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ABSTRACT

Aligning large language models with human preferences is critical for creating
reliable and controllable AI systems. A human preference can be visualized as a
high-dimentional vector where different directions represent trade-offs between
desired attributes (e.g., helpfulness vs. verbosity). Yet, because the training
data often reflects dominant, average preferences, LLMs tend to perform well on
common requests but falls short in specific, individual needs. This mismatch creates
a preference coverage gap. Existing methods often address this through costly
retraining, which may not be generalized to the full spectrum of diverse preferences.
This brittleness means that when a user’s request reflects a nuanced preference
deviating from the training data’s central tendency, model performance can degrade
unpredictably. To address this challenge, we introduce Robust Preference Selection
(RPS), a post-hoc, training-free method by leveraging directional neighborhood
consensus. Instead of forcing a model to generate a response from a single, highly
specific preference, RPS samples multiple responses from a local neighborhood of
related preferences to create a superior candidate pool. It then selects the response
that best aligns with the user’s original intent. We provide a theoretical framework
showing our neighborhood generation strategy is provably superior to a strong
baseline that also samples multiple candidates. Comprehensive experiments across
three distinct alignment paradigms (DPA, DPO, and SFT) demonstrate that RPS
consistently improves robustness against this baseline, achieving win rates of up
to 69% on challenging preferences from under-represented regions of the space
without any model retraining. Our work presents a practical, theoretically-grounded
solution for enhancing the reliability of preference-aligned models1.

1 INTRODUCTION

Aligning large language models (LLMs) with human preferences is crucial for creating reliable and
controllable AI systems (Ouyang et al., 2022; Christiano et al., 2017; Ziegler et al., 2020). User
preferences can be modeled in a multi-dimensional space where different directions represent trade-
offs between desired attributes, such as helpfulness versus verbosity (Wang et al., 2024a; Dong et al.,
2023). As illustrated in Figure 1, this creates a foundational challenge: the preference coverage
gap. While the space of potential user preferences is vast and diverse, as depicted in Figure 1(a),
the alignment process often optimizes for a dominant, average preference, meaning the training data
is concentrated in a narrow region (Figure 1(b)). This focus on average preferences makes models
brittle; when faced with a user preference that reflects more individual needs and deviates from this
central tendency—a common out-of-distribution (OOD) challenge—their performance can degrade
unpredictably, undermining user trust (Hendrycks et al., 2020).

To address this coverage gap, many existing solutions focus on training-time interventions. These
include methods like data augmentation or the adoption of principles from Distributionally Robust
Optimization (DRO) (Duchi et al., 2016; Ben-Tal et al., 2013; Duchi & Namkoong, 2018) to create
models that are resilient to shifts in preference distributions (Xu et al., 2025). While effective, such
approaches often require costly retraining cycles and may still fail to generalize to the full spectrum

1Our code and data are available at https://anonymous.4open.science/r/Robust_
Preference_Selection-C65C
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Figure 1: Illustration of the preference coverage
gap. While user preferences (a) can span the entire
space, the model’s training data (b) is often concen-
trated on dominant, average preferences, leaving
individual needs in a sparse subset. This creates a
gap where a user’s target preference may lie.

Helpfulness

Verbosity

vtarget

Neighborhood Nk

Figure 2: Conceptual visualization of RPS.
Instead of relying on a single, potentially out-
of-distribution target preference vtarget (solid
black arrow), RPS samples k directions from
its local neighborhood (dashed blue arrows).
By generating responses from this diverse set,
RPS can identify a response that better aligns
with the user’s true intent.

of diverse, individual preferences. This motivates an alternative question: can we enhance robustness
at inference time, without any modification to the underlying model?

This paper argues that forcing a model to generate a response from a single, highly specific and
less common preference direction is inherently fragile. We propose a paradigm shift from direct
generation to one based on directional neighborhood consensus. As visualized in Figure 2, instead
of attempting to extrapolate to a specific, under-represented preference point, it is more robust to
explore the local neighborhood, generate responses from these more dominant, better-understood
directions, and then select the one that best satisfies the original preference.

To realize this, we introduce Robust Preference Selection (RPS), a post-hoc adjustment method that
enhances preference alignment at inference time without any retraining. RPS first samples a set of
candidate preference vectors from the neighborhood of the user’s target preference. It then generates
a response for each of these nearby vectors and, finally, uses the target preference itself as a criterion
to select the optimal response from this diverse set. This approach effectively leverages the model’s
existing capabilities in well-trained regions of the preference space to satisfy requests in undertrained
ones.

Our contributions are threefold:

• We formally define the preference coverage gap as a critical out-of-distribution (OOD)
challenge that undermines the reliability of aligned LLMs. To address this, we introduce
RPS, a novel, training-free method that enhances robustness through post-hoc adjustment
without requiring any model modification.

• We propose RPS, a method grounded in neighborhood consensus, and provide a theoretical
framework proving that its neighborhood generation strategy is superior to a strong multi-
candidate baseline.

• We conduct extensive experiments across three distinct alignment paradigms (DPA, DPO,
and SFT) and three datasets (UltraFeedback, HelpSteer, and HelpSteer2). Our
results show that RPS consistently improves robustness, achieving win rates of up to 69%
on challenging OOD preferences and demonstrating its broad applicability.

2 RELATED WORK

2.1 PREFERENCE ALIGNMENT IN LARGE LANGUAGE MODELS

Aligning LLM behavior with human preferences has become a central research area. Reinforcement
Learning from Human Feedback (RLHF) is a pioneering pipeline that fine-tunes models with human
preference rankings, as demonstrated by (Ouyang et al., 2022). However, RLHF compresses diverse
user preferences into a single scalar reward and requires complex reward modeling plus reinforcement
learning. To simplify this process, Direct Preference Optimization (DPO) was introduced (Rafailov
et al., 2023), which recasts preference optimization as supervised classification, eliminating the

2
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need for explicit reward models. Subsequent generalizations explore divergence families and latent
user heterogeneity (Wang et al., 2023; Chidambaram et al., 2024), while others have proposed new
theoretical paradigms for understanding preference learning (Azar et al., 2023). Moving beyond
scalar objectives, Directional Preference Alignment (DPA) enables users to specify trade-offs in a
multi-axis reward space (Wang et al., 2024a). Similarly, SteerLM conditions supervised fine-tuning
on attribute labels, exposing controllable style dimensions such as helpfulness or humor (Dong et al.,
2023). These methods are part of a broader research effort in controllable text generation, which
aims to provide users with fine-grained control over model outputs (Liang et al., 2024). Our work
differs from these training-time approaches: rather than modifying the model weights, we focus on
inference-time robustness to preference shifts through directional neighborhood consensus.

2.2 ENHANCING ROBUSTNESS IN LANGUAGE MODELS

While the alignment methods described above are powerful, a key challenge remains: models often
remain brittle under out-of-distribution (OOD) preferences. Recent work has formalized preference
distribution shifts and proposed distributionally robust objectives such as (Xu et al., 2025), which
strengthen resilience during training. Beyond alignment, the broader NLP community has highlighted
the challenges of OOD generalization, with benchmarks such as (Yang et al., 2022; 2023). At
inference time, an alternative approach is to use ensemble-like methods, a principle with deep roots
in machine learning (Dietterich, 2000). For instance, (Wang et al., 2022) shows that sampling diverse
reasoning paths and aggregating their consensus yields more reliable results. The principle of post-hoc
adjustment for robustness is also explored in other domains, such as classification, where scaling
model outputs can mitigate the effects of distributional shifts (Wei et al., 2023).

Extending this idea, recent inference-time alignment frameworks share our post-hoc perspective but
differ in mechanism. Many rely on direct intervention in the generation process through token-level
guidance or activation steering (Li et al., 2025; Shahriar et al., 2024), or require auxiliary models for
decoding-time guidance (Chehade et al., 2025; Chandra et al., 2025). In contrast, our RPS approach
operates purely in the preference space. By leveraging neighborhood consensus to select an optimal
response, it avoids direct manipulation of the model’s internal states, offering a simpler and more
black-box solution that requires no external guidance models.

3 PROBLEM SETUP AND THEORETICAL FRAMEWORK

We build upon the problem formulation of Directional Preference Alignment (DPA) (Wang et al.,
2024a). In this section, we formalize the preference alignment challenge by first defining the
preference space and characterizing the coverage gap that causes model brittleness. We then establish
the theoretical foundations for our proposed solution, Robust Preference Selection (RPS).

3.1 PREFERENCE SPACE AND REWARD MODEL

We model user preferences in a two-dimensional space for clarity of illustration, as depicted in
Figure 1(a), spanned by two key axes: Helpfulness and Verbosity (Wang et al., 2024a; Dong et al.,
2023). Our theoretical framework, however, generalizes directly to higher-dimensional preference
spaces. To quantify these attributes, we formalize the notion of a reward vector.

Definition (Reward Vector): A reward model maps a prompt-response pair (x, y) to a reward
vector r(x, y) = (rh(x, y), rv(x, y)) ∈ R2. The components rh(x, y) and rv(x, y) are scalar scores
representing the helpfulness and verbosity of the response, respectively (Wang et al., 2024a).

For all experiments, we use the publicly available RewardModel-Mistral-7B-for-DPA-v12;
further details on the scoring procedure are provided in Appendix A.4.

A user’s preference is represented as a normalized direction vector v = (vh, vv) ∈ S1 on the unit
circle, where vh and vv specify the desired weights for helpfulness and verbosity. This can be
parameterized by an angle θ, such that v = (cos θ, sin θ). The goal of a preference-aligned model is
to generate a response y that maximizes the projected reward: vT r(x, y). Our framework assumes
that this reward model r(x, y) is well-calibrated and provides meaningful scores across the entire
preference space, including for out-of-distribution directions.

2https://huggingface.co/RLHFlow/RewardModel-Mistral-7B-for-DPA-v1
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3.2 THE PREFERENCE COVERAGE PROBLEM

The central challenge in preference alignment, as illustrated in Figure 1, is the discrepancy between
the vast space of user preferences and the limited coverage of the training data. We formalize this
problem as follows:

Definition 1 (User Preference Space): Let Vuser denote the complete set of all possible normalized
preference vectors v ∈ S1. This represents the entire spectrum of potential user preferences, as
depicted in Figure 1(a).

Definition 2 (Training Preference Set): Let Vtrain ⊂ Vuser be the subset of preference directions used
during training, visualized as the concentrated region in Figure 1(b). This set is often sampled from a
constrained range.

Definition 3 (Preference Coverage Gap): The coverage gap, illustrated by the difference between
the full space in Figure 1(a) and the training data in Figure 1(b), consists of all preference vectors
that are not within an ϵ-neighborhood of any training vector: Gap = Vuser \ Nϵ(Vtrain).

When a target preference vtarget lies in this gap—as illustrated with the out-of-distribution vector in
Figure 1(b)—the model’s performance is unreliable. Our goal is to develop a method that can robustly
generate a high-quality response y∗ that maximizes user satisfaction, even for out-of-distribution
preferences:

y∗ = argmax
y

vT
targetr(x, y), (1)

where r(x, y) = (rh(x, y), rv(x, y)) represents the helpfulness and verbosity scores of response y to
prompt x. This challenge of performing well on a target preference vtarget that lies in the gap can be
framed through the lens of Distributionally Robust Optimization (DRO) (Duchi et al., 2016; Ben-Tal
et al., 2013; Duchi & Namkoong, 2018). In the DRO paradigm, the objective is to find a policy
that is robust not just to the empirical training distribution (represented by Vtrain) but to a family of
plausible test distributions. Our inference-time approach complements training-time DRO solutions
by addressing this distributional shift post-hoc, at the point of generation.

3.3 NEIGHBORHOOD CONSENSUS THEORY

Instead of merely justifying the final selection step, our theoretical framework aims to explain why the
entire neighborhood generation strategy is superior to a strong baseline that repeatedly samples from
the target direction. The core intuition is that for an out-of-distribution (OOD) preference vtarget, the
model’s performance is degraded. By sampling from a nearby neighborhood of more in-distribution
preferences, we can generate a candidate pool of higher average quality. The following assumption
formalizes this intuition.

Assumption 1 (OOD Performance Degradation): Let vtarget be an OOD preference vector. Let
Dtrain be the distribution of preferences in the training set Vtrain. For a nearby preference vector
vi ∈ Nk(vtarget) that is closer to the mean of Dtrain, the expected score of a response yi ∼ πθ(·|x,vi)
is higher than that of a response ytarget ∼ πθ(·|x,vtarget), when both are evaluated against their
respective generating preferences: E[vT

i r(x, yi)] > E[vT
targetr(x, ytarget)].

Furthermore, we assume local consistency, meaning the evaluation of yi under vtarget is a good
proxy for its quality, i.e., vT

targetr(x, yi) ≈ vT
i r(x, yi). This implies that the candidate pool from the

neighborhood is stronger: E[vT
targetr(x, yi)] > E[vT

targetr(x, ytarget)]. To formalize this advantage, we
compare RPS against a strong baseline strategy: generating k independent responses by repeatedly
sampling from the single target direction vtarget, and then selecting the best one according to the target
preference. The following theorem proves the superiority of the RPS approach.

Theorem 1 (Superiority of Neighborhood Generation). Let SRPS = {s1, . . . , sk} be the set of
scores from k responses generated from the neighborhood Nk, where si = vT

targetr(x, yi). Let
SBaseline = {s′1, . . . , s′k} be the set of scores from k responses generated from the baseline strategy
(i.e., directly from vtarget). Under Assumption 1, the expected score of the best response selected by
RPS is strictly greater than that of the best response selected by the baseline:

E[max(SRPS)] > E[max(SBaseline)]. (2)

This performance gap, illustrated in Figure 3, represents the robustness gain of the RPS method.

4
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Figure 3: Conceptual illustration of Theorem 1. The distributions represent the scores of candidate
responses for the baseline (orange) and RPS (blue). Under Assumption 1, the RPS candidate pool is
drawn from a higher-quality distribution. Consequently, the expected score of the best RPS response,
E[s∗RPS], is strictly greater than that of the best baseline response, E[s∗baseline]. This difference is the
robustness gain.

Proof. Let si be the random variable for the score of a response from a neighborhood direction
vi ∈ Nk, and let s′baseline be the random variable for a score from the baseline direction vtarget. The
scores in SRPS = {s1, . . . , sk} are independent but not necessarily identically distributed, with
cumulative distribution functions (CDFs) F1(x), . . . , Fk(x). The scores in SBaseline = {s′1, . . . , s′k}
are independent and identically distributed (i.i.d.) draws from the baseline distribution, with CDF
Fbaseline(x).

Under Assumption 1, each candidate from the neighborhood is drawn from a better distribution than
a candidate from the baseline. This implies that each si first-order stochastically dominates s′baseline.
Formally, for each i ∈ {1, . . . , k}, we have Fi(x) ≤ Fbaseline(x) for all x, with strict inequality over
some interval.

The CDF of the maximum score from RPS is FRPS
max(x) = P (max(SRPS) ≤ x) =

∏k
i=1 Fi(x),

due to independence. The CDF of the maximum score from the baseline is FBaseline
max (x) =

P (max(SBaseline) ≤ x) = (Fbaseline(x))
k.

Since Fi(x) ≤ Fbaseline(x) for all i, it follows that
∏k

i=1 Fi(x) ≤ (Fbaseline(x))
k. Thus, FRPS

max(x) ≤
FBaseline
max (x) for all x. This shows that the maximum score from RPS also first-order stochastically

dominates the maximum score from the baseline.

The expected value of a random variable can be expressed using its CDF. Assuming scores are
non-negative (or shifted to be), E[X] =

∫∞
0

(1− F (x))dx. Given the stochastic dominance:

E[max(SRPS)] =

∫ ∞

0

(1− FRPS
max(x))dx ≥

∫ ∞

0

(1− FBaseline
max (x))dx = E[max(SBaseline)]. (3)

The inequality is strict because Fi(x) < Fbaseline(x) over some interval for at least one i, which
ensures that FRPS

max(x) < FBaseline
max (x) over that same interval. This rigorously confirms that leveraging

the neighborhood produces a superior set of candidates, leading to a better final selection.

Corollary 1: The robustness gain increases with neighborhood size k and the quality gap between
the neighborhood and target-direction candidate pools. This follows because the expected value
of the maximum of k samples is non-decreasing in k, and this effect is more pronounced for the
stochastically dominant RPS distribution. Similarly, a larger quality gap—meaning greater stochastic
dominance of the neighborhood distributions over the baseline—naturally widens the separation in
the expected maximums. A formal proof is provided in Appendix A.7.

3.4 ROBUST PREFERENCE SELECTION ALGORITHM

Building on the theoretical foundation of neighborhood consensus, we now formalize our approach.
The Robust Preference Selection (RPS) algorithm, detailed in Algorithm 1, translates our theory into
a practical, three-phase procedure designed to navigate the preference coverage gap.

The first phase, Neighborhood Construction, addresses the core challenge of out-of-distribution
(OOD) preferences. Instead of directly using a potentially brittle target vector vtarget, RPS identifies a

5
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set of k nearby, more reliable preference directions. These candidate directions are sampled within a
predefined angular threshold θmax, forming a local neighborhood Nk. This step is critical as it shifts
the generation process from a region of high uncertainty to one where the model’s performance is
more robust and predictable.

In the Multi-Directional Generation phase, the language model πθ generates a separate response yi
for each of the k preference vectors in the neighborhood. This process creates a diverse portfolio
of candidate responses. Each response reflects a slightly different trade-off between attributes (e.g.,
helpfulness and verbosity), leveraging the model’s well-trained capabilities within this local region of
the preference space. The result is a set of high-quality outputs, each optimized for a direction where
the model is confident.

Finally, the Consensus Selection phase determines the optimal response. Crucially, all k candidates
are evaluated against the user’s original target preference, vtarget. The response yi that maximizes
the projected reward score si = vT

targetr(x, yi) is selected as the final output y∗. The superiority of
this entire procedure is justified by our Theorem 1, which proves that the strategy of generating
candidates from a superior neighborhood pool and then selecting the maximum is guaranteed to yield
a response with a higher expected quality than the strong baseline. By combining neighborhood-based
generation with target-based selection, RPS robustly satisfies user intent even for OOD preferences.
The following section will empirically validate the effectiveness of this approach across various
models and datasets.

Algorithm 1 Robust Preference Selection (RPS)

Require: Prompt x, target preference vtarget, neighborhood size k, angle threshold θmax

Ensure: Optimal response y∗

1: Phase 1: Neighborhood Construction
2: Generate candidate directions within θmax of vtarget

3: Compute angular distances: di = arccos(vi · vtarget)
4: Select k closest directions: Nk = {v1, . . . ,vk}
5: Phase 2: Multi-Directional Generation
6: for i = 1 to k do
7: Generate response: yi ∼ πθ(·|x,vi)
8: end for
9: Phase 3: Consensus Selection

10: for i = 1 to k do
11: Compute score: si = vT

targetr(x, yi)
12: end for
13: return y∗ = argmaxi si

4 EXPERIMENTS

To validate our theoretical framework, we designed a comprehensive experimental methodology to as-
sess the effectiveness of Robust Preference Selection (RPS) as a post-hoc method. We evaluated RPS
against a strong baseline across three distinct model training paradigms—DPA, DPO, and SFT—to
demonstrate its general applicability. Our experiments test the core hypothesis that neighborhood
consensus provides robustness for out-of-distribution preference directions.

4.1 EXPERIMENTAL SETUP

4.1.1 MODELS AND DATASETS

To ensure a robust evaluation, we used a 3×3 experimental matrix, crossing three models with three
standard preference-learning datasets. The models (Table 1) represent diverse training paradigms:
Directional Preference Alignment (DPA), using DPA-v1-Mistral-7B3 (Wang et al., 2024a);
Direct Preference Optimization (DPO), using Zephyr-7B-Beta4 (Tunstall et al., 2023); and

3https://huggingface.co/RLHFlow/DPA-v1-Mistral-7B
4https://huggingface.co/HuggingFaceH4/zephyr-7b-beta
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Table 1: Models evaluated.

Model Training Paradigm

DPA-v1-Mistral-7B DPA
Zephyr-7B-Beta DPO
Mistral-7B-Instruct-v0.2 SFT

Table 2: Evaluation datasets.

Dataset Split Size (used)

UltraFeedback test prefs 2,000
HelpSteer validation 503
HelpSteer2 validation 518

Table 3: Overall RPS win rates by model and dataset. Values show mean ± std across all preference
directions.

RPS vs. Baseline Average Win Rate (%)

Model UltraFeedback HelpSteer HelpSteer2

DPA 58.7± 6.1% 58.8± 4.8% 59.7± 7.8%
DPO 52.1± 1.1% 52.4± 1.5% 53.4± 1.0%
SFT 52.0± 0.7% 56.0± 2.8% 65.4± 11.9%

standard Supervised Fine-Tuning (SFT), using Mistral-7B-Instruct-v0.25 (Jiang et al.,
2023). The datasets (Table 2) provide varied domains for testing preference alignment: we use
the 2,000-sample test prefs split from UltraFeedback6 (Cui et al., 2023), the 503-sample
deduplicated validation set from HelpSteer7 (Dong et al., 2023), and the 518-sample deduplicated
validation set from its successor, HelpSteer28 (Wang et al., 2024b).

4.1.2 EVALUATION PROTOCOL

For each model-dataset pair, we compare two inference-time strategies under a fixed computational
budget: 1) Single-Direction Baseline: To ensure a fair comparison, we generate k = 5 response
candidates using only the target direction vtarget (Wang et al., 2022). The best response is then selected
by scoring each candidate with the target preference, i.e., maximizing vT

targetr(x, y). 2) RPS: We
first sample k = 5 preference directions from a local neighborhood around vtarget, constrained by
an angular threshold of θmax = 30◦. The choice of these hyperparameters balances key trade-offs.
A neighborhood size of k = 5 was chosen to maintain strict compute parity with the baseline,
while representing a common choice for balancing response diversity and inference cost. The
angle θmax = 30◦ was determined through preliminary pilots to be a sweet spot: smaller angles
provided insufficient diversity over the baseline, while larger angles risked sampling preferences
too semantically distant from the target, violating our local consistency assumption. We generate
one response for each of the k directions. The final response is selected by scoring all k candidates
against the original target preference vtarget.

This setup ensures that both methods generate and score the same number of candidate responses,
maintaining strict compute parity, with the neighborhood sampling step introducing negligible
overhead. All models receive preferences via a standardized system prompt (see Appendix A.2).
We evaluate on eight challenging preference directions from 10◦ to 45◦ (see Appendix A.5) to test
robustness on preferences progressively further from the training distribution. Response pairs are
evaluated by a preference-aligned judge in a randomized A/B test, and our primary metric is the RPS
win rate. We utilize GPT-4o-mini as our preference-aligned judge, a practice increasingly adopted for
its strong correlation with human judgments in preference evaluation tasks (Zheng et al., 2023; Gu
et al., 2024).

5 RESULTS

Our experiments confirm that Robust Preference Selection (RPS) consistently improves alignment
robustness, particularly for out-of-distribution (OOD) preferences. We present three key findings: (1)

5https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
6https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
7https://huggingface.co/datasets/nvidia/HelpSteer
8https://huggingface.co/datasets/nvidia/HelpSteer2
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Figure 4: Overall RPS win rates by model (DPA, DPO, SFT) and dataset. Bars show mean win rates
across all tested preference directions.
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Figure 5: Directional robustness. RPS win rate vs. preference angle for DPA (left), DPO (middle),
and SFT (right) models. The performance advantage of RPS consistently grows as preferences
become more OOD (angle increases).

RPS outperforms a strong baseline across all models and datasets; (2) its advantage grows significantly
as target preferences deviate from the training distribution; and (3) the magnitude of improvement
depends on the model’s initial alignment method, with SFT models benefiting most.

5.1 RPS CONSISTENTLY OUTPERFORMS THE BASELINE AND EXCELS ON OOD
PREFERENCES

Across all nine model-dataset pairings, RPS achieves a decisive win rate greater than 50% against
the single-direction baseline, as detailed in Table 3. The average improvements over a 50% baseline,
visualized in Figure 4, are consistent, ranging from a modest +2.0% for SFT on UltraFeedback (a
52.0% win rate) to a significant +17.3% for SFT on HelpSteer2 (a 67.3% win rate). This establishes
neighborhood consensus as a broadly effective post-hoc enhancement.

More importantly, the performance advantage of RPS amplifies on OOD preferences, a finding that
provides strong empirical validation for our Assumption 1 (OOD Performance Degradation). This
trend is most pronounced for the DPA model, as shown in Figure 5. The win rate on UltraFeedback,
for example, climbs from 53.4% at 20◦ to a dominant 69.1% at 45◦. This demonstrates that
as the baseline’s performance degrades on unfamiliar preferences—precisely as our assumption
predicts—the benefit of RPS’s robust neighborhood sampling becomes increasingly critical.

In contrast, the DPO and SFT models show a more modest and less angle-dependent trend (Figure 5).
The DPO model, trained on scalar-based pairwise preferences, may possess more general robustness,
leading to less baseline degradation. Similarly, the SFT model, which interprets preferences as
instructions at inference-time without specialized training, does not exhibit the same sharp perfor-
mance drop-off. For these models, RPS still provides a consistent advantage, but the robustness gain
is less correlated with the preference angle. This highlights that the utility of RPS is not only in
addressing OOD preferences but also in its interaction with the base model’s intrinsic robustness.
Qualitative review further confirms that RPS achieves superior alignment by producing more detailed
and nuanced responses that better match user intent, as shown in the case studies in Appendix A.6.
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Table 4: Detailed RPS win rates by dataset, model, and preference direction. This table provides the
full data for Figures 5 and 6.

RPS vs. Baseline Win Rate (%)
UltraFeedback HelpSteer HelpSteer2

Direction DPA DPO SFT DPA DPO SFT DPA DPO SFT

v1 (10◦) 55.1 51.5 51.8 56.1 51.7 54.3 54.9 53.0 52.1
v2 (15◦) 56.2 52.0 52.1 57.3 52.1 55.0 56.2 53.3 55.3
v3 (20◦) 53.4 52.3 51.9 58.0 52.6 55.8 57.8 53.6 58.9
v4 (25◦) 58.1 52.8 52.3 59.1 53.0 56.5 59.5 53.8 62.1
v5 (30◦) 59.3 52.5 52.0 60.2 53.5 57.1 61.3 54.0 66.7
v6 (35◦) 61.2 52.1 51.7 61.5 53.9 58.3 63.0 54.1 71.3
v7 (40◦) 64.9 51.9 52.1 62.8 54.2 59.0 65.1 54.2 83.2
v8 (45◦) 69.1 51.7 52.4 64.3 54.5 59.8 68.8 54.5 94.3
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Figure 6: Dataset-wise performance. RPS win rate vs. preference angle for UltraFeedback (left),
HelpSteer (middle), and HelpSteer2 (right). SFT models show particularly strong gains on HelpSteer
datasets.

5.2 ANALYSIS ACROSS ALIGNMENT PARADIGMS AND DATASETS

Further analysis, with detailed data in Table 4 and visualized in Figure 6, reveals that the effectiveness
of RPS is modulated by the base model’s training paradigm. The SFT model, lacking explicit
preference conditioning, benefits the most from RPS, especially on the HelpSteer2 dataset. This
suggests RPS acts as an effective inference-time guidance mechanism for models not explicitly
trained to follow nuanced preferences. Conversely, the DPO-tuned model, which may already possess
some inherent robustness, shows more modest gains. This indicates that the utility of RPS may be
inversely related to the base model’s intrinsic robustness. Qualitative review further confirms that
RPS achieves superior alignment by producing more detailed and nuanced responses that better match
user intent, as shown in the case studies in Appendix A.6.

6 CONCLUSION

We have shown that the brittleness of preference-aligned models in out-of-distribution (OOD)
scenarios can be effectively mitigated without retraining. Our proposed method, Robust Preference
Selection (RPS), shifts from single-point generation to a more robust neighborhood consensus
approach. It generates a diverse set of candidate responses from a local neighborhood of the target
preference, which we show is theoretically guaranteed to produce a superior candidate pool compared
to repeated sampling from the target direction itself. The optimal response is then selected using the
original user preference. Extensive experiments across DPA, DPO, and SFT paradigms validate this
approach, demonstrating significant robustness gains—up to a 69% win rate—for challenging OOD
preferences. This work provides a practical, model-agnostic solution to the preference coverage gap
and suggests that inference-time steering via neighborhood consensus is a promising path toward
more adaptable and trustworthy AI systems.
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ETHICS STATEMENT

This research aims to enhance the reliability and controllability of large language models, a goal
with positive societal implications. Our work exclusively utilizes publicly available and widely used
datasets (UltraFeedback, HelpSteer, and HelpSteer2) and open-source models. The datasets are
standard benchmarks for preference alignment research and do not contain personally identifiable
information. Our proposed method, RPS, is a post-hoc technique that does not involve model
retraining, thereby avoiding the significant computational costs and environmental impact associated
with it. We do not foresee any direct negative ethical implications arising from this work.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. All models used in our experi-
ments (DPA-v1-Mistral-7B, Zephyr-7B-Beta, and Mistral-7B-Instruct-v0.2) are publicly available
on the Hugging Face Hub, and direct links are provided in Section 4.1.1. Similarly, the datasets
(UltraFeedback, HelpSteer, and HelpSteer2) are publicly accessible and cited. Our experimen-
tal setup, including the baseline and RPS configurations, is detailed in Section 4.1.2, with key
hyperparameters (k = 5, θmax = 30◦) specified. The Appendix provides further essential de-
tails for replication, including the exact prompts used for generation and evaluation (Appendix
A.1 and A.2), the reward model scoring procedure (Appendix A.3), and the precise preference
vectors used for evaluation (Appendix A.4). We believe this provides sufficient information
for our results to be independently reproduced. We also provide our code and data at https:
//anonymous.4open.science/r/Robust_Preference_Selection-C65C.
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A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS

This paper was prepared in accordance with ICLR’s policy on Large Language Models (LLMs). The
following checklist details the use of LLMs in this work:

• To aid or polish writing? Yes. LLMs were used to improve grammar, clarity, and phrasing
throughout the manuscript.

A.2 RESPONSE GENERATION PROMPTS

All models (DPA, DPO, SFT) use the same system prompt format for generating responses:

System: "You are a helpful assistant. Your response should maximize weighted
rating = helpfulness*{weight_helpfulness} + verbosity*{weight_verbosity}."

User: {original_prompt}

Where weight helpfulness and weight verbosity are integers from 0
to 100 satisfying the unit circle constraint (weight verbosity/100)**2 +
(weight helpfulness/100)**2 == 1. This unified approach, adapted from the ex-
perimental setup in (Wang et al., 2024a), enables fair comparison across all training paradigms.

A.3 PREFERENCE-ALIGNED JUDGE PROMPTS

We use preference-aligned A/B/TIE evaluation with randomized positioning to eliminate bias. The
judge prompt template is:

You are a careful evaluation judge. Decide which response better
aligns with the user preference that balances two criteria with
given weights:
- Helpfulness (weight = {wh})
- Verbosity (weight = {wv})

Safety/correctness override:
- Factually wrong, unsafe, or misleading content should lose
regardless of verbosity.

Output format (exactly):
Comparison: <one-sentence comparison and reason>
More aligned: A | B | Tie
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Query: {user_query}
Response A: {response_1}
Response B: {response_2}

For each target direction v = (vh, vv), we set the weight placeholders to the direction components
and evaluate response pairs. A/B positions are randomized with a fixed seed for reproducibility.

A.4 REWARD MODEL SCORING

All experiments utilize the publicly available reward model
Haoxiang-Wang/RewardModel-Mistral-7B-for-DPA-v1 from Wang et al. (2024a),
which is trained to predict scores across multiple preference dimensions. To obtain the reward vector
r(x, y) = (rh(x, y), rv(x, y)) for a given prompt-response pair, we format the input according to the
model’s required template:

[INST] You must read the following conversation carefully and rate
the assistant’s response from score 0-100 in these aspects:
helpfulness, correctness, coherence, honesty, complexity, verbosity

User: {prompt}

Assistant: {response} [/INST]

The model returns a vector of scores for each attribute mentioned in the prompt. For our two-
dimensional analysis, we extract the first score as helpfulness (rh) and the sixth score as verbosity
(rv) to construct the reward vector used for all calculations and selection criteria in our work.

A.5 PREFERENCE DIRECTION SPECIFICATIONS

Table 5 provides the specification of preference directions used in our experiments. Our evalua-
tion focuses on directions v1 through v8 as these represent increasingly challenging preference
configurations that extend beyond typical training ranges.

Table 5: Preference direction specifications with exact vector components and angles.

Direction Vector (vh, vv) Angle (◦)

v1 (0.9848, 0.1736) 10.0
v2 (0.9659, 0.2588) 15.0
v3 (0.9397, 0.3420) 20.0
v4 (0.9063, 0.4226) 25.0
v5 (0.8660, 0.5000) 30.0
v6 (0.8192, 0.5736) 35.0
v7 (0.7660, 0.6428) 40.0
v8 (0.7071, 0.7071) 45.0

A.6 QUALITATIVE CASE STUDIES

To provide a more concrete understanding of our method’s improvements, this section presents
qualitative comparisons for each model. The examples, detailed in Table 6, are selected from the
most out-of-distribution preference direction (v8, angle 45◦) to illustrate how RPS generates more
nuanced and detailed responses compared to the baseline.

A.7 PROOF OF COROLLARY 1

We provide a brief justification for the two claims in Corollary 1.

Dependence on Neighborhood Size k: Let G(k) = E[max(S
(k)
RPS)] − E[max(S

(k)
Baseline)] be the

robustness gain for size k. The expected value of the maximum of a set of random variables is
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Table 6: Qualitative comparisons for DPA, DPO, and SFT models on out-of-distribution preferences
(v8, angle 45◦).

DPA Model

Prompt (UltraFeedback, ID: 10): ”Write an investigative report on the state of homelessness in
America.”

Baseline Output: Title: The State of Homelessness in America: A Comprehensive Investigation...
Homelessness is a pervasive issue that affects millions of people... Causes of Homelessness... Lack of
affordable housing... Mental illness... Substance abuse...

RPS Output: Title: The State of Homelessness in America: A Comprehensive Investigation... The issue
of homelessness has been a persistent challenge in the United States, with an estimated 580,466 people
experiencing homelessness on a single night in 2019 (U.S. Department of Housing and Urban Development,
2020)... Current Trends: 1. Increasing Population... 2. Shift in Demographics... 3. Impact of COVID-19...

Judgment (RPS Win): GPT-4o-mini selected the RPS response as more aligned.

Analysis: The RPS response is more helpful, including a specific statistic with a source, discussing more
nuanced causes (Domestic Violence), and incorporating recent trends like the impact of COVID-19. The
baseline is generic and lacks this specific, timely context.

DPO Model

Prompt (HelpSteer, ID: 5): ”What are some synonyms for the word ’beautiful’?”

Baseline Output: Some synonyms for the word ”beautiful” include gorgeous, lovely, pretty, stunning,
radiant, enchanting, captivating, mesmerizing, breathtaking, and exquisite. All of these words convey
various aspects of beauty... The choice of synonym depends on the context...

RPS Output: 1. Gorgeous 2. Stunning 3. Radiant 4. Magnificent 5. Attractive 6. Charming 7. Lovely 8.
Enchanting 9. Exquisite 10. Alluring ... [list continues to 50 synonyms] ... Note: The weightage of each
synonym may vary based on context and usage...

Judgment (RPS Win): GPT-4o-mini selected the RPS response as more aligned.

Analysis: For a preference demanding high verbosity, the RPS response is clearly superior. It provides an
extensive list of 50 synonyms, comprehensively addressing the user’s request. The baseline provides only a
handful of examples and a brief explanation.

SFT Model

Prompt (HelpSteer2, ID: 0): ”explain master slave replication nsql”

Baseline Output: I’d be happy to help you understand master-slave replication in the context of NSQ...
In master-slave replication, there is a primary node (master) that processes and writes messages, while
secondary nodes (slaves) read from the master and maintain an identical copy of the data...

RPS Output: Master-slave replication is a method used in database systems... Here’s how it works in the
context of NSQ, a real-time distributed messaging platform: 1. Master: NSQ has a built-in database called
Lookupd that stores metadata... 2. Slaves... 3. Replication lag... 4. Failover...

Judgment (RPS Win): GPT-4o-mini selected the RPS response as more aligned.

Analysis: The RPS response provides a more technically accurate and structured explanation. It correctly
identifies ‘Lookupd‘ as the key component and explains concepts like replication lag and failover. The
baseline’s explanation is generic and less specific to NSQ’s architecture.

non-decreasing with the size of the set. Therefore, both E[max(S
(k)
RPS)] and E[max(S

(k)
Baseline)] are

non-decreasing in k. The gain increases because the expected improvement from adding an additional
sample is greater for the RPS pool. Let MRPS

k = max(S
(k)
RPS). The increase in expected maximum is

E[max(MRPS
k , sk+1)]− E[MRPS

k ]. Since the distribution of sk+1 stochastically dominates that of a
baseline sample, this improvement is larger than the corresponding improvement for the baseline,
causing the gap G(k) to widen.

Dependence on Quality Gap: We can formalize the ”quality gap” as the degree of stochastic
dominance. Let the RPS scores {si} be drawn from distributions {Fi}, and consider an alternative set
of ”higher-quality” distributions {Gi} such that each Gi stochastically dominates the corresponding
Fi (i.e., Gi(x) ≤ Fi(x) for all x). Let S′

RPS be a set of scores drawn from {Gi}. Then max(S′
RPS)
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stochastically dominates max(SRPS). This implies E[max(S′
RPS)] ≥ E[max(SRPS)]. The robustness

gain relative to the fixed baseline therefore increases as the quality of the neighborhood candidate
pool improves.
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