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ABSTRACT

Convolutional Neural Networks (CNNs) have profoundly influenced the field of
computer vision, drawing significant inspiration from the visual processing mech-
anisms inherent in the brain. Despite sharing fundamental structural and rep-
resentational similarities with the biological visual system, differences in local
connectivity patterns within CNNs open up an interesting area to explore. In this
work, we explore whether integrating biologically observed receptive fields (RFs)
can enhance model performance and foster alignment with brain representations.
We introduce a novel methodology, termed Lp-convolution, which employs the
multivariate p-generalized normal distribution as an adaptable Lp-masks, to rec-
oncile disparities between artificial and biological RFs. Lp-masks finds the op-
timal RFs through task-dependent adaptation of conformation such as distortion,
scale, and rotation. This allows Lp-convolution to excel in tasks that require flex-
ible RF shapes, including not only square-shaped regular RFs but also horizontal
and vertical ones. Furthermore, we demonstrate that Lp-convolution with biolog-
ical RFs significantly enhances the performance of large kernel CNNs possibly
by introducing structured sparsity inspired by p-generalized normal distribution
in convolution. Lastly, we present that neural representations of CNNs align more
closely with the visual cortex when Lp-convolution is close to biological RFs.
This research shines a light on the potential of brain-inspired models that merge
insights from neuroscience and machine learning, with the hope of bridging the
gap between artificial and biological visual systems.

1 INTRODUCTION

Convolutional neural networks (CNNs) were initially inspired by the early discoveries from the
brain’s visual system, particularly the groundbreaking work of Hubel and Wiesel on receptive fields
(RFs) in the primary visual cortex (V1) (Hubel & Wiesel, 1962; 1965). This laid the foundation for
the Neocognitron, a precursor to CNNs, which focused on the idea of local connections (Fukushima,
1980). Building upon the backpropagation (Werbos, 1974; Rumelhart et al., 1986), and the concept
of weight sharing, LeCun and his colleagues applied it to CNNs, leading to the development of
the first practical CNN, known as LeNet (LeCun et al., 1989). Fueled by advancements in back-
propagation, large datasets, and GPU training, the landmark success of AlexNet in 2012, which
significantly outperformed existing models in the ImageNet challenge, marked a turning point for
CNNs (Krizhevsky et al., 2012).

In recent times, CNNs have become a prominent model for understanding biological visual pro-
cessing due to both structural and representational similarity between them (Lindsay, 2021). The
CNN’s architecture closely mirrors the visual system: 1) RGB channels emulate retinal computa-
tions, 2) stacked layers correspond to various visual areas (such as V1, V2, V4, IT), 3) deeper layers
excel at detecting complex features, and 4) local receptive fields. In terms of representational simi-
larity, Khaligh-Razavi & Kriegeskorte (2014) demonstrated that among 37 different computational
models, CNN trained with supervision exhibited the best performance and alignment with the brain.
Recently, CNNs like VGG and ResNet have become instrumental models for visual processing mod-
els in neuroscience, owing to their strong representational alignment with the brain (Khaligh-Razavi
& Kriegeskorte, 2014; Simonyan & Zisserman, 2014; Shi et al., 2019; He et al., 2016; Bakhtiari
et al., 2021).
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While CNNs employed the concept of local connectivity inspired by the brain, they are not exact
replicas. This is attributed to the contrast between the dense, uniformly connected local RFs in
CNNs and the varied and sparsely connected patterns in biological neurons. This disparity poses an
intriguing question that could mutually captivate both neuroscience and machine learning commu-
nities: Would integrating biologically observed receptive fields into an artificial model result
in enhanced performance and closer alignment with brain representations?

In this paper, we introduce Lp-convolution, a novel approach that leverages the multivariate p-
generalized normal distribution (MPND) to address the disparities between biological and artificial
RFs (Fig. 1). Through channel-wise trainable Lp-masks in convolutional layers (Fig. 2), we explore
their conformational adaptability (Fig. 3 and 4), resulting in enhanced performance in large kernel
CNNs and improved alignment with biological representations (Fig. 5 and Table 1).

Overall, our contributions are:

• Introduction of MPND to model the disparity between biological and artificial RFs.
• Proposal and implementation of Lp-convolution leveraging adaptable Lp-masks.
• Demonstration of task-dependent conformational adaptability of Lp-masks with Sudoku

challenge.
• Significant performance gains in large kernel CNNs in vision classification tasks.
• Improved alignment of neural representations with brain-inspired Lp-convolution.

Code, datasets, and pre-trained models are available at https://anonymous.4open.
science/r/lpconv-E39D.

2 BRIDGING BIOLOGICAL AND ARTIFICIAL RECEPTIVE FIELDS

The distinct characteristics of dense, uniform local RFs in CNNs, as opposed to the sparse, mor-
phologically structured connectivity patterns in biological neurons, pose a challenge for directly
comparing their local RFs. To address this, we analyzed the functional connectivity patterns of both
biological and artificial systems, by introducing the MPND (Goodman & Kotz, 1973). MPND is
the key of our paper to bridge the conformational difference between biological and artificial RFs.
While the concept of the receptive field generally encompasses sensory-level inputs and adjacent
layers, in this paper, we specifically refer to RF as the local connectivity patterns between neurons
in adjacent layers.

Multivariate p-generalized normal distribution Let s represent the d-dimensional random vec-
tors indicating specific points within RF. s0 is the receptive center with d-dimensional vector of fixed
constants. The relative offset is given by ∆s = s− s0. Introducing MPND, we define the RF using
as probability density function (PDF) of s as following:

β exp
(
−∥C∆s∥pp

)
, (1)

where C is d × d covariance matrix, ∥ · ∥pp denotes the Lp-norm raised to the p-th power, β is
normalization factor1, and p ≥ 1. In Figure 1e, we show some examples of MPNDs with varying
values of p and C.

Constructing biological and artificial RFs from the functional synapses To compare the bi-
ological and artificial RFs, we first prepared the 2D offsets of functional synapses relative to the
post-synaptic units in both systems: mouse V1 L2/3 and AlexNet Conv1 (Fig. 1a-d; See details in
Appendix A.1 and A.2). To match the scale difference between the two systems, we standardized the
relative offsets with zero mean and unit variance. For the artificial system, we prepared 4 different
cases, using both ImageNet-1k pre-trained and randomly-initialized AlexNet2 with inputs of noises
or images (See inputs and corresponding RFs in Appendix A.4). We constructed 2D probability
mass functions (PMFs) from the collected offsets, which we call biological or artificial RFs.

1β = [(2Γ(1 + p−1))d · det(C)]−1 where Γ is gamma function, and det(·) denotes the determinant.
2For clarity, we refer to trained as pre-trained models and to untrained as randomly-initialized models.
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Figure 1: Local receptive fields from biological and artificial systems can be mathematically
reconciled by introducing multivariate p-generalized normal distribution (a-b) Graphical illus-
tration of receptive fields in V1 of mouse brain (a) at layer 2/3 (b). (c-d) Graphical illustration of
receptive fields in AlexNet (c) at Conv1 layer (d). (e) Shapes of MPND with varying parameters
of C and p. (f) Top, visualization of mean receptive fields of functional synapses in mouse V1
layer 2/3 (column 1) and AlexNet Conv1 with varying conditions (columns 2-5). Bottom, optimized
MPND over receptive fields shown in the first row. (g) p after MPND optimization; Using Welch’s
t-test with Holm-Bonferroni’s multiple comparisons correction, all possible combinations between
groups were statistically significant (p-value<0.05) except for ‘n.s.’ (non-significant) denoted in the
figure; n=17 for all conditions. We optimized MPND parameters of p and σ, where C =

[
1/σ 0
0 1/σ

]
,

σinit = 0.5, and pinit = 2

MPND effectively models both biological and artificial RFs For the comparison of biological
and artificial RFs, we optimized parameters of p and σ in MPND (Fig. 1e, Eq. 1) over PMFs of
biological or artificial RFs (Fig. 1f and g). We show that optimized p∗ of functional synaptic input
patterns of biological neurons were optimized at near 2 (Gaussian-distributed; See details in Ap-
pendix A.3). In contrast, the local RF pattern of pre-trained AlexNet’s Conv1 was optimized at the
range of 3.7 ∼ 3.8, and the untrained one was optimized at the range of 11 ∼ 14 (where input types
were less effective). An intriguing observation is the decrease in the value of p for the pre-trained
AlexNet’s Conv1, bringing it closer to the biological RF. Based on these findings, we propose that
both biological and artificial RFs can be effectively modeled with MPND, particularly within the
range of p = [2, 16]. Given these findings, we propose to consider that the value of p close to 2 is
indicative of biological RF, while a higher p represents RFs to be more artificial.

3 Lp-CONVOLUTION: INTRODUCING MPND IN THE CONVOLUTION

Based on our observation in Figure 1 artificial RFs become closer to biological RFs with training
(decrease in p of MPND by ImageNet-1k training in AlexNet Conv1), we asked two intriguing
questions: 1) Is it possible to improve the performance of CNNs by implementing biologically-
inspired RFs on artificial models? 2) Can CNNs with RFs close to biological ones align better
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(a) (b) (c) (d) (e)

(f) (g) Learned 𝑳𝒑-masks for each channels (𝒑𝒊𝒏𝒊𝒕= 𝟏𝟔, σ𝒊𝒏𝒊𝒕 = 𝒌/𝟐)Learned 𝑳𝒑-masks for each channels (𝒑𝒊𝒏𝒊𝒕= 𝟐, σ𝒊𝒏𝒊𝒕 = 𝒌/𝟐)

𝑘 × 𝑘 𝑘′ × 𝑘′

𝑳𝒑-mask 

Figure 2: Graphical illustration of Lp-Conv layers and visualization of learned Lp-masks after
traning (a-c) Lp-Conv layers with σinit = k/2 and varying pinit = {2, 16, 256}; Lp-masks overlaid
on kernels (red arrows). (d-e) Conventional Conv layers with the kernel size of k × k (Base) or
k′ × k′ (Large). (f-g) Visualized 32 example learned Lp-masks from Lp-converted AlexNet Conv1
after training with Tiny Imagenet dataset

with the representation of the brain? To answer these questions, we introduce Lp-convolution:
overlaying channel-wise trainable Lp-masks onto the kernels of CNNs.

Lp-convolution Here, we propose the Lp-convolution, which is compatible with various convolu-
tions. We formulate the Lp-convolution based on the MPND in the convolutional layer by employing
channel-wise Lp-masks, which are overlaid on convolutional filters (Fig. 2a-c).

First, we define the relative height and width offsets, ∆S ∈ R2×Kh×Kw from the kernel center,
(Kh/2,Kw/2), as follows

∆S·,h,w = (∆h,∆w)T = (h− Kh

2
, w − Kw

2
)T for h ∈ [0,Kh − 1], w ∈ [0,Kw − 1], (2)

where Kh and Kw denote the kernel height and kernel width, respectively. Empirically, we utilize
the normalized value between 0 and 1. It is noted that S·,h,w ∈ R2 denotes all values corresponding
to h-th height and w-th width.

Second, we propose the Lp-mask, structured mask matrix, derived from the offset and MPND. Our
Lp-mask, M ∈ [0, 1]Co×Kh×Kw for all output channel Co, is a soft mask that is proportional to
Eq. 1 without a normalization factor β as following

Mo,h,w = exp
(
−∥Co,·,·∆S·,h,w∥pp

)
, (3)

where C ∈ RCo×2×2 is the set of 2 × 2 covariance matrix for each output channel. In other words,
Lp-mask calculates the soft mask Mo,·,·for each o-th output channel independently, and each soft
mask handles the positional correlation, height and width position, from the offset, ∆S. Our Lp-
mask in Eq. 3 corresponds to RF in Eq. 1, when Kh = KW = Co = 1.

Third, we propose the Lp-convolution by applying Lp-mask into the convolutional weights W ∈
RCi×Co×Kh×Kw , where Ci is the number of input channel. For each i-th input channel input Xi

and convolutional filter weights Wi, we formulate the corresponding convolution output Yi as

Yi = ϕ(Xi ∗ (Wi ⊙M)), (4)

where ϕ is non-linear function and ∗ is the convolution operation.
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We note that C and p are trainable parameters3. To ensure the positive definite property of Co and
satisfy the Lp-norm property with p ≥ 1, we can employ Cholesky decomposition for C and value
clipping for p.

As shown in Equation 4, our Lp-convolution is a generalized version of the traditional convolution.
In our settings, it is noted that Lp mask converges to a binary mask as p approaches infinity. Empir-
ically, Lp mask becomes a binary mask for sufficiently large p, as shown in Fig. 1. If all elements
of Lp mask equal one, then Lp-convolution degrades to the traditional convolution. In this situation,
both traditional convolution and our Lp convolution have square-shaped RFs for each layer. In other
words, our Lp-convolution takes task or data-dependent RFs with varying M by optimizing the C
and p as shown in Figure 2. Therefore, Lp-convolution has task-specific RFs with varying distortion,
scale, and rotation levels.

In practical terms, we replaced all existing Conv2d layers in the baseline CNN model with Lp-Conv
layers by applying a function called LpConvert to the baseline CNN model (See pseudo-code in
Appendix A.13). To provide further insight into the conformational changes of Lp-masks during
model training, we present examples of 32 random Lp-masks from Conv1 of an AlexNet model
trained with TinyImageNet (f and g in Fig. 2).

4 CONFORMATIONAL ADAPTABILITY OF Lp-MASKS IN SUDOKU CHALLENGE

To assess the adaptability and effectiveness of evolving RFs in Lp-convolution, we conducted well-
established 9× 9 Sudoku-solving task (Park, 2018; Oinar, 2021; Amos & Kolter, 2017; Palm et al.,
2018; Wang et al., 2019) (See experimental details in Appendix A.5). We selected the Sudoku task
for its challenging nature, as it necessitates simultaneously achieving three objectives—ensuring
every row, column, and box contains all numbers from 1 to 9—(Fig. 3a).

Lp-convolution in Sudoku solving: balancing square and row-column imbalances As
shown in Figure 3b, the (3×3) Base model, or (7×7) L†

p(pinit = 256) model exhibited a signifi-
cant imbalance in Square-to-Row/Column accuracy and showed signs of overfitting after approxi-
mately 15 epochs. The (7×7) Large model demonstrated improvement in the balance of Square-
to-Row/Column accuracy and overall Sudoku accuracy, possibly due to the enlarged RFs. Along
with these control experiments, we tested two trainable Lp-masks with pinit = 2, 16, each of them
closely resembles a biological RF (p = 2) and an artificial RF in (p = 16), respectively. In
(7×7) Lp(pinit = 2) model, we observed highly balanced Square-to-Row/Column accuracy, re-
sulting in remarkable improvement in overall Sudoku accuracy compared to (7×7) Lp(pinit = 16)
or (7×7) Large model (red and green in Fig. 3b). We speculated that this alleviation of Square-to-
Row/Column accuracy imbalance in (7×7) Lp(pinit = 2) could be attributed to the task-dependent
Lp-masks’ conformational adaptability. To test this possibility, we have designed ablation experi-
ments on (7×7) Lp(pinit = 2) model.

Ablation of orientation selective masks reveals Lp-masks’ conformational adaptability Con-
trary to a previous large-kernel model that introduces unstructured sparsity directly into filters (Liu
et al., 2023), Lp-convolution with p = 2 introduces structured sparsity based on a Gaussian dis-
tribution. This approach facilitates covariance analysis of the Gaussian distribution, thereby en-
hancing interpretability. Using Singular Value Decomposition (SVD) on C, we extracted three in-
terpretable properties of scale (α), rotation (θ), and distortion (γ) (See conformational analysis in
Appendix A.5). Figure 4a shows conformations of Lp-masks inverse calculated from α, θ, and γ.

Quantitative analysis of (7×7) Lp(pinit = 2) model revealed an increase in scales when layer deep-
ened (Fig. 4b, see visualization in Appendix A.7), with orientations of horizontal (0,180◦) and ver-
tical (90◦) directions. This indicates the task-dependent adaptation of Lp-masks, which provide
flexible and structured RFs in visual processing. To confirm these orientation-selective masks con-
tribute to the balanced Sudoku-solving task, we conducted an ablation test. We classified masks
with highly distorted (γ > 3) as orientation-selective masks. Among these, we selectively ablated
near 90◦ by gradually increasing the range (close in shape with red dashed box in Fig. 4a) while

3C and p are updated with the standard backpropagation process. Lp-mask, M, is dynamically generated
during forward process using C and p.
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Figure 3: Lp-convolution enhances Sudoku solving efficiency by effectively balancing accuracy
between square and row-column puzzles (a) Graphical illustration of Sudoku quiz and Sudoku
Lp-ConvNet; (left), example Sudoku quiz as an input; (middle), basic block repeated L times (L =
10, yellow) contains sequential layers of 1) reflection padding, 2) Lp-Conv, 3) batch normalization,
and 4) activation layers; (right), the example Sudoku solution as a target. In Sudoku, a 9×9 square
must be filled in with numbers from 1-9 with no repeated numbers in 9x1 rows (blue), 1x9 columns
(green), or 3x3 squares (orange). (b) Loss and accuracy curves during training and test sessions.
‘(3× 3)’ or ‘(7× 7)’ denotes the size kernel. ‘L†

p’ denotes parameters of Lp-mask is frozen. ‘Large’
denotes a simple enlargement of the kernel, without a mask.

tracking changes in column and row accuracies. While row and box accuracy exhibited a consistent
decrease, column accuracy sharply decreased as the θ range increased (Fig. 4c and Appendix A.8),
with this trend was notable in the later layers. Together, these results indicate that the conformational
adaptability of Lp-masks enables balanced learning in the Sudoku-solving task, thereby contributing
to overall performance enhancement.

5 Lp-CONVOLUTION BENEFITS LARGE KERNEL CNNS IN VISION
CLASSIFICATION TASK

Next, we asked whether our designed Lp-convolution would be beneficial for enhancing the perfor-
mance of historically successful CNNs. To test this, we conducted vision classification tasks (See
detailed experimental settings in Appendix A.9) using the CIFAR-100 and TinyImageNet datasets
on models of AlexNet, VGG-16, ResNet-18, ResNet-34, and the ConvNext-tiny (Liu et al., 2022)
(Table 1). When simply increasing the kernel size, we observed a significant decrease in perfor-
mance for all models except ResNet. This is consistent with a previous report of a decrease in vision
classification performance with larger kernels (Peng et al., 2017).

As depicted in Table 1, when parameters are frozen with a notably large p (p = 256 and σ = k
2 ), Lp-

Conv exhibits performance comparable to the baseline model (refer to subfigures c and d in Fig. 2
for graphical illustration). This suggests that initializing the parameters of Lp-Conv with a similar
experimental configuration can contribute to the stable learning of Lp-masks, avoiding significant
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(a) (b) Layer-wise learned 𝐿𝑝-mask properties for (7x7) 𝐿𝑝 (p=2)𝐿𝑝-mask shapes 
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(c) Ablation of vertical orientation selective 𝐿𝑝-masks in (7x7) 𝐿𝑝 (p=2)

Figure 4: Task-dependent conformational adaptation of Lp-masks (a) The shapes of Lp-masks
when p = 2 and varying properties of scale (α), distortion (γ), and rotation (θ), which are derived
from the singular value decomposition of C; Red box indicates column selective Lp-masks which
are ablation targets in (c). (b) Layer-wise distribution of learned Lp-mask properties. (c) Selectively
ablation of Lp-masks near 90◦ by gradually increasing the ablation; Ablation in all 10 Lp-conv
layers (left), first 5 layers (middle), and last 5 layers (right) respectively.

performance degradation compared to the baseline model. Notably, in contrast to the large kernel
models, all instances of Lp-Conv, regardless of the value of pinit, exhibit stable performance gains, as
indicated in Table 1. Intriguingly, the condition pinit = 2 (which is close to biological RFs) recorded
the highest performances, ranking first in seven out of ten cases and second in two. This observation
suggests that employing Lp-convolution to increase the kernel size can enhance the performance of
historically successful CNN models as well as the recent models, particularly when pinit = 2, which
aligns closely with biologically observed RFs. This underscores the potential benefits for CNNs
from incorporating brain-inspired structured sparsity and flexible RF adaptability.

6 REPRESENTATIONAL SIMILARITY ANALYSIS BETWEEN Lp-CNNS AND
VISUAL CORTEX

Figure 5a illustrates our approach to assessing the alignment of representations between biological
and artificial systems. We utilized the standardized dataset from Allen Brain Observatory (de Vries
et al., 2020), which uses 118 images of Natural Scenes and corresponding neural activities recorded
from the mouse visual cortex (VC). Our method builds upon established Representational Similarity
Analysis (RSA) techniques (Khaligh-Razavi & Kriegeskorte, 2014; Nguyen et al., 2020; Mehrer
et al., 2020; Devereux et al., 2013; Diedrichsen & Kriegeskorte, 2017), to compare the representa-
tions of CNNs (Bakhtiari et al., 2021; Shi et al., 2019) (See details in Appendix A.11).
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Table 1: Top-1 performance on the CIFAR-100 and TinyImageNet datasets in CNNs are reported
with 5 trials (mean±std). The symbol † indicates that both C and p are frozen parameters during
training. k′ = 2×⌈k

2 ⌉+ k. For all Lp-Conv layers, C was initialized with 1/σinit of diagonals and 0
of off-diagonals, where σinit = k/2. Statistical comparison results using Welch’s t-test with the base
model are marked as follows: ‘ns’ (p-value ≥ 0.05), ‘*’ (0.01 ≤ p-value < 0.05), ‘**’ (0.001 ≤
p-value < 0.01), and ‘***’ (p-value < 0.001). The text in bold denotes the best performance,
while underlined signifies the second best. Gray indicates a baseline performance and red indicates
a decrease in performance.

CIFAR-100
Layer pinit AlexNet VGG-16 ResNet-18 ResNet-34 ConvNeXt-T

(Base) Conv - 66.05 ± 0.33 70.26 ± 0.29 71.22 ± 0.18 72.47 ± 0.23 58.36 ± 6.48
(Large) Conv - ***54.53 ± 0.65 **64.82 ± 2.92 ***72.80 ± 0.27 ***73.52 ± 0.11 ns54.13 ± 1.14

†Lp-Conv 256 ns65.95 ± 0.32 **71.03 ± 0.38 ns71.24 ± 0.23 ns72.61 ± 0.27 ns60.34 ± 2.80
Lp-Conv 16 **67.12 ± 0.37 **70.87 ± 0.23 ***72.35 ± 0.30 ***73.32 ± 0.23 ns61.30 ± 1.71
Lp-Conv 8 **66.85 ± 0.18 **71.14 ± 0.29 ***72.26 ± 0.28 ***73.37 ± 0.15 ns59.94 ± 5.04
Lp-Conv 4 *66.68 ± 0.28 ***71.71 ± 0.36 ***73.00 ± 0.15 ***74.07 ± 0.22 ns59.34 ± 7.53
Lp-Conv 2 ns66.13 ± 0.33 ***72.88 ± 0.30 ***73.86 ± 0.14 ***74.95 ± 0.11 ns62.61 ± 3.03

TinyImageNet
Layer pinit AlexNet VGG-16 ResNet-18 ResNet-34 ConvNeXt-T

(Base) Conv - 52.25 ± 0.35 67.75 ± 0.07 66.63 ± 0.51 69.22 ± 0.11 70.25 ± 0.45
(Large) Conv - ***35.52 ± 0.46 ns66.96 ± 1.50 ***68.33 ± 0.19 ns69.46 ± 0.36 ns68.66 ± 1.50

†Lp-Conv 256 ns52.60 ± 0.12 ns67.72 ± 0.18 ns66.37 ± 0.55 ns69.27 ± 0.27 ns70.45 ± 0.44
Lp-Conv 16 ***53.98 ± 0.50 ***69.29 ± 0.25 **67.72 ± 0.43 **70.00 ± 0.33 ns70.62 ± 0.30
Lp-Conv 8 **54.07 ± 0.91 ***69.72 ± 0.16 *67.63 ± 0.45 ***69.81 ± 0.23 ns70.52 ± 0.36
Lp-Conv 4 ***54.30 ± 0.48 ***69.79 ± 0.30 **68.20 ± 0.50 **69.99 ± 0.44 ns70.74 ± 0.37
Lp-Conv 2 ***54.13 ± 0.53 ***69.96 ± 0.45 ***68.45 ± 0.36 ***70.43 ± 0.24 ns70.72 ± 0.31

Based on the observation that Lp-convolution tends to perform better as it approaches biologically
observed RFs with pinit = 2, we posed the question of whether the neural representation of artificial
models with biological RFs aligns more closely with the representation of VC. To address this, we
compared the neural representations of TinyImageNet-trained CNNs from Table 1 by presenting the
118 Natural Scene images, with the mouse VC representations. To facilitate model comparison, we
extracted the representative value, maximum SSM, chosen from pair-wise SSMs across the convolu-
tional layers and the VC subregions (See pair-wise SSMs in Appendix A.12). In the results, models
with pinit closer to 2 generally exhibited better alignment with the brain (Fig. 5b). In summary,
we find that Lp-convolution tends to achieve better alignment with the brain as it approximates a
Gaussian distribution.

7 RELATED WORKS

Resurgence of large kernels in convolution In the early stages of CNN development, large ker-
nels were not widely adopted, with their use predominantly confined to the initial layers (Krizhevsky
et al., 2012; Szegedy et al., 2015; 2017). Attempts to enlarge kernel size sometimes led to a decline
in classification performance (Peng et al., 2017). Consequently, the more favored strategy was stack-
ing smaller kernels (1x1, 3x3) (Simonyan & Zisserman, 2014; He et al., 2016).

The advent of Vision Transformers (ViTs) marked a paradigm shift from traditional CNN models,
with the Swin Transformer emphasizing the significance of both attention mechanisms and large
receptive fields, thereby renewing interest in large kernel CNNs (Dosovitskiy et al., 2020; Liu et al.,
2021; Touvron et al., 2021; Vaswani et al., 2021; Liu et al., 2021). Recent innovations such as
RepLKNet and SLaK have showcased performance comparable to ViTs, highlighting the potential
of large kernel CNNs in modern computer vision (Ding et al., 2022; Liu et al., 2023). However, the
effectiveness of large kernels in historically successful CNN models remains unexplored.

In this paper, we implemented large-kernel convolution by applying trainable masks to existing fil-
ters and introducing Gaussian-based structured sparsity for adjustments in receptive fields tailored to
specific tasks. This methodology contrasts with recent approaches that incorporate unstructured row-
rank sparsity directly into filters, which may necessitate extensive hyperparameter tuning. Our train-
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Figure 5: Representational similarity between biological brain and artificial models using nat-
ural images (a) Schematical illustration of representational similarity analysis from neural activities
of mouse VC L2/3 subregions and convolutional layers of TinyImageNet-trained CNNs; Unit ac-
tivities in both mouse brain or CNNs were obtained from N number of image inputs; N × N
representational similarity matrix (RSM) was constructed for every subregions or layers by mea-
suring the correlations across unit activities. The similarity of the RSMs (SSM) between the V1
region and CNN Conv layer was measured by calculating Kendall’s rank correlation coefficient. (b)
For the comparison of the representational similarity score in Lp-models, the maximum SSM score
was collected as the representative value among all pair-wise SSM scores across regions and layers;
the two-sample Student’s t-test was conducted for statistical analysis and demonstrated statistical
significance (pinit = 2 vs. others) with p-value<0.05 (*), p-value<0.01 (**), p-value<0.001 (***).

able masks streamline the optimization process by automatically adjusting key parameters, thereby
facilitating the application of large kernel training in both traditional and modern CNN architectures.

Gaussian distribution as receptive field of visual information processing In biological sys-
tems, computational neuroimaging studies have uncovered that population receptive fields (pRFs) in
the human visual system exhibit Gaussian distributions, shedding light on population-level insights
(Wandell & Winawer, 2015). Recent research underscores the predominance of circular pRF shapes
in the early visual cortex (Lerma-Usabiaga et al., 2021).

In the realm of artificial systems, the concept of effective receptive fields (ERFs) was introduced by
Luo et al. (2016). Their findings indicate that ERFs in CNNs display Gaussian-like properties and
are significantly smaller than their theoretical counterparts, thereby providing critical insights into
how information is integrated across layers (Luo et al., 2016).

The prevailing understanding is that the Gaussian-like nature of RFs in both biological and artificial
systems arises from the cumulative effect of convolutions through stacked layers. However, in our
study, we show that the inherently Gaussian-like RFs — not a result of the cumulative stacking of
layers —, could be beneficial in visual processing and more accurate in the explanation of the brain’s
neural representation.

9
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8 CONCLUSION

The emergence of CNNs stands as one of the most significant events in the history of artificial
intelligence (Krizhevsky et al., 2012). CNN-based models have led to the development of numerous
commercial applications, generating substantial industrial value (Alzubaidi et al., 2021). Notably,
CNNs have not only played a pivotal role in engineering but have also become a major model
in the study of visual processing in the brain (Lindsay, 2021). However, with the recent advent
of Vision Transformers, the throne of dominance as a vision model appears to be shifting away
from CNNs (Dosovitskiy et al., 2020). Yet, the emergence of large-kernel CNNs has prompted a
reevaluation of the potential of CNNs Ding et al. (2022); Liu et al. (2023).

In this study, we introduced a novel Lp-convolution, based on the MPND, with the objective of
narrowing the gap between artificial and biological RFs, and subsequently crafting neural network
modules more aligned with biological structures. Brain-inspired Lp-convolution enables the cultiva-
tion of diverse-shaped RFs with Gaussian-based structured sparsity, adaptable to various rotations,
distortions, and scales, and tailored for specific tasks. Significantly, Lp-convolution showcases its
adaptability and compatibility across an extensive spectrum of CNN models, from the conventional
to the contemporary, underscoring its proficiency, especially in contexts involving large kernels.
We believe our research serves as a noteworthy illustration of the symbiotic relationship between
advancements in artificial intelligence and our understanding of neural processes.
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Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International conference on machine learning, pp. 10347–10357. PMLR, 2021.

12

https://github.com/chingisooinar/sudoku-solver.pytorch
https://github.com/chingisooinar/sudoku-solver.pytorch
https://github.com/Kyubyong/sudoku
https://github.com/Kyubyong/sudoku


Under review as a conference paper at ICLR 2024

J Hans Van Hateren and Arjen van der Schaaf. Independent component filters of natural images
compared with simple cells in primary visual cortex. Proceedings of the Royal Society of London.
Series B: Biological Sciences, 265(1394):359–366, 1998.

Ashish Vaswani, Prajit Ramachandran, Aravind Srinivas, Niki Parmar, Blake Hechtman, and
Jonathon Shlens. Scaling local self-attention for parameter efficient visual backbones. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12894–
12904, 2021.

Brian A Wandell and Jonathan Winawer. Computational neuroimaging and population receptive
fields. Trends in cognitive sciences, 19(6):349–357, 2015.

Po-Wei Wang, Priya Donti, Bryan Wilder, and Zico Kolter. Satnet: Bridging deep learning and log-
ical reasoning using a differentiable satisfiability solver. In International Conference on Machine
Learning, pp. 6545–6554. PMLR, 2019.

Paul Werbos. Beyond regression: New tools for prediction and analysis in the behavioral sciences.
PhD thesis, Committee on Applied Mathematics, Harvard University, Cambridge, MA, 1974.

Ross Wightman. Pytorch image models. https://github.com/rwightman/, 2019.

Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, and
Saining Xie. Convnext v2: Co-designing and scaling convnets with masked autoencoders. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16133–
16142, 2023.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual trans-
formations for deep neural networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1492–1500, 2017.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceed-
ings of the IEEE/CVF international conference on computer vision, pp. 6023–6032, 2019.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2017.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmen-
tation. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 13001–
13008, 2020.

13

https://github.com/rwightman/


Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 BIOLOGICAL RFS

For the biological RF analysis, we have analyzed in vivo intracortical connectivity dataset of Rossi
et al. (2020) collected from the mouse primary visual cortex (V1) (Fig. 1a). It contains both ex-
citatory (CaMK2a-positive) and inhibitory (Gad2-positive) layer 2/3 neuronal spatial connectivity
distribution (Fig. 1b) which was determined by recording GCaMP6 signals (calcium activities) of
pre-and post-synaptic pairs (Fig. 7 and 6).

Given a post-synaptic neuron positioned at (x0, y0), (Fig. 1b black), and the Nb number of functional
synapse positions xn, yn ∈ (−∞,∞) for n = 1, 2, ..., Nb, then relative offsets are defined as
(∆xn,∆yn) = (xn − x0, yn − y0). We summarize functional synapse positions for biological RF
as following

∆sb = [(∆xn,∆yn)]
Nb
n=1. (5)

A.2 ARTIFICIAL RFS

For the artificial RF analysis, we used untrained or pre-trained AlexNet4 with inputs (224 × 224)
of 17 images either generated from Gaussian noises or selected among 118 Natural Scenes images
datasets (See details in Appendix A.10 and Fig. 7). When image inputs were shown to AlexNet, we
extracted RFs of the functional synapse from the first convolutional layer (Conv1) (Fig. 1, c and d).

Given the input X ∈ RCi×H×W and weights parameters for Artificial RFs WARF ∈
RCi×Kh×Kw , the post-synaptic unit in the Convolution layer, receives weighted-input Z ∈
RV×Ci×Kh×Kw , the results of element-wise multiplication between partial input and filters, where
Zv=m∗(H−Kh+1)+n = X·,m:m+Kh−1,n:n+Kw−1 ⊙ W (Fig. 1d black) for 0 ≤ m ≤ H − Kh and
≤ n ≤ W −Kw. We calculate the weighted input as the convolution operation without summation
across width, height and input channel. As a result, weighted input Z has V ×Ci×Kh×Kw shape,
where V = (H −Kh + 1)× (W −Kw + 1), and Zv ∈ RCi×Kh×Kw denotes the v-th element of
Z . Here, Ci, H , W , Kh and Kw denote the number of input channels, input height, input width,
kernel height and kernel width, respectively. For simplicity, we assume that there is stride one and
no zero-padding. For h ∈ [0, · · · ,Kh − 1] and w ∈ [0, · · · ,Kw − 1], the relative offsets from the
kernel center are defined as follows

∆s = (∆h,∆w) = (h− Kh

2
, w − Kw

2
). (6)

Since spatial connectivity pattern in the biological synapse is measured by the functional calcium
activities and given as coordinates, we applied a similar approach to that of CNN layers. We col-
lected Na functional weighted-inputs (functional synapses) where Na represents the number of cases
where each elements of |Z| exceeds a threshold θ. Here, we defined θ as the standard deviation of
|Z| 5. This selection process yielded a different set of functional synapses input-dependent manner.
We summarize functional synapse positions for artificial RF as following

∆sa = {(v, k,∆h,∆w)|Zv,k,h,w > θ}, where |∆sa| = Na. (7)

4For the pre-trained model, we used the torchvision’s ImageNet-1k pre-trained model
5We determined the activity threshold based on a common method used in neuroscience to extract mean-

ingful patterns in neural activity, which is similar to calculating the Z-score and typically setting a threshold at
a range of 2 to 3 standard deviations to identify values that are statistically significant.
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A.3 GAUSSIAN DISTRIBUTED FUNCTIONAL SYNAPSES OF POST-SYNAPTIC NEURON IN
MOUSE V1 LAYER 2/3

(a) (b)

(c) (d)

𝜇𝑚

𝜇𝑚

𝜇𝑚

3D coordinates of functional synapses

Figure 6: Distribution of post-synaptic functional synapses in mouse V1 layer 2/3 (a) Using
dataset from Rossi et al. (2020), 3D scatter plot represent relative positions of both excitatory (red)
and inhibitory (blue) functional synapses from the soma of the post-synaptic neuron. (b-d) 2d his-
togram (left) and Gaussian fitted probability density function (right), showing the laminar organiza-
tion of functional synapses for all (b), excitatory (c), and inhibitory (d)

A.4 INDIVIDUAL RECEPTIVE FIELDS COLLECTED FROM BOTH BIOLOGICAL AND ARTIFICIAL
SYSTEMS

(a)

(b)

(c)

Figure 7: Biological and artificial receptive fields with visual stimulus The receptive field dis-
cussed in this figure specifically refers to the spatial connectivity patterns of synapses. Note that
this differs from receptive fields typically associated with low-level visual feature selectivity. (a)
Receptive fields of individual neurons in V1 Layer2/3 from the dataset Rossi et al. (2020) (b) Re-
ceptive fields of untrained or ImageNet-1k pretrained AlexNet’s Conv1 layer when Natural Scenes
images were shown (c) Receptive fields of untrained or ImageNet-1k pretrained AlexNet’s Conv1
layer when Gaussian RGB noise were shown. All receptive fields are zero mean unit variance nor-
malized.
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A.5 EXPERIMENTAL DETAILS FOR SUDOKU CHALLENGE

We utilized the extensive 1M-sudoku dataset (Park, 2018), a resource also utilized in prior
works (Amos & Kolter, 2017; Palm et al., 2018; Wang et al., 2019). Sudoku, a widely popular
number puzzle, involves organizing digits in a grid such that each row (1×9), column (9×1), and
box (3×3) contains all numbers from 1 to 9. In the Sudoku challenge, where achieving these three
objectives simultaneously is essential for complete Sudoku solving, there is an advantage that we
can test the applicability and effectiveness of evolving RFs in the Lp-convolution. To achieve this,
we compared five distinct models of Sudoku CNN: (3×3) Base model, (7×7) Large model, (7×7)
Lp(pinit = 2), (7×7) Lp(pinit = 16), and finally (7×7) L†

p(pinit = 256) (frozen p and C model) 2.
For numerical stability, we clipped p ≥ 2 during the training of the Sudoku-solving task. The
inputs, targets, and model architecture are outlined in Figure 4a. As illustrated, our model com-
prises repeated Conv2dSame blocks, originally introduced in SudokuCNN (Oinar, 2021). Each
Conv2dSame block encompasses Reflection padding, followed by a conventional Convolutional or
Lp-Convolutional layer, Batch Normalization, and an activation function. The Convolutional layer
has 256 channels, and the number of blocks is set at L = 10.

A.6 CONFORMATIONAL ANALYSIS OF Lp-MASKS

We defined the properties of scale (α), rotation (θ), and distortion (γ) through Singular Value De-
composition (SVD) on C, covariance matrix for each output channel, as shown in the following
equation:

C = UΛVT . (8)

Here, U and V represent 2 × 2 unitary matrices containing the left and right singular vec-
tors. Λ is a diagonal matrix containing the singular values (λ0, λ1). Rotation is quantified as
θ = arctan

(
sin(VT [1])
cos(VT [1])

)
(in degrees), providing a measure of rotational transformation. Distor-

tion is quantified as γ = λ0

λ1
, offering valuable information about the deformation present in the

data. Scale is quantified as α =

√(
1
λ0

)2

+
(

1
λ1

)2

, indicating the size of mask. In Figure 4a, we

show the example shapes of Lp-masks by reverse calculating C from the given α, θ, γ.
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A.7 LAYER-WISE VISUALIZATION OF Lp-MASKS FOR SUDOKU-LpCONVNET

LpConv1 LpConv2 LpConv3 LpConv4 LpConv5

LpConv6 LpConv7 LpConv8 LpConv9 LpConv10

Layer-wise visualization of all receptive fields in Sudoku 𝑳𝒑ConvNet (p=2)

Figure 8: Layer-wise visualization of Lp-masks for Sudoku-LpconvNet All learned Lp-masks
after Sudoku task training of Lp-ConvNet(pinit = 2). With an increase in layer depth, the sizes of
masks get larger.
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A.8 ACCURACY CURVES FOR SUDOKU ABLATION EXPERIMENTS ON Lp(P=2)

A
c
c
u
ra

c
y

Theta ablation range

#1

#2

#3

Figure 9: Accuracy curves for Sudoku ablation experiments on Lp(p=2). 3 individual experi-
ments (rows) of vertical Lp-masks ablations with 3 different conditions (columns; layer 1 to 10, left;
layer 1 to 5, middle; layer 6 to 10, right) on Lp(p=2)
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A.9 EXPERIMENTAL DETAILS OF VISION CLASSIFICATION TASK

We conducted our training on two datasets: CIFAR-100 (Krizhevsky et al., 2009) and TinyIma-
geNet (Le & Mikolov, 2014). CIFAR-100 comprises 32 × 32 pixel images distributed across 100
classes, while TinyImageNet consists of 224×224 pixel images spanning 200 categories. Following
standard procedures, we reported top-1 accuracy with corresponding mean and standard deviation.
Our implementation is based on the PyTorch framework (Paszke et al., 2019), making extensive use
of the timm repository (Wightman, 2019). We adopted a training strategy rooted in DeiT (Touvron
et al., 2021), incorporating techniques such as RandAugment (Cubuk et al.), Mixup (Zhang et al.,
2017), Cutmix (Yun et al., 2019), random erasing (Zhong et al., 2020), and stochastic depth (Huang
et al., 2016). The optimization process employed AdamW (Loshchilov & Hutter, 2017) with a de-
fault momentum value of 0.9 and a weight decay set at 5 × 10−2. We initialized our learning rate
at 1 × 10−3 and implemented a cosine learning rate schedule. All models underwent training for
300 epochs, utilizing a batch size of 128. For CIFAR-100, training was conducted on 2 GTX 1080ti
GPUs, while 2 Tesla V100 GPUs were used for TinyImageNet.

A.10 THE ALLEN BRAIN OBSERVATORY DATASET

The Allen Brain Observatory dataset (de Vries et al., 2020) constitutes a comprehensive standard-
ized in vivo examination of physiological activity within the mouse visual cortex. It encompasses
recordings of visually-induced calcium responses from neurons expressing GCaMP6f. This dataset
encompasses cortical activity from nearly 60,000 neurons originating from six distinct visual areas,
four layers, and twelve transgenic mouse Cre lines. These recordings were gathered from 243 adult
mice in reaction to a diverse set of visual stimuli. In this study, we focused on utilizing the collective
neural responses from five visual areas (VISal, VISam, VISl, VISp, VISpm), Layer 2/3 (depth range
of 175mm to 275mm), and three mouse lines (Cux2-CreERT, Emx1-IRES-Cre, Slc17a7-IRES2-
Cre) when presenting a dataset of natural scenes to the mice. This dataset comprised 118 natural
images obtained from three different databases (Berkeley Segmentation Dataset (Martin et al., 2001),
van Hateren Natural Image Dataset (Van Hateren & van der Schaaf, 1998), and McGill Calibrated
Colour Image Database (Olmos & Kingdom, 2004)). Further details regarding the experiment can
be found in (de Vries et al., 2020). In our study, we employed both images and neural responses for
experiments involving representational similarity analysis to evaluate the correspondence between
CNNs and the visual cortex, mirroring earlier investigations (Shi et al., 2019; Bakhtiari et al., 2021).

A.11 REPRESENTATION SIMILARITY ANALYSIS

While the details of RSA are expertly addressed in Diedrichsen & Kriegeskorte (2017), let us briefly
cover our specific approach. We leveraged the codebase provided by Bakhtiari et al. (2021). In
RSA, we generate response matrices (R) for brain regions and neural network layers, with dimen-
sions N ×M (where N is the number of image inputs and M is the neuron count). Using Pearson
correlation, we compute similarities within matrix R to construct the N ×N Representation Simi-
larity Matrix (RSM). Additionally, following the methodology of Bakhtiari et al. (2021), we applied
noise correction by normalizing the RSAs using the noise ceiling values. These values were obtained
through comparisons of representations across different mice. For example, the noise ceiling value
for VISp is derived by calculating the RSMs of VISp from different animals and taking their median.
To assess the similarity between RSMs (SSM), we employ Kendall’s τ for robust agreement, which
helps mitigate potential bias from measurement noise Diedrichsen et al. (2020).
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A.12 PAIR-WISE REPRESENTATION SIMILARITY ANALYSIS BETWEEN ALL CNN LAYERS
AND V1 SUBREGIONS

S
S

M
S

S
M

S
S

M
S

S
M

S
S

M

Conv Layer Depth

Conv Layer Depth

Conv Layer Depth

Conv Layer Depth

Conv Layer Depth

Figure 10: Pair-wise representation similarity analysis between all CNN layers and VC sub-
regions. We show the SSM scores for all pairs of Conv layers from CNNs and VC subregions.
y-axis, SSM score; x-axis, Conv layer depth. For Max. SSM, we choose the highest SSM among all
pair-wise SSMs.
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A.13 PYTORCH-STYLE PSEUDOCODE FOR Lp-CONVOLUTION

Algorithm 1: PyTorch-style pseudocode for Lp-Convolution
import torch
import torch.nn as nn
import torch.nn.functional as F

from torchvision.models import alexnet

class LpConv2d(nn.Conv2d):
def init (self, p init, sigma init, in channels,

out channels, kernel size, stride,
padding, **kwargs):

...

# Create parameters p & C
params p = torch.ones( out channels ) * p init
params C = torch.zeros( out channels, 2, 2 ) )
params C[:,0,0] = 1/sigma init
params C[:,1,1] = 1/sigma init

self.p = nn.Parameter( params p )
self.C = nn.Parameter( params C )

def forward(self, input):
# Create channel-wise lp masks from parameters p and C
lp masks = get channel wise lp masks(self.p, self.C)

# Overlay lp masks on weight
masked weight = weight * lp masks
return F.conv2d(inputs, masked weight, bias,

kernel size, stride, padding, **kwargs)

def LpConvert(model, p init):
# Convert all nn.Conv2d layers into LpConv2d
for i in range(num layers):

layer = model.layers[i]
if layer is nn.Conv2d:

model.layers[i] = LpConv2d(p init, sigma init, **kwargs)
return model

# LpConvert on Alexnet for TinyImageNet
base model = alexnet(num classes=200)
lp2 model = LpConvert(base model, p init=2)
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A.14 VISUALIZATION OF FUNCTIONAL RECEPTIVE FIELDS OF PRE-TRAINED ALEXNET

Pre-trained AlexNet (     vs     )

Kernels only Kernels & Image inputs Kernels & Noise inputs

(a) (b) (c)

Functional Connectivity Distribution 

of Pre-trained AlexNet Conv1

+ Image inputs

Functional Connectivity Distribution 

of Pre-trained AlexNet Conv1

+ Noise inputs

(d) (e)

Figure 11: Visualization of functional receptive fields of pre-trained AlexNet Conv1 with image
or noise inputs. Visualization of first 20 kernels of total 64 without inputs (a; column orders: RGB,
R, G, B), with image inputs (b; column orders: RGB, R, G, B, R, G, B) with noise inputs (c; column
orders: RGB, R, G, B, R, G, B). (d) Histogram of functional connectivity from (b). (e) Histogram
of functional connectivity from (c). W , Weight; X̄ , kernel-sized input; Z̄ , kernel-sized output; θ,
activity threshold; ⊙, element-wise product. See Appendix A.2. for methodological details.
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A.15 VISUALIZATION OF FUNCTIONAL RECEPTIVE FIELDS OF UNTRAINED ALEXNET

Untrained AlexNet (     vs     )

(a) (b) (c)

Functional Connectivity Distribution 

of untrained AlexNet Conv1

+ Image inputs

Functional Connectivity Distribution 

of untrained AlexNet Conv1 

+ Noise inputs

(d) (e)

Kernels only Kernels & Image inputs Kernels & Noise inputs

Figure 12: Visualization of functional receptive fields of untrained AlexNet Conv1 with image
or noise inputs. Visualization of first 20 kernels of total 64 without inputs (a; column orders: RGB,
R, G, B), with image inputs (b; column orders: RGB, R, G, B, R, G, B) with noise inputs (c; column
orders: RGB, R, G, B, R, G, B). (d) Histogram of functional connectivity from (b). (e) Histogram
of functional connectivity from (c). W , Weight; X̄ , kernel-sized input; Z̄ , kernel-sized output; θ,
activity threshold; ⊙, element-wise product. See Appendix A.2. for methodological details.
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A.16 VISUALIZATION OF MPND WHEN p < 2

Figure 13: Visualization of MPND when p < 2 Given the value of p = 1, MPND distribution
becomes diamond shape. When p < 1, the distribution becomes a cross-like shape.

A.17 POST-TRAINED p-DISTRIBUTION IN Lp-MASKS

AlexNet

VGG-16

ResNet-18

ResNet-34

ConvNeXt-T

Figure 14: CIFAR-100-trained p-distribution of Lp-masks

AlexNet

VGG-16

ResNet-18

ResNet-34

ConvNeXt-T

Figure 15: TinyImageNet-trained p-distribution of Lp-masks
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Table 2: Layer-wise p-distribution of CIFAR-100-trained Lp-masks All values (Median ±
Stdev) are calculated with p of all Lp-masks in each layer, from 5 different trials of CIFAR-100-
trained models.

CIFAR-100
Model Layer Lp-Conv (p=2) Lp-Conv (p=4) Lp-Conv (p=8) Lp-Conv (p=16)

AlexNet

1 1.99 ± 0.08 3.88 ± 0.16 7.75 ± 0.35 15.45 ± 0.68
2 2.00 ± 0.06 3.93 ± 0.19 7.67 ± 0.52 15.35 ± 0.96
3 1.91 ± 0.07 3.70 ± 0.16 7.64 ± 0.37 15.06 ± 0.79
4 1.80 ± 0.13 3.38 ± 0.32 7.18 ± 0.36 14.73 ± 0.64
5 1.82 ± 0.11 3.35 ± 0.29 7.11 ± 0.38 14.45 ± 0.68

ResNet-18

1 1.98 ± 0.11 3.85 ± 0.23 7.70 ± 0.49 15.39 ± 1.27
2 2.01 ± 0.06 3.87 ± 0.13 7.91 ± 0.32 15.37 ± 0.84
3 1.93 ± 0.05 3.68 ± 0.11 7.45 ± 0.25 15.30 ± 0.58
4 1.95 ± 0.05 3.72 ± 0.12 7.61 ± 0.26 15.43 ± 0.61
5 1.92 ± 0.05 3.65 ± 0.12 7.45 ± 0.23 15.55 ± 0.52
6 1.98 ± 0.05 3.80 ± 0.10 7.58 ± 0.20 16.08 ± 0.56
7 1.82 ± 0.05 3.45 ± 0.13 7.30 ± 0.26 14.92 ± 0.57
8 1.71 ± 0.06 3.57 ± 0.17 8.00 ± 0.01 16.00 ± 0.00
9 1.88 ± 0.05 3.61 ± 0.12 7.49 ± 0.21 15.47 ± 0.58

10 1.93 ± 0.05 3.70 ± 0.11 7.50 ± 0.22 15.82 ± 0.48
11 2.01 ± 0.06 3.90 ± 0.13 7.68 ± 0.21 16.28 ± 0.56
12 1.79 ± 0.06 3.52 ± 0.13 7.35 ± 0.20 15.31 ± 0.51
13 1.62 ± 0.05 3.42 ± 0.14 8.00 ± 0.01 16.00 ± 0.00
14 1.93 ± 0.06 3.82 ± 0.11 7.72 ± 0.20 16.22 ± 0.56
15 2.01 ± 0.05 3.96 ± 0.10 7.93 ± 0.20 16.54 ± 0.54
16 2.09 ± 0.06 4.16 ± 0.11 8.07 ± 0.21 16.80 ± 0.60
17 1.94 ± 0.05 3.84 ± 0.10 7.69 ± 0.22 15.54 ± 0.41
18 1.74 ± 0.04 3.86 ± 0.12 8.00 ± 0.00 16.00 ± 0.00
19 1.99 ± 0.06 4.02 ± 0.11 8.10 ± 0.21 16.19 ± 0.35
20 2.02 ± 0.05 4.09 ± 0.09 8.21 ± 0.18 16.30 ± 0.25

ResNet-34

1 1.99 ± 0.12 3.87 ± 0.26 7.73 ± 0.44 15.51 ± 1.01
2 2.01 ± 0.06 3.87 ± 0.12 7.99 ± 0.33 15.25 ± 0.85
3 1.96 ± 0.05 3.75 ± 0.10 7.65 ± 0.28 15.35 ± 0.51
4 1.96 ± 0.05 3.78 ± 0.11 7.83 ± 0.25 15.54 ± 0.58
5 1.93 ± 0.05 3.71 ± 0.12 7.56 ± 0.26 15.56 ± 0.49
6 1.96 ± 0.05 3.76 ± 0.11 7.65 ± 0.23 15.72 ± 0.57
7 1.94 ± 0.05 3.74 ± 0.11 7.58 ± 0.24 15.80 ± 0.45
8 2.01 ± 0.05 3.90 ± 0.11 7.72 ± 0.21 16.27 ± 0.52
9 1.83 ± 0.05 3.52 ± 0.11 7.45 ± 0.28 14.83 ± 0.58

10 1.69 ± 0.06 3.49 ± 0.17 8.00 ± 0.01 16.00 ± 0.00
11 1.89 ± 0.05 3.69 ± 0.11 7.61 ± 0.22 15.60 ± 0.52
12 1.93 ± 0.05 3.76 ± 0.12 7.69 ± 0.25 15.81 ± 0.49
13 1.95 ± 0.05 3.79 ± 0.10 7.72 ± 0.21 15.95 ± 0.52
14 1.99 ± 0.05 3.89 ± 0.12 7.85 ± 0.24 16.16 ± 0.52
15 1.97 ± 0.05 3.85 ± 0.11 7.77 ± 0.21 16.06 ± 0.52
16 2.03 ± 0.05 3.98 ± 0.11 7.98 ± 0.23 16.39 ± 0.52
17 2.06 ± 0.06 4.07 ± 0.12 7.91 ± 0.23 16.67 ± 0.51
18 1.80 ± 0.07 3.59 ± 0.12 7.41 ± 0.21 15.41 ± 0.56
19 1.65 ± 0.05 3.48 ± 0.14 8.00 ± 0.01 16.00 ± 0.00
20 1.93 ± 0.06 3.87 ± 0.11 7.78 ± 0.21 16.29 ± 0.51
21 2.01 ± 0.06 4.03 ± 0.10 8.04 ± 0.21 16.45 ± 0.53
22 2.00 ± 0.06 4.00 ± 0.10 8.01 ± 0.20 16.49 ± 0.56
23 2.05 ± 0.06 4.10 ± 0.10 8.19 ± 0.21 16.59 ± 0.52
24 2.04 ± 0.05 4.06 ± 0.10 8.12 ± 0.20 16.57 ± 0.55
25 2.03 ± 0.06 4.11 ± 0.12 8.23 ± 0.24 16.83 ± 0.51
26 2.05 ± 0.05 4.08 ± 0.10 8.15 ± 0.20 16.59 ± 0.53
27 2.02 ± 0.07 4.09 ± 0.13 8.24 ± 0.27 16.89 ± 0.52
28 2.05 ± 0.06 4.08 ± 0.11 8.14 ± 0.20 16.51 ± 0.52
29 2.02 ± 0.06 4.11 ± 0.13 8.32 ± 0.28 16.86 ± 0.50
30 2.16 ± 0.06 4.31 ± 0.10 8.39 ± 0.20 17.12 ± 0.61
31 1.95 ± 0.05 3.86 ± 0.09 7.75 ± 0.19 15.63 ± 0.37
32 1.79 ± 0.04 3.95 ± 0.11 8.00 ± 0.00 16.00 ± 0.00
33 1.98 ± 0.05 3.99 ± 0.10 8.05 ± 0.19 16.12 ± 0.29
34 2.02 ± 0.04 4.06 ± 0.08 8.16 ± 0.18 16.26 ± 0.26
35 1.97 ± 0.06 3.98 ± 0.11 8.01 ± 0.21 16.01 ± 0.27
36 2.07 ± 0.05 4.14 ± 0.10 8.25 ± 0.30 16.22 ± 0.45

VGG-16

1 2.07 ± 0.09 4.08 ± 0.17 8.22 ± 0.37 16.62 ± 0.85
2 2.00 ± 0.06 3.90 ± 0.12 7.77 ± 0.25 15.88 ± 0.63
3 1.98 ± 0.05 3.88 ± 0.13 7.95 ± 0.31 15.51 ± 0.80
4 1.98 ± 0.06 3.83 ± 0.13 7.69 ± 0.26 15.60 ± 0.60
5 1.96 ± 0.06 3.86 ± 0.13 7.94 ± 0.26 15.43 ± 0.68
6 1.94 ± 0.07 3.82 ± 0.13 7.80 ± 0.25 15.87 ± 0.55
7 1.94 ± 0.06 3.81 ± 0.12 7.69 ± 0.22 15.94 ± 0.58
8 1.98 ± 0.06 3.93 ± 0.11 7.94 ± 0.26 15.94 ± 0.69
9 2.02 ± 0.06 4.04 ± 0.10 8.07 ± 0.24 16.17 ± 0.67

10 1.98 ± 0.07 3.98 ± 0.12 7.91 ± 0.18 16.59 ± 0.90
11 1.91 ± 0.08 3.88 ± 0.12 7.80 ± 0.23 15.78 ± 0.44
12 2.01 ± 0.06 4.06 ± 0.11 8.09 ± 0.20 16.19 ± 0.35
13 2.00 ± 0.05 4.01 ± 0.09 8.00 ± 0.20 15.95 ± 0.43

ConvNeXt-T

1 2.06 ± 0.11 3.99 ± 0.15 7.97 ± 0.39 15.71 ± 0.95
2 1.88 ± 0.06 3.66 ± 0.15 7.09 ± 0.34 14.47 ± 0.55
3 1.86 ± 0.06 3.59 ± 0.16 7.04 ± 0.31 14.33 ± 0.54
4 1.86 ± 0.07 3.61 ± 0.16 7.00 ± 0.35 14.43 ± 0.56
5 1.96 ± 0.07 3.99 ± 0.15 7.88 ± 0.34 15.71 ± 0.54
6 1.84 ± 0.08 3.77 ± 0.14 7.61 ± 0.29 15.41 ± 0.55
7 1.83 ± 0.10 3.72 ± 0.16 7.53 ± 0.32 15.27 ± 0.60
8 1.80 ± 0.09 3.72 ± 0.19 7.65 ± 0.29 15.38 ± 0.56
9 1.83 ± 0.07 3.61 ± 0.24 6.93 ± 0.48 14.20 ± 0.71

10 1.93 ± 0.07 3.89 ± 0.15 7.85 ± 0.23 16.00 ± 0.00
11 1.94 ± 0.07 3.87 ± 0.16 7.83 ± 0.23 16.00 ± 0.00
12 1.95 ± 0.08 3.78 ± 0.19 7.70 ± 0.35 16.00 ± 0.00
13 1.95 ± 0.07 3.90 ± 0.17 7.89 ± 0.26 16.00 ± 0.00
14 1.93 ± 0.07 3.85 ± 0.17 7.82 ± 0.26 16.00 ± 0.00
15 1.96 ± 0.07 3.93 ± 0.14 7.88 ± 0.20 16.00 ± 0.00
16 1.97 ± 0.07 3.91 ± 0.15 7.88 ± 0.25 16.00 ± 0.00
17 1.97 ± 0.07 3.93 ± 0.14 7.90 ± 0.20 16.00 ± 0.00
18 2.01 ± 0.06 3.97 ± 0.14 7.98 ± 0.18 16.00 ± 0.00
19 1.83 ± 0.06 3.64 ± 0.13 7.32 ± 0.26 15.08 ± 0.46
20 2.00 ± 0.00 4.00 ± 0.00 8.00 ± 0.00 16.00 ± 0.00
21 2.00 ± 0.00 4.00 ± 0.00 8.00 ± 0.00 16.00 ± 0.00
22 2.00 ± 0.00 4.00 ± 0.00 8.00 ± 0.00 16.00 ± 0.00
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Table 3: Layer-wise p-distribution of TinyImageNet-trained Lp-masksAll values (Median ±
Stdev) are calculated with p of all Lp-masks in each layer, from 5 different trials of TinyImageNet-
trained models.

TinyImageNet
Model Layer Lp-Conv (p=2) Lp-Conv (p=4) Lp-Conv (p=8) Lp-Conv (p=16)

AlexNet

1 1.91 ± 0.22 3.62 ± 0.31 7.21 ± 0.41 14.57 ± 0.89
2 1.99 ± 0.06 3.91 ± 0.28 7.52 ± 0.70 15.21 ± 1.33
3 1.91 ± 0.11 3.46 ± 0.25 7.15 ± 0.66 14.78 ± 1.34
4 1.71 ± 0.16 2.97 ± 0.37 6.51 ± 0.58 13.86 ± 0.91
5 1.70 ± 0.18 2.82 ± 0.47 6.34 ± 0.75 13.41 ± 1.14

ResNet-18

1 2.12 ± 0.33 4.04 ± 0.41 7.92 ± 0.70 15.93 ± 1.82
2 2.07 ± 0.08 4.02 ± 0.17 7.83 ± 0.49 16.56 ± 1.32
3 1.98 ± 0.08 3.75 ± 0.17 7.36 ± 0.39 16.97 ± 1.42
4 1.99 ± 0.09 3.75 ± 0.17 7.35 ± 0.36 16.92 ± 1.29
5 1.98 ± 0.08 3.68 ± 0.18 7.19 ± 0.30 17.19 ± 1.26
6 2.02 ± 0.10 3.85 ± 0.18 7.45 ± 0.28 17.52 ± 1.29
7 1.84 ± 0.11 3.35 ± 0.22 6.77 ± 0.42 15.33 ± 1.00
8 1.90 ± 0.08 4.05 ± 0.23 8.83 ± 0.31 17.29 ± 0.32
9 1.89 ± 0.12 3.48 ± 0.25 7.06 ± 0.43 15.96 ± 1.07

10 1.98 ± 0.10 3.63 ± 0.24 7.17 ± 0.41 16.97 ± 1.20
11 2.02 ± 0.11 3.82 ± 0.23 7.40 ± 0.37 17.15 ± 1.18
12 1.82 ± 0.11 3.30 ± 0.23 6.71 ± 0.35 15.50 ± 1.02
13 1.75 ± 0.06 3.77 ± 0.18 8.64 ± 0.25 17.16 ± 0.27
14 1.84 ± 0.12 3.39 ± 0.23 7.07 ± 0.37 16.47 ± 1.08
15 1.93 ± 0.12 3.57 ± 0.28 7.24 ± 0.42 17.77 ± 1.15
16 2.01 ± 0.11 3.82 ± 0.24 7.56 ± 0.41 17.49 ± 1.10
17 1.75 ± 0.08 3.19 ± 0.16 6.68 ± 0.26 15.60 ± 0.70
18 1.82 ± 0.06 4.28 ± 0.17 9.25 ± 0.18 17.59 ± 0.16
19 1.78 ± 0.10 3.25 ± 0.16 7.18 ± 0.38 17.55 ± 0.96
20 1.69 ± 0.06 3.57 ± 0.13 8.29 ± 0.27 18.37 ± 0.67

ResNet-34

1 2.11 ± 0.24 4.02 ± 0.36 7.92 ± 0.59 15.75 ± 1.97
2 2.10 ± 0.08 4.04 ± 0.17 7.93 ± 0.50 16.90 ± 1.29
3 2.04 ± 0.09 3.87 ± 0.20 7.48 ± 0.53 17.23 ± 1.30
4 2.04 ± 0.09 3.88 ± 0.19 7.50 ± 0.49 17.14 ± 1.28
5 2.02 ± 0.09 3.80 ± 0.22 7.36 ± 0.40 17.41 ± 1.27
6 2.02 ± 0.08 3.80 ± 0.17 7.39 ± 0.35 17.48 ± 1.32
7 2.05 ± 0.08 3.83 ± 0.19 7.35 ± 0.43 17.65 ± 1.18
8 2.10 ± 0.10 3.96 ± 0.17 7.53 ± 0.32 18.15 ± 1.33
9 1.87 ± 0.12 3.46 ± 0.25 6.93 ± 0.53 15.58 ± 0.98

10 1.86 ± 0.07 3.93 ± 0.20 8.67 ± 0.30 17.14 ± 0.30
11 1.87 ± 0.12 3.54 ± 0.24 7.21 ± 0.44 16.33 ± 1.07
12 1.96 ± 0.13 3.67 ± 0.28 7.27 ± 0.48 17.16 ± 1.17
13 1.96 ± 0.12 3.67 ± 0.22 7.34 ± 0.42 17.24 ± 1.21
14 2.06 ± 0.11 3.88 ± 0.25 7.64 ± 0.55 17.96 ± 1.18
15 1.98 ± 0.11 3.75 ± 0.22 7.48 ± 0.38 17.63 ± 1.25
16 2.12 ± 0.12 4.05 ± 0.25 7.98 ± 0.61 18.33 ± 1.11
17 2.11 ± 0.13 4.03 ± 0.24 7.62 ± 0.50 18.18 ± 1.24
18 1.88 ± 0.12 3.47 ± 0.26 6.90 ± 0.42 15.96 ± 1.15
19 1.73 ± 0.06 3.73 ± 0.18 8.61 ± 0.25 17.13 ± 0.26
20 1.89 ± 0.12 3.52 ± 0.24 7.20 ± 0.39 16.64 ± 1.10
21 1.94 ± 0.15 3.56 ± 0.32 7.27 ± 0.51 17.63 ± 1.20
22 1.90 ± 0.11 3.61 ± 0.21 7.40 ± 0.38 17.34 ± 1.13
23 1.99 ± 0.12 3.81 ± 0.27 7.55 ± 0.53 18.43 ± 1.07
24 1.87 ± 0.11 3.64 ± 0.19 7.57 ± 0.34 17.72 ± 1.07
25 2.00 ± 0.10 3.92 ± 0.22 7.91 ± 0.47 18.69 ± 0.85
26 1.85 ± 0.09 3.71 ± 0.16 7.69 ± 0.29 17.94 ± 0.95
27 2.03 ± 0.09 4.02 ± 0.20 8.18 ± 0.48 18.64 ± 0.82
28 1.86 ± 0.08 3.77 ± 0.16 7.79 ± 0.27 17.98 ± 0.88
29 2.07 ± 0.10 4.11 ± 0.21 8.35 ± 0.53 18.54 ± 0.83
30 1.95 ± 0.09 3.90 ± 0.20 7.69 ± 0.38 18.75 ± 1.07
31 1.98 ± 0.10 3.71 ± 0.21 7.31 ± 0.29 15.82 ± 0.70
32 1.86 ± 0.07 4.41 ± 0.22 9.44 ± 0.21 17.74 ± 0.18
33 1.82 ± 0.09 3.31 ± 0.16 6.90 ± 0.30 16.64 ± 1.02
34 1.88 ± 0.09 3.55 ± 0.19 7.43 ± 0.29 18.29 ± 1.02
35 1.87 ± 0.12 3.47 ± 0.19 7.54 ± 0.41 17.82 ± 0.97
36 1.90 ± 0.06 3.78 ± 0.13 8.07 ± 0.26 18.92 ± 0.69

VGG-16

1 2.07 ± 0.16 4.11 ± 0.24 8.29 ± 0.72 17.52 ± 1.71
2 2.15 ± 0.10 4.17 ± 0.21 8.18 ± 0.52 17.27 ± 1.11
3 2.08 ± 0.11 4.09 ± 0.23 7.99 ± 0.54 17.38 ± 1.30
4 2.15 ± 0.10 4.12 ± 0.21 7.92 ± 0.49 17.76 ± 1.16
5 1.95 ± 0.10 3.79 ± 0.22 7.65 ± 0.52 17.52 ± 1.39
6 1.98 ± 0.12 3.78 ± 0.29 7.55 ± 0.56 18.26 ± 1.25
7 2.04 ± 0.14 3.98 ± 0.31 7.72 ± 0.60 18.05 ± 1.36
8 1.95 ± 0.13 3.72 ± 0.30 7.50 ± 0.54 16.84 ± 1.32
9 1.91 ± 0.14 3.68 ± 0.29 7.69 ± 0.48 18.04 ± 1.27

10 2.00 ± 0.15 3.90 ± 0.29 7.91 ± 0.50 18.38 ± 1.64
11 1.82 ± 0.11 3.43 ± 0.19 7.28 ± 0.36 16.61 ± 1.28
12 1.83 ± 0.10 3.51 ± 0.18 7.52 ± 0.27 16.78 ± 1.29
13 1.96 ± 0.07 3.86 ± 0.14 7.64 ± 0.26 16.09 ± 0.80

ConvNeXt-T

1 1.98 ± 0.20 4.01 ± 0.37 8.16 ± 1.06 16.22 ± 2.12
2 1.95 ± 0.10 3.70 ± 0.22 7.42 ± 0.49 14.91 ± 0.92
3 1.97 ± 0.11 3.71 ± 0.21 7.26 ± 0.45 14.63 ± 0.93
4 1.96 ± 0.12 3.68 ± 0.23 7.25 ± 0.45 15.15 ± 0.99
5 1.88 ± 0.15 3.92 ± 0.36 7.66 ± 1.09 15.48 ± 2.55
6 1.94 ± 0.11 3.65 ± 0.22 7.11 ± 0.44 14.38 ± 1.01
7 1.96 ± 0.09 3.58 ± 0.22 7.01 ± 0.48 13.86 ± 0.88
8 1.95 ± 0.11 3.59 ± 0.24 7.02 ± 0.45 14.12 ± 0.96
9 1.83 ± 0.13 3.71 ± 0.47 7.11 ± 1.02 14.22 ± 2.32

10 1.94 ± 0.09 3.51 ± 0.20 6.64 ± 0.43 13.76 ± 0.89
11 1.93 ± 0.09 3.50 ± 0.20 6.68 ± 0.42 13.87 ± 0.84
12 1.93 ± 0.10 3.50 ± 0.20 6.62 ± 0.40 13.56 ± 0.84
13 1.94 ± 0.11 3.54 ± 0.20 6.64 ± 0.39 13.75 ± 0.80
14 1.94 ± 0.10 3.53 ± 0.21 6.66 ± 0.40 13.68 ± 0.77
15 1.93 ± 0.11 3.56 ± 0.22 6.71 ± 0.40 13.75 ± 0.75
16 1.94 ± 0.11 3.58 ± 0.19 6.80 ± 0.40 14.14 ± 0.85
17 1.94 ± 0.11 3.59 ± 0.29 7.03 ± 0.42 14.44 ± 0.88
18 1.95 ± 0.10 3.61 ± 0.25 7.01 ± 0.39 14.55 ± 0.80
19 1.74 ± 0.08 3.64 ± 0.25 7.32 ± 0.51 15.15 ± 1.17
20 1.87 ± 0.10 3.62 ± 0.21 7.20 ± 0.34 14.69 ± 0.77
21 1.87 ± 0.10 3.65 ± 0.19 7.21 ± 0.35 14.55 ± 0.77
22 1.92 ± 0.09 3.77 ± 0.17 7.45 ± 0.33 15.02 ± 0.76
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A.18 LEARNED Lp-MASK PROPERTIES (p=16)

Layer-wise learned 𝐿𝑝-mask properties for (7x7) 𝐿𝑝 (p=16)

Figure 16: Layer-wise distribution of learned Lp-mask properties (p=16)

A.19 STATISTICS FOR COMPARISON OF OPTIMIZED MPND p VALUES IN ARTIFICIAL AND
BIOLOGICAL RFS

Table 4: Holm-Bonferroni corrected multiple comparisons of each RFs using Welch’s t-test. Lower
diagonal elements denote corrected statistical p-values and upper diagonal elements denote degree
of significance (n.s, not significant; *, 0.01<p<0.05; **, 0.001<p<0.01; ***, p<0.001; )

Welch’s t-test
(corrected p-values)

Mouse V1
Layer 2/3

Trained
+ Image

Trained
+ Noise

Untrained
+ Noise

Untrained
+ Image

Mouse V1
Layer 2/3 - * * *** ***

Trained
+ Image 1.10e-2 - n.s *** ***

Trained
+ Noise 1.06e-2 7.6e-1 - *** ***

Untrained
+ Noise 1.23e-15 4.13e-28 1.49e-25 - ***

Untrained
+ Image 8.94e-14 1.59e-25 6.73e-23 1.39e-22 -

A.20 IMPACT OF Lp-CONVOLUTION (P=2) ON OTHER CNN ARCHITECTURES

Table 5: Top-1 performance (mean±std, 5 trials) on the CIFAR-100 datasets with Lp-Convolution
applied in ConvNeXt-V2-T (Woo et al., 2023), ResNet-50 (He et al., 2016), ResNext-50 (Xie et al.,
2017) and DenseNet-121 (Huang et al., 2017). The symbol ✓ indicates Lp-Converted (pinit = 2) or
not. ‘***’ denotes statistical comparison using Welch’s t-test (p < 0.001).

CIFAR-100
Lp-Conv ConvNeXt-V2-T ResNet-50 ResNeXt-50 DenseNet-121

- 64.26 ± 0.41 73.17 ± 0.23 73.55 ± 0.57 74.12 ± 0.16
✓ *** 65.58 ± 0.25 *** 76.66 ± 0.19 *** 77.38 ± 0.36 *** 77.14 ± 0.18
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