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Abstract
Large Language Models (LLMs) have demon-001
strated outstanding performance on Ques-002
tion Answering (QA) tasks. However, they003
face significant challenges in long-context004
QA due to difficulties in effectively utilizing005
lengthy inputs, resulting in irrelevant responses.006
While Retrieval-Augmented Generation (RAG)007
frameworks have been employed to address this008
issue, they remain limited by retrieval methods009
that prioritize superficial lexical overlaps, lead-010
ing to suboptimal context selection. In this011
study, we propose Letriever, which replaces012
the traditional embedding-based retriever with013
an LLM-based retriever. By leveraging the ad-014
vanced comprehension capabilities of LLMs,015
Letriever enhances retrieval precision and an-016
swer accuracy across diverse QA benchmarks.017
Our findings highlight the potential of LLMs to018
transform retrieval mechanisms in QA systems.019

1 Introduction020

The growing complexity of real-world QA tasks021

highlights the need for methods that can effectively022

process and reason over long, information-rich con-023

texts. With the enhanced token capacity of Large024

Language Models (LLMs) (Achiam et al., 2023;025

Anthropic, 2024) have shown impressive perfor-026

mance across various QA tasks. However, stud-027

ies (Shi et al., 2023) reveal that excessively long028

contexts can introduce noise, making it challeng-029

ing for models to accurately identify and reference030

relevant information.031

Retrieval-Augmented Generation (RAG) is com-032

monly employed to address this issue. By leverag-033

ing semantic search methods such as cosine simi-034

larity, RAG filters out irrelevant noise by assuming035

that the most similar content is also the most rel-036

evant. The limitation of this approach is that it037

may overlook semantically relevant information038

expressed in different ways, leading to inaccura-039

cies in evidence retrieval and downstream answer040

generation.041

To address this issue, we propose Letriever, 042

which replaces the traditional embedding-based 043

retriever with an LLM-based model. Our method 044

leverages the advanced natural language reason- 045

ing capabilities of LLMs in an end-to-end manner, 046

where they function as both retrievers and genera- 047

tors. Instead of processing the entire long context, 048

our approach extracts the most relevant informa- 049

tion based on the query. Unlike traditional RAG, 050

our method can understand complex natural lan- 051

guage information and ensure robust performance 052

by reducing dependency on hyperparameters such 053

as top-k selection. 054

We summarize our contributions as follows: 055

• We propose an LLM-based retriever ap- 056

proach that replaces traditional cosine 057

similarity-based semantic search in Retrieval- 058

Augmented Generation (RAG). 059

• We conduct experiments across diverse QA 060

datasets, demonstrating that the contextual un- 061

derstanding of LLMs enables a more nuanced 062

representation of complex semantics. 063

• We show that leveraging the reasoning capa- 064

bilities of LLMs allows for flexible adjustment 065

of hyperparameters tailored to each dataset, 066

yielding robust performance across diverse 067

QA tasks. 068

This paper addresses the limitations of existing 069

RAG methods and explores a new approach to 070

leverage LLMs as a retriever in QA tasks. Our 071

research aims to enhance the accuracy of key infor- 072

mation retrieval while minimizing noise, making it 073

particularly effective for long documents such as 074

extended conversations or technical papers. 075

1



Figure 1: Comparison between embedding-based and
LLM-based retrieval.

2 Related Work076

2.1 Long Context Model Architectures077

Handling long-context input is challenging due to078

the limitations of traditional transformer architec-079

tures (Vaswani, 2017), which scale quadratically080

with input length. Recent research has proposed081

various efforts to process longer sequences effi-082

ciently, while maintaining the model’s ability to083

understand complex dependencies across tokens.084

One common approach to addressing computa-085

tional complexity involves modifying the attention086

mechanism. Models such as Longformer (Beltagy087

et al., 2020), BigBird (Zaheer et al., 2020), and088

Performer (Choromanski et al., 2020) have intro-089

duced more efficient alternatives to the traditional090

attention mechanism.091

Another strategy focuses on altering the model092

architecture by incorporating recurrent structures,093

as seen in Transformer-XL (Dai, 2019) and Com-094

pressive Transformer (Rae et al., 2019). Hybrid095

models, such as Griffin (De et al., 2024), which096

combines local attention with recurrent blocks, and 097

Reformer (Kitaev et al., 2020), which uses locality- 098

sensitive hashing (LSH). 099

However, recent studies suggest that merely ex- 100

panding the context length is not enough to improve 101

model performance. Longer contexts can lead to 102

the loss of relevant information, especially in the 103

middle of the input (Liu et al., 2024). Moreover, 104

the inclusion of unnecessary or irrelevant infor- 105

mation in long contexts can significantly degrade 106

model performance (Shi et al., 2023). Effectively 107

utilizing long contexts remains a challenge, and 108

this limitation persists in current models. 109

2.2 Retrieval-Augmented Generation 110

Retrieval-Augmented Generation (RAG) is a 111

paradigm to enhance generative models by retriev- 112

ing relevant information from external knowledge 113

sources and using it as context (Lewis et al., 2020). 114

This approach addresses issues in LLMs, such as 115

hallucination and outdated knowledge, by ground- 116

ing their outputs in external information. 117

Retrieval methods are broadly divided into two 118

categories: sparse retrieval and dense retrieval. 119

Sparse retrieval methods, like BM25 (Robertson 120

et al., 1995) and TF-IDF (Sparck Jones, 1972), rely 121

on exact term matching but often struggle with se- 122

mantic relevance. Dense retrieval methods, such as 123

DPR (Karpukhin et al., 2020), use embeddings to 124

capture semantic similarity, outperforming sparse 125

methods in various tasks including QA task. 126

Despite its advantages, RAG faces several chal- 127

lenges. As illustrated in Figure 1, embedding-based 128

retrieval often prioritizes contexts containing exact 129

query terms, overlooking logically relevant con- 130

texts without those terms. In contrast, LLMs can 131

retrieve contexts that logically support the query 132

even if they lack query terms. A detailed case study 133

is provided in Appendix B.1. 134

Another challenge lies in setting the top-k, or the 135

number of contexts to retrieve. Embedding-based 136

retrievers require a fixed top-k, but the optimal 137

number can vary by domains or chunk size. A large 138

top-k may introduce noise, while a small top-k 139

risks missing critical information. While similarity 140

thresholds (Radeva et al., 2024) can dynamically 141

adjust retrieval, they often require fine-tuning for 142

individual data points. 143

To address these challenges, recent efforts incor- 144

porate query rewriting (Ye et al., 2023), adaptive 145

search (Wang et al., 2023b; Jeong et al., 2024), ver- 146

ification (Li et al., 2023), and self-reflection (Asai 147
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Figure 2: Framework of Letriever. There are three stages. 1. Retrieval: We let LLM retrieve indices of relevant
contexts to the question. 2. Post-processing: We remove the duplicates and preserve the order. 3. Generation: We
replace the indices with the original contexts. Finally, LLM answers to the query with the retrieved contexts.

et al., 2023; Li et al., 2024). We address these chal-148

lenges by directly employing LLMs as retrievers,149

leveraging their advanced reasoning and contextual150

understanding capabilities151

2.3 Prompt Engineering152

Prompt engineering is a critical technique for opti-153

mizing the performance of large language models154

(LLMs) and is widely utilized to adjust model out-155

puts across various tasks. Previous study (Brown156

et al., 2020) introduced Few-shot prompts with157

GPT-3, incorporating task examples into the input158

to enhance the model’s contextual learning abilities.159

Subsequently, the impact of Few-shot prompt struc-160

ture and expression on performance was analyzed,161

demonstrating that optimal prompt design can sig-162

nificantly improve model outputs (Scao and Rush,163

2021). Additionally, the effects of prompt order164

and composition on model responses were evalu-165

ated, emphasizing the importance of fine-tuning166

prompt details (Perez et al., 2021).167

The expanded application of prompt engineering168

for complex tasks has led to the development of169

Chain-of-Thought (CoT) prompts. CoT prompts170

have been shown to guide models to explicitly pro-171

cess intermediate reasoning steps, achieving su-172

perior performance in solving mathematical prob-173

lems and logical reasoning tasks (Wei et al., 2022).174

Furthermore, CoT prompts have been effectively175

employed in Zero-shot settings, significantly en-176

hancing the model’s reasoning capabilities (Kojima177

et al., 2022). Furthermore, to refine multi-step178

reasoning across diverse tasks, combining CoT179

prompts with additional prompt instructions has180

also been proposed (Wang et al., 2022). 181

Prompt engineering also plays a pivotal role in 182

domain-specific tasks. Customized prompts incor- 183

porating domain knowledge, such as in law or 184

medicine, have been shown to significantly im- 185

prove model accuracy (Mishra et al., 2022). Prompt 186

designs reflecting specific vocabulary and writ- 187

ing styles have been found to outperform generic 188

prompts in domain-specific tasks (Longpre et al., 189

2021). Additionally, a methodology for eliminat- 190

ing irrelevant information within prompts has been 191

proposed, creating concise and effective designs 192

that improve the efficiency of domain-specific ap- 193

plications (Min et al., 2022). 194

Our method also uitlizes prompt engineering 195

techniques to summarize long input contexts. 196

3 Letriever 197

This outlines Letriever, which utilizes LLMs as re- 198

trievers in long-context question answering tasks. 199

Our approach consists of three stages: Retrieval, 200

Post-processing, and Generation. The overall 201

framework is illustrated in Figure 2 202

3.1 Retrieval 203

We designed the retrieval phase to be as simple 204

as possible to investigate the ability of LLM to 205

retrieve contexts. We simply provided all the con- 206

texts C, which are segmented into sentences, to 207

the LLM and instructed it with instruction Ir to 208

retrieve k most important contexts for answering 209

the question q. As a result, LLM responds a Python 210

list Lraw = {i1, i2, . . . , in} containing the indices 211

of the retrieved context to ensure that the context 212
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is not modified. Note that the number of retrieved213

indices n can be different from k. See Analysis 5.2214

for more details. The process can be written as215

follows:216

Lraw = LLM(Ir;C; q; k),217

In contrast to traditional methods, this approach218

does not retrieve contexts based on embedding sim-219

ilarity with the query. Instead, it relies on the expec-220

tation that the LLM can identify relevant contexts221

that embedding similarity alone may fail to capture.222

Like Figure 3, we provide the prompt used by223

the LLM to retrieve relevant contexts during the224

retrieval phase. Full contexts and a question are225

provided to the LLM. Then, the LLM is instructed226

to select the relevant contexts that can help answer227

the question. For the generation prompt, we adopt228

different prompts depending on the dataset.229

3.2 Post-processing230

After receiving the list of indices from the LLM,231

we further post-processed it. The LLM occasion-232

ally included duplicate indices in its response. We233

removed these duplicate indices. Additionally, the234

list of indices provided by the LLM was in no par-235

ticular order; it was neither ascending nor descend-236

ing. This suggests that the LLM arranged the in-237

dices based on their importance in answering the238

given question. We did not rearrange these indices;239

instead, we maintained the original order provided240

by the LLM. As a result, we get a final list of in-241

Select {k} important contexts from
CONTEXT. Important contexts are those
that can help answer the QUESTION.
Provide the selected contexts’
positions (indices) in a Python
list. Provide only the indices as your
response. Assume that the index starts
from 0. The indices must also be less
than {context_len}. Output as a list.

## CONTEXT
{context}
## QUESTION
{question}

Figure 3: Prompt for retrieval stage in Letriever
framework. For k = no_k setting, we simply do not
provide {k} to LLM, allowing the LLM to determine it
dynamically.

dices of relevant contexts Lp. 242

3.3 Generation 243

The generation phase is the same as the traditional 244

embedding-based RAG method. We extract the 245

retrieved contexts Cretrieved by replacing the post- 246

processed indices Lp with the original contexts. 247

Given the retrieved contexts Cretrieved and instruc- 248

tion Ig, a generation model finally generates an 249

answer A based on the question q. 250

Cretrieved = {C[l] | l ∈ Lp},
A = LLM(Ig;Cretrieved; q)

251

4 Experiments 252

4.1 Datasets 253

LoCoMoQA (Maharana et al., 2024). LoCoMo 254

is a dataset of very long-term conversations with 255

multi-sessions. We use 1,540 QA pairs in this 256

dataset, excluding adversarial questions that a gen- 257

eration model should answer as ‘unanswerable’ be- 258

cause the evidence is absent, making them irrele- 259

vant to the performance of retrieval methods. These 260

QA pairs include single-hop, multi-hop, temporal, 261

and open-domain questions. In addition, we use 262

two types of retrieval units in the dataset: dialogue 263

and observation, the latter of which refers to infor- 264

mation observed in the dialogue history (e.g., ’Car- 265

oline attended an LGBTQ support group recently 266

and found the transgender stories inspiring’). 267

QASPER (Dasigi et al., 2021). QASPER is a 268

dataset for question answering on scientific re- 269

search papers. It consists of 5,049 questions over 270

1,585 Natural Language Processing papers. We 271

conducted experiments using a dataset of 1,155 272

QA pairs, excluding unanswerable questions. Each 273

question in the dataset was associated with multi- 274

ple annotator-provided answers. To evaluate model 275

performance, we calculated scores for all available 276

answers and adopted the maximum score for each 277

question as the final metric. 278

SQuAD 2.0 (Rajpurkar et al., 2018). This dataset 279

is designed to evaluate reading comprehension and 280

question answering (QA) performance. It consists 281

of multiple paragraphs per topic, each containing 282

several question-answer pairs. Since individual 283

paragraphs average around five sentences and do 284

not provide long contexts, multiple paragraphs un- 285

der the same topic were concatenated into a single 286

context. One question-answer pair was extracted 287
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Dataset Retrieval Method Answer Prediction Evidence Retrieval
F1 ROUGE-L Precision Recall F1

LoCoMoQA
(Dialogue)

Full Context 39.1 38.5 0.3 100.0 0.6
DRAGON 45.1 44.2 4.5 81.8 8.5
E5mistral-7b 45.2 44.3 2.4 87.1 4.7
openai-embedding 47.3 46.6 10.3 77.6 18.2
Letriever (Ours) 48.7 48.0 46.1 68.2 55.0

LoCoMoQA
(Observation)

Full Context 28.7 27.7 0.5 100.0 1.0
DRAGON 41.0 40.0 16.5 61.8 26.0
E5mistral-7b 40.7 39.7 9.1 65.8 16.0
openai-embedding 41.8 40.9 17.0 63.2 26.8
Letriever (Ours) 42.9 41.9 41.4 56.9 47.9

QASPER

Full Context 47.9 46.5 5.3 100.0 9.7
DRAGON 42.9 41.2 13.6 88.2 21.9
E5mistral-7b 45.2 43.1 12.0 92.0 19.8
openai-embedding 43.8 42.0 14.0 91.1 22.6
Letriever (Ours) 48.8 47.1 35.4 76.6 39.1

Table 1: Abstractive question answering performance on the LoCoMoQA and QASPER datasets. The best
performance is marked in bold. Results are based on F1-score, ROUGE-L metric for answer prediction, and
precision, recall, and F1 scores for evidence retrieval performance.

from each paragraph to create the QA dataset. The288

dev dataset was used, resulting in 350 question-289

answer pairs for experimentation, excluding unan-290

swerable questions.291

4.2 Evaluation Metrics292

Answer Prediction. We report F1 and ROUGE-293

L (Lin, 2004) scores for abstractive QA tasks,294

where the generative model is required to rephrase295

or summarize relevant information (e.g., LoCo-296

MoQA and QASPER). For the extractive QA task,297

where the generative model is required to answer298

by identifying the specific span of text directly from299

the context (e.g., SQuAD), we report F1 and Exact300

Match (EM) scores.301

Evidence Retrieval. Using the gold evidence la-302

beled in the LoCoMoQA and QASPER datasets,303

Dataset Retrieval Method F1 EM

SQuAD

Full Context 63.0 31.7
DRAGON 75.4 44.6
E5mistral-7b 74.2 44.3
openai-embedding 74.9 41.7
Letriever (Ours) 75.5 44.6

Table 2: Extractive question answering performance
on the SQuAD2.0 dataset. The best performance is
marked in bold. Results are based on F1-score and EM
metric for answer prediction

we evaluate evidence retrieval performance based 304

on Precision, Recall, and F1. High Recall indicates 305

that the model successfully retrieves a large portion 306

of the gold evidence context, while high Precision 307

suggests that the retrieved context contains minimal 308

noise. The F1 score provides a balance between 309

these two metrics. 310

4.3 Experimental Setup 311

Baselines. We utilize two types of baseline re- 312

trieval methods: (1) Full Context inputs all con- 313

texts to a generation model. Their length is within 314

token limit of the model. (2) Embedding-based 315

retrievers retrieve relevant contexts from a vector 316

database by calculating similarity scores between 317

embedded contexts and the question. We employ 318

DRAGON (Lin et al., 2023), E5mistral-7b (Wang 319

et al., 2023a), and openai-embedding which is 320

text-embedding-3-large1. 321

Generation Model. To evaluate retrieval perfor- 322

mance, we used a fixed generation model across all 323

baselines and our proposed method. Specifically, 324

we employed gpt-4o-mini2, which supports in- 325

puts of up to 128K tokens. 326

Top-k. We evaluate the baselines and our method 327

with top-k settings of 5, 10, 25, and 50. We also in- 328

clude a no_k setting, where the LLM dynamically 329

1https://platform.openai.com/docs/guides/embeddings
2https://platform.openai.com/docs/models#gpt-4o-mini
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determines the number of contexts to retrieve. This330

setting is unavailable to embedding-based retriev-331

ers. Retrieval is performed at the sentence level.332

4.4 Results and Discussions333

Table 1 presents the results for abstractive QA,334

while Table 2 presents the results for extractive QA.335

For clarity, the results for each retrieval method336

in the table were obtained using the specific top-337

k setting that yielded the best answer prediction338

performance for that method and dataset. The de-339

tailed results with all top-k settings are presented340

in Appendix A.341

As Table 1 and Table 2 show, Letriever342

achieves the best performance across both abstrac-343

tive and extractive datasets, with F1 scores of344

48.7 for LoCoMoQA(Dialogue), 42.9 for LoCo-345

MoQA(Observation), 48.8 for QASPER, and 76.9346

for SQuAD.347

The Full Context method includes all required348

contexts, achieving 100% recall in retrieval accu-349

racy. Despite containing all necessary evidence,350

it produced the poorest answer prediction perfor-351

mance, except on the QASPER dataset. This indi-352

cates that while LLMs can handle long contexts,353

their ability to utilize them effectively remains lim-354

ited. Moreover, longer inputs often generate longer355

outputs, which can hinder performance in QA tasks356

requiring concise answers. A related case study is357

provided in Appendix B.2.358

For the QASPER dataset, Table 1 shows that359

the Full Context method outperformed all baseline360

embedding-based retrievers but underperformed361

compared to our LLM-based retriever approach.362

These findings suggest that while RAG methods363

help reduce computational costs, they may fall364

short on certain datasets. In contrast, LLMs demon-365

strate strong potential for retrieving relevant con-366

texts based on the query.367

Regarding the evidence retrieval performance in368

Table 1, embedding-based retrievers consistently369

achieved higher Recall than our method. As dis-370

cussed in Analysis 5.2, this is because LLM-based371

retrieval typically retrieves fewer contexts than the372

specified top-k. Since Recall reflects the propor-373

tion of evidence included in the retrieved content,374

retrieving more contexts generally leads to higher375

Recall. However, the answer prediction results re-376

veal that higher Recall does not always translate to377

better performance. This highlights the importance378

of balancing sufficient retrieval of relevant content379

with minimizing noise in the process.380

Method
Answer Prediction (F1)

Lcm
(Dia.)

Lcm
(Obs.) Sqd Qasp

Letriever (Ours) 37.8 35.7 77.8 42.8
w/ s.o. 36.1 33.6 76.3 43.0
w/ k.d. 37.9 35.7 78.0 42.5
w/ s.o. & k.d. 35.6 33.9 76.6 43.2

Table 3: Ablation Study on Post-processing. s.o. de-
notes sorting order, and k.d. denotes keeping duplicates.

5 Analysis 381

5.1 Ablation Study 382

Table 3 represents the answer prediction perfor- 383

mance under post-processing ablation. To bet- 384

ter assess the impact of each ablation on perfor- 385

mance, samples where post-processing did not al- 386

ter the results were excluded. Overall, except for 387

QASPER dataset, preserving both order and du- 388

plicates achieved the optimal answer prediction 389

Dataset top-k actual k
(median)

actual k
(avg.) F1

LcmQA
(Dia.)

5 5 3.7 48.8
10 4 5.3 48.4
25 5 9.1 47.1
50 4 11.4 47.6
no_k 2 28.7 48.7

LcmQA
(Obs.)

5 5 4.0 42.8
10 5 5.3 42.7
25 4 7.5 42.5
50 4 8.3 42.4
no_k 2 3.4 42.9

QASPER

5 5 5.0 46.6
10 10 9.3 48.4
25 25 19.0 48.6
50 10 35.6 48.8
no_k 5 5.6 47.9

SQuAD

5 5 4.6 75.5
10 10 7.3 75.1
25 5 11.4 74.6
50 5 11.8 74.5
no_k 2 2.8 77.4

Table 4: Analysis of the number of contexts actually
retrieved by the LLM, denoted as actual k, is pro-
vided. The numbers vary based on the top-k settings
and datasets. We also present the answer prediction per-
formance (F1) for each top-k setting to provide insight
into the relationship between the top-k settings and an-
swer prediction performance.
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(a) Gold Evidences (b) Retrieved Dialogues (c) Retrieved Observations

Figure 4: Comparison of distribution of the number of evidences on LoCoMoQA dataset; (a): the number of
gold evidences, (b): the number of evidences retrieved by LLM where the retrieval unit is dialogue, (c): the number
of evidences retrieved by LLM where the retrieval unit is observation. Among all of the k settings, no_k, which
does not instruct the number of k, demonstrated the closest median and interquartile range.

scores. This indicates that LLM retrieves contexts390

in an order that results in better answer predictions391

and tends to duplicate important contexts. How-392

ever, we removed duplicates in the main experi-393

ment because the baseline models cannot handle394

duplicates.395

5.2 Analysis on Contexts Retrieved by LLM396

We provide an analysis on the number of contexts397

retrieved by LLM in Table 4. Overall, the average398

number of retrieved contexts increases as the top-399

k increases. In addition, there is an interesting400

behavior on median value. In QASPER, the median401

value matched the top-k up to k = 25, but dropped402

sharply afterward. A similar pattern was observed403

in SQuAD, where the median matched the top-k404

up to k = 10, then dropped sharply and remained405

low.406

This indicates that while the LLM attempts to407

follow the specified instructions, it tends to retrieve408

fewer contexts than the given number, relying on409

its own judgment. Notably, this judgment appears410

to align with improved answer prediction perfor-411

mance. For example, the overall median value for412

QASPER is significantly higher than that of other413

datasets, and its best performance was achieved414

at k = 50. In contrast, other datasets reached415

their best performance at k = 5 or k = nok, high-416

lighting the LLM’s adaptability to different dataset417

requirements.418

5.3 A Distributional Comparison with Gold419

Evidences420

Figure 4 compares the distribution of gold-labeled421

evidences in the LoCoMoQA dataset with the ev-422

idences retrieved by the LLM. The gold evidence423

distribution suggests that the optimal number of424

evidences varies, even across questions within the 425

same dataset. Traditional embedding-based retriev- 426

ers, which use a fixed top-k setting, cannot replicate 427

this variability, often leading to either the inclusion 428

of noise or the omission of necessary evidence. 429

In contrast, LLMs can retrieve a variable num- 430

ber of contexts. While the number depends on 431

the top-k setting, the no_k setting shows the clos- 432

est median and interquartile range to the gold ev- 433

idence distribution, whether the retrieval unit is 434

dialogue or observation. Moreover, since LLM- 435

based retrieval achieved the highest Precision and 436

F1 scores, it strongly suggests that LLMs effec- 437

tively minimize noise by dynamically selecting the 438

appropriate number of contexts based on the query. 439

Figure 5 shows the distribution of the number of 440

evidences in the SQuAD 2.0 dataset across various 441

k settings. In SQuAD 2.0, the highest performance 442

is achieved with the k = 5 setting, followed by 443

the no-k setting. From the distribution table, we 444

can observe that the evidence distribution for the 445

no-k setting closely resembles that of the k = 5 446

Figure 5: Distribution of the number of evidences in
SQuAD 2.0
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Figure 6: Comparison of the performance variation
between full context and Letriever (Ours) with dif-
ferent context lengths. Red represents the performance
of full context, and green represents the performance
of Letriever. While the performance of full context de-
creases as the context length increases, Letriever (Ours)
shows minimal performance variation.

setting. This suggests that when the LLM extracts447

evidence without being assigned a specific k value,448

it inherently selects the k value that it considers449

optimal for performance.450

5.4 Performance Variation with Respect to451

Context Length452

Figure 6 illustrates the performance variation be-453

tween full context and Letriever on SQuAD 2.0454

under different context lengths. The "long" setting455

refers to the use of the full context without any456

modifications. The "middle" setting uses only the457

first two-thirds of the full context as input, while458

the "short" setting uses only the first one-third of459

the full context as input. In the SQuAD 2.0 dev460

set, there were not many datasets with contexts461

containing more than 300 sentences. Since this ex-462

periment involves only inference, not training, we463

also included the training dataset in the experiment.464

As the context length increases, the perfor-465

mance of full context gradually declines, whereas466

Letriever (Ours) maintains stable performance.467

This demonstrates that as the context length grows,468

the LLM struggles to effectively process the full469

context. Consequently, the results indicate that470

summarizing the context enables the LLM to pro-471

cess it more effectively, as evidenced by the consis-472

tently high performance.473

6 Conclusion474

In this study, we propose Letriever, which lever-475

ages Large Language Models (LLMs) as contex-476

tual retrievers, and explored its potential for long- 477

context Question Answering (QA) tasks. Our find- 478

ings demonstrate that LLMs can effectively retrieve 479

relevant information and adaptively process long 480

contexts, resulting in higher answer prediction ac- 481

curacy and retrieval precision compared to baseline 482

methods. This robustness stems from the flexibility 483

of varying top-k settings, which allows the model 484

to retrieve an appropriate number of contexts based 485

on different questions, and the ability to include 486

contexts that do not contain words from the ques- 487

tion but are logically essential. 488

Such adaptability enables LLM-based retrieval 489

to address complex contextual nuances more effec- 490

tively than traditional Retrieval-Augmented Gen- 491

eration (RAG) approaches that retrieve contexts 492

based on embedding similarity. 493

7 Limitations 494

Despite the promising results demonstrated by 495

Letriever, there are several limitations. First, it 496

has primarily been evaluated on tasks within the 497

context window limits of the LLM. We need to 498

extend this methodology to address scenarios with 499

contexts that exceed these limits, making it more 500

scalable for real-world applications. 501

A possible approach is to segment the full con- 502

text based on the token limit of the LLM. By re- 503

trieving according to the number of segments and 504

concatenating the results, we can obtain the final 505

retrieval result. Alternatively, a hybrid approach 506

that first filters candidate contexts and then passes 507

them to Letriever for further filtering or reranking 508

is also possible. However, if embedding-based re- 509

trievers are used in the filtering stage, there would 510

still be limitations of embedding-based retrievers 511

discussed in this paper. 512

Second, as discussed, LLMs struggle to effec- 513

tively utilize long contexts, which could influence 514

the performance of the retrieval stage in our ap- 515

proach, as the LLM needs to retrieve relevant con- 516

texts from the full context. A framework that re- 517

duces the number of contexts given in the retrieval 518

stage may be necessary for higher performance. 519

Therefore, our future work could focus on effec- 520

tively addressing scenarios that were not discussed 521

in this study and enhancing the retrieval perfor- 522

mance of LLMs by reducing the length of the given 523

contexts during the retrieval stage. 524
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A Detailed Experimental Results720

The detailed question answering evaluation results721

with all top-k settings are presented in Table 5,722

Table 6 and Table 7.723

Answer Prediction. The Full Context method724

showed the worst performance on LoCoMoQA and725

SQuAD, while in QASPER, all the RAG meth-726

ods, except for Letriever (Ours), deteriorated com-727

pared to Full Context, regardless of k. This indi-728

cates limitations of RAG on certain datasets. Lo-729

CoMoQA and SQuAD achieved the best results730

when k = no_k or k = 5, whereas QASPER per-731

formed best with k = 50. This can be attributed to732

QASPER’s need for a wider range of evidence. The733

performance improvement as the k value increases734

supports this trend. Additionally, QASPER differs735

from extractive datasets like SQuAD, where an-736

swers are concise. QASPER, in contrast, requires a737

deep understanding of the full context of scientific738

papers, necessitating the retrieval of a larger and739

more comprehensive set of relevant information.740

Retrieval Accuracy. Regarding Retrieval Accu-741

racy, Letriever performed the best when k = 5 or742

k = 10 in QASPER and slightly better than some743

baselines when k = 5 in LoCoMoQA. However,744

when k increases to 25 or 50, embedding-based745

retrievers achieve much higher Recall scores than746

Letriever. The rational for the result is discussed747

in Experiments 4.4. However, as discussed, a high748

Retrieval Recall does not necessarily correlate with749

better Answer Prediction performance. While it is750

important to include sufficient relevant content, it751

is equally crucial to reduce noise in the retrieval752

process to improve the Precision score. Regarding753

this, Letriever demonstrates its potential by achiev-754

ing outstanding Precison and F1 scores, escpecailly755

when k = no_k.756

Retrieval Method Answer Prediction
F1 EM

Full Context 63.0 31.7
no_k

Letriever (Ours) 77.4 44.3
k = 5

DRAGON 75.2 43.4
E5mistral-7b 74.2 44.3
openai-embedding 74.9 41.7
Letriever (Ours) 75.5 44.6

k = 10
DRAGON 75.4 44.6
E5mistral-7b 72.1 42.9
openai-embedding 72.3 41.1
Letriever (Ours) 75.1 43.1

k = 25
DRAGON 72.4 42.6
E5mistral-7b 70.9 41.4
openai-embedding 70.2 39.4
Letriever (Ours) 74.6 43.4

k = 50
DRAGON 70.5 40.9
E5mistral-7b 71.0 41.1
openai-embedding 69.3 38.6
Letriever (Ours) 74.5 43.1

Table 5: Detailed question answering performance
on SQuAD 2.0 dataset. The optimal performance is
marked in bold. Results are based on F1-score, EM
metric for answer prediction; higher is better.
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Retrieval Method
Answer Prediction Evidence Retrieval
F1 ROUGE-L Recall@k R-Prec F1

Dia. Obs. Dia. Obs. Dia. Obs. Dia. Obs. Dia. Obs.
Full Context 39.1 28.7 38.5 27.7 100.0 100.0 0.3 0.5 0.6 1.0

no_k
Letriever (Ours) 48.7 42.9 48.0 41.9 68.2 56.9 46.1 41.4 55.0 47.9

k=5
DRAGON 43.2 41.0 42.5 40.0 63.7 61.8 16.1 16.5 25.7 26.0
E5mistral-7b 43.9 39.8 43.1 39.0 62.7 59.7 15.5 15.6 24.9 24.6
openai-embedding 46.4 41.8 45.7 40.9 68.7 63.2 17.5 17.0 27.9 26.8
Letriever (Ours) 48.8 42.8 47.9 41.9 66.6 59.8 33.4 27.8 44.5 38.0

k=10
DRAGON 44.4 40.7 43.6 39.8 72.7 66.4 9.6 9.3 17.0 16.3
E5mistral-7b 44.8 40.7 43.9 39.7 71.5 65.8 9.2 9.1 16.3 16.0
openai-embedding 47.3 41.6 46.6 40.7 77.6 68.8 10.3 9.8 18.2 17.2
Letriever (Ours) 48.4 42.7 47.7 41.8 68.0 61.4 31.7 29.0 43.2 39.4

k=25
DRAGON 45.1 39.2 44.2 38.2 81.8 71.9 4.5 4.3 8.5 8.1
E5mistral-7b 44.8 40.4 43.9 39.4 81.3 72.0 4.4 4.3 8.3 8.1
openai-embedding 46.4 41.4 45.7 40.0 87.1 73.3 4.9 4.5 9.3 8.5
Letriever (Ours) 47.1 42.5 46.4 41.6 68.3 63.1 27.7 28.7 39.4 39.5

k=50
DRAGON 44.7 38.5 43.7 37.5 87.5 74.7 2.5 2.3 4.9 4.5
E5mistral-7b 45.2 39.1 44.3 38.1 87.1 75.3 2.4 2.3 4.7 4.5
openai-embedding 46.3 39.6 45.4 38.6 91.9 76.3 2.7 2.4 5.2 4.7
Letriever (Ours) 47.6 42.4 46.7 41.4 73.3 63.5 28.7 30.1 41.2 40.8

Table 6: Detailed question answering performance on LoCoMoQA. The best performance is marked in bold.
Results are based on F1-score, ROUGE-L metric for answer prediction and Recall@k, R-Precision, F1 metric for
evidence retrieval; higher is better.
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Retrieval Method Answer Prediction Evidence Retrieval
F1 ROUGE-L Recall Precision F1

Full Context 47.9 46.5 100.0 5.3 9.7
no_k

Letriever (Ours) 47.9 46.1 52.8 57.9 47.6
k=5

DRAGON 30.0 29.3 39.1 44.5 35.5
E5mistral-7b 37.1 35.8 48.2 44.0 39.8
openai-embedding 37.2 36.0 43.0 49.2 39.0
Letriever (Ours) 46.6 44.7 51.9 52.9 46.0

k=10
DRAGON 36.4 35.2 56.8 35.0 37.5
E5mistral-7b 40.5 38.8 65.0 33.1 38.5
openai-embedding 40.6 38.9 60.9 37.9 40.4
Letriever (Ours) 48.4 46.4 67.1 42.8 45.8

k=25
DRAGON 40.8 39.4 76.8 21.6 30.5
E5mistral-7b 44.3 42.2 82.7 19.4 28.7
openai-embedding 43.3 41.8 80.9 23.1 32.5
Letriever (Ours) 48.6 46.8 76.7 35.6 41.2

k=50
DRAGON 42.9 41.2 88.2 13.6 21.9
E5mistral-7b 45.2 43.1 92.0 12.0 19.8
openai-embedding 43.8 42.0 91.1 14.0 22.6
Letriever (Ours) 48.8 47.1 76.6 35.4 39.1

Table 7: Detailed question answering performance on QASPER. The best performance is marked in bold.
Results are based on F1-score, ROUGE-L metric for answer prediction and Recall, Precision, F1 metric for evidence
retrieval; higher is better.
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B Case Study757

B.1 Comparison between Embedding-based Retrieval and Our Method758

Question: "What does Jon plan to do at the grand opening of his dance studio?"
Gold Answer: "savor all the good vibes"

Retrieval Method: DRAGON (top-k: 50)
Retrieved Context List:
Top-1. 8:29 pm on 13 June, 2023 - Jon said, "Thanks, Gina! It’s been so inspiring to work with
our young dancers, seeing their passion and commitment. Opening the dance studio’s been a great
experience - I want it to be a place of support and encouragement for all our dancers. Will you
show me this presentation?"
...
Top-50. 9:32 am on 8 February, 2023 - Jon said, "Thanks, Gina! Your pep-talk really meant a lot.
I’m not gonna give up on my dreams - my dance studio and biz ventures need the hard work I’m
putting in. Love having you in my corner, thanks for always being there!"

Recall@k: 0.0
Predicted Answer: "Let’s make some awesome memories tomorrow at the grand opening!"
F1: 0.0

Retrieval Method: E5mistral-7b (top-k: 50)
Retrieved Context List:
Top-1. 10:04 am on 19 June, 2023 - Jon said, "Thanks, Gina. Still working on opening a dance
studio."
...
Top-50. 3:14 pm on 11 May, 2023 - Gina said, "It must be scary stepping into the unknown but
I know you can do it, Jon. With your determination and drive, your dance studio will be a huge
success. Keep that positive outlook and keep going!"

Recall@k: 0.0
Predicted Answer: "Let’s make some awesome memories tomorrow at the grand opening!"
F1: 0.0

Retrieval Method: openai-embedding (top-k: 50)
Retrieved Context List:
Top-1. 4:04 pm on 20 January, 2023 - Jon said, "I’ve been into dancing since I was a kid and it’s
been my passion and escape. I wanna start a dance studio so I can teach others the joy that dancing
brings me."
...
Top-50. 10:04 am on 19 June, 2023 - Jon said, "Yeah! Let’s make some awesome memories
tomorrow at the grand opening!" and shared a photo of a man in a native costume is giving another
man a high five

Recall@k: 0.0
Predicted Answer: "Can’t wait for it - and for you to be there!"
F1: 0.0

Table 8: A case study of embedding-based retrieval methods on LoCoMoQA. All of the methods tended to
prioritize contexts that include words in the given question, highlighted in red, but without a logical reason. The
methods retrieved 50 contexts, but they failed to retrieve evidence that answers the question.
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Question: "What does Jon plan to do at the grand opening of his dance studio?"
Gold Answer: "savor all the good vibes"

Retrieval Method: Letriever (Ours) (top-k: no_k)
Retrieved Context List:
Top-1. 10:04 am on 19 June, 2023 - Jon said, "The official opening night is tomorrow. I’m working
hard to make everything just right. Can’t wait to see it all come together!" and shared a photo of a
group of young dancers in a dance studio
Top-2. 10:04 am on 19 June, 2023 - Gina said, "Congrats, Jon! The studio looks amazing. You’ve
put a lot of work into this and I’m so pumped for the launch tomorrow. Don’t miss a beat!"
Top-3. 10:04 am on 19 June, 2023 - Gina said, "Wow, Jon, you must be so excited! You’ve come
so far since we last talked, and tomorrow’s gonna be a blast! All those long nights were worth it -
so take some time to savor it. Capture the joy and thrill that dance brings - it’s magical!"
Top-4. 10:04 am on 19 June, 2023 - Jon said, "Tomorrow’s gonna be an awesome night and
I’m not gonna forget a second of it. I put so much into this and I want to savor all the good
vibes. Thanks for always having my back. You’re the best!"
Top-5. 10:04 am on 19 June, 2023 - Jon said, "Yeah! Let’s make some awesome memories
tomorrow at the grand opening!" and shared a photo of a man in a native costume is giving another
man a high five

Recall@k: 100.0
Predicted Answer: "Savor all the good vibes."
F1: 100.0

Table 9: A case study of the LLM-based retrieval method (Ours) on LoCoMoQA. LLM was able to retrieve
evidence that does not include words in the given question, highlighted in bold, but logically supports it. In this
case, we did not specify the number of contexts to retrieve, and LLM retrieved 5 contexts, including that the grand
opening is tomorrow and Jon plans to savor all the good vibes tomorrow.

15



B.2 Comparison between Full Context and Our Method759

Prompt

{context}

Based on the above context, write an answer in the form of a short
phrase for the following question. Answer with exact words from the context
whenever possible. If the answer is date, please specify dates precisely rather
than using relative terms like ’next month’.

Question: {question} Short answer:

Table 10: Prompt used in the generation stage. The prompt instructs to provide a concise answer. Therefore, the
prediction should be concise regardless of the length of the context.
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Example 1

Question: "What was the Norman religion?"
Gold Answer: "Catholicism"

Retrieval Method: Full Context
Predicted Answer: "The Normans replaced the Norse religion with Catholicism (Christianity)."
F1: 25.0

Retrieval Method: Letriever (Ours) (top-k: 5)
Retrieved Context List:
...
Top-2. Rollo’s contingents who raided and ultimately settled Normandy and parts of the Atlantic
coast included Danes, Norwegians, Norse–Gaels, Orkney Vikings, possibly Swedes, and Anglo-
Danes from the English Danelaw under Norse control.The descendants of Rollo’s Vikings and
their Frankish wives would replace the Norse religion and Old Norse language with Catholicism
(Christianity) and the Gallo-Romance language of the local people, blending their maternal Frankish
heritage with Old Norse traditions and customs to synthesize a unique N̈ormanc̈ulture in the north
of France.
...

Predicted Answer: "Catholicism (Christianity)"
F1: 66.7

Example 2

Question: "When did ARPNET and SITA become operational?"
Gold Answer: "1969"

Retrieval Method: Full Context
Predicted Answer: "ARPANET and SITA became operational in 1969."
F1: 28.6

Retrieval Method: Letriever (Ours) (top-k: 5)
Retrieved Context List:
Top-1. <Uyless Black, X.25 and Related Protocols, IEEE Computer Society, 1991> <Uyless
Black, Frame Relay Networks, McGraw-Hill, 1998> <Uyless Black, MPLS and Label Switching
Networks, Prentice Hall, 2001> < Uyless Black, ATM, Volume I, Prentice Hall, 1995>ARPANET
and SITA HLN became operational in 1969.

Predicted Answer: "1969"
F1: 100.0

Table 11: Case Study of the LLM-based retrieval method (Ours) on SQuAD 2.0. When the full context is
provided, the predictions tend to include the correct answer but are delivered in long sentences rather than concise
responses, which are intended by the prompt. On the other hand, the Letriever (Ours) answers succinctly and
provides the correct answer effectively.
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