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Abstract

Humans are thought to predict the next words001
during sentence comprehension, but under002
unique circumstances, they demonstrate an abil-003
ity for longer coherent word sequence predic-004
tion. In this paper, we investigate whether005
language models can model such hyperpredic-006
tion observed in humans during sentence pro-007
cessing, specifically in the context of buzzer008
quizzes. We conducted eye-tracking experi-009
ments where participants read the first half of010
buzzer quiz questions and predicted the second011
half, while we modeled their reading time us-012
ing language models. The results showed that013
the pre-trained language model can partially014
capture human hyperprediction. When the lan-015
guage model was fine-tuned with quiz ques-016
tions, the perplexity value decreased. Lower017
perplexity corresponded to higher psychomet-018
ric predictive power; however, excessive data019
for fine-tuning led to a decrease in perplexity020
and the fine-tuned model exhibited a low psy-021
chometric predictive power.022

1 Introduction023

It is widely recognized that the probability of a024

word within a specific context (i.e., surprisal) af-025

fects the difficulty of processing during incremental026

human language comprehension (Hale, 2001; Levy,027

2008). Based on this premise, researchers have028

compared a variety of language models in terms029

of how well their surprisal correlates with human030

reading behavior (Wilcox et al., 2020; Kuribayashi031

et al., 2021; Van Schijndel and Linzen, 2021; Oh032

and Schuler, 2023).033

Such studies have demonstrated that process-034

ing difficulty is largely driven by how predictable035

upcoming words are within the context, often an-036

alyzed through self-paced reading experiments037

or eye-movement corpora (Kennedy et al., 2013;038

Futrell et al., 2018; Asahara et al., 2016). These039

corpora typically use newspaper and novel texts as040

material and measure the reading time required for 041

participants to read and comprehend the text. These 042

works have devoted much attention to understand- 043

ing everyday sentence comprehension, particularly 044

the prediction of the next word. 045

In such typical sentence comprehension, psy- 046

cholinguistics research has emphasized humans’ 047

use of contextual information to predict the next 048

word while reading (Kutas and Hillyard, 1984; Alt- 049

mann and Kamide, 1999; Kamide et al., 2003). For 050

instance, Kutas and Hillyard (1984) conducted 051

an EEG experiment and found that the words se- 052

mantically related to the context were activated. 053

Altmann and Kamide (1999); Kamide et al. (2003) 054

employed eye-tracking experiments and revealed 055

that sentence comprehenders anticipate upcoming 056

words while listening to the verb within the sen- 057

tence. 058

However, when comprehending a sentence, hu- 059

mans can sometimes make predictions about the 060

whole sentence that go beyond the next word pre- 061

diction (hereafter referred to as “hyperprediction”). 062

This phenomenon requires comprehenders to antic- 063

ipate not only the next word but also the structure 064

of subsequent sentences. Although hyperprediction 065

is an important aspect of human prediction in sen- 066

tence processing, it has received limited attention 067

in modeling research. 068

In this paper, we aim to fill this gap by evaluating 069

the language models’ capacity to model human pre- 070

dictive processes, particularly in tasks emphasizing 071

hyperprediction. Specifically, we investigate hyper- 072

prediction in the context of buzzer quiz. Buzzer 073

quiz is a popular type of quiz game (Tokuhisa, 074

2012), and buzzer quiz players are known to engage 075

in this predictive process (Izawa, 2021). By inves- 076

tigating hyperprediction, a critical aspect of human 077

predictive ability, we seek to provide insights into 078

the degree to which language models resemble hu- 079

man predictive ability in sentence processing, not 080

just the next word, but the entire sentence structure. 081
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Figure 1: The flow of the experiment. Human total reading time measured in the eye-tracking experiment was
modeled with surprisal computed by pre-trained and fine-tuned language models.

In summary, our key contributions are as fol-082

lows:083

• Through modeling human reading time in eye-084

tracking experiments, we investigate hyper-085

prediction in buzzer quiz.086

• Our results demonstrate that the pre-trained087

language model can partially model human088

hyperprediction to some extent.089

• Analyses on fine-tuning reveal that fine-tuned090

GPT-2 can model human hyperprediction091

more accurately.092

2 Related work093

2.1 Prediction in human sentence processing094

Psycholinguistics research spanning several095

decades has consistently suggested that humans096

engage in predictive processes while comprehend-097

ing sentences (Ehrlich and Rayner, 1981; Kutas098

and Hillyard, 1984; Altmann and Kamide, 1999;099

Kamide et al., 2003; Pickering and Garrod, 2013;100

Martin, 2018). Psycholinguists have employed101

diverse methodologies to explore human behavior102

in sentence comprehension. Altmann and Kamide103

(1999) and Kamide et al. (2003) employed the104

Visual World Paradigm and revealed that humans105

utilize contextual cues within sentences to predict106

upcoming words, such as direct objects or verbs.107

Additionally, Kutas and Hillyard (1984) conducted108

EEG experiments and demonstrated that encounter-109

ing a word unrelated to the context elicits a large110

N400 response in readers, which is associated with111

a semantic gap between a word and its context.112

Moreover, the process of next-word prediction113

during human sentence processing has been114

investigated and recent research has highlighted115

the necessity of the speech production system in 116

generating lexical predictions during sentence 117

comprehension (Martin, 2018). These studies 118

emphasize that humans utilize the preceding 119

context as a crucial cue for predicting upcoming 120

words. 121

However, humans demonstrate the ability to pre- 122

dict longer sequences of words in a special situation 123

such as in a buzzer quiz (Izawa, 2021). Skilled quiz 124

players can answer correctly by only listening to 125

a few words of the question sentence. In this con- 126

text, they are not only required to predict the next 127

word but also anticipate the structure of the entire 128

sentence. 129

This ability to make strong predictions during 130

sentence comprehension is a crucial aspect of sen- 131

tence processing, but it has received limited atten- 132

tion in previous research. Therefore, this study 133

specifically focuses on human hyperprediction. 134

2.2 Surprisal theory 135

Surprisal theory is a widely accepted concept in 136

computational psycholinguistics, particularly in 137

cognitive modeling research. Surprisal is calcu- 138

lated as the negative logarithm of the probability 139

of a word or sequence of words occurring in a 140

particular context. This theory proposes that the 141

processing difficulty of a word is determined by its 142

predictability within its preceding context (Hale, 143

2001; Levy, 2008; Smith and Levy, 2013). Put 144

simply, the easier a word is to predict, the lower 145

the cognitive load associated with it. Surprisal, de- 146

fined as the negative log-probability of a word in 147

its context, serves as a measure of its processing 148

difficulty. The definition of surprisal is as follows: 149

Surprisal = − logP (word|context) (1) 150
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Question Type

easy

easy

difficult

difficult

Table 1: Examples of parallel quizzes. In each question, the words in red in the first half are contrasted with those in
blue in the second half. The first and second quizzes are the easy type of parallel quizzes, and the third quiz is the
difficult type.

In order to evaluate “human-like” trends of the151

language models, studies have been conducted152

to compare the surprisal calculated by language153

models with data obtained from humans, such as154

eye movement and EEG (Fossum and Levy, 2012;155

Smith and Levy, 2013; Frank et al., 2015; Wilcox156

et al., 2020).157

For example, Wilcox et al. (2020); Goodkind158

and Bicknell (2018) compared various models by159

computing how well their next-word expectations160

predict human reading time behavior on naturalistic161

text corpora, and found that the less perplexity of a162

model, the better its psychometric predictive power.163

The previous research most closely related to164

our work is Kuribayashi et al. (2021). They exam-165

ined the relationship between perplexity of a lan-166

guage model and its psychometric predictive power167

with the Dundee corpus and BCCWJ-Eyetrack.168

Through experiment, they argue that Japanese lan-169

guage models with lower perplexity did not al-170

ways exhibit better psychometric predictive power,171

which was different from English language models.172

Our work uses eye movement data following173

previous research. The surprisal calculated by the174

“human-like” language model is expected to cor-175

relate better with the human reading time of each176

word.177

3 Buzzer quiz in Japanese178

Buzzer quiz is a type of quiz where participants179

compete to answer questions quickly by buzzing180

in with a buzzer. In a buzzer quiz, a moderator or181

host reads out questions to the players. Each player182

is equipped with a buzzer and when players know183

the answer to a question, they buzz in to signal that184

they want to answer. The first person or team to 185

buzz in gets the opportunity to answer the question. 186

While quiz players are listening to the question, 187

they are said to predict the rest of the question sen- 188

tence, not just the next word, but the entire sentence 189

(Izawa, 2021). Typically, the players try to buzz 190

the button even before the question is fully read. 191

In order to investigate human predictive process- 192

ing when reading quiz questions, we experimented 193

with parallel quizzes, which are typical among 194

Japanese quizzes and where prediction is said to be 195

important (Izawa, 2021). Parallel quizzes always 196

have a consistent format, where a statement “A is 197

X” is presented, followed by a question asking for 198

the corresponding information “but what is A’ ?” 199

The first half is the premise of the question and the 200

second half is the main topic of the question. 201

Table 1 shows examples of parallel quizzes, 202

which contrast two things in the first and second 203

halves of the question text. In terms of the ease of 204

predicting the second half of a question, parallel 205

quizzes fall into two categories. The first and sec- 206

ond questions of Table 1 are categorized as easy 207

parallel quizzes, which can be answered by only 208

listening to the first half of the question without 209

listening to the second half. For example, the first 210

parallel quiz on table 1 is about a football pitch. 211

The first half of the question sentence explains the 212

shorter edge of the pitch, then the quiz players can 213

predict that the longer edge of the pitch will be 214

contrasted and answer correctly (i.e., touchline) be- 215

fore the sentence is fully read. Skilled buzzer-quiz 216

players can answer this kind of parallel quiz very 217

quickly. 218
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Figure 2: sentence-production task (+predic). Partic-
ipants read the first half of a parallel quiz and predict
what will follow.

On the other hand, in the third difficult parallel219

quiz, the country contrasted with the word “the220

United States of America” is not obvious, so it is221

difficult to perfectly predict the second half of the222

question.1223

4 Experiment224

Figure 1 illustrates the experimental procedure,225

wherein human reading time was measured through226

eye-tracking experiments. Subsequently, these data227

were modeled using surprisal computed by lan-228

guage models.229

4.1 Eye-tracking experiment230

We conducted an eye-tracking experiment to mea-231

sure the time for reading and predicting parallel232

questions.233

Participants We recruited 32 native Japanese234

speakers, aged 18 to 24. Among them, seven par-235

ticipants were classified as experts due to their236

previous involvement in quiz clubs during high237

school or university, where they regularly partici-238

pated in buzzer quiz activities. The remaining 25239

novice participants had no prior experience with240

such activities.241

Before the experiment, each participant received242

detailed information about the study procedures243

and how their data would be used. Written consent244

to participate in the experiment was obtained from245

each participant.246

Stimulus sentences In this experiment, we used247

parallel quiz questions as stimulus sentences. All248

of them were extracted from a corpus of Japanese249

buzzer quiz questions called JAQKET. We prepared250

1One of the quiz players who participated in our experi-
ment told that he was able to anticipate that the United Mex-
ican States would be contrasted with the United States of
America because the only two countries known as “United
States” in the world are the USA and Mexico.

Figure 3: sentence-comprehension task (-predic). Par-
ticipants read a sentence and answer a comprehension
test on the following screen.

20 easy parallel quizzes with a predictable second 251

half, and 20 difficult quizzes with an unpredictable 252

second half as stimulus sentences for the experi- 253

ment. Additionally, 40 random quiz sentences were 254

added as fillers. 255

Tasks In this experiment, participants performed 256

two types of tasks: a sentence-production task 257

(+predic) and a sentence-comprehension task (- 258

predic). These two tasks were shown to the partic- 259

ipants in a randomized order. In this experiment, 260

the total reading time (TRT) of each word on the 261

screen was measured. 262

Figure 2 illustrates the flow of a sentence- 263

production task. Participants viewed the first half of 264

a parallel quiz on the screen and were prompted to 265

consider its completion. When they came up with 266

the continuation of the question, they pressed the 267

button to advance to the next screen and provided 268

their answer. 269

Figure 3 depicts the procedure of the sentence- 270

comprehension task. The first half of the paral- 271

lel quiz was displayed as a declarative sentence. 272

The participants pressed the button after reading it 273

and answered the comprehension test on the next 274

screen. 275

4.2 Language models 276

The surprisal for each subword was calculated us- 277

ing GPT-2 (Radford et al., 2019) published by rinna 278

(Chou and Sawada, 2021) on Huggingface. Experi- 279

ments were conducted using both the pre-trained 280

model2 and fine-tuned models. 281

The surprisal for each subword was cal- 282

culated based on the next-word probabilities 283

P (wi|w1, ..., wi−1) computed by those language 284

2The pre-trained model used in this experiment was
rinna/japanese-gpt2-medium(https://huggingface.co/
rinna/japanese-gpt2-medium). This model is published
under MIT license.

4

https://huggingface.co/rinna/japanese-gpt2-medium
https://huggingface.co/rinna/japanese-gpt2-medium


models:285

Surprisal = − logP (wi|w1, ..., wi−1) (2)286

Pre-trained GPT-2 The pre-trained GPT-2 cal-287

culated the surprisal for each word in the sentence288

utilized in the eye-tracking experiment.289

Fine-tuned GPT-2 We fine-tuned the pre-trained290

GPT-2 with parallel quizzes extracted from the fol-291

lowing resources.292

• JAQKET (Suzuki et al., 2020)293

The JAQKET corpus comprises Japanese294

buzzer quiz questions, originally assembled295

for an AI competition aimed at developing296

systems capable of answering such quiz ques-297

tions. It contains over 15,000 questions uti-298

lized in buzzer quiz competitions for college299

students.300

• QuizWorks 3301

This corpus comprises 18,477 questions cu-302

rated by enthusiasts of buzzer quizzes. Each303

question is categorized by genre and format.304

Questions identified as “parallel quiz” were305

selected for fine-tuning purposes. All the quiz306

questions in this corpus are available for sec-307

ondary use.308

• Quiz-no-Mori 4309

This website gathers numerous buzzer quiz310

questions utilized in competitions. Only ques-311

tions that are available for secondary use were312

used for fine-tuning.313

From these corpora, we extracted 4,100 paral-314

lel quizzes for fine-tuning. The dataset for fine-315

tuning was divided into 10 levels, ranging from316

10 to 4,100 data points(10, 100, 200, 300, 500,317

700, 1,000, 1,500, 2,000, 4,100).5 Each level was318

tested five times with different seed values. The319

epoch number in training was set to ten for each320

fine-tuning. For conditions with 2,000 data points321

or fewer, the sentences used for fine-tuning were322

randomly selected.323

3https://quiz-works.com/
4https://quiz-schedule.info/quiz_no_mori/data/

data.htm
5The fine-tuning process with the full dataset size (4,100

data points) required approximately 15 minutes using a single
NVIDIA Tesla T4 GPU.

4.3 Evaluation metrics 324

Psychometric Predictive Power (PPP): The 325

surprisal measure serves as a commonly uti- 326

lized information-theoretic complexity metric. In 327

essence, a model’s ability to predict human reading 328

behavior is often assessed by comparing the sur- 329

prisal values computed by the model with the read- 330

ing times of human participants. Higher correspon- 331

dence between the trends of model-generated sur- 332

prisals and human reading times indicates greater 333

psychometric predictive power. Previous studies 334

have evaluated the psychometric predictive power 335

of language models by comparing the surprisal val- 336

ues generated by each model with human reading 337

times 338

In our eye-tracking experiment, we quantified 339

the reading time for each character and computed 340

the total reading time for each subword by sum- 341

ming the total reading times of all characters within 342

the subword. 343

To examine the impact of surprisal on model- 344

ing human reading behavior, we employed a linear 345

mixed-effects regression (Baayen et al., 2008) with 346

the lmer function in the lme4 package (Bates et al., 347

2014) in R (R Core Team, 2023). This model aimed 348

to predict the total reading time (TRT) of each sub- 349

word using the following formula: 350

log(TRT) ∼ surprisal+ length 351

+ is_first+ is_last+ lineN 352

+ segmentN+ log_freq 353

+ prev_length+ log_freq_prev 354

+ (1|subject_id) + (1|item_id) 355

The detailed description of each variable is pro- 356

vided in table 3 in the Appendix. 357

The regression model included the surprisal fac- 358

tor with other baseline factors, which were previ- 359

ously examined in existing studies (Asahara et al., 360

2016; Wilcox et al., 2020; Kuribayashi et al., 2021). 361

Factors found to be insignificant (p > 0.05) for mod- 362

eling reading time were excluded. The frequency 363

(freq) of each subword was calculated based on 364

the occurrences of each token in all 87,467 ques- 365

tions. 366

To isolate the effect of surprisal on reading time 367

modeling, we trained a baseline regression model 368

without including surprisal information. Following 369

the approach outlined by Wilcox et al. (2020), we 370

computed the mean by-segment difference of log- 371

likelihood between the model with surprisal values 372
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condition #data points ∆logLik (/103) χ2 p

-predic 7869 0.01493 0.235 0.6278
+predic 8361 1.489 24.893 0.0000 ***

+predic, novice 6351 0.5396 6.8545 0.008842 **
+predic, expert 2010 1.756 6.7061 0.009608 **
+predic, easy 4579 1.672 15.316 0.0001 ***

+predic, difficult 3782 0.5577 4.2187 0.03998 *

Table 2: PPP (i.e., ∆logLik) for each condition of the pre-trained GPT-2. “#data points” is the number of reading
time annotations used in our experiments. The χ2 values and p-values resulted from conducting ANOVA analysis
comparing the baseline regression model with the expanded regression model with surprisal variable. The +predic
condition refers to the sentence-prediction task, while the -predic condition denotes the sentence-comprehension
task. The significance codes are as follows: ’***’ indicates a p-value less than 0.001, ’**’ indicates a p-value less
than 0.01, and ’*’ indicates a p-value less than 0.05.

and the baseline model. This metric is referred to373

as ∆logLik. A ∆logLik score of zero indicates that374

surprisal from a language model is ineffective at375

all for reading time modeling. Conversely, a high376

∆ logLik score suggests that the language model’s377

surprisal values are effective for modeling read-378

ing time, indicating a high psychometric predictive379

power.380

Perplexity (PPL): In order to evaluate if fine-381

tuning enabled the language models to better pre-382

dict the next word in parallel quizzes, we calcu-383

lated the perplexity of each model. PPL is the384

inverse geometric mean of next-word probabili-385

ties P (wi|w1, ..., wi−1) in a text that consists of N386

words (w1, w2, ..., wN ), and it is a typical evalua-387

tion metric for unidirectional language models:388

PPL =
N∏
i=0

P(wi|w1, ...,wi−1)
− 1

N (3)389

A low perplexity (PPL) suggests that the lan-390

guage model effectively anticipates the next word391

based on its contextual information. The goal of392

training and fine-tuning language models is to min-393

imize the perplexity computed by the model. In394

our experiments, we evaluated the perplexity of a395

language model using texts from the eye movement396

data, ensuring they do not overlap with the training397

dataset.398

5 Results399

5.1 GPT-2400

Table 2 shows the psychometric predictive power401

(i.e., ∆logLik) for each condition of the pre-trained402

GPT-2. In the +predic condition, the surprisal term403

was found to be significantly effective in the re- 404

gression model. Conversely, in the -predic condi- 405

tion, the surprisal term did not reach statistical sig- 406

nificance. In the sentence-production experiment 407

(i.e., +predic condition), the participants read the 408

first half of parallel quiz questions, and predicted 409

what would follow. Therefore, these findings sug- 410

gest that the pre-trained language model can ef- 411

fectively model the reading time associated with 412

human ’hyper-prediction’ when reading a parallel 413

quiz question. 414

In the +predic condition, the reading time of the 415

expert participants from the quiz club was modeled 416

more accurately than novice participants. As for 417

the question difficulty, the total reading time for 418

each subword was better modeled in easy parallel 419

quiz questions (+predic, easy condition) than in 420

difficult ones (+predic, difficult condition). 421

Given the expertise of expert participants in par- 422

allel quiz questions and their ability to predict ques- 423

tion sentences more easily than novices, along with 424

the easier predictability of easy contrast questions 425

compared to difficult ones, we observe that in con- 426

ditions where humans are expected to engage in 427

hyperprediction, the language model demonstrates 428

superior psychometric predictive power. 429

5.2 Fine-tuned GPT-2 430

Fig 4 illustrates the relationship between perplex- 431

ity and psychometric predictive power (∆logLik) 432

of language models in +predic condition (i.e., 433

sentence-production experiment). Each point repre- 434

sents a language model, with the Y-axis indicating 435

the model’s psychometric predictive power (higher 436

scores indicate better performance) and the X-axis 437

indicating its perplexity. The size of each point 438

corresponds to the number of data points used for 439
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Figure 4: Relationship between perplexity (X-axis) and psychometric predictive power, i.e., ∆logLik (Y-axis). Each
point corresponds to a different language model. A lower score on the X-axis indicates higher linguistic accuracy of
the model, while a higher score on the Y-axis indicates greater psychometric predictive power. The size of the point
corresponds to the number of data points used for fine-tuning, ranging from 10 to 4100 (10, 100, 200, 300, 500, 700,
1,000, 1,500, 2,000, 4,100). The smallest point corresponds to the pre-trained model (i.e., no fine-tuning). Crossed
points indicate the data from novice participants, while triangle points are from experts.

fine-tuning. The smallest points indicate the pre-440

trained model. The larger points represent the fine-441

tuned models. The number of data points used for442

fine-tuning ranged from 10 to 4,100: 10, 100, 200,443

300, 500, 700, 1,000, 1,500, 2,000, and 4,100. The444

larger the number of data points, the larger the plot.445

Blue points represent the modeling of the read-446

ing time for novice participants, while red points447

represent expert participants.448

The reading time of novice and expert partici-449

pants when reading difficult and easy parallel ques-450

tions was modeled, and it was found that the overall451

trend was that perplexity tended to decrease as the452

number of data used for fine-tuning increased in all453

conditions.454

Novice participants Language models fine-455

tuned with parallel quiz questions exhibited higher456

psychometric predictive power values than the pre-457

trained model. In most cases, the psychometric458

predictive power values for both easy and difficult459

conditions were close. Increasing the number of460

data used for fine-tuning resulted in a smaller in-461

crease in psychometric predictive power.462

The maximum value of psychometric predictive463

power was achieved with the language model fine- 464

tuned with 1,000 sentences in the +predic, novice, 465

easy condition and 300 sentences in the +predic, 466

novice, difficult condition. 467

Expert participants The highest psychometric 468

predictive power for the fine-tuned model, regard- 469

less of the number of data points used, was ob- 470

served when expert participants read easy types of 471

parallel quizzes (i.e., +predic, expert, easy condi- 472

tion). 473

In both easy and difficult conditions, the psy- 474

chometric predictive power of fine-tuned models 475

increased with the number of data points used for 476

fine-tuning. The maximum psychometric predic- 477

tive power was reached at 1,000 data points; how- 478

ever, beyond this threshold, a sharp decrease in 479

psychometric predictive power was observed. This 480

trend was consistently observed across all four con- 481

ditions. 482

6 Discussion 483

The pre-trained GPT-2 demonstrated its highest 484

psychometric predictive power in the +predic, ex- 485

pert, easy condition, where human hyperprediction 486
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was expected to be most prominent. Conversely,487

it exhibited lower scores in the novice and diffi-488

cult conditions, where hyperprediction was more489

challenging. our findings suggest that even the490

pre-trained language model can partially capture491

human hyperprediction.492

The surprisal of the pre-trained model did not493

show significance in the -predic condition. This494

can be attributed to the simplicity of the text used495

in this condition. The first half of the parallel quiz496

typically presents straightforward premises.6 More-497

over, considering the nature of the buzzer quiz,498

where players are required to promptly press the499

button to answer a question (Izawa, 2021; Tokuhisa,500

2012), it is conceivable that the participants aimed501

to complete reading the sentence rapidly, especially502

simpler ones. Consequently, the reading time for503

each word was considerably shorter across the sen-504

tences, posing a challenge for the language model505

to accurately model.506

The fine-tuned models exhibited the highest psy-507

chometric predictive power in the +predic, expert,508

easy condition. This condition, characterized by509

participants’ familiarity with parallel quizzes and510

their ease in making predictions, can be considered511

to reflect human hyperprediction. Language mod-512

els demonstrated an ability to capture this aspect of513

human sentence processing.514

In contrast, novice participants displayed a con-515

sistent trend in both easy and difficult conditions.516

However, for expert participants, there was a no-517

table difference in psychometric predictive power518

between easy and difficult conditions. This differ-519

ence suggests that novice participants predict the520

question’s continuation similarly across different521

types of parallel quizzes, while expert participants522

exhibit stronger predictions in easy parallel quizzes523

compared to difficult ones.524

The process of fine-tuning resulted in a decrease525

in perplexity, indicating that language models be-526

came more adept at predicting the next word in527

parallel quizzes. Specifically, when fine-tuned with528

1,000 parallel quiz sentences or less, lower perplex-529

ity corresponded to higher psychometric predictive530

power, suggesting improved model performance.531

However, fine-tuning with more than 1,000 sen-532

tences led to a significant decline in psychometric533

predictive power. This could be attributed to the534

excessive data causing the model’s surprisal to the535

6Example sentences used in the -predic condition are as
follows: “The highest mountain in Japan is Mt. Fuji.”, “Ikura
(red caviar) is a Russian word.”

sentence to decrease excessively. Consequently, 536

the model may have failed to prioritize important 537

words that typically require longer human read- 538

ing time. This trend aligns with previous findings 539

in Japanese language modeling research (Kurib- 540

ayashi et al., 2021), which argue that lower per- 541

plexity does not always equate to human-like per- 542

formance. A similar trend has been reported by Oh 543

and Schuler (2023). They revealed that larger lan- 544

guage models underestimated human processing 545

difficulty. Van Schijndel and Linzen (2021) also 546

found that surprisal calculated with recurrent neu- 547

ral network language models successfully predict 548

the existence of garden-path effect, but drastically 549

underpredict their magnitude. Our results align 550

with these assertions. 551

7 Conclusion 552

This study investigated human hyperprediction in 553

buzzer quizzes and explored whether language 554

models could capture this phenomenon through 555

eye-tracking experiments and cognitive modeling. 556

Our results showed that the pre-trained GPT-2 557

partially modeled human reading time while read- 558

ing parallel quiz, which suggested that language 559

models can indeed capture aspects of human hyper- 560

prediction. 561

Furthermore, language models fine-tuned with 562

parallel quizzes modeled human hyperprediction 563

in buzzer quiz better than the pre-trained model. 564

Specifically, the highest predictive power was ob- 565

served in conditions where hyperprediction would 566

be most prominent (i.e., +predic, expert, and easy 567

condition). Notably, fine-tuning resulted in a signif- 568

icant increase in predictive power values. However, 569

excessive fine-tuning data (exceeding 1,000 data 570

points) led to a decrease in perplexity and subse- 571

quently to reduced psychometric predictive power. 572

This trend aligns with findings reported in previous 573

work (Kuribayashi et al., 2021). 574

Limitations 575

Our study focused on parallel quizzes and em- 576

ployed an eye-tracking experiment to measure the 577

total reading time for each subword in parallel quiz 578

questions. However, in buzzer quiz competitions, 579

questions are typically orally read aloud. Play- 580

ers utilize intonation and prominence cues to con- 581

sider the answer to the quiz, particularly in paral- 582

lel quizzes where the moderator emphasizes the 583

contrasted words in the first half of the question. 584
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Skilled players exploit such phonological informa-585

tion to anticipate the answer and buzz in as quickly586

as possible. Future research could explore incorpo-587

rating these oral reading dynamics into language588

models. Additionally, buzzer quiz players are influ-589

enced by various factors, including game rules and590

competitors’ scores. Factors like strict penalties591

for wrong answers may lead players to hesitate to592

buzz in unless they reach a reliable prediction for593

the question’s continuation. Conversely, players594

with lower scores may adopt a more aggressive595

approach, buzzing in even without full certainty596

about the answer. These varying confidence levels597

in predicting subsequent question text may differ598

from the prediction in the simplified situation of our599

eye-tracking experiment. Future studies can further600

explore these nuanced factors to gain a comprehen-601

sive understanding of quiz players’ hyperprediction602

and the language model’s ability to capture such603

hyperprediction.604

Ethical considerations605

The eye-track experiment conducted in our work606

was approved by the research ethics committee of607

the university.608

Buzzer quiz is a game of knowledge where par-609

ticipants may feel defeated if they are unable to610

answer a question. Prior to conducting the eye-611

tracking experiment, we emphasized to participants612

that the purpose of the experiment was not to assess613

their knowledge level. We made efforts to ensure614

that participants felt comfortable and performed615

naturally, without undue stress or pressure.616

The data collected in this experiment included617

the timing of participants’ button presses and the618

reading time of each word, calculated from their619

gaze location on the screen. These data were620

anonymized by assigning a random subject ID to621

each participant, thereby ensuring the separation of622

personal information from experimental data.623

We aimed to ensure fair payment. As mentioned624

in the paper, our participants were recruited from625

the university and received compensation of 1,000626

yen for their one-hour participation in the experi-627

ment. The compensation amount was determined628

following the university’s guidelines.629

Furthermore, in line with the ACL 2023 Policy630

on AI Writing Assistance, we utilized ChatGPT by631

OpenAI and Grammarly for writing assistance.632
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Factor name Type Description
surprisal num surprisal calculated by each language model

TRT num total reading time for each token
length int the number of characters
is_first factor the leftmost token within the line
is_last factor the rightmost token within the line
lineN int the serial number of the line where the token is displayed

segmentN int the serial number of the token within the line
log_freq num log of the frequency of the token

prev_length int length of the previous token
prev_freq num log_freq of the previous token
subject_id factor ID assigned to each participant
item_id factor ID assigned to each item

Table 3: Factors used in regression models.

n_layer 24
n_embd 1024
n_head 16

n_position 1024
vocab_size 32000

Table 4: Model architecture of GPT-2 we used in our
work.

A Factors used in regression model749

Table3 shows the description of the factors used in750

our regression models. The frequency of a token751

(used in log_freq) was calculated using 87,467752

buzzer quiz questions.753

B Model architecture754

The model architecture of GPT-2 we used in our755

work is shown in Table4. The model is available756

on Hugging Face. 7757

7https://huggingface.co/rinna/
japanese-gpt2-medium
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