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ABSTRACT

The inclusion of symmetries as an inductive bias, known as “equivariance”, often
improves generalization on geometric data (e.g. grids, sets, and graphs). However,
equivariant architectures are usually highly constrained, designed for symmetries
chosen a priori, and not applicable to datasets with other symmetries. This pre-
cludes the development of flexible, multi-modal foundation models capable of
processing diverse data equivariantly. In this work, we build a single model — the
Any-Subgroup Equivariant Network (ASEN) — that can be simultaneously equiv-
ariant to several groups, simply by modulating a certain auxiliary input feature. In
particular, we start with a fully permutation-equivariant base model, and then obtain
subgroup equivariance by using a symmetry-breaking input whose automorphism
group is that subgroup. However, finding an input with the desired automorphism
group is computationally hard. We overcome this by relaxing from exact to ap-
proximate symmetry breaking, leveraging the notion of 2-closure to derive fast
algorithms. Theoretically, we show that our subgroup-equivariant networks can
simulate equivariant MLPs, and their universality can be guaranteed if the base
model is universal. Empirically, we validate our method on symmetry selection
for graph and image tasks, as well as multitask and transfer learning for sequence
tasks, showing that a single network equivariant to multiple permutation subgroups
outperforms both separate equivariant models and a single non-equivariant model.

1 INTRODUCTION

Equivariant machine learning exploits symmetries in data to constrain the model with known priors,
often leading to improved generalization [Elesedy and Zaidi, 2021; Petrache and Trivedi, 2023],
interpretability [Bogatskiy et al., 2024], and efficiency [Bietti et al., 2021]. Most existing equivariant
models are tailored to specific symmetry groups chosen a priori: for example, graph neural networks
(GNNs) and DeepSets with permutation equivariance, convolution neural networks (CNNs) with
translation equivariance, and Neural Equivariant Interatomic Potentials satisfying Euclidean group
symmetries. While these equivariant models have demonstrated promising performance in datasets
satisfying the prescribed symmetries, they are inflexible in several important ways: (I) equivariant
architectures typically require deriving and implementing group-specific equivariant layers, so
substantial research and engineering must be done for architectural design whenever a new type of
symmetry arises, and (II) equivariant architectures are typically only equivariant to one symmetry
group, and significantly differ between domains. Thus, an equivariant model cannot easily learn from
or make predictions across domains with distinct symmetries, so equivariant models cannot benefit
from the empirical successes of the foundation model paradigm [Bommasani et al., 2021].

In this work, we introduce a framework for building flexible equivariant networks, named Any-
Subgroup Equivariant Networks (ASEN). Given a base group G, we consider subgroups G ≤ G
(typically known a priori) that capture the symmetries intrinsic to the domain (e.g. graph automor-
phisms) or induced by the task (e.g., sequence reversal). To this end, we start with a base network hθ,
which is equivariant to the large group G and thus overly constrained for our purpose — it cannot
represent functions that are equivariant only to G but not G \G. To reduce the amount of constraints,
we augment the input x with features v that break the symmetries in G \G, but that maintain the
symmetries in G. To ensure this, we construct v so that its self-symmetry group (i.e. automorphism
group) is equal to G, i.e. Aut(v) = G. Finally, we pass in the symmetry-breaking input v to our
overly-constrained hθ, and obtain the model fθ(x) = hθ(x,v). We prove that the model fθ is indeed
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G-equivariant, and under certain conditions it is not equivariant to G \G; in other words, it has the
correct equivariance. A trivial, but widespread, example of this technique is the use of positional
encodings [Vaswani et al., 2017] to fully break the permutational symmetry of transformers (since
every entry of the positional encoding vector is unique, G = Aut(v) is the trivial group). When v
has non-trivial automorphism, some equivariance is retained.

ASEN overcomes inflexibility (I), since it only requires providing a single new input v (with correct
automorphism group) to a base network hθ. Also, ASEN overcomes inflexibility (II), since a single
instance of our model can process data from varying domains with different symmetry groups.

While our framework works for any G, we focus on the particular case when G = Sn is the symmetry
group acting as permutation matrices, so that our networks are equivariant to permutation subgroups.
This covers the symmetries of many common domains such as sets and graphs, which allows us
to leverage existing permutation equivariant models as the base model hθ. In particular, we may
leverage existing set networks (inputs in Rn), graph neural networks (inputs in Rn2

) and hypergraph
neural networks (inputs in RnK

) for the base model. While large K may be required for complex
groups, to balance efficiency and expressivity, we focus on the K = 2 case of graph neural networks,
and develop a practical algorithm for computing the symmetry breaking object v as edge features,
with (nearly) the desired self-symmetry Aut(v) ≈ G. To do this, we use the notion of the 2-closure
G(2) of a group G [Ponomarenko and Vasil’ev, 2020], which provides a formal notion of a group that
is close to the target group (G(2) ≈ G), and we compute v with Aut(v) = G(2).

Theoretically, we show that under mild conditions, ASEN parameterized with graph neural networks
has the exact permutation subgroup equivariance. Further, we prove that ASEN is expressive in
two senses: it can approximate certain equivariant MLPs [Maron et al., 2019; Finzi et al., 2021b]
to arbitrary accuracy, and it is universal in the space of G-equivariant functions if the base model is
universal over G-equivariant functions.

To validate our approach, we apply ASEN to diverse settings: (1) exploiting symmetries within a
single task, including graph learning (human pose estimation and traffic flow prediction) and image
classification (Pathfinder); (2) leveraging symmetries across different tasks on sequences in multitask
and transfer learning. Across these settings, our results highlight the flexibility of ASEN and practical
utility of symmetry-aware architectures. Our framework supports both fine-grained control over
group actions and strong transfer of learned representations, making it a powerful tool for structured
generalization in neural networks. Our main contributions are summarized as follows:

• We propose Any-Subgroup Equivariant Networks (ASEN), a framework for building a
flexible equivariant model capable of modeling distinct symmetries across diverse tasks.

• We theoretically show that ASEN enforces any desired subgroup symmetry via proper choice
of the symmetry-breaking input and architecture. We also prove that ASEN is as expressive
as equivariant MLPs, with universality given a sufficiently expressive base model.

• We validate our framework in applications including symmetry selection, multitask learning
and transfer learning, highlighting its flexibility and effectiveness in exploiting shared
symmetry structures.

2 RELATED WORK

Subgroup Equivariance and Symmetry Breaking In equivariant network design, recent works
[Blum-Smith et al., 2024; Ashman et al., 2024; Lim et al., 2024] have proposed subgroup-equivariant
models via augmenting an auxiliary input: Blum-Smith et al. [2024] proposed a permutation-invariant
model for symmetric matrices by using a DeepSet base model—invariant to a bigger group, together
with a suitable symmetry-breaking parameter to reduce the base model symmetries; Ashman et al.
[2024] used fixed symmetry breaking inputs to construct non-equivariant models or approximately
equivariant ones. Symmetry breaking via node identification is a popular technique to enhance the
expressivity of graph neural networks [Abboud et al., 2021; Sato et al., 2021; Bevilacqua et al., 2025].
Symmetry breaking of the input has also been used to improve the flexibility of equivariant models
for applications in graph generation and physical modeling [Smidt et al., 2021; Lawrence et al., 2024;
Xie and Smidt, 2024]. Unlike [Smidt et al., 2021; Lawrence et al., 2024; Xie and Smidt, 2024] that
perform input-dependent symmetry breaking, we break the symmetry of the model uniformly for
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all input. Moreover, existing works typically focus on (approximate) equivariance to one particular
group. In contrast, we build a single model capable of modeling diverse data equivariantly, via
different choices of v adapted to the target application.

Approximate and Adaptive Equivariance Another direction towards flexible equivariant networks
relies on approximate equivariance [Wang et al., 2022; Huang et al., 2023], soft equivariance by
converting architectural constraints into a prior [Benton et al., 2020; Finzi et al., 2021a], regular-
ization [Kim et al., 2023], or adaptive equivariance per task and environment [Gupta et al., 2024].
Approximate equivariance can also improve generalization [Wang et al., 2022; Huang et al., 2023].
This motivates our approach that approximates the automorphism group of the symmetry breaking
input with the 2-closure group.

3 METHOD

3.1 GENERAL METHOD (ASEN)

Here, we describe our general framework for ASEN. Let G be a matrix group, and let G ≤ G be
a subgroup. Both groups have actions on the sets X and Y . We desire our model to parameterize
G-equivariant functions, that is, functions f : X → Y such that f(gx) = gf(y) for g ∈ G. To this
end, we consider a “lift” of f : a function hθ : X ×V → Y on an expanded space, where we introduce
an additional space V on which G and G act. The function hθ is G-equivariant (i.e. equivariant to
the larger group):

hθ(gx, gv) = ghθ(x, v), g ∈ G. (1)
To obtain fθ from hθ, we find a symmetry-breaking input v ∈ V that is exactly self-symmetric to the
subgroup G, i.e. its automorphism group is G,

Aut(v) = {g ∈ G : gv = v} = G. (2)

Finally, we define our G-equivariant model fθ : X → Y as

fθ(x) = hθ(x,v). (3)

The model fθ is G-equivariant because for any g ∈ G,

fθ(gx) = hθ(gx,v) = hθ(gx, gv) = ghθ(x,v) = gfθ(x), (4)

where the second equality follows from g ∈ Aut(v), and the third equality is due to G-equivariance
of hθ. For g ∈ G \G, this equality can break: if gv ̸= v, then hθ(gx,v) ̸= hθ(gx, gv). In fact, if
hθ is injective for the input v, then fθ is only equivariant to G, and not to any other elements in the
larger group G. These results are captured in Prop. 1. As an example: consider G = O(3) acting on
3D point cloud x ∈ Rn×3, and the O(3)-equivariant base model h. Now we fix a particular axis v
with the stabilizer O(2). Then f = h(x,v) is only equivariant to O(2) but not O(3) \O(2).

3.2 PERMUTATION SUBGROUP EQUIVARIANCE VIA HYPERGRAPH SYMMETRY BREAKING

To use our ASEN framework for parameterizing a G-equivariant function, we need two main
components: (i) a method of parameterizing the base model hθ that is equivariant to the larger group
G, and (ii) a way to construct or compute a symmetry breaking object v with automorphism group
Aut(v) = G. In this subsection, we show that when G = Sn is the symmetric group acting as
permutation matrices on n objects, we can leverage existing equivariant architectures for (i); and we
can develop a practical algorithm for (ii). For the rest of this paper, we primarily focus on this setting.

To construct efficient and expressive symmetry breaking objects, we turn to hypergraphs. Con-
cretely, for a (matrix) group G acting on Rn, a hypergraph on n nodes is defined as H =
(A(1), A(2), . . . , A(K)), where A(k) ∈ Rnk

is an order k-tensor, and K is the max tensor order.
We can interpret A(1) as (node) positional encoding, A(k) as (hyper-)edge features for k > 2. The
automorphism group of the hypergraph is defined as

Aut(H) = {P ∈ Sn : P⊗k

A(k) = A(k), k = 1, . . . ,K}. (5)

For instance, if K = 2, then this is the standard graph automorphism group

Aut(H) = {P ∈ Sn : PA(1) = A(1), PA(2)P⊤ = A(2)}. (6)
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For K large enough, we can construct a hypergraph H such that Aut(H) uniquely determines G
Wielandt [1969]. Then, we consider any existing permutation-equivariant hypergraph neural network
hθ : Rn ×

∏K
k=1 Rnk → Rn such that any P ∈ Sn,

hθ(PX,PA
(1), . . . , P⊗K

A(K)) = Phθ(X,A
(1), . . . , A(K)). (7)

We abbreviate (7) by hθ(P (X,H)) = Phθ(X,H). Our G-equivariant model f then takes the form

fθ(X) = hθ(X,A
(1), . . . , A(K)) ≡ hθ(X,H). (8)

Hypergraph Construction and Approximation with 2-Closure Achieving exact symmetry break-
ing of Sn to the desired subgroup G may require a hypergraph H of prohibitively high order (up to
K ≤ n). For efficiency, we fix K = 2 and construct positional and edge features H = (A(1), A(2)),
whose automorphism group Aut(H) reflects on how G acts on nodes and pairs of nodes. Concretely,
nodes i, j (or node pairs (i1, i2), (j1, j2)) are assigned the same feature if and only if they are in the
same G-orbit. In this way, the positional and edge features encode the orbit partition under G. By
construction, Aut(A(2)) is the 2-closure group of G, denoted as G(2) [Ponomarenko and Vasil’ev,
2020]. Algorithm 1 provides the procedure to compute A(2) with high-level SymPy commands,
assuming access to the generating elements of G 1; see Fig. 1 for examples and App. A for more
details. We remark that while Alg. 1 computes all pairwise edge features, it can be applied to a sparse
graph or a subset of edge features by restricting the support of H.

Algorithm 1 Compute Edge Orbits A(2) such that Aut(A(2)) = G(2) (SymPy commands)

Require: Generators σ1, . . . , σr of G ≤ Sn

Ensure: Edge orbits A(2) ∈ [n]× [n] where A(2)
ij = A

(2)
mn ⇐⇒ (i, j) ∼G (m,n).

1: Lift generators: For each σi ∈ Sn, define ρi ∈ Sn2 : (xa, xb) 7→ (σi(xa), σi(xb)).
Encode (xa, xb) as a · n+ b and construct ρi as Permutation of size n2.

2: Form diagonal subgroup: Let ∆(G) := ⟨ρ1, . . . , ρr⟩ be the subgroup of Sn2 .
Delta = PermutationGroup([ρ1, . . . , ρr]).

3: Compute edge orbits: For an edge (xa, xb), apply ρi repeatedly until no new pairs can be found.
Delta.orbits()

Example:   (mirror symmetry)G = S2

Input 1 2 3 4

A(1)

(1,2)

(4,3)A(2)

Example:  G = Sn/2 × Sn/2 × S2

Input 1 2 3 4

A(1) A(2)

(1,2)

(2,1)

Figure 1: Example symmetry breaking objects as positional features A(1) and edge features A(2) for
encoding subgroup symmetries in 4-node paths. These symmetries are explored further in Sec. 5.

Alignment Note that it is important that the input has its node indices aligned correctly. This is
implicitly captured via the choice of the concrete matrix group G. For example, the inputs in Fig. 1
are treated as sequences (instead of sets).The alignment is satisfied typically in applications such as
sequence modelling, graph signal processing, and graph time series (see examples in Sec. 5), but
needs to be computed for other applications such as graph-level tasks.

1If instead we are given all elements of G, we can pass them to PermutationGroup in SymPy and run
the Schreier–Sims algorithm. This produces a base and strong generating set (BSGS): a compact, non-redundant
set of generators adapted to a stabilizer chain. The BSGS allows efficient orbit and membership computations
without ever enumerating the full group.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4 THEORETICAL RESULTS

We first establish that under mild conditions, ASEN with exact symmetry breaking can achieve the
desired subgroup symmetryG ≤ G for any general matrix group G (Prop. 1), and for the permutation
group Sn in the context of graph learning (Lem. 1). We then show that ASEN with approximate
symmetry breaking can simulate equivariant MLPs (Thm. 1), and enjoys universality guarantees if
the base model is universal (Thm. 2). Proofs are deferred to App. B.

The following Prop. 1 shows that ASEN has the desired equivariance to G.
Proposition 1. Let hθ : X × V → Y be G-equivariant, and let Aut(v) = G. Then fθ(x) :=
hθ(x,v) is equivariant to G. If additionally hθ is injective in the input v, then fθ is not equivariant
to any transformation in G \G.

Hypergraph Symmetry Breaking. As noted in Section 3.2, we generally take hθ to be a graph
neural network when parameterizing permutation subgroup equivariant functions. In what follows,
we characterize the condition for correct equivariance (where hθ is equivariant to G but not G \G)
when hθ is a one-layer message-passing neural network (MPNN) operating on nodes and edges. This
argument immediately extends to hθ being a hypergraph network operating on hyper-edges with
deeper layers. By the definition of message-passing, the output hθ at node i is computed as

hθ(X,A
(2))[i] = ϕ

(
ψn(Xi), τ

(
{{ψe(Xi, Xj , A

(2)
i,j ) | j ∈ NA(i)}}

))
(9)

where ψe is the edge update function, ψn, ϕ are the node update functions, and τ is the edge multiset
aggregation. In the following lemma, we show that if the constituent functions are injective, then hθ
is correctly equivariant to only G under mild assumptions on the node features.
Lemma 1. If hθ uses injective functions for (hyper-)edge feature update ψe, node update ϕ, and
(hyper-)edge multiset aggregation τ , and if the node features are distinct, then hθ is not equivariant
to permutations in Sn \G.

Note that these injectivity conditions are similar to sufficient conditions under which message passing
graph neural networks have the same expressive power as the 1-Weisfeiler-Leman graph isomorphism
test [Xu et al., 2019]. We can similarly conclude that these conditions are sufficient for deeper
MPNNs to have the correct equivariance. Also, we can show an analogous result for hypergraph
networks by viewing them as higher-order MPNNs operating on hyperedges, where σ ∈ Sn \ G
implies that there exists a hyperedge (i, j, . . . , k) such that Ai,j,...,k ̸= Aσ(i),σ(j),...,σ(k).

Connections to Equivariant MLPs. Here, we show that ASEN can simulate certain configurations
of a common type of equivariant neural network, sometimes called an equivariant MLP, which
consists of equivariant linear maps and elementwise nonlinearities [Ravanbakhsh et al., 2017; Maron
et al., 2019; Finzi et al., 2021b]. When applied to a group G that acts as permutation matrices on Rn,
an equivariant MLP is defined as a composition: TL ◦ σ ◦ · · · ◦ σ ◦ T1, where σ is an elementwise
nonlinearity, and each Ti : Rnki → Rnki+1 is a G-equivariant linear map (for simplicity, we ignore
channel dimension here). We call k∗ = maxi ki the order of the G-MLP, so if Ti : Rn → Rn for
each i then the G-MLP has order 1. We prove the following result:
Theorem 1. Any order 1 G-MLP can be approximated to arbitrary accuracy on a compact domain
via ASEN with K = 2 and the two-closure approximation Aut(A(2)) = G(2).

We remark that much like an equivariant MLP can increase expressivity by increasing the order
k∗, we can increase expressivity in ASEN by increasing K ≥ 2 and using the K-closure group
approximation Ponomarenko and Vasil’ev [2020]. While we show this relationship in expressivity at
k∗ = 1 and K = 2, we believe that there may be relationships between the two methods at higher
orders, and leave it to future work.

Universality Results. We next show that the universality of ASEN follows from the universality of
its base model.
Theorem 2. Let G be a compact group, X ,V be compact metric G-spaces, and Y be a compact
G-space. Let fθ : X × V → Y be a universal family of continuous G-equivariant networks, i.e.
fθ(gx, gv) = g · fθ(x, v). Consider H ∈ V with stabilizer equal to a subgroup G ≤ G. Then, the
family fθ(·,H) is universal over continuous G-equivariant functions from X to Y .
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5 EXPERIMENTS

Towards developing a general-purpose equivariant foundation model, we evaluate ASEN in diverse
experimental settings by answering the following questions:

Q1 For a single task, can ASEN —with one architecture—explore different symmetries and
reveal the impact of the group choice (Sec. 5.1)?

Q2 Can ASEN leverage shared symmetry structure across tasks to outperform task-specific
equivariant models or non-equivariant baselines in multitask learning (Sec. 5.2.1) and
transfer learning (Sec. 5.2.2)?

Architecture Our backbone is a permutation-invariant graph neural network (GNN), composed of
input layers (e.g. embedding, MLP), followed by four layers of GATv2 message-passing Veličković
et al. [2017], and concluded with output layers (e.g., projection, aggregation). Standard dropout and
layer normalization are applied throughout. There are two task-specific modules: EdgeEmbedder
that calls Alg. 1 to categorize edge orbits and learn their embeddings; TokenEmbedder that maps
(discrete) node features to learnable token embeddings for classification tasks (omitted for regression
tasks); See Fig. 2 for an overview. As EdgeEmbedder is a learnable module, ASEN can discover
more symmetries from data if the chosen group G(2) (specifying the edge orbits) is smaller than the
target group; see evidence in Sec. 5.2. On the other hand, ASEN can fail when G(2) is much larger
than G, as we show in App. C.5.

Group

Input

EdgeEmbedder

TokenEmbedder

MLP

GAT

GAT

GAT

OutputProjection

Aggregation

Figure 2: ASEN Architecture to model any permutation subgroup-equivariant functions.

5.1 SYMMETRY MODEL SELECTION APPLICATIONS

In this section, we consider exploring different symmetry choices for a given task. Specifically, for
each subgroup G in a candidate set chosen a priori, we train a new instance of ASEN with edge
features satisfying Aut(A(2)) = G(2) (or positional features satisfying Aut(A(1)) = G(1)). Our
results highlight the utility of choosing subgroup symmetries informed by the structure of the domain,
such as the reflection symmetry in skeleton graphs, the continuous road structure in traffic graphs,
and the local symmetry in image grids.

5.1.1 GRAPH TASKS

We apply ASEN to perform symmetry model selection for learning on a fixed graph setting, using
the experimental set-up from Huang et al. [2023]. Unlike Huang et al. [2023] that requires distinct
G-equivariant layers for each group, ASEN offers a unified architecture to flexibly model different
G-equivariance by symmetry breaking (i.e., positional or edge features).

Human Pose Estimation We begin with an application in human pose estimation,
using the Human3.6M dataset Ionescu et al. [2014], which consists of 3.6 million human
poses from various images. Our input features consist of 2D coordinates X ∈ R16×2

representing joint positions on a skeleton graph A ∈ {0, 1}16×16 (see Figure inset). The
model predicts the corresponding 3D joint positions in R16×3. Performance is evaluated
using the standard P-MPJPE (Procrustes-aligned Mean Per Joint Position Error) metric.
We consider three edge frameworks H = A(2) (Alg. 1): (1) fully-connected A(2)

f , (2)

sparse A(2)
s where edges are constrained to the support of the skeleton graph A, and (3)

6
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weakly sparse combining A(2)
f +A

(2)
s . We consider selecting different automorphism groups of the

human skeleton edges Aut(A(2)) (that yields the best performance): S2 (full left-right reflection),
S2
2 (left arm/right arm and left leg/right leg), S6

2 (each left-side joint independently mapped to
corresponding joint on right side), and I (no equivariance). Our results in Tab. 1 obtained from a
single model ASEN match with those reported in Huang et al. [2023] that require multiple distinct
equivariant architectures. Notably, the weakly sparse graph yields some of the strongest results,
highlighting ASEN’s flexibility in capturing multiple symmetries. This approach can also be used to
represent a graph with two sets of symmetries.

Table 1: P-MPJPE error (↓) for human pose estimation using
different symmetry groups and edge frameworks.

Group Fully Connected Sparse Weakly Sparse

I 34.71 33.39 34.75
S2 39.48 40.52 38.80
S2
2 43.24 42.37 40.67

S6
2 47.54 49.45 46.52

Table 2: Mean Absolute Error (MAE
↓) for traffic flow prediction.

Model, Group (
∑

i ni = n) MAE

Fully Connected, Sn1 · Sn2 2.72
Sparse, Sn1 · Sn2 2.69
Fully Connected, Sn1 · · · · · Sn9 2.79
Sparse, Sn1 · · · · · Sn9 2.77
DCRNN [Li et al., 2018], Sn 2.77

Traffic Prediction Next, we evaluate on the traffic forecasting task, also taken from Huang et al.
[2023]. This uses the METR-LA dataset, containing time-series traffic data from 207 sensors deployed
on Los Angeles highways. The sensor (node) records speeds and traffic volume every 5 minutes,
resulting in a graph time series with node feature Xt ∈ R207×2. The objective is to predict traffic
conditions at future time Xt+1 based on the past traffic {Xt, Xt−1, Xt−2}. The underlying graph is
defined via a sensor adjacency matrix A ∈ R207×207 constructed from roadway connectivity.

To incorporate symmetry structure, we leverage the spatial layout of sensors along major highways.
We consider two group structures, taken from Huang et al. [2023]: one with two symmetric clusters
representing major highway branchesG = Sn1

×Sn2
, and another with nine clusters corresponding to

finer-grained regional groupings G = Sn1
× . . .×Sn9

. These symmetry groups serve as approximate
equivariances, which encourage learning invariant representations for similarly situated sensors.
We choose H = A(2) such that Aut(A(2)) = G via Alg. 1, and benchmark our model in both
fully-connected and sparse graph regimes. As shown in Tab. 2, choosing suitably smaller symmetry
can outperform full permutation symmetry.

5.1.2 PATHFINDER TASK

As discussed in Sec. 1, Transformer with PE (1D or 2D) breaks permutation symmetry completely,
since each pixel position feature is unique (i.e., trivial automorphism). We study the effect of
imposing local symmetry, by sharing the same position vector for pixels within the same p × p
patch for p = 2, 3, 4. This patch-wise weight sharing preserves permutations within patches while
distinguishing different patches. We evaluate these 2D-PE variants on Pathfinder with m = 64 and
learnable row/column embeddings. Fig. 3 shows that using local permutation symmetry can improve
performance while also slightly reducing the model parameter counts (see App. C.1 for details).
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Figure 3: Pairwise distances of learned positional encodings of Transformer on Pathfinder task, with
test accuracy shown at the top: imposing local permutation symmetry improves performance.
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Table 3: Examples of synthetic tasks: input, equivariant and invariant output, and the target group.

Task Input Equivariant Output Invariant Output Group G ≤ Sn

Intersect [a, b, c, | b, c, d] [0, 1, 1, | 1, 1, 0] 2 Sn/2 × Sn/2 × S2

Palindrome (k = 3) [a, b, c, b, d] [0, 1, 1, 1, 0] True Sequence Reversal

Cyclic Sum (c = 3) [7, 1, 2, 9, 8] [1, 0, 0, 1, 1] 24 Cn (cyclic shifts)

Detect Capital [A, b, b, b] – True Sn−1 (permute all except first)

Longest Palindrome [a, b, c, c, c, c, d, d] – 7 Sn
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Figure 4: ASEN with the correct group (“Equivariant”)
converges faster and to a lower loss than its trivial sym-
metry counterpart (“Non-equivariant”).

Figure 5: Initial edge weights (left) and
trained weights (right): ASEN learns
more symmetries from data.

5.2 SYNTHETIC SEQUENCE MODELING TASKS

To assess the ability of ASEN to transfer structural knowledge across tasks, we consider synthetic
sequence modelling tasks capturing various permutation subgroup symmetries, summarized with
examples in Tab. 3 (with more details deferred to Tab. 5). To demonstrate these sequence tasks can
benefit from exploiting subgroup symmetries, we compare two ASEN variants: one equivariant model
with the correct group (c.f. rightmost column in Tab. 3), and one non-equivariant one without any
symmetry. As shown in Fig. 4, equivariant models incorporating the correct symmetry significantly
outperform their non-equivariant counterparts across all tasks. More details including similar results
for the invariant setting (see Tab. 6) can be found in App. C.2.

Additionally, we explore if ASEN can learn more symmetries from data given a misspecified symmetry
group (smaller than the target group). We consider the Intersect task with G = (Sn/2)

2 × S2, but
only encode a smaller symmetry group G′ = (Sn/2)

2 in the edge features. We check the edge feature
weights before and after training to see if the S2 symmetry was learned. Fig. 5 shows pairwise
distances between the learned Intersect edge weights: The top-left and bottom-right quadrants show
the correct structure (checkerboard), whereas the top-right and bottom-left quadrants lack this initially
but converge to the checkerboard pattern after training, discovering the S2 symmetries from data.

5.2.1 MULTITASK LEARNING APPLICATIONS

In this section, we investigate whether learning related tasks with compatible or similar symmetry
groups can benefit ASEN from shared representation learning. We again make use of the synthetic
tasks introduced in Tab. 3. While each task can be learned independently using a different equivariant
model, we assess whether multitask training can facilitate improved generalization in low-data
regimes. To this end, we use the same ASEN backbone (including weights) shared across tasks, while
the TokenEmbedder and EdgeEmbedder modules are task-specific. During training, we randomly
sample batches from all tasks, ensuring concurrent and balanced updates across tasks.

To focus on performance under constrained data availability, we limit the maximal training set size
to 2,500 datapoints (referred to as “1 unit”). We then compare two regimes: one training only on
r units of a single-task, and the other training on r units on all tasks, specifically Intersect, Cyclic
Sum, and Palindrome. We vary r ∈ {0.2, 0.4, 0.6, 0.8, 1.0} and report the average performance
across three random seeds. Fig. 6 shows that multitask training leads to significantly improved
convergence and test accuracy in the low-data setting for learning Intersect, demonstrating the benefit
of symmetry-aligned task transfer (see more details in App. C.3).

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 10 20 30 40

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

V
al

id
at

io
n

L
os

s

0.2 units

0 10 20 30 40

Epoch

0.4 units

0 10 20 30 40

Epoch

0.6 units

0 10 20 30 40

Epoch

0.8 units

0 10 20 30 40

Epoch

1.0 units

Single-task Multitask

Figure 6: Multitask versus Single-task performance on Task Intersect with varying training set sizes
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Figure 7: Equivariant transfer learning on Task
Intersect: faster convergence and lower loss.

DetectCapital Palindrome Longestpal Intersect
0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

ASEN-Pretrain
ASEN-NoPretrain
NoSym-Pretrain
NoSym-NoPretrain

Figure 8: Invariant transfer learning: improved
pretraining when using symmetry in ASEN.

5.2.2 TRANSFER LEARNING APPLICATIONS

Beyond multitask training, we explore transfer learning by pretraining on tasks with diverse symme-
tries and then finetuning on a new task with a distinct symmetry.We focus on the same set of synthetic
tasks in Sec. 5.2.1 and simulate a low-resource regime by limiting access to only 0.15 units (375
datapoints) of training data. We compare two ASEN model variants: A finetune-only baseline trained
from scratch using only the chosen task data, and a pretrained model initialized via joint training
on 1.5 units each of the other tasks, followed by fine-tuning on the chosen task data. To encourage
knowledge retention, we reduce the learning rate of the GNN backbone during fine-tuning, while
allowing the embedding layers to update more freely. For the equivariant setting, Figure 7 shows
that pretraining ASEN achieves significantly better generalization compared to training from scratch
on the Intersect task, showcasing ASEN as an effective initialization for related downstream tasks.
For the invariant setting, Fig. 8 shows that pretraining ASEN with the correctly specified symmetry
outperforms its trivial symmetry baseline, and pretraining has a larger transfer effect when symmetry
is provided on the Detect Capital and Palindrome tasks.

6 CONCLUSION AND FUTURE DIRECTIONS

In this work, we introduce ASEN, a framework for building a flexible equivariant model capable
of exploiting diverse symmetries. Given a subgroup G ≤ G, ASEN parameterizes G-equivariant
functions via a base G-equivariant model, and a symmetry breaking object whose autormophism
group is G. For general G, we prove that ASEN can achieve the desired subgroup symmetry and
inherit universality properties from the base model. Focusing on the permutation group G = Sn,
we encode the desired subgroup symmetries via positional and edge features, which can be easily
integrated to standard GNNs and expressive as equivariant MLPs. We empirically demonstrate the
flexibility of ASEN to perform symmetry selection in graph and image tasks, and its effectiveness in
exploiting shared symmetry structures in multitask and transfer learning for sequence data.

As a first step, we consider modeling symmetry (sub)groups acting globally on the input; a natural next
step is to incorporate local symmetries, which play a key role for molecular graph applications [Thiede
et al., 2021; Zhang et al., 2024]). Another interesting direction is allowing the symmetry breaking
object to be input-dependent. Incorporating “soft” equivariance priors in ASEN is another fruitful
direction. Studying the scaling behavior of ASEN and the effect of symmetry model misspecification
are key avenues for future work. Finally, exploring other flexible forms of symmetry breaking and
exploiting beyond permutation subgroups offer a promising path towards equivariant foundation
models.
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A ADDITIONAL DETAILS OF ALGORITHM 1

1. Lift the generators. Given the generators σ1, . . . , σr of G ≤ Sn, we define new permuta-
tions ρi acting on X ×X with X = {1, . . . , n}. Each ρi acts diagonally:

ρi : (xa, xb) 7→ (σi(xa), σi(xb)).

In practice (e.g. in sympy), if n is the degree of the action, we encode (xa, xb) as a single
index a · n+ b, and construct ρi as a Permutation of size n2.

2. Form the diagonal subgroup. Define

∆(G) = ⟨ρ1, . . . , ρr⟩,

the subgroup of Sn2 generated by the lifted permutations.

Conceptually, we take the subgroup generated by the ρi. In sympy, this is done by calling

Delta = PermutationGroup([ρ1, . . . , ρr]).

Internally, PermutationGroup builds a base and strong generating set (BSGS) for
∆(G) via Schreier–Sims. The BSGS consists of a chosen base B = (b1, . . . , bk) and strong
generators adapted to the chain of stabilizers

∆(G) = G(0) ≥ G(1) ≥ · · · ≥ G(k) = {e},

whereG(i) is subgroup fixing the first i base points. The associated basic orbits and Schreier
vectors allow efficient navigation in the group.

3. Compute the orbits. The G–orbits on X ×X are exactly the orbits of ∆(G). Concretely,
starting from a pair (xa, xb), we apply the generators ρi repeatedly until no new pairs are
found; the set obtained is its orbit. With a BSGS, orbit computation is polynomial-time
as SymPy performs a breadth-first search on the strong generators and stores transversal
information for reconstruction. In code, this is as simple as

Delta.orbits()

which returns all ∆(G)-orbits of the action.
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B PROOFS

Proposition 1. Let hθ : X × V → Y be G-equivariant, and let Aut(v) = G. Then fθ(x) :=
hθ(x,v) is equivariant to G. If additionally hθ is injective in the input v, then fθ is not equivariant
to any transformation in G \G.

Proof. We have already shown in Section 3.1 that fθ is G-equivariant. Now, suppose that hθ is
injective in v, and let g ∈ G \ G. We want to show that fθ(gx) ̸= gfθ(x) for some choice of x.
We choose any x ∈ X . This holds because v ̸= gv (since otherwise g /∈ G = Aut(v)). Thus, by
injectivity, hθ(gx,v) ̸= hθ(gx, gv). This allows us to conclude that

fθ(gx) = hθ(gx,v) (10)
̸= hθ(gx, gv) (11)
= ghθ(x,v) (12)
= gfθ(x). (13)

This concludes the proof.

We remark that the injectivity of hθ in the input v is sufficient to prove Prop. 1, but not necessary. As
shown in the proof, this injectivity assumption allows us to show fθ(gx) ̸= gfθ(x) for any x ∈ X ,
while establishing this for a particular choice of x suffices.
Lemma 1. If hθ uses injective functions for (hyper-)edge feature update ψe, node update ϕ, and
(hyper-)edge multiset aggregation τ , and if the node features are distinct, then hθ is not equivariant
to permutations in Sn \G.

Proof. We will show that for any σ ∈ Sn \G, fθ(σX) ̸= σfθ(X). By (9), it suffices to show that

hθ(σX,A
(2)) ̸= hθ(σX, σA

(2)). (14)

Let NA(i) := {j ∈ [n] : Aij ̸= 0} be the neighborhood of node i. Since σ ∈ Sn \ G, there exists
a node i such that its original neighborhood differs from the permuted one, NA(i) ̸= NσA(i). By
definition of MPNN (9),

hθ(σX,A
(2))[i] = ϕ

(
ψn(Xσ(i)), τ

(
{{ψe(Xσ(i), Xσ(j), A

(2)
i,j ) | j ∈ NA(i)}}

))
(15)

hθ(σX, σA
(2))[i] = ϕ

(
ψn(Xσ(i)), τ

(
{{ψe(Xσ(i), Xσ(j), A

(2)
σ(i),σ(j)) | j ∈ NσA(i)}}

))
. (16)

Since NA(i) ̸= NσA(i) and the assumption that {Xσ(j)}nj=1 has distinct elements, the multisets

{{(Xσ(i), Xσ(j), A
(2)
i,j ) | j ∈ NA(i)}} ̸= {{(Xσ(i), Xσ(j), A

(2)
σ(i),σ(j)) | j ∈ NσA(i)}}.

By injectivity of ψe,

{{ψe(Xσ(i), Xσ(j), A
(2)
i,j ) | j ∈ NA(i)}} ̸= {{ψe(Xσ(i), Xσ(j), A

(2)
σ(i),σ(j)) | j ∈ NσA(i)}}.

By injectivity of τ and ϕ, we have hθ(σX,A(2))[i] ̸= hθ(σX, σA
(2))[i], and thus hθ(σX,A(2)) ̸=

hθ(σX, σA
(2)).

Theorem 1. Any order 1 G-MLP can be approximated to arbitrary accuracy on a compact domain
via ASEN with K = 2 and the two-closure approximation Aut(A(2)) = G(2).

Proof. We show that one layer of ASEN using a message-passing GNN backbone can simulate
σ ◦ Ti, so suppose L = 1 (i.e. the G-MLP has one layer). Recall that any equivariant linear map
T : Rn → Rn can be viewed as a linear combination T =

∑d
l=1 alB

l, where al ∈ R are scalars, the
Bl : Rn → Rn are G-equivariant linear maps that span the vector space of G-equivariant linear maps,
and d is the dimension of this vector space of G-equivariant linear maps. Moreover, by an argument
similar to Maron et al. 2019 “On the Universality of Invariant Networks" Maron et al. [2019], we can
define the Bl as follows:
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Let τ1, . . . , τq be the unique orbits of the action of G on node-pair indices [n]× [n] (we refer to these
as node-pair orbits). Then Ravanbakhsh et al. [2017]; Maron et al. [2019] show that q = d, and the
Bl can be chosen as:

Bl
ij =

{
1 (i, j) ∈ τl
0 else.

(17)

This is a form of weight sharing, where Bl is constant on each node-pair orbit (and hence any T that
is a linear combination of them is constant on each node-pair orbit). The index l denotes the l-th
node-pair orbit. Note that the linear map can be shown to take a message-passing form as follows.
For an input x ∈ Rn, let xi be viewed as a node representation for node i. Then the new node
representation for node i after this layer is

T (x)i =

q∑
l=1

al(B
lx)i (18)

=

q∑
l=1

al

n∑
j=1

Bl
ijxj (19)

=

n∑
j=1

xj

q∑
l=1

alB
l
ij (20)

This can be interpreted as message passing, where the node j passes message xj
∑q

l=1 alB
l
ij to

the node i. We will show that ASEN with order K = 2 and two-closure automorphism group
approximation can simulate this map T (x). Note that any H ∈ Rn2

that has Aut(H) = G(2) must
satisfy that Hi1,j1 = Hi2,j2 if and only if (i1, j1) ∼G (i2, j2). In other words, Hi1,j1 = Hi2,j2 if and
only if (i1, j1) and (i2, j2) are in the orbit τl for some l. Let the distinct entries of H be denoted by
hl ∈ R, so that hl = Hi1,j1 if and only if (i1, j1) ∈ τl.

Finally, we define the GNN hθ to take the following message-passing-based form. Let xi be the
representation of node i. The GNN updates the node representations to x̂i via two multilayer
perceptrons MLPe(h) : R → Rq and MLPv : Rq+1 → R as follows:

x̂i =

n∑
j=1

MLPv(xj ,MLPe(Hi,j)) (21)

MLPe(h)l =

{
1 if h = hl
0 else

(22)

MLPv(x, y) = x

q∑
l=1

alyl. (23)

Note that MLPe(Hi,j) = Bl
ij so that MLPv(xj ,MLPe(Hi,j)) = xj

∑q
l=1 alB

l
ij , which shows that

x̂i = T (x)i. In practice, an MLP cannot exactly express these functions, but an MLP can approximate
each function to arbitrary precision ϵ > 0 on a compact domain. Note that the function MLPe seems
discontinuous, but it is only defined on finitely many inputs, so it has a continuous extension that is
exact on the finite inputs.

Theorem 2. Let G be a compact group, X ,V be compact metric G-spaces, and Y be a compact
G-space. Let fθ : X × V → Y be a universal family of continuous G-equivariant networks, i.e.
fθ(gx, gv) = g · fθ(x, v). Consider H ∈ V with stabilizer equal to a subgroup G ≤ G. Then, the
family fθ(·,H) is universal over continuous G-equivariant functions from X to Y .

Proof. Let f∗ : X → Y be a continuous, G-equivariant function. To prove universality of fθ(·,H),
we must show that for any ϵ, there exists a θ such that fθ(·,H) is ϵ-close to f∗. To achieve this,
let’s first define a new function (which we will prove is G-equivariant), n : X × O → Y where
O = {gH : g ∈ G} as follows: for any g ∈ G,

n(x, gH) := gf∗(g−1x). (24)
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Note in particular that n(x,H) = f∗(x). To first show that is a valid definition of n, we will argue
that if gH = g′H, then gf∗(g−1x) = g′f∗(g′−1x) for all x ∈ X . By the assumption gH = g′H, we
have g′ = gs for some s ∈ G, the stabilizer of H. Then

g′f∗(g′−1x) = (gs)f∗((gs)−1x) = g(sf∗(s−1g−1x)) = gf∗(g−1x), (25)

where the last equality follows from f∗ being G-equivariant.

Next, the continuity of n on X ×O follows from the continuity of f∗, the inversion map g−1 and
group action g.

Finally, to show n is G-equivariant, we note that for any h ∈ G,

n(hx, hgH) = hgf∗
(
(hg)−1hx

)
= hgf∗(g−1x) = hn(x, gH). (26)

Thus, n is a continuous G-equivariant function on X ×O.

By universality of {fθ} on X × V 7→ Y (under the supremum norm) and the orbit O being closed
in V , {fθ} is also universal on the subdomain X × O. In particular, for any ϵ, there exists some θ
such that fθ approximates n ϵ-well over all of X ×O. Thus, it must also approximate n ϵ-well over
X × {H}. But since n = f∗ on X × {H}, this completes the proof.

We remark that Thm. 2 can be generalized to locally compact groups, via Jaworowski’s equivariant
extension theorem Jaworowski [1976]; Lashof [1981].
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C ADDITIONAL EXPERIMENT DETAILS

C.1 DETAILS FOR PATHFINDER TASK

The Pathfinder task from Long Range Arena [Tay et al., 2020] is a binary image classification
problem: determine there exists a path connecting two marked pixels. The image is flattened as a
sequence input to probe the spatial reasoning of sequence models (e.g. Transformers). It is known in
the literature that standard Transformers perform poorly on Pathfinder with 1D positional encoding
(unless with proper pretraining [Amos et al., 2024]), whereas 2D positional encoding (PE) provides
better inductive bias by mapping the pixel (i, j) as ER[i] +EC [j] where ER, EC ∈ Rm×d are row
and column embeddings (unlike 1D-PE embedding E ∈ Rm2×d for the flattened grid of size m×m).

We use a standard Transformer architecture for Pathfinder task taken from https://github.
com/mlpen/Nystromformer. We use the default model configuration (e.g., 2 layers, 2 heads,
64 embedding dimensions, learnable positional encoding). We follow the standard protocol of training
the model for 62400 steps, linear learning rate decay schedule, and perform hyper-parameter search
over the learning rate {0.0005, 0.0001, 0.00008}. We report more details of the performance for
1D-PE and 2D-PE variants in Tab. 4.

Table 4: Performance of Transformers in Pathfinder64 tasks, using different positional encoding
(PE): 1D-PE (learnable), 2D-PE (learnable, separate for rows and columns) with different group G.
The accuracy is averaged over 3 runs.

Method Group G Params. Test Acc. (mean ± std) Train Acc. (mean ± std)

1D-PE I 370.5k 0.656 ± 0.135 0.816 ± 0.093

2D-PE

I 116.6k 0.818 ± 0.005 0.831 ± 0.006
(S4)

1024 112.5k 0.824 ± 0.000 0.848 ± 0.006
(S9)

455 111.2k 0.827 ± 0.018 0.852 ± 0.013
(S16)

256 110.4k 0.814 ± 0.020 0.840 ± 0.009

C.2 DETAILS FOR SYNTHETIC SEQUENCE MODELING TASKS IN SEC. 5.2

We describe in details our chosen synthetic tasks in Tab. 5.

Equivariant Experiment Set-up The dataset per task contains 2500 examples of sequence length
10, chosen to highlight the benefits of symmetry in data-scarce regimes. We train ASEN in the binary
node classification setting to learn an equivariant mapping from the input node features to output
node labels, both input and output represented as sequences. Our model is optimized using standard
cross-entropy loss, with hidden dimension of 128, batch size of 64, learning rate of 0.01, and run on
40 epochs.

Invariant Experiment Set-up and Results We apply ASEN in the invariant setting on the following
synthetic tasks: Palindrome, Intersect, Detect Capital and Longest Palindrome (c.f. Tab. 3 and Tab. 5).
As each task can have a different type of label, we now the switch to the regression setting using an
L1 loss and train for 80 epochs. The experiment again uses a data-scarce regime for each task of
8000 datapoints, denoted as 1 unit. We provide additional ablation results on the dataset sizes with
1.5 and 2 units. As shown in Tab. 6, ASEN with the correct symmetry group outperforms its trivial
symmetry counterpart across tasks and dataset sizes.

C.3 DETAILS FOR MULTITASK APPLICATIONS SEC. 5.2.1

In Fig. 6, we conduct multitask training of ASEN across Intersect, Cyclicsum, and Palindrome, and
observe that the performance on Intersect notably improved upon single task training. Meanwhile,
Tab. 7 shows that the multitask performance on the other two tasks (Cyclicsum, Palindrome) remains
similar to the single task setting.
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Table 5: Description of synthetic tasks, equivariant and invariant learning set-up, and their corre-
sponding symmetry group.

Synthetic Tasks

Task Equivariant Invariant Symmetry

Intersect Given two sequences of length
n
2

, determine which elements of
each sequence are present in the
other

Determine the size of the inter-
section of the two sequences

Sn/2 × Sn/2 × S2: sequences
can be reordered, and the two
sequences can be swapped

Palindrome Given a sequence of length n,
determine where the sequence
has a contiguous subsequence
that is a palindrome of length
k, if one exists

Determine if the sequence has a
contiguous subsequence that is
a palindrome of length k

Sequence reversal

Cyclic Sum Given a sequence of length n,
determine which cyclic contigu-
ous subsequence of length k has
the largest sum

Find the largest sum of a
cyclic contiguous subsequence
of length k

Cn (cyclic shifts)

Detect Capital N/A Given a string of length n, re-
turn True if properly capitalized,
meaning the string is all Upper-
case, lowercase, or only has first
letter capitalized

Sn−1, as all elements except
first can be permuted

Longest Palindrome N/A Given a string of length n, deter-
mine the length of the longest
palindrome that can be con-
structed using the characters of
the string

Sn

Table 6: Performance of two ASEN variants across tasks for varying data amounts.Within each model
variant, columns indicate data used (in units): 1, 1.5, and 2.

ASEN (Loss ↓) Invariant Non-invariant
Task 1 1.5 2 1 1.5 2
Intersect 0.076 ± 0.002 0.061 ± 0.009 0.060 ± 0.005 0.081 ± 0.002 0.078 ± 0.0004 0.077 ± 0.001
Palindrome 0.250 ± 0.04 0.170 ± 0.01 0.125 ± 0.05 0.270 ± 0.04 0.250 ± 0.04 0.132 ± 0.04
Detect Capital 0.053 ± 0.005 0.056 ± 0.007 0.068 ± 0.016 0.075 ± 0.011 0.066 ± 0.004 0.063 ± 0.007
Longest Palindrome 0.138 ± 0.014 0.110 ± 0.009 0.110 ± 0.009 0.152 ± 0.007 0.130 ± 0.012 0.130 ± 0.010

Table 7: Multi-task Test Losses (0.08 units)

Method Cyclicsum Palindrome
Single-task 0.3869 0.510
Multi-task 0.3839 0.537

C.4 DETAILS FOR TRANSFER LEARNING SEC. 5.2.2

For the invariant setting, we adopt a weighted L1 regression loss for training (restricting all losses to
between 0 and 1) and disabling the TokenEmbedder, due to the diverse (invariant) target range across
tasks. The tasks Palindrome, Intersect, Detect Capital and Longest Palindrome are each learned on
an instance of ASEN pretrained on the other three. Each task dataset is of size 5600 datapoints,
with the chosen (finetuned) dataset restricted to 15 percent, or 840 datapoints. To probe the effect of
transferring symmetry, we also provide the ASEN baseline with the trivial symmetry (denoted as
“NoSym”), which underperforms ASEN with the desired nontrivial symmetry group in the data-scarce
regime.

C.5 OVERCONSTRAINED SYMMETRY

In Sec. 5.2 and Sec. 5.2.2, we show that ASEN incorporating the desired symmetries outperforms its
trivial symmetry baseline across a wide range of tasks and settings. As noted before, the symmetry
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groups considered in these tasks are equal to their 2-closure, and thus ASEN can accurately model
the desired symmetry via the edge orbits whose automorphism are the 2-closure group. We also
discuss in Sec. 5 that ASEN can learn more symmetries from data (i.e., learn to tie weights in the
EdgeEmbedder module), making it robust when choosing G(2) to be smaller than the target symmetry.
We now present a negative example where G(2) > G; in such a case, ASEN can fail.

Consider the task of determining the sign of a permutation, namely deciding whether an even or
odd number of inversions is used to create a permutation. For example, for n = 4, the identity
permutation [1, 2, 3, 4] is even, whereas [2, 1, 3, 4] with one inversion is odd, and [2, 3, 1, 4] with two
inversions is even. This task is invariant under the alternating group An,while the 2-closure of An is
Sn, meaning using ASEN taking the 2-closure symmetry breaking input would include significantly
more symmetries.

Choosing permutations of length n = 7, we train ASEN with G(2) = Sn and its trivial symmetry
baseline using binary cross-entropy loss for this invariant classification problem. We find that ASEN
performs no better than chance (i.e., stuck at test loss of 0.69, the same as a random guess baseline).
On the other hand, the trivial symmetry baseline eventually reaches a test loss of 0.28, outperforming
ASEN with overconstrained symmetries.
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