al., 2011; Rothrock
et al., 2013; Sun & Savarese, 2011; Park et al., 2017). But prior methods fail to perform well
due to simple modeling for hierarchical structure. Although this problem has been recently
addressed by the method (Tang et al., 2018; De Bem et al., 2018), it is easy to over-fit due
to shared features for all structures at the same level and ignores the modeling of context
relations. According to the parse graph, we learn unique features for each body part and
design a multiscale context module to obtain context relations and information of each body
part through the cosine similarity between structural feature maps.
Human pose estimation. With the rapid development of CNNs, many excellent HPE
methods based on CNNs have been designed by researchers, and lots of great backbones
have emerged, such as CPM (Wei et al., 2016), Hourglass Network (Newell et al., 2016),
FPN (Yang et al., 2017a), CPN (Chen et al., 2018), Simple Baseline (Xiao et al., 2018),
HRNet (Sun et al., 2019) and RSN (Cai et al., 2020). However, these models’ interpretability
becomes especially difficult as their backbones become more complex. In contrast, our model
is simply extended based on HRNet and uses heatmaps at different levels as intermediate
supervision at different layers of the network so the interpretability of our model is stronger.
Appearance representations. There are three kinds of appearance representations,
namely joint, skeleton, and body. (i) Joint appearance. Many methods (Sun et al., 2019;
Xiao et al., 2018; De Bem et al., 2018; Tang et al., 2018; Wang et al., 2019) generate isotropic
Gaussians centered at each joint. (ii) Skeleton appearance. Jun et al. (Jun et al., 2020)
generate a binary image, where the pixel corresponding to the line connecting joint i and j
is 1, and the other pixels are 0. Ai et al. (Ai et al., 2017) draw a line p connecting each pair
of joints, and then use it as the center of a Gaussian distribution. De Bem et al. (De Bem
et al., 2018) use the midpoint of each pair of joints as the center of the Gaussian distribu-
tion. (iii) Entire body appearance. De Bem et al. (De Bem et al., 2018) use the mean of
annotated joint centers as body centers and also as Gaussian distribution centers. In our
work, Gaussian distribution heatmaps are made for the network supervision.

3 Our approach

In this section, we will detail how to design the hierarchical network for HPE. First, we for-
mulate the parse graph of body structure. Second, we will elaborate on the specific method
of network construction. Thirdly, we describe how to generate appearance representations.
Finally, we illustrate how to design multiscale context and prior fusion modules.

3.1 Parse graphs

The parse graph of body structure is shown in Fig. 1(a) and it consists of a 4-tuple
(V,E, ϕand, ϕleaf ). (V,E) and (ϕand, ϕleaf ) represent the parse graph structure and poten-
tial function respectively, where V = V and ∪ V leaf . V and combine sub-parts into high-level
parts according to certain rules (Zhu et al., 2007), V leaf represents the lowest-level parts
and E represents the edge of the parse graph. For HPE, A state variable wu can be repre-
sented by position pu and type tu: wu = {pu, tu} , u ∈ V . Let Θ denote the set of all state
variables in the model, and it can be expressed as:

P (Θ|I) = 1

K
exp {−T (Θ, I)} (1)
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where T (Θ, I) is the energy function, K is the partition function, and I is the input image.
For convenience, we discard I and let G(Θ) = −T (Θ, I). G(Θ) is expressed as:

G(Θ) =
∑

u∈V leaf

ϕleaf
u (wu, I) +

∑
u∈V and

ϕand
u (wu, {wv}v∈ch(u)) (2)

where ch(u) denotes the set of children of node u. The work of first term is a detector. The
second denotes the higher-order potential function measuring the state compatibility among
part u and its child parts {v : v ∈ ch(u)}.
Using the parse graph, the optimal state of the input image I can be efficiently calculated
in bottom-up and top-down ways. The maximum score G(Θ) in the bottom-up stage can
be formulated as:

(Leaf)G↑
u = ϕleaf

u (wu, I) (3)

(And)G↑
u =

∑
v∈ch(u)

max
wv

[ϕand
u,v (wu, wv) +G↑

v(wv)] (4)

where G↑
u is the maximum value of the subgraph composed of node u and all its subgraphs

v, the state of the node u is wu, and Eq. 3 is the boundary condition.
The optimal state for node v in the top-down stage, can be formulated as:

(Root)w∗
u = argmaxwuG

↓
u(wu) ≡ argmaxwuG

↑
u(wu) (5)

(Non− root)w∗
v = argmaxwv

G↓
v(wv) ≡ argmaxwv

[ϕand
u,v (w

∗
u, {wh}h∈Vs

) +G↑
v(wv)] (6)

where node u in Eq. 5 is the only parent node of node v, G↑
u(wu) and G↑

v(wv) are acquired
from the bottom-up stage, G↓

u(wu) and G↓
v(wv) represent the refinement score graphs of

nodes u and v respectively, and w∗
u and w∗

v are the optimal states of u and v respectively.
Especially, Vs is a set containing all nodes of the same level as node v, including v. In
other words, context relations between node v and other nodes at the same level need to be
considered when refining the score graph of node v. Eq. 5 is the boundary condition.
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Figure 2: The framework of our method. In the top-down stage, the context information
is obtained by filtering and combining the feature maps FS or FJ through the multiscale
context module. In addition, the prior fusion module is used to fuse the coarse prediction
results from the bottom-up stage with corresponding refinement branch in the top-down
stage.
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(a) (b) (c)

Figure 3: The 2D Gaussian heatmaps of each structure. For display convenience, we add
together the heatmaps of all structures at the same level. (a), (b) and (c) are the 2D
Gaussian heatmap of joints, skeleton and body respectively.

3.2 Network architecture

Our network follows the bottom-up and top-down learning method (Tang et al., 2018). The
difference is that in the top-down stage, we use different branches to refine each structure
body part and more importantly model context relations and obtain context information.
The framework of our method is shown in Fig. 2, where the yellow CNN module is the
convolution and multiscale fusion operations in HRNet. In the bottom-up stage, we obtain
different levels of structural features FJ , FS and FB through supervision and the context
information of each joint and skeleton part is obtained from FJ and FS respectively through
the multiscale context module. In the top-down stage, there are N branches, where N = 5,
refining different parts of body respectively. Each branch contains two modules, namely
multiscale context and prior fusion modules. The multiscale context module allows each
branch to utilize features of other body parts to help the refinement. The prior fusion
module combines the coarse prediction results from the bottom-up stage and corresponding
branches of the top-down stage to help the refinement. The two modules will be introduced
in detail later. We use the prediction results of each branch in the top-down stage as the
final result for HPE.

3.3 Appearance representations

As shown in Fig. 3, we use Gaussian heatmaps to represent structural appearance for the
supervision of our network following details of how we generate heatmaps of different hier-
archies.
Primitives. We follow the method of HRNet to generate isotropic Gaussian distribution
heatmaps for each joint. Let Ji represent the i-th joint, the Gaussian heatmap of Ji is:

HJi
= e

−
(X−Pix)2+(Y −Piy)2

2σ2
i

(7)

where X, Y are the horizontal and vertical coordinate sets of all points in the Gaussian
distribution, respectively, Pix and Piy are the horizontal and vertical coordinates of Ji in
the image, and σi is the standard deviation.
Parts. We generate an elliptical Gaussian for each bone to represent its appearance features
and add them to get the skeleton’s appearance representation. The two joints of the i-th
bone Si are Ji1 and Ji2 respectively, and the direction of the bone Gaussian heatmap is
consistent with the direction of Ji1 and Ji2. The Gaussian heatmap of the bone can be
formulated as:

HSi
= e

(− (X−Cix)2

2σ2
ix

+
(Y −Ciy)2

2σ2
iy

) (8)

where X, Y are the horizontal and vertical coordinate sets of all points in the Gaussian
distribution, respectively, Cix and Ciy are the horizontal and vertical coordinates of the
center point Ci of the i-th bone Si, and σix is proportional to the Euclidean distance
||Ji1 − Ji2|| and set σiy = kσix, where k = 0.4.
Object. For single-person pose estimation, we need a box to locate the position of a person
and it usually comes from the result of object detection or manual annotation. The center
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of the box is regarded as the center Cb of the Gaussian distribution and then the Gaussian
heatmap of the entire body is expressed as:

HB = e
(− (X−Cbx)2

2σ2
bx

+
(Y −Cby)2

2σ2
by

) (9)

where X, Y are the horizontal and vertical coordinate sets of all points in the Gaussian
distribution, respectively, Cbx and Cby are the horizontal and vertical coordinates of Cb,
and σbx and σby are proportional to the maximum difference in the horizontal and vertical
coordinates of annotated joints, respectively.

3.4 Mutilscale context and prior fusion modules

Mutilscale context module. This module is mainly used to model the context relations
and get the context information of each structure. Intuitively, the parts of our body are
interconnected, just different in strength and weakness. Therefore, it is very necessary to
model the relation between various parts.
Considering that the scale of each person in the image is variable, we alleviate this problem
by computing context information at different scales. As shown in Fig. 4(a), we first down-
sample the feature maps FJ , F

′

Ji ∈ RC×H×W , where i ∈ 1, 2..., N , and get feature maps of
different scales. Then the context information of different scales can be obtained through
the calculation of the context module. Finally, the context information of different scales is
up-sampled to the same resolution 64× 64 and added to obtain multiscale context informa-
tion. The context module mainly calculates cosine similarity of each element in two inputs.
They are first reshaped into a, a

′ ∈ RL×C , L = (H/n) × (W/n). The context relations can
be expressed as:

s = a× (a
′
)T (10)

where × represents matrix multiplication and s ∈ RL×L. After normalization, the context
information as is obtained,

as = aT × s (11)
where as ∈ RC×L. It can be seen that the context information comes from FJ or FS

in the bottom-up stage after filtering and combining elements. The context relations and
information of each skeleton part are available in the same way.
Prior fusion module. As shown in Fig. 4(b), this module has two inputs, such as FJ1

and coarse prediction results belonging to part 1 of joints. The coarse prediction results
from the bottom-up stage are fused with the feature map after the first RB module in the
corresponding branches of the top-down stage after raising the dimension to preserve the
coarse prediction results.
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Figure 4: (a) The design of the multiscalse context module. Taking joints as an example, FJ

is a feature map of all joints and F
′

Ji is a feature map of the i-part joint. The core part of
the multiscale context module is the context module in the red dotted box. It is responsible
for obtaining context relations and information by computing the cosine similarity of each
element in the FJ_nx and F

′

Ji_nx, where n is the downsampling multiple. (b) The design
of the prior fusion module. RB is a residual block (He et al., 2016).
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Table 1: Comparisons on the COCO validation set.
Method Backbone Input size MAP MAR

SimpleBaseline (Xiao et al., 2018) ResNet-152 256×192 72.0 77.8
FEMSFF (Cao et al., 2023) ResNet-101 256×192 72.5 -
MSPENet (Xu et al., 2023) ResNet-50 256×192 72.7 78.3

HPnet (Li et al., 2023) ResNet-152 256×192 73.7 -
GMSFF&SMICM (Zhao et al., 2021) HRNet-W32 256×192 74.9 80.3

HR-ARNet (Wang et al., 2021) HRNet-W32 256×192 74.9 80.3
EMpose (Yue et al., 2021) HRNet-W32 256×192 75.0 80.2
OASNet (Zhou et al., 2020) HRNet-W32 256×192 75.0 80.4

DLIFP (Zhang & Chen, 2023) HRNet-W32 256×192 75.0 -
HRNet (Sun et al., 2019) HRNet-W32 256×192 74.4 79.8

VITPose-B (Xu et al., 2022) HRNet-W32 256×192 75.8 81.1
Ours HRNet-W32 256×192 75.1 80.2

FEM&MSFF (Cao et al., 2023) ResNet-101 384×288 74.5 -
SimpleBaseline (Xiao et al., 2018) ResNet-152 384×288 74.3 79.7

HPnet (Li et al., 2023) ResNet-152 384×288 75.6 -
HR-ARNet (Wang et al., 2021) HRNet-W32 384×288 75.9 90.9

HRNet (Sun et al., 2019) HRNet-W32 384×288 75.8 81.0
Ours HRNet-W32 384×288 76.3 81.0

3
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et-W

32
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urs

Figure 5: The first line is the result of HRNet and the second line is the result of our method.
Obvious erroneous predictions are marked with a yellow oval.

4 Experiments

4.1 Datasets and evaluation methods

Datasets. Our approach is trained and tested on two HPE benchmark datasets: the COCO
keypoint detection, Crowdpose and MPII Human Pose datasets. There are over 200k images
and 250k person instances labeled with 17 joints in the COCO keypoint detection dataset,
with 57k images of training, 5k images of validation, and 20k images of testing. There
are about 25k images and 40k annotation samples with 16 joints per instance in the MPII
Human Pose dataset, with 28k of training and 11k of testing.
Evaluation methods. For COCO or Crowdpose, we use the mean average precision (MAP)
and mean average recall (MAR) as evaluation indicators. For MPII, the PCKh score is used
as evaluation indicators.

4.2 Implementation details

We follow the top-down method for HPE. The training samples are the cropped images
with single person. For the COCO keypoint detection dataset, all input images are resized
into 256× 192 or 384× 288 resolution. In verifying and testing, we use the detected person
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Table 2: Comparisons on the COCO test-dev set.
Method Backbone Input size MAP MAR

FEM&MSFF (Cao et al., 2023) ResNet-50 256×192 71.6 -
MSPENet (Xu et al., 2023) ResNet-50 256×192 72.2 77.8

DLIFP (Zhang & Chen, 2023) HRNet-W32 256×192 73.8 -
TokenPose-Base (Li et al., 2021) HRNet-W32 256×192 74.0 79.1

EMpose (Yue et al., 2021) HRNet-W32 256×192 73.8 79.1
HR-ARNet (Wang et al., 2021) HRNet-W32 256×192 73.9 79.3
OKS-net (Zhao et al., 2020) HRNet-W32 256×192 73.9 79.3
HRNet (Sun et al., 2019) HRNet-W32 256×192 73.5 78.9

ViTPose-B (Xu et al., 2022) ViT-B 256×192 75.1 78.3
Ours HRNet-W32 256×192 74.2 79.3

CPN (Chen et al., 2018) ResNet 384×288 72.1 78.5
CPN (ensemble) (Chen et al., 2018) ResNet 384×288 73.0 79.0
FEM&MSFF (Cao et al., 2023) ResNet-50 384×288 73.3 -

SimpleBaseline (Xiao et al., 2018) ResNet-152 384×288 73.7 79.0
OKS-net (Zhao et al., 2020) HRNet-W32 384×288 75.2 80.4
GLCFBNet (Zou et al., 2023) 8-stage-hg 384×288 75.3 80.7

HRNet (Sun et al., 2019) HRNet-W32 384×288 74.9 80.1
Ours HRNet-W32 384×288 75.4 80.3

Table 3: Comparisons on CrowdPose test set with YOLOv3 (Redmon & Farhadi, 2018)
human detector. * denotes using a stronger Faster RCNN (Chen & Gupta, 2017) detector.

Method Backbone Input size MAP
MIPNet (Khirodkar et al., 2021) ResNet-101 384×288 68.1
SimpleBaseline (Xiao et al., 2018) ResNet-152 256×192 65.6

HRNet (Sun et al., 2019) HRNet-W32 256×192 67.5
HRNet* (Sun et al., 2019) HRNet-W48 384×288 69.3

Ours HRNet-W32 256×192 68.5
Ours HRNet-W32 384×288 70.4

boxes (Xiao et al., 2018). For the MPII dataset, all input images are resized into 256× 256
resolution. In verifying and testing, we use the provided person boxes and a six-scale pyramid
testing method is used (Yang et al., 2017b). Other training and testing strategies are
consistent with HRNet. All experiments are finished on two 24GB NVIDIA GeForce RTX
3090 GPUs.

4.3 Benchmark results

Results on COCO keypoint detection task. The results of our method and other state-
of-the-art methods on the validation and test-dev sets are shown in table 1 and 2, respec-
tively. Our network, trained with the input size 256× 192 and 384× 288, achieves 75.1 and
76.3 MAP scores on the validation set and 74.2 and 75.4 MAP scores on the test-dev set,
both of which are 0.7 and 0.5 higher than the baseline HRNet respectively, outperforming
other methods with the same input size. The visualization results are shown in Fig. 5,
which proves that our model can perform better in complex situations. The comparison of
network complexity as shown in table 4, since there are multiple branches in our network,
the number of parameters increases, but the results are improved to a certain extent.
Results on Crowdpose benchmark and MPII benchmark. Table 3 shows that our
network achieves 68.5 MAP and 70.4 MAP on CrowdPose test set, which higher than the
baseline HRNet. At the same time, our result is better than other methods. Table 5 shows
the PCKh@0.5 results of our method and other state-of-the-art methods on the MPII test
set. Our network achieves a 92.0 PKCh@0.5 score and outperforms other methods.
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Table 4: Complexity comparison and the MAP is obtained on the COCO test-dev set.
Method Backbone Param MAP

HRNet (Sun et al., 2019) HRNet-W32 28.5M 74.9
ViTPose-B (Xu et al., 2022) ViT-B 86M 75.1

Ours HRNet-W32 81.8M 75.4

Table 5: Comparisons of PCKh@0.5 scores on the MPII test set.
Method Head Sho. Elb. Wri. Hip Knee Ank. Mean

De Bem et al. (2018) 97.7 95.0 88.1 83.4 97.9 82.1 78.7 88.1
Newell et al. (2016) 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9
Luvizon et al. (2019) 98.1 96.6 92.0 87.5 90.6 88.0 82.7 91.2
Yue et al. (2021) 98.3 96.6 91.9 87.8 90.5 88.2 84.4 91.4
Wang et al. (2021) 98.3 96.7 92.4 88.5 90.4 88.3 84.4 91.6
Zou et al. (2023) 98.4 96.7 92.2 88.0 91.2 88.9 84.8 91.8
Chou et al. (2018) 98.2 96.8 92.2 88.0 91.3 89.1 84.9 91.8
Ryou et al. (2019) 98.6 96.6 92.3 87.8 90.8 88.8 86.0 91.9
Chen et al. (2019) 98.1 96.5 92.5 88.5 90.2 89.6 86.0 91.9

HRNet-W32 97.9 96.5 92.3 88.2 90.9 88.1 83.8 91.5
Ours 98.4 96.7 92.8 88.6 91.1 89.3 84.1 92.0

Table 6: Ablation study of all modules in our network. Comparisons of PCKh@0.5 scores
on the MPII test set.

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean
w/o context 96.5 96.6 92.7 88.4 91.0 89.2 85.1 91.7
w/o prior 98.3 96.5 92.5 88.3 90.8 89.0 84.4 91.8

w/o prior and context 97.0 96.7 92.5 88.6 90.7 89.0 83.5 91.5
w/o mutilscale 98.4 96.6 92.6 88.4 90.7 89.5 84.8 91.9

Ours 98.4 96.7 92.8 88.6 91.1 89.3 84.1 92.0

4.4 Ablation study and analysis

Modules performance. To verify the validity of each module, our ablation experiments
are performed on the MPII test set. Mean PCKh@0.5 is used as the evaluation metric. All
results are obtained with the input size of 256×256. Table 6 shows the PCKh@0.5 results of
our ablative experiment. Without context information, the PKCh@0.5 score is reduced by
0.3, without prior information, the PKCh@0.5 score is reduced by 0.2 and without the above
two modules, the PKCh@0.5 score is reduced by 0.5. It can be seen that these modules are
valid, especially the context module.
Multiscale performance in context. Since the scales of the people in the image are dif-
ferent, the context information should also be multiscale so that the model can be more
robust to the scale transformation of people. Table 6 also shows the PKCh@0.5 score is
reduced by 0.1 without multiscale, and this proves that multiscale is effective.

5 Conclusion

Inspired by parse graphs, we design a hierarchical network according to the parse graph of
body structure. Experiments show that the hierarchical structures and context information
provide structural and relational between structures constraints, which makes the network
solution space smaller and the prediction results more reasonable and accurate. We hope
that in future work, this kind of method can become more mature and be used in more
visual tasks.
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