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Figure 1: Our proposed DGPO shows a near 30 times faster training compared to Flow-GRPO on
improving GenEval score (Left Figure). The notable improvement is achieved while maintaining
strong performance on other out-of-domain metrics (Right Figure).

ABSTRACT

While reinforcement learning methods such as Group Relative Preference Opti-
mization (GRPO) have significantly enhanced Large Language Models, adapting
them to diffusion models remains challenging. In particular, GRPO demands a
stochastic policy, yet the most cost-effective diffusion samplers are based on deter-
ministic ODEs. Recent work addresses this issue by using inefficient SDE-based
samplers to induce stochasticity, but this reliance on model-agnostic Gaussian
noise leads to slow convergence. To resolve this conflict, we propose Direct Group
Preference Optimization (DGPO), a new online RL algorithm that dispenses with
the policy-gradient framework entirely. DGPO learns directly from group-level
preferences, which utilize relative information of samples within groups. This de-
sign eliminates the need for inefficient stochastic policies, unlocking the use of
efficient deterministic ODE samplers and faster training. Extensive results show
that DGPO trains around 20 times faster than existing state-of-the-art methods
and achieves superior performance on both in-domain and out-of-domain reward
metrics.

1 INTRODUCTION

Reinforcement Learning (RL) has become a cornerstone for the post-training of Large Language
Models (LLMs), significantly enhancing their capabilities (Ziegler et al., 2019; Ouyang et al., 2022;
Bai et al., 2022). In particular, methods like Group Relative Policy Optimization (GRPO) (Shao
et al., 2024) have demonstrated remarkable success in substantially improving the complex reason-
ing abilities of LLMs (DeepSeek-AI, 2025). However, progress in applying RL for post-training
diffusion models has lagged considerably behind that of language models, leaving a significant gap
in methods for aligning generative models with human preferences and complex quality metrics.

A central obstacle is the mismatch between GRPO’s policy gradient-based framework (short for
policy framework in the following) and the mechanics of diffusion generation. GRPO requires ac-
cess to a stochastic policy to enable effective training and exploration. This requirement is naturally
met by LLMs, which inherently output a probability distribution over a vocabulary. In contrast,
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Figure 2: Qualitative comparisons of DGPO against competing methods. It can be seen that our
proposed DGPO not only accurately follows the instructions, but also keeps a strong visual quality.
All images are generated by the same initial noise.

diffusion models predominantly rely on deterministic ODE-based samplers to strike a better balance
between sample quality and cost (Song et al., 2020; Luo et al., 2025c), and thus do not naturally
provide a stochastic policy. To bridge this gap, prior work has resorted to a forced adaptation: using
stochastic SDE-based sampling to induce a conditional Gaussian policy suitable for GRPO’s pol-
icy framework (Liu et al., 2025; Xue et al., 2025). This workaround, however, introduces severe
negative consequences: (1) SDE-based rollouts are less efficient than their ODE counterparts and
produce lower-quality samples under a fixed computational budget (Lu et al., 2022a;b; Bao et al.,
2022; Song et al., 2020); (2) The policy’s stochasticity comes from model-agnostic Gaussian noise,
which provides a weak learning signal and results in slow convergence; and (3) Training is per-
formed over the entire sampling trajectory, making each iteration computationally expensive and
time-consuming.

We argue that the practical success of GRPO stems less from its policy-gradient formulation, and
more from its ability to utilize fine-grained relative preference information within group. Based on
the insight, an ideal RL method for diffusion models should be capable of leveraging this powerful
group-level information while dispensing with the need for a stochastic policy and its associated
negative effects. To this end, we introduce Direct Group Preference Optimization (DGPO), a new
online RL method tailored to diffusion models. DGPO circumvents the policy-gradient framework
entirely, instead optimizing the model by directly learning from the group-level preference between
a set of “good” samples and a set of “bad” samples. Concretely, for each prompt, we generate
G samples using efficient ODE-based rollouts, partition them into positive and negative groups,
and directly optimize the model by maximizing the likelihood of these group-wise preferences.
Conceptually, DGPO can be understood as a natural extension of Direct Preference Optimization
(DPO) (Wallace et al., 2024) that incorporates group-wise information, and as a diffusion-native
re-imagination of GRPO.

This proposed methodology allows us to bypass the dependency on a stochastic policy, which yields
several benefits: (1) Efficient Sampling and Learning: by using high-fidelity ODE samplers,
DGPO learns from higher-quality rollouts, leading to more effective learning. (2) Efficient Con-
vergence: optimization is directly guided by group-level preferences rather than inefficient model-
agnostic random exploration, leading to faster convergence. (3) Efficient Training: our approach
avoids training on the entire sampling trajectory, notably reducing the computational cost of each
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training iteration. Together, these advantages establish DGPO as a highly efficient and powerful
online RL algorithm for diffusion models. Our extensive experiments show that DGPO achieves
around 20× faster training than prior state-of-the-art Flow-GRPO (Liu et al., 2025), while delivering
superior performance on both in-domain and out-of-domain metrics. Most notably, on the challeng-
ing GenEval benchmark (Ghosh et al., 2023), DGPO trains nearly 30× faster than Flow-GRPO and
boosts the base model’s performance from 63% to 97% (Fig. 1). These compelling results demon-
strate DGPO’s potential as a powerful technique for aligning diffusion models.

2 PRELIMINARIES

Diffusion Models (DMs) DMs (Sohl-Dickstein et al., 2015; Ho et al., 2020) define a forward dif-
fusion mechanism that progressively introduces Gaussian noise to input data x across T sequential
timesteps. The forward process follows the distribution q(xt|x) ≜ N (xt;αtx, σ

2
t I), where the hy-

perparameters αt and σt control the noise scheduling strategy. At each timestep, noisy samples are
obtained by xt = αtx + σtϵ, where ϵ ∼ N (0, I). The parameterized reversed diffusion process is
defined by: pθ(xt−1|xt) ≜ N (xt−1;µθ(xt, t), η

2
t I). The model’s neural network fθ is learned by

denoising Ex,ϵ,tλt||fθ(xt, t)− x||22. We note that the flow matching and DMs are equivalent in the
context of diffusing by Gaussian noise (Gao et al., 2025).

Reward Modeling Given ranked pairs generated from certain conditioning xw
0 ≻ xl

0|c, where
xw
0 and xl

0 denote the “better” and “worse” samples. The Bradley-Terry (BT) model formulates the
preferences as:

pBT(x
w
0 ≻ xl

0|c) = σ(r(c,xw
0 )− r(c,xl

0)) (1)

where σ(·) denotes the sigmoid function. A network rϕ that models reward can be trained by
maximum likelihood as follows:

LBT(ϕ) = −Ec,xw
0 ,xl

0

[
log σ

(
rϕ(c,x

w
0 )− rϕ(c,x

l
0)
)]

(2)

RLHF RLHF typically aims to optimize a conditional density pθ(x0|c) to maximize a underlying
reward r(c,x0) while staying close to a reference distribution pref via KL regularization, i.e.,

max
pθ

Ec,x0∼pθ(x0|c) [r(c,x0)]− βKL [pθ(x0|c)∥pref(x0|c)] (3)

where the hyperparameter β controls strength of regularization.

GRPO Objective (Shao et al., 2024) The RLHF objective in Eq. (3) can be optimized by policy-
based learning (we omit the KL term and clip term hereinafter for brevity):

max
pθ

E(x0,x1,··· ,xT )∼pθold (·|c)

T∑
k=0

pθ(xk+1|xk, c)

pθold(xk+1|xk, c)
A(xk+1), (4)

where A(xk+1) denotes the advantage of xk+1, which can be directly computed by reward r(xk+1),
or introduce additional value model for reducing variance.

The GRPO proposes to sample a group of outputs for each prompt c from the old policy,
then compute the advantage of each sample by normalization among groups, i.e., Ai = (ri −
mean({r1, r2, · · · , rG}))/std({r1, r2, · · · , rG}). The policy learning requires that the transition be-
tween xk and xk+1 follows a stochastic distribution. To meet this requirement for a stochastic
policy, recent works (Liu et al., 2025; Xue et al., 2025) employ a stochastic SDE for sampling,
rather than the more efficient deterministic ODE. However, the SDE itself is less effective in sam-
pling high-quality samples with insufficient steps. Besides, the policy-based method requires per-
forming training on the whole trajectory, which further leads to slow training. More importantly,
unlike LLMs, which directly output distribution, the stochasticity in DM’s policy comes from model-
agnostic Gaussian Noise. This makes the stochastic exploration rely on the model-agnostic Gaussian
noise, which is extremely inefficient in high-dimensional space.
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DPO Objective (Rafailov et al., 2024) The unique global optimal density p∗θ of the RLHF objec-
tive (Eq. (3)) is given by:

p∗θ(x0|c) = pref(x0|c) exp (r(c,x0)/β) /Z(c) (5)

where Z(c) =
∑

x0
pref(x0|c) exp (r(c,x0)/β) is a intractable partition function. We can compute

the reward function as follows:

r(c,x0) = β log
p∗θ(x0|c)
pref(x0|c)

+ β logZ(c) (6)

After obtaining the parameterization of the reward function, the DPO optimizes the models by the
reward learning objective in Eq. (2):

LDPO(θ)=−Ec,xw
0 ,xl

0

[
log σ

(
β log

pθ(x
w
0 |c)

pref(x
w
0 |c)

− β log
pθ(x

l
0|c)

pref(x
l
0|c)

)]
(7)

Diffusion DPO (Wallace et al., 2024) has adapted DPO to Diffusion models by defining reward over
the diffusion paths x0:T , which does not require a stochastic policy. However, it strictly relies on
pairwise samples for optimization due to the intrinsic restriction of the intractable partition Z(c),
preventing the use of the fine-grained preference information of each sample.

3 METHOD

We believe that the key to GRPO’s success lies in its ability to utilize fine-grained relative preference
information within groups. However, existing GRPO-style methods (Liu et al., 2025; Xue et al.,
2025) require using an inefficient stochastic policy. Although existing DPO-style methods (Wallace
et al., 2024) provide a framework without the need for a stochastic policy, they require performing
training on pairwise samples to eliminate the intractable partition Z(c). To this end, we propose
Direct Group Preference Optimization (DGPO), which eliminates the inefficient stochastic policy
and allows us to directly optimize inter-group preferences without concerning ourselves with an
intractable partition, leveraging fine-grained reward information to significantly improve training
efficiency. The pseudo code of DGPO is summarized in Algorithm 1.

Problem Setup Let pref denote a pre-trained reference diffusion model with parameter θref. We
have a dataset of conditionsDc = {cNi=1} and a reward function rϕ(·, ·) : X ×C → R that evaluates
the quality of generated samples x ∈ X given condition c ∈ C. Our goal is to enhance a diffusion
model pθ, initialized from pref, according to the reward signal. At each training iteration, we use an
online model pθ− to generate a group of samples conditioned on c ∈ Dc, where θ− can be set as
the current parameters θ or an exponential moving average (EMA) version of previous θ’s. These
generated samples form a dataset D = {(Gi = {xG

k=1}, ci) | xk ∼ pθ−(·|ci)}, which are then
evaluated by the reward function to provide reward signals for splitting positive or negative groups.

3.1 DIRECT GROUP PREFERENCE OPTIMIZATION

In order to leverage relative information within groups, we propose directly learn the group-level
preferences using the Bradley-Terry model via maximum likelihood:

max
θ

E(G+,G−,c)∼D log p(G+ ≻ G−|c) = E(G+,G−,c)∼D log σ(Rθ(G+|c)−Rθ(G−|c)) (8)

where G+ and G− represent positive and negative groups respectively, with G+ ∪ G− = G, and
G = {x1

0, · · · ,xG
0 } being the complete group of samples for conditioning c. Intuitively, the objec-

tive in Eq. (8) can leverage fine-grained preference information of each sample within groups with
appropriate parameterization.

Therefore, we propose parameterizing the group-level reward as a weighted sum of rewards
rθ(c,x0) for each sample within the group:

Rθ(G|c) =
∑
x0∈G

w(x0) · rθ(c,x0), (9)

where ω controls the “importance level” of the sample within the group. The parameterization of
group-level reward can reflect the fine-grained information of each sample. And the reward of single

4
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Algorithm 1 Direct Group Preference Optimization (DGPO)
Require: Diffusion model fθ, Reference model fref, Reward model rϕ, Group size G, Hyperparam-

eter β, Minimum training timestep tmin, Learning rate η, Iterations N , EMA decay µ (optional).
Ensure: Optimized model fθ.

1: for n← 1 to N do
2: # Sample conditioning and generate group
3: Sample conditioning c ∼ Dc

4: Generate group G = {x1
0, ...,x

G
0 } by sampling from pθ−(·|c)

5: # Compute advantages
6: {ri} ← {rϕ(c,xi

0)}Gi=1

7: Ai ← ri−mean({rj})
std({rj}) for all i

8: # Partition into positive and negative groups
9: G+ ← {xi

0 : Ai > 0} and G− ← {xi
0 : Ai ≤ 0}

10: # Compute DGPO loss
11: Sample t ∼ U [tmin, T ], ϵ ∼ N (0, I)
12: xi

t ← αtx
i
0 + σtϵ for all i

13: Compute LDGPO by Eq. (17)
14: Update θ ← θ − η∇θLDGPO
15: Update θ− ← θ or θ− ← µθ− + (1− µ)θ
16: end for

sample can be parameterized by following Eq. (6) and Diffusion-DPO (Wallace et al., 2024):

rθ(c,x0) = βEpθ(x1:T |x0) log
pθ(x0:T |c)
pref(x0:T |c)

+ β logZ(c),

≈ βEq(x1:T |x0) log
pθ(x0:T |c)
pref(x0:T |c)

+ β logZ(c)

(10)

where Z(c) is a intractable partition function. We note that since sampling from the inversion chain
pθ(x1:T |x0) is expensive, the forward diffusion q(x1:T |x0) has been utilized as an approximation in
practice (Wallace et al., 2024).

By combining Eq. (9) and Eq. (8), we can derive the desired training objective:

L(θ) = −E(G+,G−,c)∼D log σ(
∑

x0∈G+

Eq(x1:T |x0)βw(x0)[log
pθ(x0:T |c)
pref(x0:T |c)

+ Z(c)]

−
∑

x0∈G−

Eq(x1:T |x0)βw(x0) · [log
pθ(x0:T |c)
pref(x0:T |c)

+ Z(c)]])

= −E(G+,G−,c)∼D log σ(β[Eq(x1:T |x0)

∑
x0∈G+

w(x0) · log
pθ(x0:T |c)
pref(x0:T |c)

−
∑

x0∈G−

Eq(x1:T |x0)w(x0) log
pθ(x0:T |c)
pref(x0:T |c)

+
∑

x0∈G+

w(x0)Z(c)−
∑

x0∈G−

w(x0)Z(c)])

(11)

A remaining crucial challenge is that the partition function Z(c) is intractable for training. We have
to carefully select an appropriate weighting wi for each sample to eliminate the intractable partition
function Z(c). Generally speaking, a good weighting strategy should satisfy the following:

• Larger weights correspond to better samples in G+ and worse samples in G−.
• The weights satisfy:

∑
x0∈G+ w(x0) =

∑
x0∈G− w(x0), such that

∑
x0∈G+ w(x0)Z(c)−∑

x0∈G− w(x0)Z(c)) = 0 for eliminating the intractable Z(c).

3.2 ADVANTAGE-BASED WEIGHT DESIGN

We propose using advantage-based weights derived from GRPO-style normalization to address the
aforementioned issues. Given a group G = x1

0,x
2
0, ...,x

G
0 with corresponding rewards r1, r2, ..., rG,

5
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we compute advantages:

A(xi
0) =

ri −mean({rj}Gj=1)

std({rj}Gj=1)
(12)

We then partition the group based on advantages:

G+ = {xi
0 : A(xi

0) > 0}, G− = {xi
0 : A(xi

0) ≤ 0}. (13)

And we set weights as:
w(x0) = |A(x0)| (14)

This choice ensures
∑

x0∈G+ w(x0) =
∑

x0∈G− w(x0) due to the zero-mean property of the nor-
malized advantages. It also dynamically assigns larger weights to samples that deviate more from
the average, which enables the model to more effectively learn relative preference relationships.
More importantly, this weighting turns the objective in Eq. (11) to:

L(θ) = −E(G+,G−,c)∼D log σ(β[
∑

x0∈G+

Eq(x1:T |x0)w(x0) log
pθ(x0:T |c)
pref(x0:T |c)

−
∑

x0∈G−

w(x0)Eq(x1:T |x0) log
pθ(x0:T |c)
pref(x0:T |c)

]).

(15)

By using Jensen’s inequality and the convexity of − log σ, we can move the expectation outside:

L(θ) ≤ −E(G+,G−,c)∼DEt,q(xt|x0) log σ(
∑

x0∈G+

w(x0)βTEq(xt−1|xt,x0) log
pθ(xt−1|xt, c)

pref(xt−1|xt, c)

−
∑

x0∈G−

w(x0)βTEq(xt−1|xt,x0) log
pθ(xt−1|xt, c)

pref(xt−1|xt, c)
),

(16)

where G = G+ ∪ G−. We note that to reduce the variance, the sampled noise ϵ is shared among
samples within the same complete groups. By some simplification, we obtain our final training
objective of the proposed DGPO:

LDGPO(θ) ≜ −E(G+,G−,c)∼DEt,q(xt|x) log σ(−λtβT (
∑
x∈G+

w(x)[Lθ
dsm(x,xt, c)− Lθref

dsm(x,xt, c)]

−
∑
x∈G−

w(x)[Lθ
dsm(x,xt, c)− Lθref

dsm(x,xt, c)])),

(17)
where Lθ

dsm(x,xt, c) = ||fθ(xt, t, c)−x||22, Lθref
dsm(x,xt, c) = ||fθref(xt, t, c)−x||22, λt is a weighting

function and the constant T can be factored into β. We defer the derivation from Eq. (15) to Eq. (17)
in the Appendix C. The advantage of the derived DGPO objective is fourfold: 1) Leverages Relative
information: It directly learns preferences between groups of samples, which leverages the fine-
grained relative preference information of individual samples within groups. 2) Enhances training
efficiency: It does not require training on the entire sampling trajectory, which notably reduces
the computational cost per iteration. 3) Enables effective learning: It sidesteps the need for an
inefficient stochastic policy, thus avoiding inefficient model-agnostic exploration and allowing the
model to learn more effectively and directly from the preference data. 4) Efficient Sampling and
Learning: It allows the usage of deterministic ODE sampling for rollouts. This yields higher-quality
training samples compared to inefficient SDE sampling, all while using the same inference budget.

Timestep Clip Strategy The considered online setting requires generating samples from the on-
line model which might be expensive; thus, we take a few steps (e.g., 10) for generating samples
to reduce the inference cost following Flow-GRPO (Liu et al., 2025). However, naively performing
DGPO’s training on these samples generated by few steps would lead to serious performance degra-
dation due to the poor sample quality. To mitigate this, we propose the simple yet effective Timestep
Clip Strategy: during training, we only sample timesteps from the range [tmin, T ] with a chosen min-
imum timestep tmin > 0. This could effectively prevent the model from overfitting specific artifacts
(e.g., blurriness) of the generated samples by few steps (see ablation in Fig. 4).
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Table 1: GenEval Result. We highlight the best scores. Obj.: Object; Attr.: Attribution.
Model Overall Single Obj. Two Obj. Counting Colors Position Attr. Binding
Autoregressive Models:
Show-o (Xie et al., 2024) 0.53 0.95 0.52 0.49 0.82 0.11 0.28
Emu3-Gen (Wang et al., 2024a) 0.54 0.98 0.71 0.34 0.81 0.17 0.21
JanusFlow (Ma et al., 2025) 0.63 0.97 0.59 0.45 0.83 0.53 0.42
Janus-Pro-7B (Chen et al., 2025) 0.80 0.99 0.89 0.59 0.90 0.79 0.66
GPT-4o (Hurst et al., 2024) 0.84 0.99 0.92 0.85 0.92 0.75 0.61

Diffusion Models:
LDM (Rombach et al., 2022) 0.37 0.92 0.29 0.23 0.70 0.02 0.05
SD1.5 (Rombach et al., 2022) 0.43 0.97 0.38 0.35 0.76 0.04 0.06
SD2.1 (Rombach et al., 2022) 0.50 0.98 0.51 0.44 0.85 0.07 0.17
SD-XL (Podell et al., 2023) 0.55 0.98 0.74 0.39 0.85 0.15 0.23
DALLE-2 (OpenAI, 2023) 0.52 0.94 0.66 0.49 0.77 0.10 0.19
DALLE-3 (Betker et al., 2023) 0.67 0.96 0.87 0.47 0.83 0.43 0.45
FLUX.1 Dev (Labs, 2024) 0.66 0.98 0.81 0.74 0.79 0.22 0.45
SD3.5-L (Esser et al., 2024) 0.71 0.98 0.89 0.73 0.83 0.34 0.47
SANA-1.5 4.8B (Xie et al., 2025) 0.81 0.99 0.93 0.86 0.84 0.59 0.65

SD3.5-M (Esser et al., 2024) 0.63 0.98 0.78 0.50 0.81 0.24 0.52
w/ Flow-GRPO (Liu et al., 2025) 0.95 1.00 0.99 0.95 0.92 0.99 0.86

SD3.5-M w/ DGPO (Ours) 0.97 1.00 0.99 0.97 0.95 0.99 0.91

Table 2: Performance on Compositional Image Generation, Visual Text Rendering, and Hu-
man Preference benchmarks. ImgRwd: ImageReward; UniRwd: UnifiedReward.

Model Task Metric Image Quality Preference Score

GenEval OCR Acc. PickScore Aesthetic DeQA ImgRwd PickScore UniRwd

SD3.5-M 0.63 0.59 21.72 5.39 4.07 0.87 22.34 3.33

Compositional Image Generation:

Flow-GRPO 0.95 — — 5.25 4.01 1.03 22.37 3.51
DGPO (Ours) 0.97 — — 5.31 4.03 1.08 22.41 3.60

Visual Text Rendering:

Flow-GRPO — 0.92 — 5.32 4.06 0.95 22.44 3.42
DGPO (Ours) — 0.96 — 5.37 4.09 1.02 22.52 3.48

Human Preference Alignment:

Flow-GRPO — — 23.31 5.92 4.22 1.28 23.53 3.66
DGPO (Ours) — — 23.89 6.08 4.40 1.32 23.91 3.74

4 EXPERIMENTS

In this section, we comprehensively evaluate the proposed DGPO. Specifically, we benchmark im-
provements on three tasks—compositional image generation, visual text rendering, and human pref-
erence alignment (Tables 1 and 2). We also present qualitative comparisons and training efficiency
(Figs. 2 and 3). We further conduct ablations on key components (Figs. 4 and 5).

4.1 EXPERIMENTAL SETUP

Evaluation Tasks We evaluate the DGPO on post-training the SD3.5-M (Esser et al., 2024) across
three distinct valuable tasks: 1) compositional image generation, using GenEval to test object count-
ing, spatial relations, and attribute binding; 2) visual text rendering (Gong et al., 2025), measuring
accuracy of rendering text in generated images, and 3) human preference alignment, using PickScore
to assess visual quality and text-image alignment. Details are provided in the Section E.

Out-of-Domain Evaluation Metrics To fairly evaluate model performance and guard against re-
ward hacking—where models may overfit to training rewards signal while compromising actual
image quality—we employ four independent image quality metrics not used during training as out-
of-domain evaluations: Aesthetic Score (Schuhmann et al., 2022), DeQA (You et al., 2025), Im-
ageReward (Xu et al., 2023), and UnifiedReward (Wang et al., 2025). We compute these metrics on
DrawBench (Saharia et al., 2022), a comprehensive benchmark featuring diverse prompts.
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Figure 3: Compare the training speed of Flow-GRPO and our proposed DGPO.

DGPO (Ours)DGPO w/o Timestep Clip Strategy
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Subtitles "Ultra-
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sign says "Timestep 
Clip Matters"
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Figure 4: Visual comparisons among variants. It can be seen that without the proposed timestep clip
strategy, although it can still accurately follow the instruction, the visual quality notably degrades

4.2 MAIN RESULTS

Quantitative Results Table 1 shows that DGPO achieves state-of-the-art performance on
GenEval, notably surpassing prior SOTA methods such as GPT-4o and Flow-GRPO. This improve-
ment is achieved while maintaining performance across various out-of-domain metrics (such as
AeS, DeQA, and Image Reward), as indicated by Table 2. Beyond compositional image generation,
Table 2 provides detailed evaluation results on visual text rendering and human preference tasks,
where DGPO similarly demonstrates significant improvements in the target optimization metrics
while maintaining performance across various out-of-domain metrics.

Qualitative Comparison We present the qualitative comparisons of methods trained with
GenEval’s signal in Fig. 2. It is clear that the proposed DGPO can follow the instructions more
accurately compared to the base diffusion model and also the Flow-GRPO. Although Flow-GRPO
also shows accurate instruction following, its image quality degrades seriously, while our method
shows notably better visual quality. We present additional visual samples in Appendix F.

Training Cost The overall training of the proposed DGPO is quick, since we do not require the
inefficient stochastic policy for training. Besides, the training of the proposed DGPO is efficient
per iteration, since we do not require training the model on the whole trajectory. Benefit from these
points, the overall training of DGPO for reinforcement post-training is much faster than prior SOTA
Flow-GRPO. As shown in Figs. 1 and 3, the overall training of DGPO is generally around 20
times faster than Flow-GRPO.

4.3 ABLATION STUDY

Effect of Timestep Clip Strategy We found that without the proposed timestep clip strategy, the
reward metric slightly degrades from 0.96 to 0.95 regarding OCR Accuracy, while the visual quality
seriously degrades as shown in Fig. 4.

ODE Rollout vs. SDE Rollout A core advantage of our work compared to prior GRPO-style
works (Liu et al., 2025) is the ability to use the efficient ODE solvers for generating samples. This
can deliver samples with better quality and rewards. Results in Fig. 5 show that ODE rollout notably
outperforms SDE rollout in both convergence speed and ultimate metrics. This suggests that the use
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Figure 5: Comparison of visual text rendering across variants.

of SDE in prior works may have been a requirement of the policy gradient framework rather than
providing more diverse samples for training.

Offline DGPO Our work can be easily adapted to the offline setting by using the reference model
pref for generating the training dataset. Results in Fig. 5 show that our offline DGPO can reasonably
boost the performance over the baseline, but its performance is notably worse than the online setting.

Compared to Diffusion DPO Diffusion DPO can also avoid the need for the stochastic policy,
however, it cannot leverage the fine-grained reward signals of each sample. Results in Fig. 5 show
that our DGPO notably outperforms the DPO in both online and offline settings, indicating the
effectiveness of our proposed DGPO in leveraging fine-grained group relative information.

5 RELATED WORKS

Recent research has focused extensively on aligning DMs with human preferences through three
primary approaches. The first involves fine-tuning diffusion models on carefully curated image-
prompt datasets (Dai et al., 2023; Podell et al., 2023). The second approach maximizes explicit
reward functions, either by evaluating multi-step diffusion generation outputs (Prabhudesai et al.,
2023; Clark et al., 2023; Lee et al., 2023; Ho et al., 2022; Luo et al., 2025a;b) or through policy
gradient-based learning (Fan et al., 2024; Black et al., 2023; Ye et al., 2024). The third category em-
ploys implicit reward maximization, as demonstrated by Diffusion-DPO (Wallace et al., 2024) and
Diffusion-KTO (Yang et al., 2024), which directly leverage raw preference data. Recent works have
also adapted GRPO to DMs (Liu et al., 2025; Xue et al., 2025) under policy-gradient framework,
demonstrating promising scalability and impressive performance improvements. However, a notable
drawback of existing GRPO-style approaches is their reliance on a stochastic policy, which requires
inefficient SDE-based rollouts during training. Our work identifies group relative information as the
critical component of GRPO and introduces DGPO to directly optimize group preferences, thereby
exploiting fine-grained group relative information without requiring stochastic policies. As a re-
sult, DGPO achieves significantly faster training and superior performance on both in-domain and
out-of-domain reward benchmarks compared to prior GRPO-style methods.

6 CONCLUSION

In this work, we introduce Direct Group Preference Optimization (DGPO), a novel online rein-
forcement learning method specifically designed for post-training diffusion models. Our approach
addresses the fundamental mismatch between policy gradient methods like GRPO and the inher-
ent mechanics of diffusion generation. By recognizing that GRPO’s effectiveness stems primarily
from its utilization of group relative preference information within the group rather than its policy-
gradient nature, we developed a method that preserves this key strength while eliminating the need
for stochastic policies. DGPO’s direct optimization approach offers substantial practical advan-
tages over existing methods. By enabling the use of efficient ODE-based samplers, eliminating
reliance on model-agnostic noise for exploration, and avoiding expensive trajectory-based training,
DGPO achieves around 20× speedup in overall training time compared to Flow-GRPO. More im-
portantly, our experiments demonstrate that this efficiency gain comes with superior performance, as
DGPO consistently outperforms baseline methods across both in-domain and out-of-domain evalu-
ation metrics.
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ETHICS STATEMENT

This work did not involve human or animal subjects, sensitive data, or any other elements that would
necessitate an ethical review. We have identified no potential for misuse or negative societal impact.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our findings, our complete code and experimental setup, which
builds upon the open-source Flow-GRPO codebase (Liu et al., 2025), will be made publicly avail-
able upon publication. This release will include detailed instructions for data preprocessing, model
configuration, and evaluation.
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A USE OF LARGE LANGUAGE MODELS

The use of large language models (LLMs) was strictly limited to language refinement and minor
editorial tasks. The authors affirm that LLMs played no part in the substantive phases of the research,
which include the ideation, experimental design, data analysis, and the interpretation of results. All
scientific content, methodologies, and conclusions presented herein were conceived and developed
exclusively by the authors.

B ADDITIONAL RELATED WORKS

Diffusion-Based Policies in RL. Diffusion policies have gained significant traction in recent on-
line RL research. Existing methods have investigated optimizing these policies via different ap-
proaches. The first uses reparameterized policy gradients for optimization (Wang et al., 2024b; Ren
et al., 2024; Celik et al., 2025); The second explores optimizing via variants of score matching.
There are also works exploring optimizing via weighted schemes (Psenka et al., 2023; Yang et al.,
2023). These works focus on using diffusion policy for action learning. In contrast, our work ex-
plores reinforcing diffusion models in a more diffusion-native way for achieving better performance
in the image generation domain.
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C DERIVATION

C.1 PRELIMINARY: JENSEN’S INEQUALITY.

Let ϕ : R → R be a convex function. For a random variable X , Jensen’s inequality states that the
function of the expectation is less than or equal to the expectation of the function:

ϕ(E[X]) ≤ E[ϕ(X)]. (18)

C.2 DERIVATION OF EQ. 16

For simplicity and without loss of generality, we omit the condition c in the derivation. The Eq. 15
can be rewritten as:

L(θ) = −E(G+,G−)∼D log σ(β[
∑

x0∈G+

Eq(x1:T |x0)w(x0) log
pθ(x0:T )

pref(x0:T )

−
∑

x0∈G−

w(x0)Eq(x1:T |x0) log
pθ(x0:T )

pref(x0:T )
])

= −E(G+,G−)∼D log σ(βEq(x1:T |x0),x0∈G [
∑

x0∈G+

w(x0)

T∑
t=1

log
pθ(xt−1|xt)

pref(xt−1|xt)

−
∑

x0∈G−

w(x0)

T∑
t=1

log
pθ(xt−1|xt)

pref(xt−1|xt)
])

= −E(G+,G−)∼D log σ(βEq(x1:T |x0),x0∈G [
∑

x0∈G+

w(x0)TEt log
pθ(xt−1|xt)

pref(xt−1|xt)

−
∑

x0∈G−

w(x0)TEt log
pθ(xt−1|xt)

pref(xt−1|xt)
])

= −E(G+,G−)∼D log σ(βTEtEq(xt|x0),q(xt−1|xt,x0),x0∈G [
∑

x0∈G+

w(x0) log
pθ(xt−1|xt)

pref(xt−1|xt)

−
∑

x0∈G−

w(x0) log
pθ(xt−1|xt)

pref(xt−1|xt)
])

(19)
By Jensen’s inequality (Section C.1) and the convexity of − log σ, we have:

L(θ) ≤ −E(G+,G−)∼DEt,q(xt|x0) log σ(
∑

x0∈G+

w(x0) · βTEq(xt−1|xt,x0) log
pθ(xt−1|xt)

pref(xt−1|xt)

−
∑

x0∈G−

w(x0) · βTEq(xt−1|xt,x0) log
pθ(xt−1|xt)

pref(xt−1|xt)
),

(20)
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C.3 DERIVATION OF EQ. 17

For simplicity and without loss of generality, we omit the condition c in the derivation. The DGPO
objective in Eq. 16 can be rewritten to:

L(θ) ≤ −E(G+,G−)∼DEt,q(xt|x0) log σ(
∑

x0∈G+

w(x0) · βTEq(xt−1|xt,x0) log
pθ(xt−1|xt)

pref(xt−1|xt)

−
∑

x0∈G−

w(x0) · βTEq(xt−1|xt,x0) log
pθ(xt−1|xt)

pref(xt−1|xt)
),

= E(G+,G−)∼DEt,q(xt|x0) log σ(−βT{
∑

x0∈G+

w(x0) · [KL(q(xt−1|xt,x0)||pθ(xt−1|xt))

−KL(q(xt−1|xt,x0)||pref(xt−1|xt))]−
∑

x0∈G−

w(x0) · [KL(q(xt−1|xt,x0)||pθ(xt−1|xt))

−KL(q(xt−1|xt,x0)||pref(xt−1|xt))]})
(21)

With the Gaussian parameterization (Song et al., 2020) of the posterior q(xt−1|xt,x0) ≜
N (αt−1x0 +

√
σ2
t − η2t

xt−αtx0

σt
, η2t I) and reverse sampling pθ(xt−1|xt) ≜ N (αt−1fθ(xt, t) +√

σ2
t − η2t

xt−αtfθ(xt,t)
σt

, η2t I), the KL divergence term KL(q(xt−1|xt,x0)||pθ(xt−1|xt)) can be
computed by:

KL(q(xt−1|xt,x0)||pθ(xt−1|xt)

=
1

2η2t
||αt−1x0 +

√
σ2
t − η2t

xt − αtx0

σt
− (αt−1fθ(xt, t) +

√
σ2
t − η2t

xt − αtfθ(xt, t)

σt
)||22

=
1

2η2t

(
αt−1 −

√
σ2
t − η2t

αt

σt

)2

||x0 − fθ(xt, t)||22

= λt||x0 − fθ(xt, t)||22,
(22)

where λt =
1

2η2
t

(
αt−1 −

√
σ2
t − η2t

αt

σt

)2

. Similarly, we have KL(q(xt−1|xt,x0)||pref(xt−1|xt) =

λt||x0 − f ref
θ (xt, t)||22. Substituting the computed KL divergence into Eq. 21, we can obtain Eq. 17.

D VISUALIZATION OF REWARD HACKING

We set β to be smaller (e.g., β = 10) than its normal value (e.g., β = 100) and extended the
training iterations to make the model over-optimize the rewards. We visualize some failure modes
of over-optimizing rewards in Fig. 6.

E EXPERIMENT DETAILS

Compositional Image Generation. We evaluate text-to-image models on complex compositional
prompts using GenEval (Ghosh et al., 2023), which tests six challenging compositional generation
tasks including object counting, spatial relations, and attribute binding.

Visual Text Rendering. Following the methodology in TextDiffuser (Chen et al., 2023) and Flow-
GRPO’s experimental setup, we evaluate models’ ability to accurately render text within generated
images. Each prompt follows the template structure “A sign that says ‘text”’, where ‘text’ represents
the exact string to be rendered in the image. We measure text fidelity (Gong et al., 2025) as follows:

r = max(1−Ne/Nref, 0)

where Ne denotes the minimum edit distance between rendered and target text, and Nref represents
the character count within the prompt’s quotation marks.
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w/ OCR Acc

Over-
optimized
DGPO

DGPO

w/ HPS

A photo of a panda holding a sign says ‘Over optimize Test’ A photo of a panda holding a sign says ‘DGPO’ in forest

Figure 6: Visualization of reward hacking. Over-optimizing the rule-based reward (i.e., OCR Acc)
preserves text accuracy but degrades image quality. In contrast, over-optimizing the model-based
reward (i.e., HPS) introduces specific artifacts, such as repeated objects in the background.

Human Preference Alignment. To align text-to-image models with human preferences, we em-
ploy PickScore (Kirstain et al., 2023) as the reward signal. The PickScore model, trained on large-
scale human preference data, evaluates both visual quality and text-image alignment, providing a
comprehensive assessment of generation quality from a human-centric perspective.

Setup Details. We generate 24 samples for each group for training. We adopt the Flow-DPM-
Solver (Xie et al., 2025) with steps of 10 for rollout during training. We adopt LoRA fine-tuning
with a rank of 32. The β is set to be 100 by default. Defaultly, We update θ− by identity mapping,
i.e., θ− ← θ within 200 steps, and update θ− by EMA with decay of 0.3 in the remaining training.
Experiments are performed over 512 resolution. We use a probability of 0.05 to drop text during
training. The experiments are performed over A100. The reported GPU hours are A100 hours.

Details of the out-of-domain evaluation metrics We outline the specific out-of-domain metrics
used to assess quality: The aesthetic score (Schuhmann et al., 2022) employs a linear regres-
sion model based on CLIP to evaluate the visual appeal of generated images; For assessing image
quality degradation, we utilize the DeQA score (You et al., 2025). This metric leverages a multi-
modal large language model architecture to measure the impact of various imperfections—including
distortions, textural degradation, and low-level visual artifacts—on the overall perceived quality of
images; ImageReward (Xu et al., 2023) serves as a comprehensive human preference model for
text-to-image generation tasks. This reward function evaluates multiple dimensions including the
coherence between textual descriptions and visual content, the fidelity of generated visuals; Finally,
UnifiedReward (Wang et al., 2025) represents the latest advancement in this area. This inte-
grated reward framework can evaluate both multimodal understanding and generation tasks, and has
demonstrated superior performance compared to existing methods on the human preference assess-
ment leaderboard.

F ADDITIONAL QUALITATIVE COMPARISON

We present additional visual samples in Figs. 7 and 8.

G LIMITATIONS AND FUTURE WORKS

Our work focuses on text-to-image synthesis; however, it also has the potential to be adapted to
enhance text-to-video synthesis. Exploring the extension would be an interesting future work.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A photo of a 
coffee shop with 
sign "OCR Test"

A photo of a 
book with title 
"Diffusion RL"

A photo of a 
cat holds a sign 
"DGPO SOTA"

A photo of a 
worn road 
sign "Danger"

A vibrant urban alley with 
a graffiti wall prominently 
spray-painted "Street 
Art Rules"

SD 3.5M

SD 3.5M 
w/ Flow-
GRPO

SD 3.5M 
w/ DGPO 
(Ours)

Figure 7: Qualitative comparisons of DGPO against competing methods. The training signal is
given by OCR Accuracy. All images are generated by the same initial noise.

A cute baby 
playing with toys 
in the snow

A photo of an 
Asia girl with 
sunglass

A small cactus with 
a happy face in the 
Sahara desert

A photo of a 
woman on top 
of a horse

A photo of a 
monkey making 
latte

SD 3.5M

SD 3.5M 
w/ Flow-
GRPO

SD 3.5M 
w/ DGPO 
(Ours)

Figure 8: Qualitative comparisons of DGPO against competing methods. The training signal is
given by PickScore. All images are generated by the same initial noise.
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