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ABSTRACT

Learning with time series health data poses many challenges such as variability
in sensor semantics (e.g. neural voltage recordings vs US birth rate), difficulty
in accessing data, and the relatively smaller data volume compared to other time
series domains. Given these limitations, and the fact that the field of general time
series analysis has recently begun to explore unified modeling, we approach uni-
fication from a complementary vantage point to ultimately benefit zero-shot per-
formance to health time series. Historically general time series analysis unifica-
tion entails when a common architectural backbone is retrained on a specific task
for a specific dataset; we study the unification of time series data representations
across domains in many tasks. To this end, we explore the impact of discrete,
learnt, time series data representations that enable generalist, cross-domain train-
ing. Our method, TOTEM, or Tokenized Time Series Embeddings, proposes a
simple tokenizer architecture that embeds time series data from varying domains
using a discrete vectorized representation learned in a self-supervised manner.
TOTEM works across multiple tasks and domains with minimal to no tuning. We
study TOTEM’s efficacy with an extensive evaluation on 17 real world time se-
ries datasets across 3 tasks. Notably, the majority of our zero-shot datasets are
time series health datasets from the neuroscience and birth domains. We evaluate
both the specialist (i.e., train a model on each domain) and generalist (i.e., train a
single model on many domains), and show that TOTEM matches or outperforms
previous best methods on several popular benchmarks. Please find the ffull paper
here: https://arxiv.org/pdf/2402.16412.pdf, and the [code| here:
https://github.com/SaberaTalukder/TOTEM.

1 INTRODUCTION

Time series analysis, both for health and more generally, encompasses a wide range of datasets,
tasks, and applications in the real world. When considering training paradigms, time series analysis
has historically been conducted via specialist-training, meaning that models are trained on a single
time series domain (Zhou et al.l 2023; [Wu et al., [2022a} |[Nie et al., 2022} |[Zhang & Yan, [2022).
Generalist-training, where models are simultaneously trained on multiple time series domains, con-
trasts the specialist paradigm. Both specialist and generalist models can be tested under various
regimes. Within in-domain-testing, a model is tested on the same domain(s) it was trained on. In
zero-shot-testing, a model is tested on different domains(s) than it was trained on. Some methods
have begun to explore the idea of zero-shot forecasting where (1) a forecaster trains on one dataset
then predicts on a separate dataset (Zhou et al., 2023, or (2) a forecaster trains on a subset of chan-
nels (which we call sensors) from one dataset then zero-shot forecasts on the remaining sensors in
the same dataset (Liu et al., 2023). Both of these models would be considered specialists, as they
were trained on only one (or a subset of one) dataset. In order to fully enable generalist training and
zero shot testing we explore the value of unified time series data representations.

Further, time series analysis has typically been restricted by task, where methods study only fore-
casting (Wu et al., [2021; |Woo et al., [2022), anomaly detection (Xu et al.| [2021; He & Zhao| 2019)),
or imputation (Luo et all [2018; |2019), among others. Recently, the field has become increasingly
unified with respect to model architecture, with methods (Zhou et al.| 2023} 'Wu et al., [2022a) ex-
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Figure 1: TOTEM & Evaluation Regimes. (a) The TOTEM VQVAE architecture consists of an
1D strided CNN encoder &, quantizer, latent codebook, and 1D strided transpose CNN decoder D.
TOTEM’s VQVAE enables generalist training, i.e. on all datasets jointly, and specialist training, i.e.

on one dataset at a time. (b) TOTEM’s discrete, self-supervised codebook can be leveraged for both
in domain and zero shot testing. We utilize US birth and neuroscience domains for zero-shot testing.

ploring language and vision backbones on various time series tasks. These backbones, like previous
methods, utilize specialist training (e.g., training separate anomaly detectors on each dataset).

The field has also become increasingly unified with respect to data representation, with growing em-
phasis on learning performant data representations. For instance, [Franceschi et al| (2019)) utilize an
exponentially dilated causal convolutional encoder to discover in-domain embeddings, /Tt

let al.|(2021) leverage temporal neighborhood coding, [Yang & Hong (2022) utilize temporal-spectral
fusion, and Yue et al.| (2022) employs hierarchical contrasting across time and batch dimensions.

At a technical level, our approach bears closest affinity to methods that use vector quantized varia-
tional autoencoders (VQVAEs) (Van Den Oord et al., 2017}, [Duan et al., 2023}, [Rasul et al., 2022bja)).
As we discuss further in Section [2] Our goal is to develop a streamlined framework for learning a
tokenized data representation (using VQVAESs) in a way that permits easy applicability and holistic
empirical evaluation on a broad range of time series modeling tasks and data domains (including
zero-shot generalization to new test domains) with minimal to no tuning

Motivated by the difficulty of training on health time series and the trend of time series anal-
ysis unification, we explore the value of a VQVAE-based tokenizer for time series imputation,
anomaly detection (Appendix|[E), and forecasting (Appendix[F). Unlike previous methods, we utilize
self-supervised, discrete tokens, and extensively explore their utility in varied training and testing
regimes. Neuro2 [N2], Neuro5 [N5], and US Births [B] are health datasets we utilize to test zero-
shot performance, see Appendix [D|for more discussion. Our contributions are as follows:

1. We present TOTEM, a simple tokenizer architecture for time series analysis that works
across domains and tasks with minimal to no tuning.

2. Despite its simplicity, TOTEM matches or outperforms the state-of-the-art on several pop-
ular benchmark datasets and tasks.

3. With an extensive evaluation in the generalist setting (training a single model on multiple
domains), we show that TOTEM outperforms the leading state-of-the-art model in both
in-domain and zero-shot testing regimes.

2 METHOD

Our proposed discrete time series tokenization enables the design of general models across a variety
of time series domains, tasks, and evaluation schemas, Figure [T, We design a single tokenizer
architecture that is generally applicable without extensive data engineering while being suitable
for varying data dimensionalities across different tasks. There are many possibilities for how to
introduce a discrete time series tokenizer, we extensively study one such methodology that satisfies
the aforementioned design criteria.

' As an aside, our approach to studying what is a performant general time series data representation shares a
philosophical alignment with the development of large generalist models in natural language processing, which
are also based on having a common tokenized representation (Gage| [1994; Radford et al} 2018).
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Data Engineering. Prior work leverages data engineering such as the use of auxiliary features
(e.g. day of the month, or minute in the hour, etc.) (Chen et al., 2023} |Salinas et al.l 2020), or
frequency transformations (Wu et al.l [2022a; |Zhou et al., [2022). We forego any data engineering
and operate directly on time steps. This enables generalist-training as differing data domains have
widely varying sampling rates leading to distinct auxiliary features and frequency profiles.

Varying Dimensionality. A time series dataset consists of F/ examples (i.e. number of distinct
recordings), S sensor channels, and 7" time steps, and can be formally expressed as {x; };73:1 C

RS*T Even within a single task and single data domain where S does not change, E and T take on
a wide range of values. As an example, canonical forecasting predictions lengths range from 96 to
720 time steps. When moving to generalist-training, datasets additionally have wide ranging sensor
dimensionalities S. Our tokenizer handles varying dimensionality across F, S, and T' by creating
non-overlapping tokens along the time-dimension that are smaller than the dimension 7.

Differing Tasks. There are numerous tasks to tackle in health time series analysis. Three significant
ones are imputation, anomaly detection (Appendix [E)), and forecasting (Appendix [F). In imputation,
models intake a masked time series X, € R5*Tin_and then reconstruct and impute x € R5*Tn_ In
anomaly detection, models intake a corrupted time series Xcorr € RS*Th and reconstruct the data
x € R°*Ta The amount of corruption is considered known, at A%. In forecasting, models intake a
time series x € R%*Tn and predict future readings y € RS*Tox, where S is the number of sensors
and Ti,, Toue signify the durations of the preceding and succeeding time series, respectively. Our
tokenizer is performant across all tasks despite their distinct representational requirements.

TOTEM Implementation. To realize a single tokenizer architecture that enables generalist model-
ing across differing domains and tasks we take inspiration from the VQVAE (Van Den Oord et al.,
2017). The original VQVAE leverages a dilated convolutional architecture with a stride of 2 and
window-size of 4, similar to the WaveNet (Oord et al.| [2016) dilated, causal, convolutional decoder.
A dilated convolution skips inputs allowing a filter to operate on a larger input area / coarser scale.
Utilizing dilated convolutions is an architectural decision rooted in the high sampling rates of raw
audio waveforms (Oord et al., 2016} Van Den Oord et al., [2017). High sampling rates are not a trait
shared by many time series domains.

When adapting the VQVAE for general time series analysis, the TOTEM VQVAE:

1. Operates directly on time steps; no data engineering.

2. Creates discrete, non-overlapping tokens along the time dimension of length F', where
F < T, thereby promoting training and testing on variable length examples, F, sensors, .S,
and time steps 7.

3. Maintains the same architecture and objective regardless of the downstream task.

4. Aims to capture maximal information within a large receptive field by: (1) using a strided
non-causal convolutional architecture with no dilation, (2) training on long time series in-
puts, (3) pre-striding the data by a stride of 1 so the tokenizer learns from maximal inputs.

The TOTEM VQVAE consists of an encoder, quantizer, latent codebook, and decoder. It takes
in a univariate time series {x; € RT}Z-¢ obtained by flattening the multivariate sensor channel.
This makes TOTEM’s VQVAE sensor-agnostic, enabling TOTEM’s generalist-training and zero-
shot-testing. The encoder £ consists of strided 1D convolutions compressing the time series by a
cumulative stride of F'. £ maps a univariate time series x € R to a latent representation z = £(x) €
R”/"*D where D is the the hidden dimension. The latent codebook C = {c; } /X, consists of K D-

dim codewords ¢; € R”. During quantization, the codebook is used to replace z with z € R"/7*P
such that z; = cj, where k = argmin; ||z; — ¢;||2. The decoder D follows the reverse architecture
of the encoder &, consisting of 1D transpose convolutions with a cumulative stride of 1/F mapping
the quantized 2 to a reconstructed time series X = D(2) € RT. We learn £, D, and C by optimizing
the objective £ = Ly + Leme consisting of a reconstruction loss Ly = ﬁ > % — %4|3 and
a commitment loss L.y, which allows the codebook to update despite the the non-differentiable
arg min operation during quantization. The final objective is £ = Ly + a - L, Where « is a
scalar that weights the two losses. This objective does not change even when the underlying task,
time series length, data masking, normalization schema, or data domain changes.
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Table 1: Specialist Imputation (|). Across all datasets, metrics, and masking percentages, TOTEM
has the highest AvgWins (52.1%), followed by GPT2 (35.4%). TOTEM values are means from 3
seeds; baseline values are from|Zhou et al.| (2023)); 'Wu et al.| (2022a).

Model | TOTEM = GPT2 TiNet ‘ Patch ETS FED Stat Auto Inf Re LiTS Dlin
Metric |MSE MAE |MSE VAR |MSE MAE |MSE MpE [MSE MAE |MSE MAE |MSE VAR |MSE MAE |MSE VAR [MSE AR |MSE MAE |MSE MAR
= 255 (0058 Q:0a01h03% §:033/0-055 10310039 6,033 037 313410084 8-1831R030 B03410:036 (05213027 & T80 324 AOT8IA08T 819113038 03
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37.55/0 8%1 84% 0.033 0.060/0.031 0.057 8 835 8821 8 180 8,187 .239 0.033 8.862 8.03(?3 8.860 8.849 8.1 11 8 40 88§ 8 858 121 8.857 8.| 17
50% 10.033 0.05 .06510.034 0.06210.038 0.102 0.20710.183 0.312 0.068 0.06710.053 0.114[0.046 0.09910.065 0.13310.066 0.134
12.5% 10.054 0.154] 0.085 0.20210.055 0.160]0.196 0.32110.107 0.237]0.093 0.21010.089 0.210]0.218 0.326/0.190 0.308|0.102 0.229|0.092 0.214
m 25% 10.059 0.160 0.089 0.20610.065 0.175]0.207 0.332(0.120 0.251]0.097 0.21410.096 0.220]0.219 0.326(0.197 0.312(0.121 0.252|0.118 0.247
37.5% 0.067 0.169 0.21310.076 0.189(0.219 0.344/0.136 0.266(0.102 0.220(0.104 0.229(0.222 0.328(0.203 0.315]0.141 0.273|0.144 0.276
50% 10.079 0.183]0.101 0.221]0.091 0.208[0.235 0.35710.158 0.284]0.108 0.228]0.113 0.239]0.228 0.331]0.210 0.319]0.160 0.29310.175 0.305
12.5% 10.049 0.125(0.017 .0%5 0.019 0.09210.041 0.130/0.067 0.188]0.035 0.135 0.034 0.12410.047 0.155]0.032 0.126/0.075 0.180(0.058 0.162
= 25% 10.052 0.128 .822 .0960.023 0.10110.044 0.135]0.096 0.229(0.052 0.160| 0.046 0.14410.063 0.180/0.042 0.146(0.093 0.206(0.080 0.193
E 37.5% (0.055 0.132|0:029 0:111(0:029 0:111|0.049 0:143|0.133 0:271/0.060 0:191 0.057 0.16110.079 0.200]0.063 0.182(0.113 0.23110.103 0.219
50% 10.061 .040 0.128(0.036 0.124]0.055 0.15110.186 0.323]0.089 0.218 0.14510.067 0.17410.093 0.21810.082 0.208[0.134 0.25510.132 0.248
12.5% 10.016 0.078/0.017 0.076 0.026 0.09410.108 0.239]0.056 0.159(0.021 0.088/0.023 0.09210.133 0.270]0.108 0.228|0.034 0.127]0.062 0.166
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S50% 2 025 0.095 0.034 0.11010.323 0.42110.156 0.276[0.030 0.10810.035 0.119(0.200 0.33310.211 0.329]0.059 0.17410.131 0.247
. 12.5% 10.119.0.212 .843 .14010.057 0.15910.093 0.201]0.126 0.263]0.070 0.190 0.074 0.18210.114 0.234/0.074 0.194/0.240 0.345(0.151 0.267
= 25% 10.127 0.220/0.054 0.156/0.069 0.1780.107 0.217|0.169 0.304/0.106 0.236 0.090 0.20310.140 0.26210.102 0.227(0.265 0.364(0.180 0.292
37.5% |0.138 0.230(0.072 0.180(0.084 0.196/0.120 0.230/0.220 0.34710.124 0.258 0.109 0.22210.174 0.293]0.135 0.26110.296 0.382/0.215 0.318
50% 10.157 0.24710.107 0.216]0.102 0.215|0.141 0.248]0.293 0.40210.165 0.299 0.137 0.248]0.215 0.32510.179 0.298(0.334 0.404]0.257 0.347
. 12.5% 40 0.129(0.039 0.125]0.040 0.057 0.15210.187 0.319]0.095 0.212(0.042 0.133/0.044 0.138]0.305 0.431]0.163 0.289(0.101 0.231]0.100 0.216
X 25%, 10.041 .1%1 .044 (0.135 0.061 0.158]0.279 0.390|0.137 0.258(0.049 0.147(0.050 0.14910.322 0.444/0.206 0.331(0.115 0.246(0.127 0.247
37.5% |0. 13 .136(0.051 0.147 0.067 0.166]0.400 0.463(0.187 0.30410.056 0.158]0.060 0.163(0.353 0.462(0.252 0.370]0.126 0.257|0.158 0.276
0% 10.047 0.142[0.059 0.158 0.073 0.17410.602 0.57210.232 0.341(0.065 0.17010.068 0.17310.369 0.47210.316 0.419(0.136 0.268[0.183 0.299

avgwins 52.1% | 35.4% | | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0%

For further discussion see: reproducibility @) ethical considerations , related work (Ig) ex-
perimental setup (D)), anomaly detection (E)), forecasting (F), ablations (G, exploratory studies in
generalist modeling (H), and std. devs. (I). Following the field standard, we bold the best, second
best, and best and calculate the average number of best results, or AvgWins , for each method.
We compare to two approach families: methods designed for multiple tasks (multitask) - TOTEM’s
category — and methods designed for a specific task (singletask), and are adapted to other tasks.

3 IMPUTATION Table 2: Generalist Imputation (|). TOTEM
& GPT2 simultaneously train on all in domain
datasets, 3 seeds each. A. In-Domain Perfor-
mance. TOTEM has the highest AvgWins at
58.3%. B. Zero-Shot Performance. We test on
unseen datasets zero-shot. TOTEM again has the
highest AvgWins at 80.0%.

In imputation, models intake a masked time se-
ries X, € RS*Tn and then reconstruct and
impute x € R5*Tn We experiment with four
canonical masking percentages at 12.5%, 25%,
37.5%, 50%, and report MSE and MAE ; lower
is better ({). Specialist. In Table [I| we com- A [ Domain Performance
pare TOTEM to baselines. All models are Model | TOTEM  GPT2

trained and evaluated on the same dataset (in- ~—MeUIC [MSE VAR |MSE AR

. ) : 12,5% (0.029 0.060(0.029 0.045 _B. Zero-Shot Performance
domain). TOTEM has the highest AvgWins & 2% (0030 0.0000.053 0048 “nroqe 1 roram  crr2
Wlth 52 1% followed by GPT2 at 35 4% and 50% .036 0.06710.043 0.061 Metric MSE MAE ‘MSE MAE

) ’ ’ ’ 12.5% (0.065 0.171]0.080 0.186 12.5% (0.029 0.120(0.047 0.145

i 259 (0:071 0.179(0:091 0.197 < 00033 0:127(0:064 0:164
TiNet at 18.8%. TOTEM performance for ml = 37.5% 080 018910:1058 0213 = 37:5% (0:041 013010090 0:197
and hl is lower; notably these datasets are the 20 10.095 020510132 0236 0% 0056 0.1600.131 0228
inute and hour resampling of the same raw = 250 [0:044 01320003 0144 w0 1353 [0:018 008010054 698
minute an . ou .p g. . £ 37.5% (0.048 0.139|0.085 0.171 Z 37.5% [0.022 0.098(0.039 0.123
data respectively. We investigate and discuss 20% 10.058 0.152/0.1170.196 ___50% 10.029 0.11010.055 0.14>
TOTEM'’s success across different domains in % '25% [04] & 1230:033 0907 o '25%° [0:08) $1170953 6 142
" E 375% (0043 0:129/0:038 0: 37.3% |0.112 0:129(0:167 0134

Table Generalist. In Table ] we com- 50%_10.048 0.13610.045 0. 50%_[0:148 0.14710.220 0.182

TOTEM to GPT2 (best performi d- = '3 MO 030015 04T o 1337 (0633 B682/0:243 438
pare 0 St per Ormmg mod- = 2% 10193 032000133 0341 375% 0561 0693 Z49§ 1553
els above), when both models are trained on the 15205‘7:7 (1)‘7“5‘ 0-23; 0»82 0»222 1520;7:7 OEZ 07;; (5)30 733

. o 550 10078 0:177/0.071 00160 n 25% |0.061 0:168(0:084 0:189
aggregate of W, E, ml, m2, hl, h2, We test 3 37:5% (0:093 0:193/0:077 0:167 ©° 37,5% (0:069 0:17810:103 0:209
them on the in-domain and zero-shot test sets. 30% 10,089 0.19210.086 0.179 ___50% 10.082 0.19310.128 0234

TOTEM outperforms GPT2 in-domain, 58.3%  2vatine 38-3% | 43.8% avawins 80.0% | 20.0%
vs. 43.8% , and by a much larger margin in zero-shot, 80% vs. 20%. TOTEM’s performance across
all experiments demonstrate that tokens are a performant representation for imputation.

4 CONCLUSIONS, LIMITATIONS & FUTURE WORK

We present TOTEM: a simple, performant tokenizer that creates unified time series data represen-
tations across domains in many tasks thereby enabling generalist modeling. TOTEM demonstrates
strong in-domain and zero-shot capabilities that match or outperform existing state-of-the-art ap-
proaches. Through dataset selection we emphasize the ability to train on varying domains and test
on health domains. We leave discussion of anomaly detection [E] forecasting [F] ablations [G} and
further studies of generalist modeling[H]to the Appendix. Moving forward, an interesting limitation
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is that TOTEM does not support variable token lengths. Future work includes exploring dynamic
token lengths as they could enhance unified representations and further improve task performance.
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APPENDIX

A  REPRODUCIBILITY STATEMENT

To ensure reproducibility all results are run on three seeds; see section [[|for standard deviations. All
code will be released. All datasets are already popular, public time series benchmark datasets. In
imputation, anomaly detection, and forecasting the VQVAE is trained with a learning rate of 0.001,
embedding dimension of 64, commitment cost of 0.25, and compression factor of 4. In forecasting
the downstream model is a transformer encoder with 4 layers and 4 attention heads and a feed-
forward hidden dimension of 256. We train using Adam with a base learning rate of 0.0001 and a
one cycle learning rate scheduler in accordance with Nie et al.[(2022) on A100s.

B ETHICAL CONSIDERATIONS

There are no immediate ethical concerns that arise from our work. However, as with all data driven
methods, certain societal consequences are important to be discussed, in this case surrounding time
series modeling. A few are reported below:

Privacy Concerns. Time series data, especially when sourced from personal devices or applications,
can contain sensitive information about individuals, e.g. for health domains. In this work, no time
series were sourced from personal devices, and all data is publicly available.

Reliability. Time series models can be unreliable. For instance, if a model forecasts incorrect
health predictions, it could cause undue patient concern. In this work, we focused on unified data
representations across many tasks as opposed to a single task.

C RELATED WORK

Time series modeling methods utilize many techniques, ranging from statistical methods (Winters},
19605 Holt, [1957; |Anderson, [1976; Hyndman & Athanasopoulos| 2018 Taylor & Lethaml, 2018) to
multilayer perceptrons (MLPs) (Zeng et al.l 2023} [Li et al.l 2023} Das et al., 2023} [Challu et al.,
2023; Chen et al.| [2023}; |Zhang et al., 2022; Oreshkin et al.,|2019) to convolutional neural networks
(CNNs) (Wu et al., 202245 |Liu et al., 2022a; |[He & Zhao, 2019; Franceschi et al., 2019; Bai et al.,
2018) to recurrent neural networks (RNNs) (Salinas et al., |2020; |Shen et al., 20205 [Hochreiter &
Schmidhuber, [1997) to transformers (Zhou et al., 2023} |Liu et al., 2023 Nie et al., 2022; Zhang &
Yanl, [2022; [Woo et al.| [2022; |Zhou et al., 2022} [Liu et al., [2022b; [Wu et al.| [2022b; [ Xu et al.| 2021}
Wu et al., 2021} Liu et al., 2021} Zhou et al.| 2021} [Kitaev et al.,[2020;|Li et al.,2019). Many models
are hybrid solutions that blend aforementioned approaches.

Most of these methods intake time and then perform various combinations of normalization (Kim
et al., 2021), frequency transformations (Wu et al., [2022a; |Zhou et al., [2022)), and patchification
either along the time dimension (Liu et al.l 2023} [Zhang & Yan, [2022; Nie et al., [2022), or sensor
dimension (Li et al.,[2019;|Zhou et al.| 2021} |Wu et al., [2021; |Liu et al., 2021) Patch lengths range
from a single time-step / sensor, also known as point-wise, to the length of the entire time series
/ all sensors. Time and sensor patch dependencies are then learned, via an attention mechanism,
convolution, recurrence, or linear layer, across the temporal dimension, sensor dimension, or both
the temporal and sensor dimensions (Zhang & Yan, 2022). For multisensor modeling, one can
model all sensors jointly or independently (i.e., forecast each sensor independently) (Nie et al.,
2022). These methods learn the underlying data representations end-to-end with the downstream
task (e.g., forecasting).

Specialist-training, where models are only trained on a single time series domain, is the most com-
mon regime amongst prior work (Zhou et al.| |2023;|Wu et al.,2022a; Nie et al., 2022} Zhang & Yan,
2022). These specialist models are primarily evaluated via in-domain-testing, where the test set is
from the same domain as the train set. Recently, some methods (Zhou et al.| 2023 Liu et al., [2023))
have begun to explore specialist zero-shot forecasting capabilities.

*In time series analysis, sensors, channels, and variates are synonymous terms; in this paper we adopt the
sensor terminology.
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The time series analysis field is undergoing unification along both the modeling axis (Zhou et al.,
2023; [Wu et al [2022al) and data representation axis (Franceschi et al., 2019} Tonekaboni et al.,
20215 Yang & Hong|,[2022; |Yue et al.,|2022)). Unified data representations, both statistical and learnt,
have been more extensively studied in language and vision modeling (Gage, [1994; Van Den Oord
et al.l 2017; |[Esser et al., 2021; [Rombach et al., |2022). The vision modeling field distinguishes
between discrete, learnt, tokens (Van Den Oord et al., 2017 |[Esser et al., 2021; [Rombach et al.,
2022) and patches (Dosovitskiy et al.| [2020). Patches have been studied in time series modeling
(Zhou et al., 2023 Nie et al., [2022} |[Zhang & Yan, 2022). In this work, we propose to use discrete,
learnt tokenized representations, which we show lead to strong performance in both specialist and
generalist settings, as well as in-domain and zero-shot testing regimes.

D EXPERIMENTAL SETUP

Through experiments in imputation (§3), anomaly detection (§E), and forecasting (§F), our goal is
to explore the efficacy of TOTEM on standard benchmark datasets and tasks, and domain general
settings. To briefly refresh: specialist refers to training on a single domain (Tables[T} 3] ). Generalist
refers to training on multiple domains (Tables [2] [ [6). Finally, in-domain refers to testing on the
training domain, and zero-shot to testing on a separate domain from training.

For all experiments & models, we run three seeds and report the mean; standard deviations are re-
ported in section [} Following the field standard, we bold the best metric in all tables. Evaluation
metrics differ across tasks. We report mean squared error MSE (J.), mean absolute error MAE ({,), pre-
cision P (1), recall R (1), and F1 score (1); (J) means lower is better, (1) means higher performance
is better. Given the varied metrics we calculate the average number of best results, or AvgWins ,
for each method and highlight the best, second best, and best methods.

Notably imputation and anomaly detection can be directly solved with just TOTEM’s VQVAE, as
they are fundamentally data representation tasks, whereas in forecasting further modeling is re-
quired, Figure 2] In forecasting, the trained, frozen, codebook representation converts a sensor’s
observed measurements x5 € R to a sequence of 7n/F discrete tokens.

Baselines. We compare to two families of approaches: methods designed for multiple tasks
(multitask) — TOTEM belongs in this category — and methods designed for a specific task
(singletask), and are adapted to other tasks.

We compare against two recent multitask models, the transformer based GPT2 Zhou et al.| (2023))
and the convolutional TimesNet[TiNet] [Wu et al.| (2022a). For singletask models we compare
against PatchTST Patch] [Nie et al.| (2022), ETSFormer[ETS] Woo et al.| (2022), Fedformer[FED]
Zhou et al.|(2022), Non-stationary trans.[Stat] Liu et al.|(2022b), Autoformer[Auto]|Wu et al.|(2021)),
Informer[Inf] Zhou et al.| (2021), Reformer[Re] [Kitaev et al.| (2020), LightTS[LiTS] Zhang et al.
(2022), DLinear[DLin] Zeng et al.|(2023)), Anomaly trans.[ATran]Xu et al.|(2021)), Pyraformer[Pyra]
Liu et al.| (2021), LogTrans.[LogTr] |Li et al.[ (2019), Trans.[Trans] |Vaswani et al.| (2017), Cross-
former[Cross] [Zhang & Yan| (2022), TiDE [Das et al.| (2023)), RLinear[RLin] |Li et al.| (2023),
SciNet[SCi] [Liu et al.| (2022a), & iTrans.[iTrans]|Liu et al.| (2023).

Datasets. We leverage 12 benchmark datasets: weather[W], electricity[E], traffic[T], ETTm1[m1],
ETTm2[m2], ETTh1[h1], ETTh2[h2], SMD, MSL, SMAP, SWAT, PSM that are commonly used
for imputation, anomaly detection and forecasting Zhou et al.| (2023)); Wu et al.| (2022a); | Xu et al.
(2021); Zhang & Yan|(2022);|Nie et al.| (2022). For the zero shot settings, we leverage 5 benchmark
datasets: neuro2[N2], neuroS[N5] (from [Peterson et al.| (2022)), and saugeen river flow[R], U.S.
births[B], and sunspot[S] (from|Godahewa et al.|(2021))). 17 datasets in total.
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E ANOMALY DETECTION

In anomaly detection, models intake a corrupted time series Xcorr € R5*Tn and reconstruct the data
x € R5*Th  where the amount of corruption is considered known, at A%. We report % Precision P
(1), Recall R (1), and F1 Score (1); higher is better (1).

The standard practice in machine learning, which we adopt, is to have a held out test set that is not
used for tuning the model or learning algorithm. One aspect that makes comparing with several prior
works challenging is that they use the test set as a validation set for early stopping of the learning
algorithm, which can often inflate their performance. Despite this inconsistency, we compare our
performance against these reported performances, whenever available.

Specialist. In Table [3| we evaluate TOTEM against numerous specialist baselines. TOTEM has the
highest AvgWins at 26.7% followed by a five-way tie between GPT2, TiNet, ATrans, ETS, and
LogTr at 13.3%. Generalist. In Table ] we compare generalist-trained TOTEM and GPT2. On the
in-domain test sets TOTEM outperforms GPT2: 80% vs. 20%. In the zero-shot test sets TOTEM
outperforms GPT2: 73.3% vs. 26.7%.

TOTEM’s AvgWins across the specialist and generalist settings demonstrate that tokens are a per-
formant representation for anomaly detection.

Table 3: Specialist Anomaly Detection (1). TOTEM has the highest AvgWins at 26.7% followed
by a five-way tie between GPT2, TiNet, ATrans, ETS, and LogTr at 13.3%. Some prior methods
use the test set as a validation set for early stopping of the learning algorithm, which can inflate
performance. We do not adopt this practice and train TOTEM for a set number of iterations.

Model |[TOTEM GPT2 TiNet | ATran Patch ETS FED Stat Auto Pyra Inf Re LogTr Trans LiTS DLin
SMD 79.62 | 86.89 | 84.61 85.49 |84.62] 83.13 |85.08| 84.62 83.04|81.65|75.32| 76.21 |79.56182.53|77.10

—  MSL 82.58 82.45 | 81.84 | 83.31 |78.70| 85.03 |78.57|77.50179.03 84.00(84.40( 79.57 |78.68178.95|84.88
SMAP | 94.02 | 72.88 | 69.39 68.821 69.50 (70.76/71.09 [71.12171.09(69.92(70.40| 69.97 [69.70169.21]69.26
SWAT | 94.27 | 94.23 | 93.02 | 83.10 [85.72| 84.91 |93.19/79.88192.74|91.78|81.43|82.80 80.52 |80.37 87.52
PSM 95.87 97.13 | 97.34 | 79.40 [96.08] 91.76 97.29 193.29(82.08177.10[73.611 76.74 [76.07197.15(93.55
SMD 76.06 | 84.98 | 81.54 | 82.23 [82.14] 79.23 |82.39]81.21 80.61177.23169.24| 70.13 |76.13|78.42|71.52

r MSL 82.85 82.91 | 75.36 | 87.37 |70.96| 84.93 |80.07|89.14 |80.92|85.93|86.48|83.31| 87.37 |87.37(15.78/|85.42
SMAP | 94.04 | 60.95 | 5640 | 38.11 |55.46| 35.75 |58.10 58.62(57.71157.13|157.44| 57.59 [57.12155.27|35.41
SWAT | 95.91 96.34 | 9540 | 97.32 |80.94| 80.36 [96.42|96.75 [95.81(96.00(96.75(96.53| 97.32 |96.53 (94.72(95.30
PSM 9421 95.68 | 9620 | 9472 19347| 85.28 [97.16 88.15196.02196.33195.38] 98.00 196.56195.97189.26
SMD 83.54 88.89 | 87.91 88.91 |87.26| 87.44 |87.95 88.06/85.61/86.60(82.58| 83.46 |83.58(87.10(83.62

n, MSL 32.32 82.00 | 89.54 | 79.61 |88.34| 83.13 |77.14]|68.55177.27|83.81|81.77 73.05 |71.5782.40|84.34
SMAP 4.00 90.00 | 90.14 | 91.85 [90.64| 92.25 |90.47| 89.37 [90.40 90.11190.911 89.15 |89.3792.58|92.32
SWAT | 92.68 92.20 | 90.75 72.51 [91.10] 90.02 [90.17]| 68.03 [89.85]87.92(70.29(72.50| 68.67 |68.84 80.91
PSM 97.58 98.62 | 98.51 68.35 99.31 [97.31197.82 [99.08171.67|64.27(59.93] 63.06 [62.75198.37{98.28
avgiiins 26.7% [13.3%1(13.3%113.3%| 0% [13.3%| 0% |6.7%| 0% | 0% | 0% | 0% |13.3%]| 0% | 0% | 0%

Table 4: Generalist Anomaly Detection (1). We
train TOTEM & GPT2 on all datasets and then
perform in-domain and zero-shot evaluations. A.
In-Domain Performance. TOTEM outperforms
GPT2: 80.0% vs. 20.0%. B. Zero-Shot Per-
formance. TOTEM again outperforms GPT2:
73.3% vs. 26.7%.

A. In-Domain Performance B. Zero-Shot Performance
Model [TOTEM  GPT2 Model [TOTEM _GPT2

SMD | 78.64 79.73 N2 51.29 39.02
— MSL .29 80.17 — NS5 51.28 42.19
SMAP Sl 67.03 m R 49.39 36.14
SWAT 4.37 89.62 B 49.15 20.81
PSM 5.78 90.47 S 52.17 38.12
SMD | 72.07 73.42 N2 76.88 33.69
x MSL 2.96 78.48 NS 76.84 36.77
SMAP 1.48 53.42 R 70.49 29.66
SWAT 0.13 87.53 B 73.71 17.67
PSM 3.90 81.76 S 77.36 31.83
SMD 86,62 87.44 N2 38.49 40.43
n, MSL 3.6 81.95 o, NS 38.48 49.58
SMAP 3.56 90.01 R 38.02 46.30
SWAT 2.68 91.83 B 36.86 2533
PSM 7.74 93.39 S 39.35 47.72
AvgWins 80.0% \ 20.0% AvgWins 73.3% \ 26.7%
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F FORECASTING

The forecaster transformer encoder - — N\
processes the tokenized time se- D

ries independently for each sensor, ] | ] 55
gddmg time-based positional .encoq- Eransformer encodea e 38
ings to each token along the time di- | ----ccceeeeceniaananns ==
mension. Using a series of multi- | add positional 52
head attention layers, the model pre- | embedding :‘ 3
dicts the forecasted measurements | -----e-oeeeoemamaaannn EE
ys € RTow for s = 1,...,S, ap- | tokenize with =g
plying the attention mechanism along | pretrained codebook = 5
the time dimension 7. In paral- :Q_'LEH
lel, the forecaster takes in x, and - ﬁj&'
predicts the future’s mean, u,, and |  _p_, -
standard deviation, o, for each sen- ——

9
sor s = 1,..., S to unnormalize the #1gure 7. Forecaster vlodeling. Ihc forccasung tasﬁ

data. The final forecasted prediction requires modeling beyond the VQVAE. We leverage
iSys = 05 -¥s + ps. The forecaster TOTEM’s pretrained, learnt, discrete codes as a the input
is trained in a supervised fashion by data representation and train a transformer encoder. We
minimizing three smooth L1 losses add positional embeddings along the time dimension, and
between predictions {¥s, is, 05} and use linear layers before the final output as well as to un-
their ground truth respectively. normalize the resulting forecast.

In forecasting, models intake a time

series x € R*Tn and predict future readings y € R5>*7Tow, where S is the number of sensors and
Tin, Tou signify the durations of the preceding and succeeding time series, respectively. The pairs
(x,y) are generated by striding the original time series data.

All models have a lookback of T}, = 96, with prediction lengths T,,, = {96, 192,336, 720}. Num-
bers for other methods are from |Liu et al.| (2023). We run GPT2 with Tj, = 96 as they originally
report varying, dataset-specific, lookback lengths. We report MSE ({) and MAE ({.); lower is better.

Specialist. From Table [5] we find that TOTEM achieves the highest AvgWins at 28.6% followed
by iTrans at 26.8%. TOTEM has first finishes in five datasets while iTrans’ first finishes are only
electricity and traffic. Generalist. In Table [f] we compare generalist TOTEM and GPT2. TOTEM
outperforms GPT2 for both in-domain (67.9% vs. 33.9%) and zero-shot (90.0% vs. 12.5%).

Tou

TOTEM’s AvgWins forecasting performance across the training and testing regimes demonstrates
that tokens are a performant representation for forecasting.

Table 5: Specialist Forecasting (|). TOTEM has the best AvgWins (28.6%), followed by iTrans
(26.8%). Notably, TOTEM has first place finishes in 5 datasets, while iTrans’ first places are con-
centrated in only electricity and traffic. All models have lookback T;,, = 96.

Model | TOTEM  GPT2 TiNet

iTrans Patch Cross FED Stat TiDE RLin DLin SCi
Metric |MSE MAE |MSE MAE [MSE MAE

MSE_MAE |MSE MAF |MSE MAFE |MSE MAF |MSE MAE |MSE MAE |MSE MAE |MSE MAE |[MSE MAE

96 [0.165 0.208]0.184 0.224 0.2200.174 0.214/0.177 0.158 0.230(0.217 0.296]0.173 0.223/0.202 0.261]0.192 0.232[0.196 0.255|0.221 0.306
=192 (0207 0:250/0:231 0:763 0.261(0:221 0:254/0:225 0:206 0:277/0°276 0:336(0:243 0:283(0.247 0.298(0.240 0.271(0:237 0:296|0:261 0:340
336 0:237 0:291/0:285 0°302/0:280 0306 0296 0:272 0'33510:339 0:380(0:321 0338(0:287 0:335]0:292 0:307|0:283 0:3330:309 0378
720 10:326 0:34010:362 0:35110:363 0:33910:358 0:354 0:348(0:398 0418|0403 0428|0414 0410 0.38610.364 0:35310:345 0.38110:377 0.427
96 [0.178 0.263|0.186 0.168 0148 0.24010.195 0 28510319 031410103 0.308 0.27310.237 0.329]0.201 0.281]0.197 0.282|0.247 0.345
m 192 |0:187 0:272/0:190 0:28010:162 0:253(0°199 02890231 0:322/0:201 0:315]0:182 0:286(0:236 0:330/0:201 0283|0196 02850257 0353
336 12850:204 0:198 0:300/0:178 0:269(0:215 0:305|0:246 0337|0214 0:329(0:200 0:304(0:249 0:344|0:215 0°298|0:209 0:301|0:269 0369
720 [0.236 0:31810:245 0.324(0:220 0:31710:756 0:33710.280 036310246 0.355]0:222 0.321(0.384 0:37310:357 0:331/0:745 0:3330:799 6380
96 10523 471 0.31110.593 0.321]0.395 0.268(0.544 0.359 0.290]0.587 0.366]0.612 0.338(0.805 0.493/0.649 0.389]0.650 0.396/0.788 0.499
= 192 '479 (0312/0'617 0.336(0:417 0:276|0:340 0°354 0:203|0°604 0:373|0:613 0:340(0:756 0/474(0:601 0.366]0:598 0:370|0:789 0'503
336 490 031710020 033610433 0283107551 035810598 0303/0.621 (330,618 0:32810:762 0147710009 0736810003 0:37310-747 0,308
720 10.598 1524 0:3360:640 0:33010:467 0:30: 03750389 0:32810:676 0.:38210.653 0:355/0.719 0.44910.647 0.38710.645 0:39410:841 0:523
96 [0.320 0.347|0.328 0.363|0.338 0.375|0.334 0.368 0.404 0.426/0.379 0.419]0.386 0.398/0.364 0.387|0.355 0.376]0.345 0.372/0.418 0.438
= 192 (0379 0:382|0:368 0:382 07387/0:377 0°391/0:367 0'430 0'451|0426 0441|0439 044410398 0.404]0:397T 0:392|0:350 0:389|0:430 0'430
E 336 402/0:400 0:304|0:410 0411|0426 0:420(0.399 0'532 0'515(0:443 0459|0495 0464|0428 0.425(0:224 0:415|0:413 0:413|0:490 0’483
720 :43810.462 0:478 0°45010:401 0:459]0:454 0:439|0666 038910343 0:490/0.383 0.516/0:487 0:46110:487 0°4500°472 0:453(0:395 0:350
96 [0:176 0.28310.175 0187 0.26710.180 026410175 0.235910.287 0.366/0.203 0.28710.192 0.27410 207 0.30%10.182 0.26510.103 0.29210.286 0,377
192 [0:247 0:30210:245 0:307|0:249 0:309(0:230 0:309|0:241 0:302(0:414 0:292(0:269 0.328]0:280 0:339(0:290 0:364 0282 0'362(0:399 0445
E 336 [03170348(0:307 0:321 07351/0°311 0:348(0:305 0:343]0.397 0.342(0.325 (0:366(0:334 0:361(0:377 0:4220:307 0:342/0:369 0'427/0:637 0:391
720 10:426 0:41010:410 0:409 0:412 0:40710:402 0:400(17730 1:04210:421 041510417 041310358 0.5410:407 0.39810.554 0:5720:960 0.735
9, 0.394/0.379 0.384 0.402(0.386 0.405(0.414 0.419]0.423 0.448|0.376 0.419]0.513 0.491(0.479 0.46410.386 0.395]0.386 0.400(0.654 0.599
= 192 |0:4340:427/0:438 0:427 0'420|0:441 0'436/0°460 0:4450:471 0.:474(0:420 0.448(0:334 0.504(0:525 0:492|0:437 0:424|0:437 0'432/0°719 0631
336 0°490 0'439|0:474 0:448(0.491 0469|0:487 0'501 0465|0570 0:346|0.459 0:465/0:388 0:333(0:363 0.313 :446/0°481 0'439(0°778 0:639
720 10,539 0.51310:496 0:47510:521 0:50010:503 0:491 0653 05621102506 0:30710:643 0561610394 0358 519 0.516/0:836 0.699
o 96 102930338 0.340 0.37410.297 0.349]0.302 0745 0.58410.338 0.39710.476 0.45810.400 0.440/0.288 0.33810.333 0.3870.707 0.62]
Q192 (0375 0:390/0:384 0:402(0:402 0414 0388 0:877 0'636(0:429 0439|0512 0:493(0:528 0.500(0:374 0:390(0:477 0:476|0:860 0:680
336 0:431|0:418 0'457 0'452/0:428 0426 0:433|1.043 0731|0496 0487|0552 0/551(0:643 0:571(0:415 0:426/0°594 0'541|1.000 0744
720 _10.610 0:5670:423 0:462 0:468 04250431 1,104 0.7630:463 0:47410:367 0:360(0:874 0.6579]0.420 0.440|0.831 0:657/1:249 0:838
avgwins 28.6% | 18% | 18% | 268% | 143% | 3.6% | 54% | 0% | 0% | | 0% | 0%

—_—
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Zero-Shot. TOTEM outperforms GPT2: 90.0%

TOTEM outperforms GPT2: 67.9% to 33.9%. B.
t0 12.5%.

Table 6: Generalist Forecasting (|). We evalu-
ate generalist TOTEM and GPT2. A. In-Domain.

GPT2

SE_MAE |MSF MAE

TOTEM

Model ‘
etric_|m

M

A. In-Domain Performance

TOTEM GPT2

B. Zero-Shot Performance

Model
Metric |[MSE MAE [MSE MAE

12.5%

90.0%

67.9% | 33.9%

AvgWins

AvgWins
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G ABLATIONS

Tokens vs. Time. To evaluate if tokens enable TOTEM’s performance, we implement TimeTOTEM.
TimeTOTEM has the identical architecture to TOTEM, except we replace the VQVAE with an MLP
trained end-to-end with the downstream forecaster. We compare Totem vs. TimeTOTEM in the
specialist in-domain, and generalist in-domain and zero-shot regimes (Table[7). In all cases TOTEM
outperforms TimeTOTEM - specialist: 67.9% vs. 39.3%, generalist in-domain: 78.6% vs. 23.2%,
generalist zero-shot: 67.5% vs. 35.0%. TOTEM’s performance demonstrates that tokens, when
compared to time, lead to better performance.

Codebook Size. In Table [7|we explore the affect of the codebook size, K, on the VQVAE’s MSE
and MAE reconstruction performance. As expected, we find that as K increases from 32 to 256 to
512 the reconstruction performance improves.

Table 7: Ablations (]). Across the Tokens vs. Time (TvT) experiments tokens out perform time.
(A) specialist: 67.9% to 39.93%, (B) in-domain generalist: 78.6% to 23.2% , and (C) zero-shot
generalist: 67.5% to 35%. (D) As the codebook size K increases the VQVAE reconstruction per-
formance improves.

A. TvT Specialist B. TvT In-Domain Generalist
Model | TOTEM TimeTOTEM Model | TOTEM TimeTOTEM
Metric |MSE MAE |MSE MAE Metric [MSE MAE |MSE  MAE

96 10.165 0.208/0.164 0.209 96 0172 0.216(0.173 0218
Z 192 (0207 0.250[0:209 0:251 Z 192 (0217 0.256|0:218 0261
336 (0237 0291|0261 0293 336 [0:266 02950267 0:299
720 10326 0:3400:332 0340 720 10:334 0:34210337 0347
%, [0178026310.179 0262 96 0.179 0.264(0.183 0.267
m o 192 |0:187 0.272(0.185 0:260 m o 192 [0:181 0.267|0:189 0275
336 [0.199 02850204 0:289 336 [0.196 0.283(0.204 0.291
720 10:236 0:318/0744 0325 720 10:230 0:314/0242 0325
96 10.523 0.303/0.528 0.310 96 0.507 0.284(0.517 0.293
= 192 |0:330 0.303(0:300 0349 = 192 |0:3110.282(0:326 0296
336 0349 0:311/0331 0363 336 [0:3353 0:292/0:552 0:304
720 10:598 0:331/0.578 0.398 720 10.580 0:300]0:602 0326
96 10.320 0.347/0.326 0.355 96 0.374 0.384/0.428 0.420
= 192 (0379 0.382(0:377 0336 = 192 [0:200 0.399(0:438 0427
g 336 (0406 0.402(0409 0409 E 336 [0:4320.424{0:469 0447
720 10:471 0:43810.469 0441 720 10.487 0:46010:546 0.493
96 10.176 0.253|0.176 0.254 96 0.198 0.275(0.207 0.286
192 [0:247 0.302(0:247 0.303 192 (0266 031910269 0:325
g 336 (0:317 0.348/0:318 0:350 E 336 (07363 0.377/0.338 0.377
720 107426 0:4100:419 0411 720 10388 031110521 0.482
96 10.380 0.394/0.377 0.395 96 10.382 0.404/0.401 0.410
= 192 (0434 0:427/0:428 0428 = 192 |01463 0433 048 0410
336 |0:490 0.459/0.480 0.462 336 (0:307 0.463(0.496 0.468
720 10:539 0:513]0.530 0.522 720 10.517 0:50010:518 0.510
o 96 (029303380294 0.338 w96 (0307 0.343/0.305 0346
Q192 |0'373 07390(0.373 0:389 Q192 |01406 0:403(0:396 0402
336 (0422 0.431|0423 0433 336 [0:505 0.460(0:492 0.458
720 10:610 0:567]0.591 0.536 720 10661 0:557(0:599 0.531
AvgWins 67.9% ‘ 39.3% AvgWins 78.6% ‘ 23.2%
C. TvT Zero-Shot Generalist
Model | TOTEM TimeTOTEM
Metric [MSE MAE ‘MSE MAE
1.138 0.777|1.127 0.77
o 8 [1:448 87841180 8783
Z 336 |1.0920.770(1.115 0.780
720 11:045 0:754]1:070 0766 . .
06 10.483 0.48410.481 0.483 D. Codebook Size Ablations
O 192 0:495 0.491/0:508 0:500 :
Z 336 (01468 0:483/0:481 0491 ,Sodebook Size K
720 10.451 0:477|0.467 0.488
« B (LRI 1R T
336 (1737 0:628(1.190 0:613 All - 0.04510.0192 0.0184
720 |1.182 0:604/1:149 0.59% \é/ 8.8323 8.8%(% 88&3
96 10.805 0.7390.825 0.751 - - -
m 192 |0:836 0.732(0:847 (.761 T 0031200120 0.0101
336 [0:809 0.748(0.831 0.764 | MAF,
720 10.896 0:79410:928 0813 0
96 10.446 0.482(0.446 0.481 0.1460 0.0937  0.0913
@ 1% g 0B 0499 ¥ 0155050 bosrs
720 10717 0:62510.736 0.631 T 0120400749 0.0685
avgWins 67.5% | 35.0% AvgWins 0% 0%  100%
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H EXPLORATORY STUDIES IN GENERALIST MODELING

Generalist Codebooks. To further explore the capabilities of a generalist codebook data represen-
tation we train models that utilize a general codebook but dataset-specific transformer forecasters,
e.g. a TOTEM VQVAE trained on multiple domains with a forecaster trained only on electricity,
Table [8} We compare these mixed models to generalist and specialist models trained on the same
domains. All models use the same the codebook hyperparameters (number of codewords K = 256,
compression factor F' = 4, code dimensionality D = 64) as well as the forecaster transformer
architecture to ensure a fair comparison.

Since we are evaluating the specialists, mixed-models, and generalist on in-domain test data one
might expect that the TOTEM specialists will significantly outperform all models. Surprisingly
this intuition is not correct. When comparing models trained using specialist codebooks to models
trained using a single generalist codebook we find that generalist codebook models outperform spe-
cialist codebook models: 66.1% vs. 57.1%. Upon further inspection we find that the fully-generalist
model (far right column Table [8)) significantly outperforms the mixed-models (middle column Ta-
ble[§) in traffic (T) and electricity (E). This dominant performance is puzzling until considering the
training sizes.

The largest training set across domains belongs to traffic (T) at 10.20/ training examples. In dataset
T, the fully generalist models achieves 100% AvgWins . The second largest training set belongs
to electricity (E) at 5.8 M training examples, with 75% AvgWins for the fully-generalist model.
Unfortunately there is a sharp drop off in training set sizes, with the rest of the data domains col-
lectively comprising 1.6 M training examples. These results evoke questions. For instance: does
training on the smaller datasets act like form of regularization? Or: how does in-domain generalist
performance scale with dataset size? We leave these exciting directions for future work. The gen-
eralist codebook’s performance across datasets highlights the potential of unified, discrete, token
representations for in-domain evaluations.

Zero Shot Vignette: Training Size & Data Diversity. Here we further explore generalist and spe-
cialist zero-shot testing capabilites, Table [J] We take the two largest TOTEM specialist, traffic at
10.2M and electricity at 5.8 M training examples, and test their zero-shot capabilities compared to
the TOTEM generalist. We expect that the generalist will perform best as it was trained on the most
data at 17.6M training examples as well as the most domains. We predict the generalist will be
followed by TOTEM-traffic then TOTEM-electricity as they are both trained on only one domain
but traffic has 4.40M more training examples than electricity. As expected the generalist outper-
forms both TOTEM-traffic and TOTEM-electricity with 85.0% AvgWins . However, curiously
TOTEM-electricity outperforms TOTEM-traffic: 12.5% vs. 2.5% despite having 4.4M fewer train-
ing examples. Why is the smaller training set outperforming the larger training set? One possible
explanation is that the electricity domain is more similar than the traffic domain to neuro, river,
births, and sunspot. Another possible explanation comes from the raw time series dimensionality.
Despite having fewer training examples, electricity has a higher number of raw time step com-
pared to traffic: 26304 vs. 17544. However, traffic has a larger number of sensors: 862 vs. 321.
This limited analysis suggests that a higher number of raw time steps is more valuable than more
sensor readings. Untangling these possibilities and beginning to answer the questions: what is a unit
of data in time series? And how this unit scale as the time steps, sensors, and examples scale? are
valuable future directions. The zero shot vignette has demonstrated the power of the token-enabled
generalist over the traffic and electricity specialists, and has opened up exciting training size and
data diversity questions.

3Raw time steps for all data. The train:val:test ratio is 7:1:2.
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Table 8: Generalist codes beat specialist codes: 66.1% vs 57.1%.
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Table 9: Zero Shot Vignette: Training Size & Diversity
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I MEANS AND STANDARD DEVIATIONS

IMPUTATION RESULTS - MEANS AND STANDARD DEVIATIONS

I.1
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Table 10
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MAFE

MSE

Metri:

Zero-Shot
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1.2 ANOMALY DETECTION RESULTS - MEANS AND STANDARD DEVIATIONS

Table 13: TOTEM - Specialist Anomaly Detection (1)

‘ Mean + Std

SMD
MSL

- SMAP
SWAT
PSM

0.796 £ 0.0137
0.826 £ 0.0052
0.940 £ 0.0008
0.943 £ 0.0006
0.959 £ 0.0008

SMD
MSL
~ SMAP
SWAT
PSM

0.761 & 0.0207
0.829 £ 0.0071
0.940 £ 0.0013
0.959 & 0.0012
0.942 £ 0.0004

SMD
MSL
0 SMAP
SWAT
PSM

0.835 4 0.0054
0.823 £ 0.0033
0.940 & 0.0004
0.927 £ 0.0003
0.976 £ 0.0012

Table 14: TOTEM - Generalist Anomaly Detection (1)

‘ Mean + Std

SMD
MSL
SMAP
SWAT
_, PSM
= N2
NS
R
B
S

0.786 & 0.0386
0.833 & 0.0020
0.925 £ 0.0014
0.944 4 0.0005
0.958 & 0.0002
0.513 £ 0.0397
0.513 £ 0.0390
0.494 £ 0.0625
0.492 £ 0.0229
0.522 4 0.0418

SMD
MSL
SMAP
SWAT
PSM
N2
N5

=)

0.721 &£ 0.0565
0.830 £ 0.0046
0.915 £ 0.0020
0.961 & 0.0010
0.939 £ 0.0004
0.769 & 0.0594
0.768 & 0.0582
0.705 £ 0.0825
0.737 £ 0.0340
0.774 £ 0.0581

SMD
MSL
SMAP
SWAT
PSM
N2
N5

=~}

0.867 4+ 0.0114
0.836 &+ 0.0014
0.936 £ 0.0009
0.927 £ 0.0001
0.977 £+ 0.0002
0.385 £ 0.0299
0.385 4 0.0294
0.380 & 0.0502
0.369 £ 0.0172
0.394 £ 0.0325
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Table 15: GPT2 - Generalist Anomaly Detection (1)

‘ Mean + Std

SMD
MSL
SMAP
SWAT
_, PSM
= N2
NS
R
B
S

0.797 £+ 0.0326
0.802 £ 0.0205
0.671 £ 0.0041
0.896 &= 0.0016
0.905 £ 0.0759
0.390 £ 0.0596
0.422 4 0.0047
0.361 & 0.0204
0.208 £ 0.0462
0.381 £ 0.0621

SMD
MSL
SMAP
SWAT
PSM
N2
N5

w

0.734 £ 0.0559
0.785 £ 0.0277
0.534 £ 0.0051
0.875 £ 0.0033
0.878 £ 0.0624
0.337 £+ 0.0592
0.368 & 0.0498
0.297 £ 0.0218
0.177 £ 0.0426
0.318 £ 0.0648

SMD
MSL
SMAP
SWAT
PSM
N2
N5

=~}

0.874 £ 0.0029
0.820 & 0.0130
0.900 £ 0.0007
0.918 £ 0.0006
0.934 £ 0.0925
0.464 £ 0.0561
0.496 £ 0.0396
0.463 £+ 0.0139
0.253 £ 0.0498
0.477 £ 0.5000
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1.3 FORECASTING RESULTS - MEANS AND STANDARD DEVIATIONS

Table 16: TOTEM - Specialist Forecasting (] )
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Table 17: GPT2 - Specialist Forecasting, Lookback Window of 96 (])

| MAE

Mean + Std

MSE

Metric‘
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Mean + Std

MSE
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Zero-Shot

Table 18: TOTEM - Generalist and Zero-Shot Forecasting (/)
Metric‘
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MAE

LO—1ON

Mean + Std

MSE

Table 19: GPT2 - Generalist and Zero-Shot Forecasting ()
Metric‘
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1.4 ADDITIONAL ABLATIONS

Table 20: TimeTOTEM Ablation - Specialist Forecasting

| MAE

Mean + Std

SE

M

Table 21: TimeTOTEM Ablation - Generalist and Zero-Shot Forecasting

MAE

Mean + Std

Metric ‘

MSE
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Table 22: Detailed Codebook Ablation (|)

Mean + Std

MAE

MSE
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1.5 EXPLORATORY RESULTS

Table 23: Mixed Models - Forecasting ()

| MAE

Mean + Std

MSE

Metric‘

Table 24: Traffic Only - Specialist Zero-Shot Performance (/)

| MAE

Mean + Std

MSE

Metric‘

Table 25: Electricity Only - Specialist Zero-Shot Performance (| )

| MAE,

Mean + Std

MSE

Metric ‘
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