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Abstract

Large Language Models (LLMs) have demon-
strated outstanding performance on Ques-
tion Answering (QA) tasks. However, they
face significant challenges in long-context
QA due to difficulties in effectively utilizing
lengthy inputs, resulting in irrelevant responses.
While Retrieval-Augmented Generation (RAG)
frameworks have been employed to address this
issue, they remain limited by retrieval methods
that prioritize superficial lexical overlaps, lead-
ing to suboptimal context selection. In this
study, we propose Letriever, which replaces
the traditional embedding-based retriever with
an LLM-based retriever. By leveraging the ad-
vanced comprehension capabilities of LLMs,
Letriever enhances retrieval precision and an-
swer accuracy across diverse QA benchmarks.
Our findings highlight the potential of LLMs to
transform retrieval mechanisms in QA systems.

1 Introduction

The growing complexity of real-world QA tasks
highlights the need for methods that can effectively
process and reason over long, information-rich con-
texts. With the enhanced token capacity of Large
Language Models (LLMs) (Achiam et al., 2023;
Anthropic, 2024) have shown impressive perfor-
mance across various QA tasks. However, stud-
ies (Shi et al., 2023) reveal that excessively long
contexts can introduce noise, making it challeng-
ing for models to accurately identify and reference
relevant information.

Retrieval-Augmented Generation (RAG) is com-
monly employed to address this issue. By leverag-
ing semantic search methods such as cosine simi-
larity, RAG filters out irrelevant noise by assuming
that the most similar content is also the most rel-
evant. The limitation of this approach is that it
may overlook semantically relevant information
expressed in different ways, leading to inaccura-
cies in evidence retrieval and downstream answer
generation.

To address this issue, we propose Letriever,
which replaces the traditional embedding-based
retriever with an LLM-based model. Our method
leverages the advanced natural language reason-
ing capabilities of LLMs in an end-to-end manner,
where they function as both retrievers and genera-
tors. Instead of processing the entire long context,
our approach extracts the most relevant informa-
tion based on the query. Unlike traditional RAG,
our method can understand complex natural lan-
guage information and ensure robust performance
by reducing dependency on hyperparameters such
as top-k selection.

‘We summarize our contributions as follows:

* We propose an LLM-based retriever ap-
proach that replaces traditional cosine
similarity-based semantic search in Retrieval-
Augmented Generation (RAG).

* We conduct experiments across diverse QA
datasets, demonstrating that the contextual un-
derstanding of LLMs enables a more nuanced
representation of complex semantics.

* We show that leveraging the reasoning capa-
bilities of LLMs allows for flexible adjustment
of hyperparameters tailored to each dataset,
yielding robust performance across diverse
QA tasks.

This paper addresses the limitations of existing
RAG methods and explores a new approach to
leverage LLLMs as a retriever in QA tasks. Our
research aims to enhance the accuracy of key infor-
mation retrieval while minimizing noise, making it
particularly effective for long documents such as
extended conversations or technical papers.
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‘ [ What does Jon plan to do at the ]

grand opening of his dance studio?

Contexts
- Gina: Hey Jon! Good to see you.
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What's up? Anything new? ..
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Retrieved Contexts

Top 1) Jon: I wanna start a dance
studio so I can teach others the
joy that dancing brings me.
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Predicted Answer
Can’t wait for it - and \ ¢ @ |
x [ for you to be there! .
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Retrieved Contexts

Top 1) Jon: The official opening
night is tomorrow. ..

Top 4) Jon: Tomorrow's gonna be an
awesome night .. I put so much into
this and I want to savor all the

Retriever good vibes.
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o [ Savor all the good vibes. \ 4—
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Figure 1: Comparison between embedding-based and
LLM-based retrieval.

2 Related Work

2.1 Long Context Model Architectures

Handling long-context input is challenging due to
the limitations of traditional transformer architec-
tures (Vaswani, 2017), which scale quadratically
with input length. Recent research has proposed
various efforts to process longer sequences effi-
ciently, while maintaining the model’s ability to
understand complex dependencies across tokens.

One common approach to addressing computa-
tional complexity involves modifying the attention
mechanism. Models such as Longformer (Beltagy
et al., 2020), BigBird (Zaheer et al., 2020), and
Performer (Choromanski et al., 2020) have intro-
duced more efficient alternatives to the traditional
attention mechanism.

Another strategy focuses on altering the model
architecture by incorporating recurrent structures,
as seen in Transformer-XL (Dai, 2019) and Com-
pressive Transformer (Rae et al., 2019). Hybrid
models, such as Griffin (De et al., 2024), which

combines local attention with recurrent blocks, and
Reformer (Kitaev et al., 2020), which uses locality-
sensitive hashing (LSH).

However, recent studies suggest that merely ex-
panding the context length is not enough to improve
model performance. Longer contexts can lead to
the loss of relevant information, especially in the
middle of the input (Liu et al., 2024). Moreover,
the inclusion of unnecessary or irrelevant infor-
mation in long contexts can significantly degrade
model performance (Shi et al., 2023). Effectively
utilizing long contexts remains a challenge, and
this limitation persists in current models.

2.2 Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) is a
paradigm to enhance generative models by retriev-
ing relevant information from external knowledge
sources and using it as context (Lewis et al., 2020).
This approach addresses issues in LLMs, such as
hallucination and outdated knowledge, by ground-
ing their outputs in external information.

Retrieval methods are broadly divided into two
categories: sparse retrieval and dense retrieval.
Sparse retrieval methods, like BM25 (Robertson
et al., 1995) and TF-IDF (Sparck Jones, 1972), rely
on exact term matching but often struggle with se-
mantic relevance. Dense retrieval methods, such as
DPR (Karpukhin et al., 2020), use embeddings to
capture semantic similarity, outperforming sparse
methods in various tasks including QA task.

Despite its advantages, RAG faces several chal-
lenges. As illustrated in Figure 1, embedding-based
retrieval often prioritizes contexts containing exact
query terms, overlooking logically relevant con-
texts without those terms. In contrast, LLMs can
retrieve contexts that logically support the query
even if they lack query terms. A detailed case study
is provided in Appendix B.1.

Another challenge lies in setting the top-k, or the
number of contexts to retrieve. Embedding-based
retrievers require a fixed top-k, but the optimal
number can vary by domains or chunk size. A large
top-k may introduce noise, while a small top-k
risks missing critical information. While similarity
thresholds (Radeva et al., 2024) can dynamically
adjust retrieval, they often require fine-tuning for
individual data points.

To address these challenges, recent efforts incor-
porate query rewriting (Ye et al., 2023), adaptive
search (Wang et al., 2023b; Jeong et al., 2024), ver-
ification (Li et al., 2023), and self-reflection (Asai



Query
What activities have been helping
Jolene stay distracted during tough
times?

r Context ~
1. 4:06 pm on 23 January, 2023 -
Deborah: Hey Jolene, nice to meet

you! How's your week going? Anything
fun happened?

Context

XXX. 10:17 am on 20 September, 2023
- Jolene: Sure Deb, it's great

catching up. Keep on finding those
beauties!
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Figure 2: Framework of Letriever. There are three stages. 1. Retrieval: We let LLM retrieve indices of relevant
contexts to the question. 2. Post-processing: We remove the duplicates and preserve the order. 3. Generation: We
replace the indices with the original contexts. Finally, LLM answers to the query with the retrieved contexts.

et al., 2023; Li et al., 2024). We address these chal-
lenges by directly employing LLMs as retrievers,
leveraging their advanced reasoning and contextual
understanding capabilities

2.3 Prompt Engineering

Prompt engineering is a critical technique for opti-
mizing the performance of large language models
(LLMs) and is widely utilized to adjust model out-
puts across various tasks. Previous study (Brown
et al., 2020) introduced Few-shot prompts with
GPT-3, incorporating task examples into the input
to enhance the model’s contextual learning abilities.
Subsequently, the impact of Few-shot prompt struc-
ture and expression on performance was analyzed,
demonstrating that optimal prompt design can sig-
nificantly improve model outputs (Scao and Rush,
2021). Additionally, the effects of prompt order
and composition on model responses were evalu-
ated, emphasizing the importance of fine-tuning
prompt details (Perez et al., 2021).

The expanded application of prompt engineering
for complex tasks has led to the development of
Chain-of-Thought (CoT) prompts. CoT prompts
have been shown to guide models to explicitly pro-
cess intermediate reasoning steps, achieving su-
perior performance in solving mathematical prob-
lems and logical reasoning tasks (Wei et al., 2022).
Furthermore, CoT prompts have been effectively
employed in Zero-shot settings, significantly en-
hancing the model’s reasoning capabilities (Kojima
et al., 2022). Furthermore, to refine multi-step
reasoning across diverse tasks, combining CoT
prompts with additional prompt instructions has

also been proposed (Wang et al., 2022).

Prompt engineering also plays a pivotal role in
domain-specific tasks. Customized prompts incor-
porating domain knowledge, such as in law or
medicine, have been shown to significantly im-
prove model accuracy (Mishra et al., 2022). Prompt
designs reflecting specific vocabulary and writ-
ing styles have been found to outperform generic
prompts in domain-specific tasks (Longpre et al.,
2021). Additionally, a methodology for eliminat-
ing irrelevant information within prompts has been
proposed, creating concise and effective designs
that improve the efficiency of domain-specific ap-
plications (Min et al., 2022).

Our method also uitlizes prompt engineering
techniques to summarize long input contexts.

3 Letriever

This outlines Letriever, which utilizes LLMs as re-
trievers in long-context question answering tasks.
Our approach consists of three stages: Retrieval,
Post-processing, and Generation. The overall
framework is illustrated in Figure 2

3.1 Retrieval

We designed the retrieval phase to be as simple
as possible to investigate the ability of LLM to
retrieve contexts. We simply provided all the con-
texts C, which are segmented into sentences, to
the LLM and instructed it with instruction I, to
retrieve k£ most important contexts for answering
the question q. As a result, LLM responds a Python
list Lyaw = {71, 12, ...,y } containing the indices
of the retrieved context to ensure that the context



is not modified. Note that the number of retrieved
indices n can be different from k. See Analysis 5.2
for more details. The process can be written as
follows:

Leagw = LLM(I’I‘7 C; q; k)7

In contrast to traditional methods, this approach
does not retrieve contexts based on embedding sim-
ilarity with the query. Instead, it relies on the expec-
tation that the LLM can identify relevant contexts
that embedding similarity alone may fail to capture.

Like Figure 3, we provide the prompt used by
the LLM to retrieve relevant contexts during the
retrieval phase. Full contexts and a question are
provided to the LLM. Then, the LLM is instructed
to select the relevant contexts that can help answer
the question. For the generation prompt, we adopt
different prompts depending on the dataset.

3.2 Post-processing

After receiving the list of indices from the LLM,
we further post-processed it. The LLM occasion-
ally included duplicate indices in its response. We
removed these duplicate indices. Additionally, the
list of indices provided by the LLM was in no par-
ticular order; it was neither ascending nor descend-
ing. This suggests that the LLM arranged the in-
dices based on their importance in answering the
given question. We did not rearrange these indices;
instead, we maintained the original order provided
by the LLM. As a result, we get a final list of in-

Select {k} important contexts from
CONTEXT. Important contexts are those

that can help answer the QUESTION.
Provide the selected contexts’
positions (indices) in a Python

list. Provide only the indices as your
response. Assume that the index starts
from @. The indices must also be less
than {context_len}. Output as a list.

## CONTEXT
{context}
## QUESTION
{question}

Figure 3: Prompt for retrieval stage in Letriever
framework. For k = no_k setting, we simply do not
provide {k} to LLM, allowing the LLM to determine it
dynamically.

dices of relevant contexts L.

3.3 Generation

The generation phase is the same as the traditional
embedding-based RAG method. We extract the
retrieved contexts Creieved DY replacing the post-
processed indices L, with the original contexts.
Given the retrieved contexts Cregrieved and instruc-
tion I, a generation model finally generates an
answer A based on the question q.

C'retrieved = {C[l] ‘ le LP}7
A= LLM(Ig§ Cretrieved; 4)

4 Experiments

4.1 Datasets

LoCoMoQA (Maharana et al., 2024). LoCoMo
is a dataset of very long-term conversations with
multi-sessions. We use 1,540 QA pairs in this
dataset, excluding adversarial questions that a gen-
eration model should answer as ‘unanswerable’ be-
cause the evidence is absent, making them irrele-
vant to the performance of retrieval methods. These
QA pairs include single-hop, multi-hop, temporal,
and open-domain questions. In addition, we use
two types of retrieval units in the dataset: dialogue
and observation, the latter of which refers to infor-
mation observed in the dialogue history (e.g., ’Car-
oline attended an LGBTQ support group recently
and found the transgender stories inspiring’).

QASPER (Dasigi et al., 2021). QASPER is a
dataset for question answering on scientific re-
search papers. It consists of 5,049 questions over
1,585 Natural Language Processing papers. We
conducted experiments using a dataset of 1,155
QA pairs, excluding unanswerable questions. Each
question in the dataset was associated with multi-
ple annotator-provided answers. To evaluate model
performance, we calculated scores for all available
answers and adopted the maximum score for each
question as the final metric.

SQuAD 2.0 (Rajpurkar et al., 2018). This dataset
is designed to evaluate reading comprehension and
question answering (QA) performance. It consists
of multiple paragraphs per topic, each containing
several question-answer pairs. Since individual
paragraphs average around five sentences and do
not provide long contexts, multiple paragraphs un-
der the same topic were concatenated into a single
context. One question-answer pair was extracted



Answer Prediction

Evidence Retrieval

Dataset Retrieval Method  ——RGUGE-L. Precision Recall F1
Full Context 39.1 38.5 0.3 100.0 0.6
DRAGON 45.1 44.2 4.5 81.8 8.5
(L];’gfi\ggA ESmistral-7b 452 443 24 87.1 4.7
openai-embedding 47.3 46.6 10.3 77.6  18.2
Letriever (Ours) 48.7 48.0 46.1 682 55.0
Full Context 28.7 27.7 0.5 1000 1.0
DRAGON 41.0 40.0 16.5 61.8 26.0
(Lgfs‘:r\izggl , ESmisual 7 40.7 39.7 9.1 658  16.0
openai-embedding 41.8 40.9 17.0 63.2 268
Letriever (Ours) 42.9 41.9 41.4 569 479
Full Context 479 46.5 5.3 100.0 9.7
DRAGON 429 41.2 13.6 88.2 219
QASPER E5 mistral-7b 45.2 43.1 12.0 92.0 19.8
openai-embedding 43.8 42.0 14.0 91.1 226
Letriever (Ours) 48.8 47.1 354 76.6  39.1

Table 1: Abstractive question answering performance on the LoCoMoQA and QASPER datasets. The best
performance is marked in bold. Results are based on Fl-score, ROUGE-L metric for answer prediction, and
precision, recall, and F1 scores for evidence retrieval performance.

from each paragraph to create the QA dataset. The
dev dataset was used, resulting in 350 question-
answer pairs for experimentation, excluding unan-
swerable questions.

4.2 Evaluation Metrics

Answer Prediction. We report F1 and ROUGE-
L (Lin, 2004) scores for abstractive QA tasks,
where the generative model is required to rephrase
or summarize relevant information (e.g., LoCo-
MoQA and QASPER). For the extractive QA task,
where the generative model is required to answer
by identifying the specific span of text directly from
the context (e.g., SQuUAD), we report F1 and Exact
Match (EM) scores.

Evidence Retrieval. Using the gold evidence la-
beled in the LoOCoMoQA and QASPER datasets,

Dataset Retrieval Method F1 EM
Full Context 63.0 31.7
DRAGON 754 44.6

SQuAD  ESpistral-7b 742 443
openai-embedding 749 41.7
Letriever (Ours) 75.5 44.6

Table 2: Extractive question answering performance
on the SQuAD2.0 dataset. The best performance is
marked in bold. Results are based on F1-score and EM
metric for answer prediction

we evaluate evidence retrieval performance based
on Precision, Recall, and F1. High Recall indicates
that the model successfully retrieves a large portion
of the gold evidence context, while high Precision
suggests that the retrieved context contains minimal
noise. The F1 score provides a balance between
these two metrics.

4.3 Experimental Setup

Baselines. We utilize two types of baseline re-
trieval methods: (1) Full Context inputs all con-
texts to a generation model. Their length is within
token limit of the model. (2) Embedding-based
retrievers retrieve relevant contexts from a vector
database by calculating similarity scores between
embedded contexts and the question. We employ
DRAGON (Lin et al., 2023), ESuisrar-7s (Wang
et al., 2023a), and openai-embedding which is
text-embedding-3-large!.

Generation Model. To evaluate retrieval perfor-
mance, we used a fixed generation model across all
baselines and our proposed method. Specifically,
we employed gpt-40-miniZ, which supports in-
puts of up to 128K tokens.

Top-k. We evaluate the baselines and our method

with top-k settings of 5, 10, 25, and 50. We also in-
clude a no_k setting, where the LLM dynamically

"https://platform.openai.com/docs/guides/embeddings
Zhttps://platform.openai.com/docs/models#gpt-4o-mini



determines the number of contexts to retrieve. This
setting is unavailable to embedding-based retriev-
ers. Retrieval is performed at the sentence level.

4.4 Results and Discussions

Table 1 presents the results for abstractive QA,
while Table 2 presents the results for extractive QA.
For clarity, the results for each retrieval method
in the table were obtained using the specific top-
k setting that yielded the best answer prediction
performance for that method and dataset. The de-
tailed results with all top-k settings are presented
in Appendix A.

As Table 1 and Table 2 show, Letriever
achieves the best performance across both abstrac-
tive and extractive datasets, with F1 scores of
48.7 for LoCoMoQA (Dialogue), 42.9 for LoCo-
MoQA(Observation), 48.8 for QASPER, and 76.9
for SQuUAD.

The Full Context method includes all required
contexts, achieving 100% recall in retrieval accu-
racy. Despite containing all necessary evidence,
it produced the poorest answer prediction perfor-
mance, except on the QASPER dataset. This indi-
cates that while LLMs can handle long contexts,
their ability to utilize them effectively remains lim-
ited. Moreover, longer inputs often generate longer
outputs, which can hinder performance in QA tasks
requiring concise answers. A related case study is
provided in Appendix B.2.

For the QASPER dataset, Table 1 shows that
the Full Context method outperformed all baseline
embedding-based retrievers but underperformed
compared to our LLM-based retriever approach.
These findings suggest that while RAG methods
help reduce computational costs, they may fall
short on certain datasets. In contrast, LLMs demon-
strate strong potential for retrieving relevant con-
texts based on the query.

Regarding the evidence retrieval performance in
Table 1, embedding-based retrievers consistently
achieved higher Recall than our method. As dis-
cussed in Analysis 5.2, this is because LLM-based
retrieval typically retrieves fewer contexts than the
specified top-k. Since Recall reflects the propor-
tion of evidence included in the retrieved content,
retrieving more contexts generally leads to higher
Recall. However, the answer prediction results re-
veal that higher Recall does not always translate to
better performance. This highlights the importance
of balancing sufficient retrieval of relevant content
with minimizing noise in the process.

Answer Prediction (F1)

Method
Lem Lem Sqd Qas
(Dia.) (Obs) >3 P
Letriever (Ours) 37.8 35,7 778 42.8
w/ s.0. 36.1 336 763 43.0
w/ k.d. 379 357 78.0 425
w/ s.0. & k.d. 356 339 766 432

Table 3: Ablation Study on Post-processing. s.o. de-
notes sorting order, and k.d. denotes keeping duplicates.

S Analysis
5.1 Ablation Study

Table 3 represents the answer prediction perfor-
mance under post-processing ablation. To bet-
ter assess the impact of each ablation on perfor-
mance, samples where post-processing did not al-
ter the results were excluded. Overall, except for
QASPER dataset, preserving both order and du-
plicates achieved the optimal answer prediction

actual k actual k
Dataset  top-k (median)  (avg) F1
5 5 3.7 48.8
10 4 53 48.4
(LSiZSA 25 5 9.1  47.1
50 4 114 476
no_k 2 287  48.7
5 5 4.0 42.8
10 5 53 42.7
(LSESA 25 4 75 425
50 4 8.3 42.4
no_k 2 3.4 42.9
5 5 5.0 46.6
10 10 9.3 48.4
QASPER 25 25 19.0 48.6
50 10 356 48.8
no_k 5 5.6 47.9
5 5 4.6 75.5
10 10 7.3 75.1
SQuAD 25 5 114 746
50 5 11.8 745
no_k 2 2.8 77.4

Table 4: Analysis of the number of contexts actually
retrieved by the LLM, denoted as actual k, is pro-
vided. The numbers vary based on the top-k settings
and datasets. We also present the answer prediction per-
formance (F1) for each top-k setting to provide insight
into the relationship between the top-k settings and an-
swer prediction performance.
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Figure 4: Comparison of distribution of the number of evidences on LoCoMoQA dataset; (a): the number of
gold evidences, (b): the number of evidences retrieved by LLM where the retrieval unit is dialogue, (c): the number
of evidences retrieved by LLM where the retrieval unit is observation. Among all of the k settings, no_k, which
does not instruct the number of k, demonstrated the closest median and interquartile range.

scores. This indicates that LLM retrieves contexts
in an order that results in better answer predictions
and tends to duplicate important contexts. How-
ever, we removed duplicates in the main experi-
ment because the baseline models cannot handle
duplicates.

5.2 Analysis on Contexts Retrieved by LLM

We provide an analysis on the number of contexts
retrieved by LLM in Table 4. Overall, the average
number of retrieved contexts increases as the top-
k increases. In addition, there is an interesting
behavior on median value. In QASPER, the median
value matched the top-k up to k£ = 25, but dropped
sharply afterward. A similar pattern was observed
in SQuAD, where the median matched the top-k
up to k = 10, then dropped sharply and remained
low.

This indicates that while the LLM attempts to
follow the specified instructions, it tends to retrieve
fewer contexts than the given number, relying on
its own judgment. Notably, this judgment appears
to align with improved answer prediction perfor-
mance. For example, the overall median value for
QASPER is significantly higher than that of other
datasets, and its best performance was achieved
at £ = 50. In contrast, other datasets reached
their best performance at k = 5 or k = noy, high-
lighting the LLM’s adaptability to different dataset
requirements.

5.3 A Distributional Comparison with Gold
Evidences

Figure 4 compares the distribution of gold-labeled
evidences in the LoCoMoQA dataset with the ev-
idences retrieved by the LLM. The gold evidence
distribution suggests that the optimal number of

evidences varies, even across questions within the
same dataset. Traditional embedding-based retriev-
ers, which use a fixed top-k setting, cannot replicate
this variability, often leading to either the inclusion
of noise or the omission of necessary evidence.

In contrast, LLLMs can retrieve a variable num-
ber of contexts. While the number depends on
the top-k setting, the no_k setting shows the clos-
est median and interquartile range to the gold ev-
idence distribution, whether the retrieval unit is
dialogue or observation. Moreover, since LL.M-
based retrieval achieved the highest Precision and
F1 scores, it strongly suggests that LLMs effec-
tively minimize noise by dynamically selecting the
appropriate number of contexts based on the query.

Figure 5 shows the distribution of the number of
evidences in the SQuAD 2.0 dataset across various
k settings. In SQuAD 2.0, the highest performance
is achieved with the £k = 5 setting, followed by
the no-k setting. From the distribution table, we
can observe that the evidence distribution for the
no-k setting closely resembles that of the £ = 5
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Figure 5: Distribution of the number of evidences in
SQuAD 2.0
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Figure 6: Comparison of the performance variation
between full context and Letriever (Ours) with dif-
ferent context lengths. Red represents the performance
of full context, and green represents the performance
of Letriever. While the performance of full context de-
creases as the context length increases, Letriever (Ours)
shows minimal performance variation.

setting. This suggests that when the LLM extracts
evidence without being assigned a specific k value,
it inherently selects the k value that it considers
optimal for performance.

5.4 Performance Variation with Respect to
Context Length

Figure 6 illustrates the performance variation be-
tween full context and Letriever on SQuAD 2.0
under different context lengths. The "long" setting
refers to the use of the full context without any
modifications. The "middle" setting uses only the
first two-thirds of the full context as input, while
the "short" setting uses only the first one-third of
the full context as input. In the SQuAD 2.0 dev
set, there were not many datasets with contexts
containing more than 300 sentences. Since this ex-
periment involves only inference, not training, we
also included the training dataset in the experiment.

As the context length increases, the perfor-
mance of full context gradually declines, whereas
Letriever (Ours) maintains stable performance.
This demonstrates that as the context length grows,
the LLM struggles to effectively process the full
context. Consequently, the results indicate that
summarizing the context enables the LLM to pro-
cess it more effectively, as evidenced by the consis-
tently high performance.

6 Conclusion

In this study, we propose Letriever, which lever-
ages Large Language Models (LLMs) as contex-

tual retrievers, and explored its potential for long-
context Question Answering (QA) tasks. Our find-
ings demonstrate that LLMs can effectively retrieve
relevant information and adaptively process long
contexts, resulting in higher answer prediction ac-
curacy and retrieval precision compared to baseline
methods. This robustness stems from the flexibility
of varying top-k settings, which allows the model
to retrieve an appropriate number of contexts based
on different questions, and the ability to include
contexts that do not contain words from the ques-
tion but are logically essential.

Such adaptability enables LLM-based retrieval
to address complex contextual nuances more effec-
tively than traditional Retrieval-Augmented Gen-
eration (RAG) approaches that retrieve contexts
based on embedding similarity.

7 Limitations

Despite the promising results demonstrated by
Letriever, there are several limitations. First, it
has primarily been evaluated on tasks within the
context window limits of the LLM. We need to
extend this methodology to address scenarios with
contexts that exceed these limits, making it more
scalable for real-world applications.

A possible approach is to segment the full con-
text based on the token limit of the LLM. By re-
trieving according to the number of segments and
concatenating the results, we can obtain the final
retrieval result. Alternatively, a hybrid approach
that first filters candidate contexts and then passes
them to Letriever for further filtering or reranking
is also possible. However, if embedding-based re-
trievers are used in the filtering stage, there would
still be limitations of embedding-based retrievers
discussed in this paper.

Second, as discussed, LLMs struggle to effec-
tively utilize long contexts, which could influence
the performance of the retrieval stage in our ap-
proach, as the LLM needs to retrieve relevant con-
texts from the full context. A framework that re-
duces the number of contexts given in the retrieval
stage may be necessary for higher performance.
Therefore, our future work could focus on effec-
tively addressing scenarios that were not discussed
in this study and enhancing the retrieval perfor-
mance of LLMs by reducing the length of the given
contexts during the retrieval stage.
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A Detailed Experimental Results

The detailed question answering evaluation results
with all top-k settings are presented in Table 5,
Table 6 and Table 7.

Answer Prediction. The Full Context method
showed the worst performance on LoCoMoQA and
SQuAD, while in QASPER, all the RAG meth-
ods, except for Letriever (Ours), deteriorated com-
pared to Full Context, regardless of k. This indi-
cates limitations of RAG on certain datasets. Lo-
CoMoQA and SQuAD achieved the best results
when k = no_k or k = 5, whereas QASPER per-
formed best with £ = 50. This can be attributed to
QASPER’s need for a wider range of evidence. The
performance improvement as the k value increases
supports this trend. Additionally, QASPER differs
from extractive datasets like SQuAD, where an-
swers are concise. QASPER, in contrast, requires a
deep understanding of the full context of scientific
papers, necessitating the retrieval of a larger and
more comprehensive set of relevant information.

Retrieval Accuracy. Regarding Retrieval Accu-
racy, Letriever performed the best when k = 5 or
k = 10 in QASPER and slightly better than some
baselines when & = 5 in LoCoMoQA. However,
when k increases to 25 or 50, embedding-based
retrievers achieve much higher Recall scores than
Letriever. The rational for the result is discussed
in Experiments 4.4. However, as discussed, a high
Retrieval Recall does not necessarily correlate with
better Answer Prediction performance. While it is
important to include sufficient relevant content, it
is equally crucial to reduce noise in the retrieval
process to improve the Precision score. Regarding
this, Letriever demonstrates its potential by achiev-
ing outstanding Precison and F1 scores, escpecailly
when k = no_k.
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Answer Prediction

Retrieval Method Fi EM

Full Context 63.0 31.7
no k

Letriever (Ours) 77.4 443
k=5

DRAGON 75.2 434

ES5 mistral-70 74.2 44.3

openai-embedding 74.9 41.7

Letriever (Ours) 75.5 44.6
k=10

DRAGON 754 44.6

ES5mistral-7b 72.1 429

openai-embedding 72.3 41.1

Letriever (Ours) 75.1 43.1
k=25

DRAGON 72.4 42.6

ES5 mistral-70 70.9 41.4

openai-embedding 70.2 394

Letriever (Ours) 74.6 43.4
k=50

DRAGON 70.5 40.9

ESmistral-7b 71.0 41.1

openai-embedding 69.3 38.6

Letriever (Ours) 74.5 43.1

Table 5: Detailed question answering performance
on SQuAD 2.0 dataset. The optimal performance is
marked in bold. Results are based on F1-score, EM
metric for answer prediction; higher is better.



Answer Prediction Evidence Retrieval

Retrieval Method F1 ROUGE-L Recall@k R-Prec F1
Dia. Obs. Dia. Obs. Dia. Obs. Dia. Obs. Dia. Obs.
Full Context 39.1 28.7 385 27.7 100.0 100.0 03 05 06 1.0
no_ k
Letriever (Ours) 48.7 42.9 48.0 419 68.2 56.9 46.1 414 55.0 47.9
k=5
DRAGON 432 41.0 42.5 40.0 63.7 61.8 16.1 16.5 25.7 26.0
ES5 mistral-70 439 39.8 43.1 39.0 62.7 59.7 15,5 15.6 249 24.6

openai-embedding 46.4 41.8 457 409 68.7 632 17.5 17.0 279 26.8
Letriever (Ours) 488 428 479 419 66.6 59.8 334 278 445 38.0

k=10
DRAGON 44.4 40.7 43.6 39.8 7277  66.4 96 93 17.0 16.3
E5mistral-7b 44.8 40.7 439 39.7 71.5 65.8 92 9.1 16.3 16.0

openai-embedding 473 41.6 46.6 40.7 77.6  68.8 103 9.8 182 17.2
Letriever (Ours) 48.4 427 477 41.8 68.0 614 31.7 29.0 432 394

k=25
DRAGON 45.1 39.2 442 38.2 81.8 719 45 43 85 8.1
ESmistral-7b 44.8 404 439 394 81.3 72.0 44 43 83 8.1

openai-embedding 464 414 457 40.0 &7.1 733 49 45 93 &5
Letriever (Ours) 47.1 425 464 41.6 68.3 63.1 2777 28.7 39.4 395

k=50
DRAGON 447 38.5 437 37.5 87.5 747 25 23 49 45
ES5mistral-7b 452 39.1 443 38.1 87.1 753 24 23 47 45

openai-embedding 46.3 39.6 454 38.6 919 763 27 24 52 47
Letriever (Ours) 476 424 46.7 414 73.3 635 28.7 30.1 412 40.8

Table 6: Detailed question answering performance on LoCoMoQA. The best performance is marked in bold.
Results are based on F1-score, ROUGE-L metric for answer prediction and Recall@k, R-Precision, F1 metric for
evidence retrieval; higher is better.
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Answer Prediction Evidence Retrieval

Retrieval Method  —57——}GUGE-L. Recall  Precision  Fl
Full Context 479 46.5 100.0 5.3 9.7
no k
Letriever (Ours) 479 46.1 52.8 57.9 47.6
k=5
DRAGON 30.0 29.3 39.1 44.5 35.5
ES5 mistral-7b 37.1 35.8 48.2 44.0 39.8
openai-embedding 37.2 36.0 43.0 49.2 39.0
Letriever (Ours) 46.6 44.7 51.9 52.9 46.0
k=10
DRAGON 36.4 35.2 56.8 35.0 37.5
ES5 mistral-7b 40.5 38.8 65.0 33.1 38.5
openai-embedding 40.6 38.9 60.9 37.9 40.4
Letriever (Ours) 48.4 46.4 67.1 42.8 45.8
k=25
DRAGON 40.8 394 76.8 21.6 30.5
E5 mistral-7b 44.3 42.2 82.7 194 28.7
openai-embedding 43.3 41.8 80.9 23.1 32.5
Letriever (Ours) 48.6 46.8 76.7 35.6 41.2
k=50
DRAGON 429 41.2 88.2 13.6 21.9
ES5 mistral-7b 452 43.1 92.0 12.0 19.8
openai-embedding 43.8 42.0 91.1 14.0 22.6
Letriever (Ours) 48.8 47.1 76.6 354 39.1

Table 7: Detailed question answering performance on QASPER. The best performance is marked in bold.
Results are based on F1-score, ROUGE-L metric for answer prediction and Recall, Precision, F1 metric for evidence
retrieval; higher is better.
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B Case Study
B.1 Comparison between Embedding-based Retrieval and Our Method

Question: '"What does Jon plan to do at the grand opening of his dance studio?"
Gold Answer: "savor all the good vibes"

Retrieval Method: DRAGON (top-k: 50)
Retrieved Context List:
Top-1. 8:29 pm on 13 June, 2023 - Jon said, "Thanks, Gina! It’s been so inspiring to work with
our young dancers, seeing their passion and commitment. Opening the dance studio’s been a great
experience - [ want it to be a place of support and encouragement for all our dancers. Will you
show me this presentation?"

Top-50. 9:32 am on 8 February, 2023 - Jon said, "Thanks, Gina! Your pep-talk really meant a lot.
I’m not gonna give up on my dreams - my dance studio and biz ventures need the hard work I'm
putting in. Love having you in my corner, thanks for always being there!"

Recall@k: 0.0

Predicted Answer: "Let’s make some awesome memories tomorrow at the grand opening!"

F1: 0.0

Retrieval Method: ES,istral-7p (top-k: 50)

Retrieved Context List:

Top-1. 10:04 am on 19 June, 2023 - Jon said, "Thanks, Gina. Still working on opening a dance
studio.”

Top-50. 3:14 pm on 11 May, 2023 - Gina said, "It must be scary stepping into the unknown but
I know you can do it, Jon. With your determination and drive, your dance studio will be a huge
success. Keep that positive outlook and keep going!"

Recall@k: 0.0

Predicted Answer: "Let’s make some awesome memories tomorrow at the grand opening!"

F1: 0.0

Retrieval Method: openai-embedding (top-k: 50)

Retrieved Context List:

Top-1. 4:04 pm on 20 January, 2023 - Jon said, "I’ve been into dancing since I was a kid and it’s
been my passion and escape. I wanna start a dance studio so I can teach others the joy that dancing
brings me."

Top-50. 10:04 am on 19 June, 2023 - Jon said, "Yeah! Let’s make some awesome memories
tomorrow at the grand opening!" and shared a photo of a man in a native costume is giving another
man a high five

Recall@k: 0.0

Predicted Answer: "Can’t wait for it - and for you to be there!"

F1: 0.0

Table 8: A case study of embedding-based retrieval methods on LoCoMoQA. All of the methods tended to
prioritize contexts that include words in the given question, highlighted in red, but without a logical reason. The
methods retrieved 50 contexts, but they failed to retrieve evidence that answers the question.
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Question: '"What does Jon plan to do at the grand opening of his dance studio?"
Gold Answer: ''savor all the good vibes"

Retrieval Method: Letriever (Ours) (top-k: no_K)
Retrieved Context List:
Top-1. 10:04 am on 19 June, 2023 - Jon said, "The official opening night is tomorrow. I'm working
hard to make everything just right. Can’t wait to see it all come together!" and shared a photo of a
group of young dancers in a dance studio
Top-2. 10:04 am on 19 June, 2023 - Gina said, "Congrats, Jon! The studio looks amazing. You’ve
put a lot of work into this and I’'m so pumped for the launch tomorrow. Don’t miss a beat!"
Top-3. 10:04 am on 19 June, 2023 - Gina said, "Wow, Jon, you must be so excited! You’ve come
so far since we last talked, and tomorrow’s gonna be a blast! All those long nights were worth it -
so take some time to savor it. Capture the joy and thrill that dance brings - it’s magical!"
Top-4. 10:04 am on 19 June, 2023 - Jon said, '"Tomorrow’s gonna be an awesome night and
I’m not gonna forget a second of it. I put so much into this and I want to savor all the good
vibes. Thanks for always having my back. You’re the best!"
Top-5. 10:04 am on 19 June, 2023 - Jon said, "Yeah! Let’s make some awesome memories
tomorrow at the grand opening!" and shared a photo of a man in a native costume is giving another
man a high five

Recall@k: 100.0

Predicted Answer: '"Savor all the good vibes."

F1: 100.0

Table 9: A case study of the LLLM-based retrieval method (Ours) on LoCoMoQA. LLM was able to retrieve
evidence that does not include words in the given question, highlighted in bold, but logically supports it. In this
case, we did not specify the number of contexts to retrieve, and LLM retrieved 5 contexts, including that the grand
opening is tomorrow and Jon plans to savor all the good vibes tomorrow.
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B.2 Comparison between Full Context and Our Method

Prompt

{context}

Based on the above context, write an answer in the form of a short
phrase for the following question. Answer with exact words from the context
whenever possible. If the answer is date, please specify dates precisely rather
than using relative terms like ’next month’.

Question: {question} Short answer:

Table 10: Prompt used in the generation stage. The prompt instructs to provide a concise answer. Therefore, the
prediction should be concise regardless of the length of the context.
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Example 1

Question: "What was the Norman religion?"
Gold Answer: '""Catholicism"

Retrieval Method: Full Context
Predicted Answer: "The Normans replaced the Norse religion with Catholicism (Christianity)."
F1: 25.0

Retrieval Method: Letriever (Ours) (top-k: 5)
Retrieved Context List:

Top-2. Rollo’s contingents who raided and ultimately settled Normandy and parts of the Atlantic
coast included Danes, Norwegians, Norse—Gaels, Orkney Vikings, possibly Swedes, and Anglo-
Danes from the English Danelaw under Norse control.The descendants of Rollo’s Vikings and
their Frankish wives would replace the Norse religion and Old Norse language with Catholicism
(Christianity) and the Gallo-Romance language of the local people, blending their maternal Frankish
heritage with Old Norse traditions and customs to synthesize a unique Normangulture in the north
of France.

Predicted Answer: '"Catholicism (Christianity)"
F1: 66.7

Example 2

Question: "When did ARPNET and SITA become operational?"
Gold Answer: ''1969"

Retrieval Method: Full Context
Predicted Answer: "ARPANET and SITA became operational in 1969."
F1: 28.6

Retrieval Method: Letriever (Ours) (top-k: 5)
Retrieved Context List:
Top-1. <Uyless Black, X.25 and Related Protocols, IEEE Computer Society, 1991> <Uyless
Black, Frame Relay Networks, McGraw-Hill, 1998> <Uyless Black, MPLS and Label Switching
Networks, Prentice Hall, 2001> < Uyless Black, ATM, Volume I, Prentice Hall, 1995>ARPANET
and SITA HLN became operational in 1969.

Predicted Answer: ''"1969"

F1: 100.0

Table 11: Case Study of the LLM-based retrieval method (Ours) on SQuAD 2.0. When the full context is
provided, the predictions tend to include the correct answer but are delivered in long sentences rather than concise
responses, which are intended by the prompt. On the other hand, the Letriever (Ours) answers succinctly and
provides the correct answer effectively.
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