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Abstract

Humans are thought to predict the next words
during sentence comprehension, but under
unique circumstances, they demonstrate an abil-
ity for longer coherent word sequence predic-
tion. In this paper, we investigate whether
language models can model such hyperpredic-
tion observed in humans during sentence pro-
cessing, specifically in the context of buzzer
quizzes. We conducted eye-tracking experi-
ments where participants read the first half of
buzzer quiz questions and predicted the second
half, while we modeled their reading time us-
ing language models. The results showed that
the pre-trained language model can partially
capture human hyperprediction. When the lan-
guage model was fine-tuned with quiz ques-
tions, the perplexity value decreased. Lower
perplexity corresponded to higher psychomet-
ric predictive power; however, excessive data
for fine-tuning led to a decrease in perplexity
and the fine-tuned model exhibited a low psy-
chometric predictive power.

1 Introduction

It is widely recognized that the probability of a
word within a specific context (i.e., surprisal) af-
fects the difficulty of processing during incremental
human language comprehension (Hale, 2001; Levy,
2008). Based on this premise, researchers have
compared a variety of language models in terms
of how well their surprisal correlates with human
reading behavior (Wilcox et al., 2020; Kuribayashi
et al., 2021; Van Schijndel and Linzen, 2021; Oh
and Schuler, 2023).

Such studies have demonstrated that process-
ing difficulty is largely driven by how predictable
upcoming words are within the context, often an-
alyzed through self-paced reading experiments
or eye-movement corpora (Kennedy et al., 2013;
Futrell et al., 2018; Asahara et al., 2016). These
corpora typically use newspaper and novel texts as

material and measure the reading time required for
participants to read and comprehend the text. These
works have devoted much attention to understand-
ing everyday sentence comprehension, particularly
the prediction of the next word.

In such typical sentence comprehension, psy-
cholinguistics research has emphasized humans’
use of contextual information to predict the next
word while reading (Kutas and Hillyard, 1984; Alt-
mann and Kamide, 1999; Kamide et al., 2003). For
instance, Kutas and Hillyard (1984) conducted
an EEG experiment and found that the words se-
mantically related to the context were activated.
Altmann and Kamide (1999); Kamide et al. (2003)
employed eye-tracking experiments and revealed
that sentence comprehenders anticipate upcoming
words while listening to the verb within the sen-
tence.

However, when comprehending a sentence, hu-
mans can sometimes make predictions about the
whole sentence that go beyond the next word pre-
diction (hereafter referred to as “hyperprediction”).
This phenomenon requires comprehenders to antic-
ipate not only the next word but also the structure
of subsequent sentences. Although hyperprediction
is an important aspect of human prediction in sen-
tence processing, it has received limited attention
in modeling research.

In this paper, we aim to fill this gap by evaluating
the language models’ capacity to model human pre-
dictive processes, particularly in tasks emphasizing
hyperprediction. Specifically, we investigate hyper-
prediction in the context of buzzer quiz. Buzzer
quiz is a popular type of quiz game (Tokuhisa,
2012), and buzzer quiz players are known to engage
in this predictive process (Izawa, 2021). By inves-
tigating hyperprediction, a critical aspect of human
predictive ability, we seek to provide insights into
the degree to which language models resemble hu-
man predictive ability in sentence processing, not
just the next word, but the entire sentence structure.
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Figure 1: The flow of the experiment. Human total reading time measured in the eye-tracking experiment was
modeled with surprisal computed by pre-trained and fine-tuned language models.

In summary, our key contributions are as fol-
lows:

* Through modeling human reading time in eye-
tracking experiments, we investigate hyper-
prediction in buzzer quiz.

e Our results demonstrate that the pre-trained
language model can partially model human
hyperprediction to some extent.

* Analyses on fine-tuning reveal that fine-tuned
GPT-2 can model human hyperprediction
more accurately.

2 Related work

2.1 Prediction in human sentence processing

Psycholinguistics research spanning several
decades has consistently suggested that humans
engage in predictive processes while comprehend-
ing sentences (Ehrlich and Rayner, 1981; Kutas
and Hillyard, 1984; Altmann and Kamide, 1999;
Kamide et al., 2003; Pickering and Garrod, 2013;
Martin, 2018). Psycholinguists have employed
diverse methodologies to explore human behavior
in sentence comprehension. Altmann and Kamide
(1999) and Kamide et al. (2003) employed the
Visual World Paradigm and revealed that humans
utilize contextual cues within sentences to predict
upcoming words, such as direct objects or verbs.
Additionally, Kutas and Hillyard (1984) conducted
EEG experiments and demonstrated that encounter-
ing a word unrelated to the context elicits a large
N400 response in readers, which is associated with
a semantic gap between a word and its context.
Moreover, the process of next-word prediction
during human sentence processing has been
investigated and recent research has highlighted

the necessity of the speech production system in
generating lexical predictions during sentence
comprehension (Martin, 2018). These studies
emphasize that humans utilize the preceding
context as a crucial cue for predicting upcoming
words.

However, humans demonstrate the ability to pre-
dict longer sequences of words in a special situation
such as in a buzzer quiz (Izawa, 2021). Skilled quiz
players can answer correctly by only listening to
a few words of the question sentence. In this con-
text, they are not only required to predict the next
word but also anticipate the structure of the entire
sentence.

This ability to make strong predictions during
sentence comprehension is a crucial aspect of sen-
tence processing, but it has received limited atten-
tion in previous research. Therefore, this study
specifically focuses on human hyperprediction.

2.2 Surprisal theory

Surprisal theory is a widely accepted concept in
computational psycholinguistics, particularly in
cognitive modeling research. Surprisal is calcu-
lated as the negative logarithm of the probability
of a word or sequence of words occurring in a
particular context. This theory proposes that the
processing difficulty of a word is determined by its
predictability within its preceding context (Hale,
2001; Levy, 2008; Smith and Levy, 2013). Put
simply, the easier a word is to predict, the lower
the cognitive load associated with it. Surprisal, de-
fined as the negative log-probability of a word in
its context, serves as a measure of its processing
difficulty. The definition of surprisal is as follows:

Surprisal = —log P(word|context) (1)



Question Type

PyH—Da—bt T, FHWHOL & T—TAY TEH, ROWADT & fIcLx5?

football pitch on shorter side TOPIC goal line but, longer side TOPIC what? easy
“On a football pitch, the shorter side is the goal line, but what is the longer side?”

M7 AV AKFE T mbEVIL = 7avhI7 TEHMN. AT AV A KFE T mbEWVIL =% falrcL x5 ?

South America in the highest peak TOPIC Aconcagua but, North America in the highest peak TOPIC what? easy
“The highest mountain in South America is Aconcagua, but what is the highest mountain in North America?”

7 AV A ERE D [H AL (=3 NT TFH, AFTasRE O HOE = flcL x5 ?

the USA ’s national flower TOPIC rose but, Mexico ’s national flower TOPIC what? difﬁcult
“The national flower of the United States of America is the rose, but what is the national flower of the United Mexican States?”

A=V 7 O KR & Wi TS, A—RTNUT O AFHFE & filcL x5 ?

Australia ’s language TOPIC English but, Austria ’s language TOPIC what? difﬁcult

“The official language of Australia is English, but what is the official language of Austria?”

Table 1: Examples of parallel quizzes. In each question, the words in red in the first half are contrasted with those in
blue in the second half. The first and second quizzes are the easy type of parallel quizzes, and the third quiz is the

difficult type.

In order to evaluate “human-like” trends of the
language models, studies have been conducted
to compare the surprisal calculated by language
models with data obtained from humans, such as
eye movement and EEG (Fossum and Levy, 2012;
Smith and Levy, 2013; Frank et al., 2015; Wilcox
et al., 2020).

For example, Wilcox et al. (2020); Goodkind
and Bicknell (2018) compared various models by
computing how well their next-word expectations
predict human reading time behavior on naturalistic
text corpora, and found that the less perplexity of a
model, the better its psychometric predictive power.

The previous research most closely related to
our work is Kuribayashi et al. (2021). They exam-
ined the relationship between perplexity of a lan-
guage model and its psychometric predictive power
with the Dundee corpus and BCCWJ-Eyetrack.
Through experiment, they argue that Japanese lan-
guage models with lower perplexity did not al-
ways exhibit better psychometric predictive power,
which was different from English language models.

Our work uses eye movement data following
previous research. The surprisal calculated by the
“human-like” language model is expected to cor-
relate better with the human reading time of each
word.

3 Buzzer quiz in Japanese

Buzzer quiz is a type of quiz where participants
compete to answer questions quickly by buzzing
in with a buzzer. In a buzzer quiz, a moderator or
host reads out questions to the players. Each player
is equipped with a buzzer and when players know
the answer to a question, they buzz in to signal that

they want to answer. The first person or team to
buzz in gets the opportunity to answer the question.

While quiz players are listening to the question,
they are said to predict the rest of the question sen-
tence, not just the next word, but the entire sentence
(Izawa, 2021). Typically, the players try to buzz
the button even before the question is fully read.

In order to investigate human predictive process-
ing when reading quiz questions, we experimented
with parallel quizzes, which are typical among
Japanese quizzes and where prediction is said to be
important (Izawa, 2021). Parallel quizzes always
have a consistent format, where a statement “A is
X" is presented, followed by a question asking for
the corresponding information “but what is A’ ?7”
The first half is the premise of the question and the
second half is the main topic of the question.

Table 1 shows examples of parallel quizzes,
which contrast two things in the first and second
halves of the question text. In terms of the ease of
predicting the second half of a question, parallel
quizzes fall into two categories. The first and sec-
ond questions of Table 1 are categorized as easy
parallel quizzes, which can be answered by only
listening to the first half of the question without
listening to the second half. For example, the first
parallel quiz on table 1 is about a football pitch.
The first half of the question sentence explains the
shorter edge of the pitch, then the quiz players can
predict that the longer edge of the pitch will be
contrasted and answer correctly (i.e., touchline) be-
fore the sentence is fully read. Skilled buzzer-quiz
players can answer this kind of parallel quiz very
quickly.
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Figure 2: sentence-production task (+predic). Partic-
ipants read the first half of a parallel quiz and predict
what will follow.

On the other hand, in the third difficult parallel
quiz, the country contrasted with the word “the
United States of America” is not obvious, so it is
difficult to perfectly predict the second half of the
question.!

4 Experiment

Figure 1 illustrates the experimental procedure,
wherein human reading time was measured through
eye-tracking experiments. Subsequently, these data
were modeled using surprisal computed by lan-
guage models.

4.1 Eye-tracking experiment

We conducted an eye-tracking experiment to mea-
sure the time for reading and predicting parallel
questions.

Participants We recruited 32 native Japanese
speakers, aged 18 to 24. Among them, seven par-
ticipants were classified as experts due to their
previous involvement in quiz clubs during high
school or university, where they regularly partici-
pated in buzzer quiz activities. The remaining 25
novice participants had no prior experience with
such activities.

Before the experiment, each participant received
detailed information about the study procedures
and how their data would be used. Written consent
to participate in the experiment was obtained from
each participant.

Stimulus sentences In this experiment, we used
parallel quiz questions as stimulus sentences. All
of them were extracted from a corpus of Japanese
buzzer quiz questions called JAQKET. We prepared

'One of the quiz players who participated in our experi-
ment told that he was able to anticipate that the United Mex-
ican States would be contrasted with the United States of
America because the only two countries known as “United
States” in the world are the USA and Mexico.

Is the short side of the

On a football pitch, the » football pitch the endline?

shorter side is the goal line.

Yes No

Press the button to
answer the
comprehension task

Press the button after
understanding the sentence

Figure 3: sentence-comprehension task (-predic). Par-
ticipants read a sentence and answer a comprehension
test on the following screen.

20 easy parallel quizzes with a predictable second
half, and 20 difficult quizzes with an unpredictable
second half as stimulus sentences for the experi-
ment. Additionally, 40 random quiz sentences were
added as fillers.

Tasks In this experiment, participants performed
two types of tasks: a sentence-production task
(+predic) and a sentence-comprehension task (-
predic). These two tasks were shown to the partic-
ipants in a randomized order. In this experiment,
the total reading time (TRT) of each word on the
screen was measured.

Figure 2 illustrates the flow of a sentence-
production task. Participants viewed the first half of
a parallel quiz on the screen and were prompted to
consider its completion. When they came up with
the continuation of the question, they pressed the
button to advance to the next screen and provided
their answer.

Figure 3 depicts the procedure of the sentence-
comprehension task. The first half of the paral-
lel quiz was displayed as a declarative sentence.
The participants pressed the button after reading it
and answered the comprehension test on the next
screen.

4.2 Language models

The surprisal for each subword was calculated us-
ing GPT-2 (Radford et al., 2019) published by rinna
(Chou and Sawada, 2021) on Huggingface. Experi-
ments were conducted using both the pre-trained
model® and fine-tuned models.

The surprisal for each subword was cal-
culated based on the next-word probabilities
P(w;|wi, ...,w;—1) computed by those language

’The pre-trained model used in this experiment was
rinna/japanese-gpt2-medium(https://huggingface.co/
rinna/japanese-gpt2-medium). This model is published
under MIT license.


https://huggingface.co/rinna/japanese-gpt2-medium
https://huggingface.co/rinna/japanese-gpt2-medium

models:
Surprisal = —log P(w;|wy, ..., w;i—1)  (2)

Pre-trained GPT-2 The pre-trained GPT-2 cal-
culated the surprisal for each word in the sentence
utilized in the eye-tracking experiment.

Fine-tuned GPT-2 We fine-tuned the pre-trained
GPT-2 with parallel quizzes extracted from the fol-
lowing resources.

e JAQKET (Suzuki et al., 2020)

The JAQKET corpus comprises Japanese
buzzer quiz questions, originally assembled
for an Al competition aimed at developing
systems capable of answering such quiz ques-
tions. It contains over 15,000 questions uti-
lized in buzzer quiz competitions for college
students.

e QuizWorks 3

This corpus comprises 18,477 questions cu-
rated by enthusiasts of buzzer quizzes. Each
question is categorized by genre and format.
Questions identified as “parallel quiz” were
selected for fine-tuning purposes. All the quiz
questions in this corpus are available for sec-
ondary use.

e Quiz-no-Mori *
This website gathers numerous buzzer quiz
questions utilized in competitions. Only ques-
tions that are available for secondary use were
used for fine-tuning.

From these corpora, we extracted 4,100 paral-
lel quizzes for fine-tuning. The dataset for fine-
tuning was divided into 10 levels, ranging from
10 to 4,100 data points(10, 100, 200, 300, 500,
700, 1,000, 1,500, 2,000, 4,100).> Each level was
tested five times with different seed values. The
epoch number in training was set to ten for each
fine-tuning. For conditions with 2,000 data points
or fewer, the sentences used for fine-tuning were
randomly selected.

3ht’cps ://quiz-works.com/

*https://quiz-schedule.info/quiz_no_mori/data/
data.htm

SThe fine-tuning process with the full dataset size (4,100
data points) required approximately 15 minutes using a single
NVIDIA Tesla T4 GPU.

4.3 Evaluation metrics

Psychometric Predictive Power (PPP): The
surprisal measure serves as a commonly uti-
lized information-theoretic complexity metric. In
essence, a model’s ability to predict human reading
behavior is often assessed by comparing the sur-
prisal values computed by the model with the read-
ing times of human participants. Higher correspon-
dence between the trends of model-generated sur-
prisals and human reading times indicates greater
psychometric predictive power. Previous studies
have evaluated the psychometric predictive power
of language models by comparing the surprisal val-
ues generated by each model with human reading
times

In our eye-tracking experiment, we quantified
the reading time for each character and computed
the total reading time for each subword by sum-
ming the total reading times of all characters within
the subword.

To examine the impact of surprisal on model-
ing human reading behavior, we employed a linear
mixed-effects regression (Baayen et al., 2008) with
the 1mer function in the 1me4 package (Bates et al.,
2014) in R (R Core Team, 2023). This model aimed
to predict the total reading time (TRT) of each sub-
word using the following formula:

log(TRT) ~ surprisal + length
+ is_first 4+ is_last + lineN
+ segmentN + log_freq
+ prev_length + log_freq_prev
+ (1|subject_id) + (1|item_id)

The detailed description of each variable is pro-
vided in table 3 in the Appendix.

The regression model included the surprisal fac-
tor with other baseline factors, which were previ-
ously examined in existing studies (Asahara et al.,
2016; Wilcox et al., 2020; Kuribayashi et al., 2021).
Factors found to be insignificant (p > 0.05) for mod-
eling reading time were excluded. The frequency
(freq) of each subword was calculated based on
the occurrences of each token in all 87,467 ques-
tions.

To isolate the effect of surprisal on reading time
modeling, we trained a baseline regression model
without including surprisal information. Following
the approach outlined by Wilcox et al. (2020), we
computed the mean by-segment difference of log-
likelihood between the model with surprisal values
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condition #data points  AlogLik (/10%) x> P
-predic 7869 0.01493 0.235 0.6278
+predic 8361 1.489 24.893  0.0000 ***

+predic, novice 6351 0.5396 6.8545 0.008842 **

+predic, expert 2010 1.756 6.7061  0.009608 **

+predic, easy 4579 1.672 15316  0.0001 ***
+predic, difficult 3782 0.5577 42187  0.03998 *

Table 2: PPP (i.e., AlogLik) for each condition of the pre-trained GPT-2. “#data points” is the number of reading
time annotations used in our experiments. The y? values and p-values resulted from conducting ANOVA analysis
comparing the baseline regression model with the expanded regression model with surprisal variable. The +predic
condition refers to the sentence-prediction task, while the -predic condition denotes the sentence-comprehension
task. The significance codes are as follows: ’***’ indicates a p-value less than 0.001, ***’ indicates a p-value less

than 0.01, and **’ indicates a p-value less than 0.05.

and the baseline model. This metric is referred to
as AlogLik. A AlogLik score of zero indicates that
surprisal from a language model is ineffective at
all for reading time modeling. Conversely, a high
A logLik score suggests that the language model’s
surprisal values are effective for modeling read-
ing time, indicating a high psychometric predictive
power.

Perplexity (PPL): In order to evaluate if fine-
tuning enabled the language models to better pre-
dict the next word in parallel quizzes, we calcu-
lated the perplexity of each model. PPL is the
inverse geometric mean of next-word probabili-
ties P(w;|w1, ..., w;—1) in a text that consists of N
words (w1, wa, ..., wy), and it is a typical evalua-
tion metric for unidirectional language models:

2z~

N
PPL = [ P(wilw1, ..., wi—1)~
i=0

3)

A low perplexity (PPL) suggests that the lan-
guage model effectively anticipates the next word
based on its contextual information. The goal of
training and fine-tuning language models is to min-
imize the perplexity computed by the model. In
our experiments, we evaluated the perplexity of a
language model using texts from the eye movement
data, ensuring they do not overlap with the training
dataset.

5 Results

51 GPT-2

Table 2 shows the psychometric predictive power
(i.e., AlogLik) for each condition of the pre-trained
GPT-2. In the +predic condition, the surprisal term

was found to be significantly effective in the re-
gression model. Conversely, in the -predic condi-
tion, the surprisal term did not reach statistical sig-
nificance. In the sentence-production experiment
(i.e., +predic condition), the participants read the
first half of parallel quiz questions, and predicted
what would follow. Therefore, these findings sug-
gest that the pre-trained language model can ef-
fectively model the reading time associated with
human "hyper-prediction’ when reading a parallel
quiz question.

In the +predic condition, the reading time of the
expert participants from the quiz club was modeled
more accurately than novice participants. As for
the question difficulty, the total reading time for
each subword was better modeled in easy parallel
quiz questions (+predic, easy condition) than in
difficult ones (+predic, difficult condition).

Given the expertise of expert participants in par-
allel quiz questions and their ability to predict ques-
tion sentences more easily than novices, along with
the easier predictability of easy contrast questions
compared to difficult ones, we observe that in con-
ditions where humans are expected to engage in
hyperprediction, the language model demonstrates
superior psychometric predictive power.

5.2 Fine-tuned GPT-2

Fig 4 illustrates the relationship between perplex-
ity and psychometric predictive power (AlogLik)
of language models in +predic condition (i.e.,
sentence-production experiment). Each point repre-
sents a language model, with the Y-axis indicating
the model’s psychometric predictive power (higher
scores indicate better performance) and the X-axis
indicating its perplexity. The size of each point
corresponds to the number of data points used for
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Figure 4: Relationship between perplexity (X-axis) and psychometric predictive power, i.e., AlogLik (Y-axis). Each
point corresponds to a different language model. A lower score on the X-axis indicates higher linguistic accuracy of
the model, while a higher score on the Y-axis indicates greater psychometric predictive power. The size of the point
corresponds to the number of data points used for fine-tuning, ranging from 10 to 4100 (10, 100, 200, 300, 500, 700,
1,000, 1,500, 2,000, 4,100). The smallest point corresponds to the pre-trained model (i.e., no fine-tuning). Crossed
points indicate the data from novice participants, while triangle points are from experts.

fine-tuning. The smallest points indicate the pre-
trained model. The larger points represent the fine-
tuned models. The number of data points used for
fine-tuning ranged from 10 to 4,100: 10, 100, 200,
300, 500, 700, 1,000, 1,500, 2,000, and 4,100. The
larger the number of data points, the larger the plot.

Blue points represent the modeling of the read-
ing time for novice participants, while red points
represent expert participants.

The reading time of novice and expert partici-
pants when reading difficult and easy parallel ques-
tions was modeled, and it was found that the overall
trend was that perplexity tended to decrease as the
number of data used for fine-tuning increased in all
conditions.

Novice participants Language models fine-
tuned with parallel quiz questions exhibited higher
psychometric predictive power values than the pre-
trained model. In most cases, the psychometric
predictive power values for both easy and difficult
conditions were close. Increasing the number of
data used for fine-tuning resulted in a smaller in-
crease in psychometric predictive power.

The maximum value of psychometric predictive

power was achieved with the language model fine-
tuned with 1,000 sentences in the +predic, novice,
easy condition and 300 sentences in the +predic,
novice, difficult condition.

Expert participants The highest psychometric
predictive power for the fine-tuned model, regard-
less of the number of data points used, was ob-
served when expert participants read easy types of
parallel quizzes (i.e., +predic, expert, easy condi-
tion).

In both easy and difficult conditions, the psy-
chometric predictive power of fine-tuned models
increased with the number of data points used for
fine-tuning. The maximum psychometric predic-
tive power was reached at 1,000 data points; how-
ever, beyond this threshold, a sharp decrease in
psychometric predictive power was observed. This
trend was consistently observed across all four con-
ditions.

6 Discussion

The pre-trained GPT-2 demonstrated its highest
psychometric predictive power in the +predic, ex-
pert, easy condition, where human hyperprediction



was expected to be most prominent. Conversely,
it exhibited lower scores in the novice and diffi-
cult conditions, where hyperprediction was more
challenging. our findings suggest that even the
pre-trained language model can partially capture
human hyperprediction.

The surprisal of the pre-trained model did not
show significance in the -predic condition. This
can be attributed to the simplicity of the text used
in this condition. The first half of the parallel quiz
typically presents straightforward premises.® More-
over, considering the nature of the buzzer quiz,
where players are required to promptly press the
button to answer a question (Izawa, 2021; Tokuhisa,
2012), it is conceivable that the participants aimed
to complete reading the sentence rapidly, especially
simpler ones. Consequently, the reading time for
each word was considerably shorter across the sen-
tences, posing a challenge for the language model
to accurately model.

The fine-tuned models exhibited the highest psy-
chometric predictive power in the +predic, expert,
easy condition. This condition, characterized by
participants’ familiarity with parallel quizzes and
their ease in making predictions, can be considered
to reflect human hyperprediction. Language mod-
els demonstrated an ability to capture this aspect of
human sentence processing.

In contrast, novice participants displayed a con-
sistent trend in both easy and difficult conditions.
However, for expert participants, there was a no-
table difference in psychometric predictive power
between easy and difficult conditions. This differ-
ence suggests that novice participants predict the
question’s continuation similarly across different
types of parallel quizzes, while expert participants
exhibit stronger predictions in easy parallel quizzes
compared to difficult ones.

The process of fine-tuning resulted in a decrease
in perplexity, indicating that language models be-
came more adept at predicting the next word in
parallel quizzes. Specifically, when fine-tuned with
1,000 parallel quiz sentences or less, lower perplex-
ity corresponded to higher psychometric predictive
power, suggesting improved model performance.

However, fine-tuning with more than 1,000 sen-
tences led to a significant decline in psychometric
predictive power. This could be attributed to the
excessive data causing the model’s surprisal to the

SExample sentences used in the -predic condition are as
follows: “The highest mountain in Japan is Mt. Fuji.”, “Tkura
(red caviar) is a Russian word.”

sentence to decrease excessively. Consequently,
the model may have failed to prioritize important
words that typically require longer human read-
ing time. This trend aligns with previous findings
in Japanese language modeling research (Kurib-
ayashi et al., 2021), which argue that lower per-
plexity does not always equate to human-like per-
formance. A similar trend has been reported by Oh
and Schuler (2023). They revealed that larger lan-
guage models underestimated human processing
difficulty. Van Schijndel and Linzen (2021) also
found that surprisal calculated with recurrent neu-
ral network language models successfully predict
the existence of garden-path effect, but drastically
underpredict their magnitude. Our results align
with these assertions.

7 Conclusion

This study investigated human hyperprediction in
buzzer quizzes and explored whether language
models could capture this phenomenon through
eye-tracking experiments and cognitive modeling.

Our results showed that the pre-trained GPT-2
partially modeled human reading time while read-
ing parallel quiz, which suggested that language
models can indeed capture aspects of human hyper-
prediction.

Furthermore, language models fine-tuned with
parallel quizzes modeled human hyperprediction
in buzzer quiz better than the pre-trained model.
Specifically, the highest predictive power was ob-
served in conditions where hyperprediction would
be most prominent (i.e., +predic, expert, and easy
condition). Notably, fine-tuning resulted in a signif-
icant increase in predictive power values. However,
excessive fine-tuning data (exceeding 1,000 data
points) led to a decrease in perplexity and subse-
quently to reduced psychometric predictive power.
This trend aligns with findings reported in previous
work (Kuribayashi et al., 2021).

Limitations

Our study focused on parallel quizzes and em-
ployed an eye-tracking experiment to measure the
total reading time for each subword in parallel quiz
questions. However, in buzzer quiz competitions,
questions are typically orally read aloud. Play-
ers utilize intonation and prominence cues to con-
sider the answer to the quiz, particularly in paral-
lel quizzes where the moderator emphasizes the
contrasted words in the first half of the question.



Skilled players exploit such phonological informa-
tion to anticipate the answer and buzz in as quickly
as possible. Future research could explore incorpo-
rating these oral reading dynamics into language
models. Additionally, buzzer quiz players are influ-
enced by various factors, including game rules and
competitors’ scores. Factors like strict penalties
for wrong answers may lead players to hesitate to
buzz in unless they reach a reliable prediction for
the question’s continuation. Conversely, players
with lower scores may adopt a more aggressive
approach, buzzing in even without full certainty
about the answer. These varying confidence levels
in predicting subsequent question text may differ
from the prediction in the simplified situation of our
eye-tracking experiment. Future studies can further
explore these nuanced factors to gain a comprehen-
sive understanding of quiz players’ hyperprediction
and the language model’s ability to capture such
hyperprediction.

Ethical considerations

The eye-track experiment conducted in our work
was approved by the research ethics committee of
the university.

Buzzer quiz is a game of knowledge where par-
ticipants may feel defeated if they are unable to
answer a question. Prior to conducting the eye-
tracking experiment, we emphasized to participants
that the purpose of the experiment was not to assess
their knowledge level. We made efforts to ensure
that participants felt comfortable and performed
naturally, without undue stress or pressure.

The data collected in this experiment included
the timing of participants’ button presses and the
reading time of each word, calculated from their
gaze location on the screen. These data were
anonymized by assigning a random subject ID to
each participant, thereby ensuring the separation of
personal information from experimental data.

We aimed to ensure fair payment. As mentioned
in the paper, our participants were recruited from
the university and received compensation of 1,000
yen for their one-hour participation in the experi-
ment. The compensation amount was determined
following the university’s guidelines.

Furthermore, in line with the ACL 2023 Policy
on Al Writing Assistance, we utilized ChatGPT by
OpenAl and Grammarly for writing assistance.
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Factor name  Type Description

surprisal num surprisal calculated by each language model
TRT num total reading time for each token
length int the number of characters
is_first factor the leftmost token within the line
is_last factor the rightmost token within the line
lineN int  the serial number of the line where the token is displayed
segmentN int the serial number of the token within the line
log_freq num log of the frequency of the token
prev_length int length of the previous token
prev_freq num log_freq of the previous token
subject_id factor ID assigned to each participant
item_id factor ID assigned to each item

Table 3: Factors used in regression models.

n_layer 24
n_embd 1024
n_head 16

n_position 1024
vocab_size 32000

Table 4: Model architecture of GPT-2 we used in our
work.

A Factors used in regression model

Table3 shows the description of the factors used in
our regression models. The frequency of a token
(used in log_freq) was calculated using 87,467
buzzer quiz questions.

B Model architecture

The model architecture of GPT-2 we used in our
work is shown in Table4. The model is available
on Hugging Face. ’

7https://huggingface.co/rinna/
japanese-gpt2-medium
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