
SUM: Saliency Unification through Mamba for Visual Attention Modeling

Alireza Hosseini*,1 Amirhossein Kazerouni*,2,3,4 Saeed Akhavan 1

Michael Brudno 2,3,4 Babak Taati 2,3,4
1 University of Tehran 2 University of Toronto 3 Vector Institute

4 University Health Network
{arhosseini77, s.akhavan}@ut.ac.ir, {amirhossein, brudno}@cs.toronto.edu

babak.taati@uhn.ca

Abstract

Visual attention modeling, important for interpreting and
prioritizing visual stimuli, plays a significant role in appli-
cations such as marketing, multimedia, and robotics. Tradi-
tional saliency prediction models, especially those based on
Convolutional Neural Networks (CNNs) or Transformers,
achieve notable success by leveraging large-scale anno-
tated datasets. However, the current state-of-the-art (SOTA)
models that use Transformers are computationally expen-
sive. Additionally, separate models are often required for
each image type, lacking a unified approach. In this paper,
we propose Saliency Unification through Mamba (SUM), a
novel approach that integrates the efficient long-range de-
pendency modeling of Mamba with U-Net to provide a uni-
fied model for diverse image types. Using a novel Condi-
tional Visual State Space (C-VSS) block, SUM dynamically
adapts to various image types, including natural scenes,
web pages, and commercial imagery, ensuring universal
applicability across different data types. Our comprehen-
sive evaluations across five benchmarks demonstrate that
SUM seamlessly adapts to different visual characteristics
and consistently outperforms existing models. These re-
sults position SUM as a versatile and powerful tool for ad-
vancing visual attention modeling, offering a robust solu-
tion universally applicable across different types of visual
content. Our code and pretrained models are available at
https://github.com/Arhosseini77/SUM .

1. Introduction
Visual attention is a critical function of the human visual
system, enabling the selection of the most relevant infor-
mation in a visual scene [32]. Modeling of this mecha-
nism, known as saliency prediction, plays pivotal roles in
numerous applications such as marketing [22, 31], multi-
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media [50], computer vision [52], and robotics [9].
Deep learning models have succeeded in saliency pre-

diction, by exploiting large-scale annotated datasets [3, 30].
Typically, these models employ a pre-trained object recog-
nition network for feature extraction [38], with the U-Net
architecture as a popular choice. Most methods employ
Convolutional Neural Networks (CNNs) to construct en-
coders and decoders for latent features, which generate vi-
sual saliency maps [6, 14, 23, 26, 36, 62]. Recurrent archi-
tectures, such as Long-Short Term Memory (LSTM) net-
works, are also sometimes used to model both local and
long-range visual information [11, 46], enhancing the ac-
curacy of saliency predictions. More recently, the use of
Transformer-based models has led to significant improve-
ments, achieving SOTA performance in saliency prediction
by learning spatial long-range dependencies [13, 20, 22,
41, 48]. However, the computational demands of the stan-
dard self-attention mechanism used in these methods, which
scales quadratically with image size, present a substantial
challenge, especially for dense prediction tasks like saliency
modeling.

Moreover, a significant limitation within current saliency
prediction models lies in their design specificity for singu-
lar visual contexts. Saliency maps, and consequently the
models that generate them, need to be adapted to the unique
characteristics of different types of images. For example, in
natural scenes, the visual attention of viewers may be driven
largely by elements like color and movement, whereas in
e-commerce images, textual information typically attracts
more attention [29]. Similarly, in user interface (UI) de-
signs, the upper-left quadrant often attracts more attention
due to common eye movement patterns and a left-to-right
viewing bias [31]. Although there are robust models tai-
lored for specific datasets, such as those optimized for com-
mercial imagery [22] or UIs [31], the research on the de-
velopment of universally applicable models, that can effec-
tively handle diverse requirements of various image types,
remains limited. This gap underscores the necessity for a

ar
X

iv
:2

40
6.

17
81

5v
2 

 [
cs

.C
V

] 
 9

 S
ep

 2
02

4

https://github.com/Arhosseini77/SUM


model, which can be universally performant across all im-
age types and saliency datasets, thus providing a more com-
prehensive solution to the field of saliency prediction.

To address the challenges outlined above, we leverage
the capabilities of State Space Models (SSMs) [34] as used
in Mamba [18, 47], and introduce a novel unified Mamba-
U-Net-based model for visual saliency prediction. Models
like Mamba capture long-distance dependencies with linear
computational complexity. Inspired by these successes, we
propose the Saliency Unification through Mamba (SUM),
which uses Mamba to efficiently capture long-range infor-
mation. To ensure universal applicability across diverse im-
age types, we incorporate a novel Conditional Visual State
Space (C-VSS) block in our design. This component ef-
fectively separates the distributions of different data types,
making the model robust across various modalities. It al-
lows SUM to dynamically adapt to distinct visual charac-
teristics found in natural scenes, e-commerce imagery, and
UIs. Validation of SUM on six large-scale datasets across
different visual contexts confirms its exceptional adaptabil-
ity and strong performance, positioning it as a potent tool
in the advancement of visual attention modeling. These at-
tributes make SUM a valuable tool for a range of applica-
tions in visual saliency prediction. The main contributions
of this work are summarized as follows:
• A novel efficient class-conditional unified model is pro-

posed that employs Mamba to capture long-range visual
information efficiently with linear computational com-
plexity.

• A conditional component that dynamically adapts the
model behavior at test time through the shift and scaling
mechanisms, enhancing the adaptability of the model to
various visual contexts.

• SUM is extensively evaluated on six diverse benchmark
datasets, including natural scenes with gaze or mouse
ground truth labels, web pages, and commercial images,
consistently demonstrating superior or competitive per-
formance against previous SOTA models.

2. Related work
Saliency Prediction: Saliency prediction models are de-
signed to identify areas within an image or video that cap-
ture human visual attention. Initially inspired by biological
insights, these models historically used contrasts in color,
intensity, and orientation, or low-level, hand-designed fea-
tures to mimic human visual perception. This approach was
based on cues from studies of how humans prioritize visual
information [17, 27, 55].

With the advent of deep learning and the availability
of large-scale eye-tracking datasets [3, 28, 30], there has
been a shift towards applying deep neural networks to the
problem of saliency prediction. This shift was marked
by significant improvements in the accuracy and reliabil-

ity of saliency models [61]. Kummerer et al. [38] demon-
strated that leveraging pretrained networks, originally de-
signed for object recognition tasks, could enhance the per-
formance of saliency prediction models. This insight paved
the way for subsequent models such as EML-Net [26],
DeepGaze II [39], and SALICON [25], which incorpo-
rated pretrained CNN encoders to enhance the prediction
of saliency maps. Beyond the use of pretrained CNNs,
researchers have explored various other network architec-
tures for saliency prediction. These include fully convo-
lutional networks (FCNs) [37], generative adversarial net-
works (GANs) [7, 51], and convolutional long short-term
memory networks (ConvLSTM) [28]. Attention mecha-
nism and Transformer models [60], which show remark-
able success in various vision tasks [20], have also been ap-
plied to saliency prediction. Models like VGG-SSM [11]
and TranSalNet [48], incorporate self-attention modules
and transformer-based methods, respectively. These ap-
proaches highlight the growing interest in leveraging ad-
vanced architectures that go beyond traditional CNNs to im-
prove saliency.

Saliency prediction has also expanded to cover diverse
types of data beyond natural scenes, including commercial
advertisements [29, 40, 42] and user interfaces [31, 58].
This diversification has led to specialized models that ad-
dress unique dataset challenges. For instance, Kou et al.[35]
proposed a method for integrating confidence scores in
saliency predictions for advertising images, enhancing both
robustness and performance. Similarly, Jiang et al. [29] in-
troduced salient Swin-Transformers and incorporated text
detection techniques into their models, demonstrating the
potential of combining various data modalities to improve
prediction accuracy. Following this trend, Hosseini et
al. [22] proposed a model that combines pretrained CNNs
and transformers with a text map detection module for ad-
vertising saliency prediction.

Mamba: Recent advancements in SSMs, particularly with
the development of the Mamba model [18], have signif-
icantly changed the landscape of computational model-
ing. This model offers a promising alternative to tradi-
tional attention-based models. Introduced by Gu et al. [18],
Mamba achieves linear computational complexity with re-
spect to input size and is effective at capturing long-distance
dependencies. This innovation has led to its broad ap-
plication in fields such as language understanding and vi-
sion tasks [24, 47, 53, 54, 65, 67]. The development
of vision-specific SSMs such as Vision Mamba [67] and
Vmamba [47] has marked a significant step in SSM devel-
opment. Notable examples include U-Mamba [49], which
combines SSMs with CNNs for medical image segmenta-
tion. SegMamba [63] integrates SSMs in its encoder and
uses a CNN-based decoder for 3D brain tumor segmen-
tation. VM-UNet [57] explores a purely SSM-based ap-
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Figure 1. (a) Overview of our SUM model, (b) conditional-U-Net-based model for saliency prediction, and (c) C-VSS module.

proach in this area. Other models, like LightM-UNet [43],
stand out for their efficiency, outperforming previous medi-
cal segmentation models with fewer parameters. Addition-
ally, Mamba’s versatility is demonstrated in video-based ap-
plications such as video medical segmentation [66] and un-
derstanding [8]. However, the use of Mamba in saliency
map prediction is still largely unexplored.

Unified Models: Unified models in visual saliency pre-
diction have made significant advancements in integrating
image and video saliency within a single framework. The
UNISAL model [14] is an example that addresses the inte-
gration of image and video saliency through domain adapta-
tion. However, while UNISAL is a lightweight model, it is
not a universal model for all image saliency datasets. It pri-
marily relies on the Salicon Dataset [30] for image saliency
prediction, and its performance on this dataset has been
outperformed by other models over time. Furthermore,
UNISAL’s universal model does not include diverse image
types, limiting its applicability. As another notable model,
UniAR [41], focuses on image-based saliency prediction
and incorporates a multimodal transformer to capture di-
verse human behaviors across various visual content and
tasks. While it encompasses UI and natural scene images, it
overlooks incorporating e-commercial images, which have
become increasingly important in recent years [22, 29]. Ad-
ditionally, UniAR’s complexity is highlighted by its model
size, with 848M parameters, making it computationally de-
manding and potentially limiting its practical use. Despite
advancements in existing unified saliency models, there is
still a significant gap in developing efficient, comprehensive
models that effectively address real-world needs across di-

verse image types while maintaining manageable complex-
ity.

3. Proposed Method
This section provides an overview of the proposed network
architecture, as shown in Figure 1(a). Next, we revisit the
concept of VSS as introduced by Liu et al. [47]. Build-
ing on this foundation, we introduce our novel C-VSS mod-
ule and a conditional Mamba-U-Net-based model for visual
saliency prediction.

3.1. Model Architecture

The architecture of SUM, as illustrated in Figure 1(b),
adopts a U-Net configuration. The process initiates with an
input image X ∈ RH×W×3, with spatial dimensions H and
W , and 3 channels, which undergoes initial transformation
via a patch embedding module, reducing its dimensions to
H
4 × W

4 × C. The encoder module generates four hierar-
chical output representations. Each stage is followed by a
downsampling layer, which reduces the spatial dimensions
by half while simultaneously doubling the number of chan-
nels. Transitioning to the decoder, comprises four stages
of C-VSS layers, with each stage incorporating two blocks,
except for the final stage, which contains a single block.
Patch-expanding layers are then applied to achieve resolu-
tion upsampling while also decreasing channel dimensions
by a factor of 2. Finally, a linear layer is responsible for
generating the ultimate output. Our SUM architecture uses
the VMamba [47] weights pre-trained on ImageNet [12].
This pre-training accelerates the learning process, improves
the model’s ability to detect salient regions more accurately,



and ensures better generalization on diverse images.

3.2. Visual State Space (VSS)

Mamba [18] employs SSMs [19] to shift the complexity of
attention from quadratic to linear in long-sequence model-
ing. This has proven particularly beneficial in vision tasks
due to its higher accuracy, reduced computational load,
and lower memory requirements [67]. However, adapt-
ing Mamba’s inherently 1D, causal scanning for 2D images
presents challenges due to its restricted receptive field and
inability to process unscanned data effectively. To address
these issues, VMamba [47] introduces the Cross-Scan Mod-
ule, which employs bidirectional scanning along horizon-
tal and vertical axes. This module expands the image into
sequences of patches scanned in four directions, enabling
each pixel to integrate information from all directions. Sub-
sequently, these sequences are reassembled into the orig-
inal 2D format to form a complete image. Termed the
2D-Selective-Scan (SS2D), this method enhances Mamba’s
functionality for 2D spatial processing, ensuring both local
and global spatial relevance. Building upon these insights,
we incorporate the VSS block as the fundamental unit in
SUM. As shown in Figure 1(c), the VSS module can be for-
mulated as:

X = LN1(F),
Attention = LN2(SS2D(SiLU(DW-Conv(Linear(X))))),

Output = Linear(SiLU(Linear(X))⊗ Attention) + F,
(1)

where the input feature is denoted by F ∈ RH′×W ′×C′
.

The operator ⊗ denotes an element-wise product operation,
LN represents LayerNorm, DW-Conv stands for depth-wise
convolution, and SiLU [15] is an activation function.

3.3. Conditional Visual State Space (C-VSS)

We enhance the model’s adaptability to diverse visual con-
tent by conditioning the VSS block in the decoder based on
input type. This is crucial for predicting saliency maps ef-
fectively, as different content types inherently attract viewer
attention in distinct ways. For instance, natural scenes may
focus on color and movement, e-commerce images on tex-
tual information, and UI designs on specific layout patterns
such as the upper-left quadrant. To address these variations,
we implement modulation of the feature map through dy-
namic scaling and shifting operations that adjust feature ac-
tivations based on the input type. The modulated feature
map can be generally defined as:

Modulated Feature Map = αi ⊙ F+ βi

where F denotes the original feature map. Here, α is a scal-
ing factor, β is a shifting factor, and ⊙ is an element-wise
multiplication.

To refine our model’s ability to effectively handle differ-
ent data types, we define T = 4 learnable tokens, where
D represents the dimensionality of each token. Each token
is designated to capture distinct information about one of
the following data categories: Natural Scene-Mouse,
Natural Scene-Eye, E-Commerce, and UI. These
tokens provide a more nuanced mechanism than a simple
one-hot encoding of data types, enabling the model to adapt
and learn detailed, type-specific information. We have al-
located two tokens for the natural scene data because dif-
ferent methodologies are used in data collection for these
categories, eye and mouse. Grouping them into a single
token could potentially confuse the model during inference.
As discussed in [59], mouse tracking data is less consis-
tent and more scattered than eye tracking data, which does
not fully align with eye tracking data distribution, particu-
larly in terms of different contextual regions. Furthermore,
while mouse tracking data can lead to acceptable outcomes
for training existing models, it is less reliable for model se-
lection and evaluation. Based on these insights and our ex-
periments, we differentiate mouse and eye data of natural
scenes.

Subsequently, the relevant token is fed into a Multi-
Layer Perceptron (MLP) model to ensure that learning
is conditioned on the specific characteristics of each data
type. The MLP is composed of K hidden layers and
p1, p2, . . . , pK features per layer. This MLP is designed
to regress the parameters αi and βi, which modulate the
model based on the diversity of inputs. The MLP, de-
fined as g(z; θ) : R4×D → R4×5, outputs a matrix Y,
with each row representing one of four input tokens and
generating five key parameters. These parameters include
pairs and individual instances of αi and βi, specifically
{(α1, β1), (α3), (α2, β2)}. An input label L determines the
selection of the relevant row from Y, resulting in the out-
put vector S = YL. This 1× 5 vector contains modulation
parameters finely tuned to the specifics of the designated in-
put. These parameters are then integrated into the model to
modify its behavior dynamically: (α1, β1) are used to shift
and scale LN1, (α3) adjusts the scaling of the SS2D block
to regulate feature intensity, and (α2, β2) shift and scale
LN2. This enables the MLP to precisely control the nor-
malization and scaling within the model, thereby enhancing
its performance and generalization across different visual
content types.

3.4. Loss Function

Our model utilizes a composite loss function inspired by [2,
14, 48] in visual saliency prediction. This function inte-
grates five distinct components, each designed to optimize
the prediction accuracy of saliency maps by targeting differ-
ent aspects of the saliency prediction task. The loss function



is formulated as:

Loss =λ1 · LKL(s
g, s) + λ2 · LCC(s

g, s) + λ3 · LSIM(sg, s)

+ λ4 · LNSS(f
g, s) + λ5 · LMSE(s

g, s)
(2)

where sg represents the ground truth saliency map, fg de-
notes the ground truth fixation map, and s is the network’s
predicted saliency map. Each component of the loss func-
tion serves a specific purpose as defined in the following.
Kullback-Leibler Divergence (KL): KL divergence mea-
sures the dissimilarity between the predicted and ground
truth distributions, providing a method to penalize the
model when its predictions deviate significantly from the
actual data distribution.

LKL(s
g, s) =

n∑
i=1

sgi log

(
ϵ+

si
sgi + ϵ

)
, (3)

where, the regularization constant ϵ is set to 2.2× 10−16.
Linear Correlation Coefficient (CC): The correlation co-
efficient assesses the linear relationship between the pre-
dicted and ground truth saliency maps. A higher correla-
tion indicates that the model predictions align well with the
ground truth trends, improving the reliability of the saliency
maps.

LCC(s
g, s) =

cov(sg, s)
σ(sg) · σ(s)

, (4)

where, cov(.) represents the covariance and σ(.) denotes the
standard deviation.
Similarity (SIM): SIM evaluates the overlap between the
predicted and actual saliency maps, emphasizing the impor-
tance of accurately predicting the salient regions.

LSIM(sg, s) =

n∑
i=1

min(sgi , si) (5)

Normalized Scan-path Saliency (NSS): NSS measures the
correlation between the normalized predicted saliency map
and the actual fixation points, highlighting the model’s ef-
fectiveness at capturing human attention patterns.

LNSS(f
g, s) =

1∑
i(f

g
i )

∑
i

(
si − µ(s)

σ(s)

)
fg
i (6)

Mean Squared Error (MSE): This component calculates
the mean squared error between the predicted and actual
saliency maps, directly penalizing inaccuracies in the pixel-
wise saliency values.

By adjusting the weighting coefficients λi (i = 1, . . . , 5),
we aim to minimize dissimilarity metrics (KL, MSE) and
maximize similarity metrics (CC, SIM, NSS). This strat-
egy ensures that the model predicts accurate saliency maps
and closely aligns with human visual attention patterns and
saliency distributions.

Table 1. Comprehensive compilation of datasets used for training
and testing.

Dataset Image domain Acquisition Type # Image Image Resolution # Training Sample

Salicon [30] Natural scene Mouse 15,000 640 × 480 10,000
MIT1003 [33] Natural scene Eye 1003 Varied 904
CAT2000 [3] Natural scene Eye 2000 1080 × 1920 1600
OSIE [64] Natural scene Eye 700 800 × 600 500
U-EYE [31] Web page Eye 1979 Varied 1583
SalECI [29] E-Commercial Eye 972 720 × 720 871

4. Experiments
Datasets: We leverage six benchmark large-scale datasets
for training and evaluating our models, as outlined in Ta-
ble 9. This table presents a list of these datasets along with
specific details about each.
Evaluation Metrics: To assess the accuracy of predicted
saliency maps, we use two types of metrics: location-
based and distribution-based, followed by [5]. Location-
based metrics, such as NSS and AUC (Area under the ROC
Curve), evaluate predictions using a binary fixation map
image as ground truth and focus on specific salient loca-
tions. Distribution-based metrics, including CC (Correla-
tion Coefficient), SIM (Similarity), and KLD (Kullback-
Leibler Divergence), utilize a grayscale saliency map im-
age to measure the similarity between predicted and actual
distributions. Higher values generally indicate better per-
formance for all metrics, except for KLD, where a value
closer to zero signifies a more accurate prediction.
Implementation Details: Our model is implemented using
the PyTorch framework and is trained on A40 with 48 GB
memory for 15 epochs with an early stopping after 4 epochs.
We optimize the network using the Adam optimizer. The
learning rate is initially set to 1 × 10−4, and we employ a
learning rate scheduler that decreases the factor by 0.1 after
every four epochs. The batch size is set to 16. Additionally,
we resize all data and labels to a resolution of 256×256 and
combine the training data from all six datasets for model
training. The optimal values for the loss function weight-
ing coefficients λi are as follows: λ1 = 10, λ2 = −2,
λ3 = −1, λ4 = −1, and λ5 = 5. In addition, the MLP ar-
chitecture in our implementation comprises three linear lay-
ers with widths of 128, 64, and 5, respectively, interleaved
with GELU [21] activation functions. The number of tokens
is set to T = 4 with each token having a dimensionality of
D = 128.

4.1. Experiment Results

We conducted comprehensive testing of our universal
model, SUM, across six different datasets, each bench-
marked against state-of-the-art (SOTA) models for compar-
ison. These datasets encompass a range of areas includ-
ing natural scenes, user interfaces, and e-commerce. SUM
consistently outperformed the best existing models across
all datasets. In the 30 metrics presented in Table 2, SUM



Table 2. Saliency prediction performance across various datasets. ∗ indicates that we have trained those models ourselves for fair compar-
ison because results were not available for the corresponding dataset or the input image size was varied. † signifies that the results have
been taken from the paper by Hosseini et al. [22], and the rest of the results are taken from their respective papers. For our model, we note
the percentage (%) change in performance relative to the second-best result, or to the best result if ours is not the top performer.

Dataset Method CC ↑ KLD ↓ AUC ↑ SIM ↑ NSS ↑ # Parameters

U-EYE [31] SAM∗ [11] 0.580 1.490 0.811 0.520 1.640 30M
(Web page) UMSI∗ [16] 0.562 1.580 0.805 0.510 1.690 30M

SAM++∗ [31] 0.580 1.190 0.800 0.530 1.660 42M
Transalnet∗ [48] 0.696 0.616 0.839 0.598 1.601 72M
UMSI++∗ [31] 0.670 0.860 0.830 0.580 1.610 30M

SUM (Ours) 0.731+5.03% 0.544 −11.69% 0.846 +0.83% 0.630 +5.35% 1.704 +0.83% 57.5M

SalECI [29] SSM† [11] 0.720 0.599 0.830 0.611 1.396 42M
(E-Commercial) DeepGaze IIE† [44] 0.560 0.995 0.842 0.399 1.327 104M

EML-NET† [31] 0.510 1.220 0.807 0.536 1.232 47M
Transalnet† [31] 0.717 0.873 0.824 0.534 1.723 72M
Temp-Sal† [2] 0.719 0.712 0.813 0.629 1.768 242M
SSwin Transformer [29] 0.687 0.652 0.868 0.606 1.701 29M
Hosseini et al. [22] 0.750 0.578 0.892 0.645 1.890 66M

SUM (Ours) 0.789+5.20% 0.473 −18.17% 0.899 +0.78% 0.680 +5.43% 2.012 +6.46% 57.5M

OSIE [64] UMSI [16] 0.746 0.513 0.856 0.631 1.788 30M
(Natural scene) EML-NET [26] 0.717 0.537 0.854 0.619 1.737 47M

SAM-ResNet [11] 0.758 0.480 0.860 0.648 1.811 43M
Chen et al. [10] 0.761 0.506 0.860 0.652 1.840 -
Transalnet∗ [31] 0.791 0.667 0.923 0.651 2.448 72M
UniAR [41] 0.754 0.547 0.867 0.647 1.842 848M

SUM (Ours) 0.861+8.85% 0.340−29.17% 0.924+6.57% 0.727 +11.5% 3.416 +39.54% 57.5M

Salicon [30] UniAR [41] 0.901 0.215 0.870 0.792 1.947 848M
(Natural scene) SimpleNet [56] 0.907 0.193 0.871 0.797 1.926 116M

MDNSal [56] 0.899 0.217 0.868 0.797 1.893 -
MSI-Net [36] 0.899 0.307 0.865 0.784 1.931 20M
GazeGAN[7] 0.879 0.376 0.864 0.773 1.899 -
UNISAL[14] 0.879 0.354 0.864 0.775 1.952 4M
Transalnet∗ [48] 0.89 0.220 0.867 0.783 1.924 72M
DeepGaze IIE∗ [44] 0.872 0.285 0.869 0.733 1.996 104M
Temp-Sal∗ [2] 0.911 0.195 0.869 0.800 1.967 242M

SUM (Ours) 0.909−0.22% 0.192−1.54% 0.876 +0.64% 0.804 +0.50% 1.981 −0.75% 57.5M

CAT2000 [3] FastSal [23] 0.721 0.552 0.86 0.603 1.859 4M
(Natural scene) SAM-Resnet [11] 0.87 0.670 0.878 0.739 2.411 43M

MSI-Net∗ [36] 0.866 0.428 0.881 0.730 2.355 20M
DVA [62] 0.861 0.449 0.878 0.734 2.345 -
UNISAL [14] 0.842 0.530 0.876 0.721 2.257 4M
MDNSal [56] 0.889 0.293 0.878 0.751 2.329 -
Transalnet∗ [48] 0.877 0.287 0.882 0.744 2.373 72M

SUM (Ours) 0.882−0.79% 0.270 −5.92% 0.888 +0.68% 0.754 +0.4% 2.424 +0.54% 57.5M

MIT1003 [33] FastSal [23] 0.590 1.036 0.875 0.478 2.008 4M
(Natural scene) SAM-Resnet [11] 0.746 1.247 0.902 0.597 2.752 43M

DVA [62] 0.699 0.753 0.897 0.566 2.574 -
UNISAL [14] 0.734 1.014 0.902 0.597 2.759 4M
Transalnet∗ [48] 0.722 0.660 0.903 0.592 2.631 72M

SUM (Ours) 0.768+2.95% 0.563−14.7% 0.913 +1.11% 0.630 +5.53% 2.839 +2.9% 57.5M

achieved SOTA results in 27 cases and secured second place
in the other three. These results demonstrate that our model
is highly effective and versatile across various types of data,

setting a new standard for future advancements in the field.
This consistency in performance underscores its robustness
and capability to handle the diverse challenges presented



Input Image Ground Truth SUM (Ours) Transalnet [48] Temp-Sal [2] DeepGaze IIE [44] SimpleNet [56]

Input Image Ground Truth SUM (Ours) Transalnet [48] UNISAL [14] EML-NET [26] FastSal [23]

Input Image Ground Truth SUM (Ours) Transalnet [48] Temp-Sal [2] DeepGaze IIE [44] Hosseini et al. [22]

Input Image Ground Truth SUM (Ours) Transalnet [48] UMSI++ [31] SAM++ [31] UMSI [16]

Figure 2. Comparative visualizations of saliency predictions across different data types. The first row depicts Natural Scene-Mouse data,
the second row showcases Natural Scene-Eye data, the third row features E-commerce, and the fourth row displays UI. Each row highlights
the model’s performance in identifying salient features within these distinct categories.

by different datasets. Moreover, compared to counterparts
like Transalnet [48], Temp-Sal [2], DeepGaze IIE [44], and
UniAR [41], our model is relatively efficient. This effi-
ciency underscores the advantages of our streamlined ap-
proach, which leverages Mamba’s capabilities to develop a
model that is efficient, robust, and universally applicable.
Additionally, Figure 2 displays saliency prediction images
selected from the validation sets, showing that our model’s
predictions are much closer to the ground truth than those
of the SOTA models, further proving that SUM can more
accurately predict human attention behavior.

5. Ablation Study
Impact of different loss combinations : We investigated
the impact of different loss metric combinations on the
model validation performance, as summarized in Table 3.
Our approach involved normalizing each metric using a
min-max scaling technique to ensure a balanced evalua-
tion across different metrics. The score function, described
in Equation 7, is specifically designed to maximize the ben-
eficial metrics (CC, SIM, NSS) and minimize the detrimen-
tal metric (KL). The function’s configuration is as follows:

Fscore = CCscaled +SIMscaled +NSSscaled −KLscaled (7)

From the results in Table 3, it is evident that the inclu-
sion of KL loss significantly impacts the model’s perfor-
mance, demonstrating its crucial role in defining saliency
loss. When loss functions are used individually, the per-
formance varies, with SIM typically showing higher values

for both CC and F scores, indicating its strong standalone
impact on model saliency. Excluding MSE, which is less di-
rectly related to saliency, still results in high performance,
but the highest scores are consistently observed when MSE
is included, suggesting its underlying contribution to model
robustness and generalization. The integration of all five
loss functions results in the highest F scores. This combi-
nation not only balances the enhancement and suppression
of features but also stabilizes the training process, as indi-
cated by the highest scores of 2.853 and 2.836 for Salicon
and all datasets, respectively.

Impact of the C-VSS module: We compared the impact
of using a C-VSS module conditioned on three and four
classes against a standard VSS, which serves as the uncon-
ditional setup. The three classes include Natural Scene, UI,
and E-Commerce, in contrast to our model’s broader cate-
gorization into four classes. As shown in Table 4, the C-
VSS module significantly enhances performance across all
evaluated datasets compared to the standard VSS. Notably,
conditioning the model on four classes yields better results
than limiting it to three. This suggests that the finer catego-
rization in the four-class setup better aligns with the varied
data characteristics, especially when dealing with different
data acquisition setups, thereby improving the model’s pre-
dictive accuracy and robustness.

Impact of different prompt lengths: We explored the in-
fluence of prompt length on model performance. We exper-
imented with various prompt lengths—32, 96, 128, 256—to
determine how they impact model behavior during the train-



Table 3. Evaluation of different combinations of loss functions on model performance.

Loss Functions Avg. Performance on Salicon [30] Avg. Performance Across All Datasets
KL CC SIM NSS MSE CC ↑ KLD ↓ NSS ↑ SIM ↑ FScore ↑ CC ↑ KLD ↓ NSS ↑ SIM ↑ FScore ↑
✓ ✗ ✗ ✗ ✗ 0.910 0.189 1.908 0.805 2.797 0.85 0.465 2.498 0.723 2.386
✗ ✓ ✗ ✗ ✗ 0.907 0.732 1.926 0.787 1.634 0.851 1.08 2.532 0.7 1.218
✗ ✗ ✓ ✗ ✗ 0.911 0.447 1.91 0.807 2.391 0.85 0.747 2.469 0.728 1.917
✗ ✗ ✗ ✓ ✗ 0.834 0.765 2.044 0.721 0 0.804 1.072 2.614 0.658 -0.079
✗ ✗ ✗ ✗ ✓ 0.909 0.234 1.919 0.803 2.696 0.846 0.525 2.479 0.719 2.089
✓ ✗ ✓ ✗ ✗ 0.911 0.196 1.928 0.806 2.833 0.852 0.465 2.337 0.728 1.972
✓ ✗ ✗ ✓ ✗ 0.892 0.199 2.029 0.792 2.537 0.841 0.467 2.594 0.712 2.353
✓ ✓ ✗ ✗ ✗ 0.911 0.185 1.191 0.805 1.977 0.852 0.453 2.515 0.720 2.46
✓ ✗ ✗ ✗ ✓ 0.909 0.192 1.917 0.802 2.755 0.851 0.456 2.504 0.723 2.441
✗ ✓ ✓ ✗ ✗ 0.910 0.531 1.921 0.802 2.188 0.85 0.871 2.503 0.721 1.733
✓ ✓ ✓ ✗ ✗ 0.909 0.198 1.920 0.803 2.759 0.852 0.464 2.527 0.726 2.568
✓ ✗ ✓ ✗ ✓ 0.909 0.192 1.919 0.799 2.722 0.852 0.461 2.514 0.726 2.53
✓ ✗ ✗ ✓ ✓ 0.887 0.208 2.038 0.788 2.421 0.830 0.472 2.642 0.711 2.259
✓ ✓ ✗ ✗ ✓ 0.910 0.188 1.914 0.803 2.783 0.851 0.447 2.511 0.722 2.464
✓ ✓ ✓ ✓ ✗ 0.907 0.198 1.989 0.803 2.815 0.850 0.466 2.614 0.725 2.794
✓ ✓ ✓ ✗ ✓ 0.905 0.208 1.920 0.798 2.632 0.852 0.457 2.510 0.720 2.437
✓ ✓ ✓ ✓ ✓ 0.909 0.192 1.981 0.804 2.853 0.852 0.450 2.602 0.726 2.836

Table 4. Mean value and standard deviation of saliency prediction performance comparison of conditional VSS modules for three and four
classes and standard VSS (no-condition) across all datasets.

Dataset Method CC ↑ KLD ↓ AUC ↑ SIM ↑ NSS ↑
U-EYE [31] No-condition 0.725 ± 0.035 0.562 ± 0.062 0.845 ± 0.012 0.626 ± 0.023 1.689 ± 0.121

(Web page) 3-class 0.729 ± 0.035 0.551 ± 0.057 0.845 ± 0.012 0.628 ± 0.012 1.699 ± 0.012

4-class 0.731± 0.037 0.544 ± 0.057 0.846 ± 0.012 0.630 ± 0.023 1.704 ± 0.125

SalECI [29] No-condition 0.783± 0.046 0.502 ± 0.112 0.898 ± 0.014 0.677 ± 0.039 2.017 ± 0.168

(E-Commercial) 3-class 0.781 ± 0.055 0.505 ± 0.131 0.896 ± 0.016 0.678 ± 0.047 1.99 ± 0.181

4-class 0.789± 0.0453 0.473 ± 0.088 0.899 ± 0.012 0.680 ± 0.041 2.012 ± 0.161

OSIE [64] No-condition 0.842± 0.033 0.403 ± 0.05 0.918 ± 0.009 0.703 ± 0.022 3.18 ± 0.32

(Natural scene) 3-class 0.845 ± 0.033 0.395 ± 0.049 0.918 ± 0.009 0.706 ± 0.022 3.213 ± 0.323

4-class 0.861± 0.029 0.340± 0.050 0.924± 0.008 0.727 ± 0.02 3.416 ± 0.319

Salicon [30] No-condition 0.903± 0.012 0.206 ± 0.028 0.875 ± 0.014 0.798 ± 0.013 1.979 ± 0.203

(Natural scene) 3-class 0.904 ± 0.011 0.205 ± 0.027 0.875 ± 0.014 0.798 ± 0.013 1.981 ± 0.204

4-class 0.909± 0.011 0.192± 0.025 0.876 ± 0.014 0.804 ± 0.012 1.981 ± 0.201

CAT2000 [3] No-condition 0.880± 0.014 0.272 ± 0.022 0.887± 0.010 0.752 ± 0.010 2.42 ± 0.141

(Natural scene) 3-class 0.881 ± 0.016 0.271 ± 0.023 0.888 ± 0.010 0.753 ± 0.011 2.424 ± 0.142

4-class 0.882± 0.0158 0.270 ± 0.026 0.888 ± 0.010 0.754 ± 0.011 2.424 ± 0.142

MIT1003 [33] No-condition 0.737± 0.035 0.641 ± 0.083 0.908 ± 0.010 0.596 ± 0.024 2.648 ± 0.255

(Natural scene) 3-class 0.741 ± 0.034 0.636 ± 0.077 0.908 ± 0.010 0.597 ± 0.023 2.678± 0.249

4-class 0.768± 0.039 0.563± 0.075 0.913 ± 0.009 0.630 ± 0.027 2.839 ± 0.285

ing and validation phases. The results, detailed in Table 5,
indicate that both shorter and longer prompt lengths con-
tribute to fitting issues. Among the tested lengths, 128
demonstrated the most balanced and effective outcome.

Comparison of Prompt vs. one-hot encoding: In our ex-
periments, we compared two approaches: one using gen-
erated prompts tailored to specific conditions, and another

using a one-hot vector to represent class conditions. Our
goal was to see how these methods influence the model’s
ability to handle different types of data. Table 6 illustrates
the results of this comparison. Using the prompt-based ap-
proach, the model demonstrates higher performance across
all metrics. This method helps the model better distinguish
between the diverse data distributions in each domain, as



Table 5. Impact of prompt length on model performance.

Prompt Length Performance Metrics # ParametersCC ↑ KL ↓ NSS ↑ SIM ↑
Salicon [30]

64 0.909 0.196 1.98 0.804 57.4M
96 0.909 0.188 1.958 0.802 57.4M
128 0.909 0.192 1.981 0.804 57.5M
256 0.906 0.195 1.953 0.801 58M

Average Performance Across Datasets
64 0.849 0.463 2.601 0.725 57.4M
96 0.847 0.455 2.567 0.722 57.4M
128 0.852 0.450 2.602 0.726 57.5M
256 0.850 0.456 2.558 0.723 58M

Table 6. Prompt vs. One-Hot Encoding.

Method Performance Metrics # Parameters
CC ↑ KL ↓ NSS ↑ SIM ↑

Avg. Performance on Salicon [30]
SUM - One-hot 0.902± 0.012 0.201± 0.024 1.97± 0.972 0.795± 0.012 57.3M
SUM - Prompt 0.909± 0.011 0.192± 0.025 1.981± 0.201 0.804± 0.012 57.5M

Avg. Performance Across Datasets
SUM - One-hot 0.843± 0.034 0.485± 0.046 2.583± 0.222 0.716± 0.023 57.3M
SUM - Prompt 0.852± 0.029 0.45± 0.053 2.602± 0.206 0.726± 0.022 57.5M

Table 7. Comparison of C-VSS placement in the proposed U-Net
structure.

Configuration CC ↑ KL ↓ NSS ↑ SIM ↑ # Parameters
Avg. Performance on Salicon [30]

Bottleneck 0.909 0.195 1.97 0.804 57.37M
Decoder 0.909 0.192 1.981 0.804 57.5M
All-Blocks 0.907 0.198 1.975 0.801 58.5M

Avg. Performance Across Datasets
Bottleneck 0.847 0.466 2.581 0.724 57.37M
Decoder 0.852 0.450 2.602 0.726 57.5M
All-Blocks 0.854 0.458 2.601 0.724 58.5M

opposed to the more straightforward one-hot vector method.
Optimal C-VSS Placement in U-Net: We evaluated the
impact of deploying the C-VSS in different sections of our
U-Net structure: solely in the bottleneck, across all blocks
of the decoder, and in every block of both the encoder and
decoder. Our objective was to ascertain the optimal place-
ment of the C-VSS for enhancing model performance. As
summarized in Table 7, incorporating C-VSS in the en-
coder, in addition to the decoder, tends to undermine the
features in the encoder, leading to suboptimal performance.
This observation suggests that integrating C-VSS through-
out the entire U-Net may disrupt the model’s ability to lever-
age its foundational pre-trained features effectively. Con-
versely, limiting the use of C-VSS to the bottleneck pro-
vides some benefits but does not fully capitalize on the po-
tential enhancements the module offers. The most effective
strategy, as indicated by our results, is employing C-VSS
across all decoder blocks. This approach allows the model
to better adapt to the unique characteristics of each input do-
main, resulting in superior performance metrics compared
to the other configurations tested.

6. Conclusion
In this paper, we have presented SUM, a novel approach
designed to address the limitations of traditional saliency
prediction models. By integrating the Mamba architecture
with U-Net and enhancing it with a Conditional Visual State
Space (C-VSS) block, SUM adapts dynamically to various
image types, making it universally applicable across diverse
visual contexts. Our extensive evaluations across six bench-
mark datasets demonstrated SUM’s superior performance,
consistently outperforming existing models. The model ex-
celled in both location-based and distribution-based met-
rics, proving its robustness and adaptability to use in real-
world problems.
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Supplementary Material

A. Experimental Results
A.1. Impact of different loss combinations

In addition, to provide additional details about the coeffi-
cients used for each loss combination, we conducted several
experiments to determine the optimal coefficients for each
combination. The best coefficients for each combination are
depicted in Table 8.

A.2. More visualization results

We have included an additional visualization of SUM’s pre-
dictions in Figure 3. Compared to ground truths, SUM con-
sistently delivers accurate predictions across various image
types and datasets, underscoring its robustness and versatil-
ity in visual saliency modeling. Moreover, to further vali-
date the robustness of our proposed method, we conducted
comparative analyses using publicly available datasets that
had not been previously seen, as detailed in Table Ta-
ble 9. The performance, as depicted in Figure 4, notably
remains consistent when applied to new and previously un-
seen datasets. This suggests that SUM adeptly identifies and
highlights the salient features in images, maintaining close
alignment with the ground truth data. Therefore, SUM can
be reliably utilized in diverse real-world applications where
accuracy in visual recognition is critical.

Table 8. loss weighting coefficients λi (i = 1, . . . , 5) as used in
Table 3.

KL CC SIM NSS MSE
1 0 0 0 0
0 -1 0 0 0
0 0 -1 0 0
0 0 0 -1 0
0 0 0 0 1

10 0 -3 0 0
10 0 0 -3 0
10 -3 0 0 0
10 0 0 0 5
0 -2 0 -1 0

10 -2 -1 0 0
10 0 -3 0 5
10 0 0 -3 5
10 -3 0 0 5
10 -2 -1 -1 0
10 -2 -1 0 5
10 -2 -1 -1 5

Table 9. Details of unseen datasets used for quantitative analysis
of SUM in Figure 4.

Dataset Image domain # Image Image Resolution

Toronto [4] Natural scene 120 681 × 511
TUD Image Quality Database 1 [45] Natural scene 29 768 × 512
TUD Image Quality Database 2 [1] Natural scene 160 600 × 600
FIWI [58] Web page 149 1360 × 768
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Figure 3. Visualizations of SUM’s predictions across different datasets. The first and second rows depict Natural Scene-Mouse data, while
the third and fourth rows showcase Natural Scene-Eye data. The fifth and sixth rows present E-commerce data, and the seventh and eighth
rows display UI data.



Input Image Ground Truth SUM Input Image Ground Truth SUM

Figure 4. Visualizations of SUM’s predictions across different datasets. The first and second rows showcase the Toronto dataset [4], while
the third and fourth rows present the FIWI dataset [58]. The fifth and sixth rows display data from the TUD Image Quality Database 1 [45],
and the seventh and eighth rows exhibit data from the TUD Image Quality Database 2 [1].
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