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Abstract
Intelligent decision support (IDS) systems leverage artifi-
cial intelligence techniques to generate recommendations that
guide human users through the decision making phases of
a task. However, a key challenge is that IDS systems are
not perfect, and in complex real-world scenarios may pro-
duce suboptimal output or fail to work altogether. The field
of explainable AI planning (XAIP) has sought to develop
techniques that make the decision making of sequential deci-
sion making AI systems more explainable to end-users. Crit-
ically, prior work in applying XAIP techniques to IDS sys-
tems has assumed that the plan being proposed by the plan-
ner is always optimal, and therefore the action or plan being
recommended as decision support to the user is always opti-
mal. In this work, we examine novice user interactions with a
non-robust IDS system – one that occasionally recommends
a suboptimal actions, and one that may become unavailable
after users have become accustomed to its guidance. We in-
troduce a new explanation type, subgoal-based explanations,
for plan-based IDS systems, that supplements traditional IDS
output with information about the subgoal toward which the
recommended action would contribute. We demonstrate that
subgoal-based explanations lead to improved user task perfor-
mance, improve user ability to distinguish optimal and subop-
timal IDS recommendations, are preferred by users, and en-
able more robust user performance in the case of IDS failure.

Introduction
Intelligent decision support (IDS) systems leverage artifi-
cial intelligence techniques to generate recommendations
that guide human users through the decision making phases
of a task (Sutton et al. 2020). While much prior work has
focused on decision support for domain experts (e.g., can-
cer diagnosis for oncologists (Walsh et al. 2019)), increas-
ingly, IDS systems have been proven particularly useful in
helping novice users make decisions (Gutiérrez et al. 2019;
Machado, Lam, and Chen 2018). However, a key challenge
is that IDS systems are not perfect, and in complex real-
world scenarios the actions recommended by IDS systems
may be far from optimal (Guerlain, Brown, and Mastrangelo
2000). Such errors particularly strongly affect novice users,
who lack the knowledge to assess the correctness of an IDS
recommendation (Nourani, King, and Ragan 2020).
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The field of explainable AI Planning (XAIP) have devel-
oped techniques to make sequential decision making sys-
tems more understandable to domain-experts. Prior work on
XAIP has largely focused on explaining plan solutions that
help users answer questions “Why plan P?” and ”Why not
plan Q?”, through popular methods including causal-link-
chain (CLC) explanations (Seegebarth et al. 2012) as well as
contrastive explanations (Hoffmann and Magazzeni 2019).
These techniques have been effective in helping domain-
experts understand how their proposed solution differs from
a planner’s solution (Hoffmann and Magazzeni 2019), as
well as how performing a current action effects the precon-
ditions of future actions (Seegebarth et al. 2012).

Critically, prior work in applying XAIP techniques to IDS
systems has assumed that the plan being proposed by the
planner is always optimal, and therefore the action or plan
being recommended to the user is always optimal (Grover
et al. 2020; Valmeekam et al. 2020). However, optimal IDS
decision making cannot be guaranteed in complex real world
deployments. In fact, in real world systems, other assumed,
robust characters of IDS systems may not hold true, includ-
ing the ability to always receive suggestions at deployment.
There may be situations in which a user’s query is unanswer-
able, or the IDS system runs into a failure and is no longer
available to the user.

In this work, we examine novice user interactions with
a non-robust IDS system – one that occasionally recom-
mends the wrong action, and one that may become unavail-
able after users have become accustomed to its guidance.
A user of such a system, given an IDS action recommen-
dation, must be able to determine whether the recommen-
dation is optimal or not. In the absence of an IDS recom-
mendation, the ideal user will have sufficient understand-
ing of the task such that their task performance is not neg-
atively impacted by the sudden absence of previously avail-
able recommendations. Leveraging insights from Psychol-
ogy, which demonstrate that humans naturally break down
large complex tasks into a smaller set of more manageable
subgoals (Newell, Simon et al. 1972), we introduce a new
explanation type – subgoal-based explanations – that sup-
plements traditional IDS output with information about the
subgoal toward which the recommended action would con-
tribute. We then examine the impact such an explanation has
on novice user performance through experiments in a com-



plex planning domain–restaurant planning–with 105 study
participants. We compare our subgoal-based explanations
with the traditional action recommendation outputs of IDS
systems, as well as causal-link chain (CLC) explanations
(Seegebarth et al. 2012), an XAIP technique most relevant
to our work. We contribute several key findings:

• In the context of a suboptimal IDS system, subgoal-
based explanations enable users to successfully detect
and avoid more suboptimal IDS recommendations than
users who are only provided traditional IDS action rec-
ommendations or CLC explanations.

• Users who receive subgoal-based explanations achieve
better performance when performing a task under IDS
guidance than users who receive IDS guidance with CLC
or those who receive traditional IDS action recommenda-
tions.

• Users who are exposed to subgoal-based explanations for
some period of time, are able to perform the task more
reliably in the absence of further IDS, compared to users
who only receive action recommendations or CLC ex-
planations. This finding suggests that explanations con-
tribute a significant training benefit beyond both tradi-
tional IDS output as well as CLC explanations.

• In a direct comparison, users exhibit a strong preference
for IDS output that includes subgoal-based explanations
versus CLC explanations or IDS output that includes the
next action.

We also show a simple way to generate domain-independent
subgoal-based explanations that can generalize to any hier-
archical plan-based system and broadly applicable across a
wide range of IDS systems and application areas. Together
with our findings, our work is a first step towards investigat-
ing how and when IDS with XAIP systems are beneficial in
complex real-world IDS systems that are not fail-proof.

Related Work
In this section, we situate our work in the context of the two
prominent research areas most closely related to our work:
Intelligent Decision Support Systems and Explainable AI.

Intelligent Decision Support (IDS) Systems
IDS systems have been developed to assist users in decision
making across a wide range of applications, such as provid-
ing assistance to domain-experts in clinical settings (Walsh
et al. 2019; Zhuang et al. 2009) and aiding novice-users
in management settings (Machado, Lam, and Chen 2018;
Gutiérrez et al. 2019). Amongst these IDS systems, decision
support is provided through a range of mediums, depending
on the domain. For instance, in (Machado, Lam, and Chen
2018), the authors develop a mobile app for clinical deci-
sion support that allows dental students to answer a series
of questions to determine a diagnosis and provide treatment
suggestions. In (Gutiérrez et al. 2019), researchers investi-
gate how to best portray visual representations and interac-
tion techniques to aid novice users in business decisions.

Given that many IDS systems interact with end-users who
are not AI-experts, several bodies of work have investigated

how to enhance the transparency of IDS systems to improve
user trust. These transparency techniques have been stud-
ied in the context of explaining recommendations for single-
classification tasks, such as clinical decision support to iden-
tify failure modes (Jones, Mateer, and Harrison 2019; Feng,
Shaib, and Rudzicz 2020). By contrast, our work investi-
gates IDS in sequential decision making settings. Specifi-
cally, we investigate how to provide explanations that help
novice users improve their decision making performance in
the presence of potentially suboptimal suggestions.

Explainable AI
The field of explainable AI aims to improve a user’s under-
standing of the inner workings of complex models (Doshi-
Velez and Kim 2017). Given that AI and ML models are
not guaranteed to be optimal, an important objective of XAI
techniques includes being able to help users identify vulner-
abilities or “bugs” within a model (Adebayo et al. 2020) as
well as identify any spurious correlations (Kim et al. 2018).
Our work explores a scenario in which the underlying AI
model, and therefore the explanation that results from it,
may be suboptimal. We examine how, even under these set-
tings, users can leverage explanations to ultimately improve
their task performance.

To provide greater context for our work, we first review
the types of explanations that have been developed in se-
quential decision making. The subfield of explainable AI
Planning (XAIP) seeks to develop methods for explaining
sequential decision making problems, where an agent en-
gages in a longer-term interaction with a user (Chakraborti,
Sreedharan, and Kambhampati 2020). Within the commu-
nity, techniques have primarily focused on explaining an
agent’s entire plan solutions to end-users. A recent survey
by Chakraborti et al. (Chakraborti, Sreedharan, and Kamb-
hampati 2020) highlights the key areas of plan explanations
that have been investigated, including generating contrastive
explanations (Hoffmann and Magazzeni 2019), explaining
unsolvable plans (Sreedharan et al. 2019), and generating
explicable plan explanations (Chakraborti et al. 2017).

Additionally, XAIP techniques have also been applied
to plan-based decision support systems in efforts to im-
prove human-in-the-loop planning. For example, RADAR
by Grover et al. provides XAIP features such as plan
summarization, plan explanations in the form of mini-
mally complete contrastive explanations, plan validation,
and action and plan suggestions to improve decision mak-
ing (Grover et al. 2020). Furthermore, Valmeekam et al
develop RADAR-X which leverages user queries under-
stand user preferences for providing refined plan suggestions
(Valmeekam et al. 2020). Our work similarly aims to sup-
port human-in-the-loop planning, with an important differ-
ence that we do not make the assumption of an optimal AI
planner or optimal IDS systems recommendations.

Problem Formulation
In this section, we first provide definitions for the planning
problem that underlies our IDS system. We then formalize
the problem of providing explanations in support of plan-
based IDS and present our research hypotheses.



Figure 1: Our IDS system utilized to evaluate the efficacy of ESB. A user performs any action ah, which updates the environment
S. The underlying planner utilizes S to produce a plan solution π. The IDS system provides either ESB, ECLC or aIDS . If the
user ignores the planner’s suggestion, the planner will replan for a new π

′
, repeating the process.

Planning Problem
A planning problem is defined by a model M = ⟨D, I,G⟩
where domain D is represented by ⟨F,A⟩, such that F is a
finite set of fluents that define a state s ⊆ F , and A rep-
resents a finite set of actions. I and G represent the ini-
tial and goal states, respectively, such that I,G ⊆ F . Note
that G may be modeled as a set of ⟨g0...gj⟩, where gi rep-
resents a subgoal. An action a ∈ A is defined by a tuple
⟨ca, pre(a), eff+(a), eff−(a)⟩, where ca is the associated
cost of a, and pre(a), eff+(a), eff−(a) denote the set of
preconditions, add and delete effects, respectively. An action
a ∈ A can only be executed in a state s if s |= pre(a). A
transition function, δM (s, a) is used to transition an agent
from I to G, performing a sequence of actions ⟨a1...an⟩,
each with an associated cost ca. In other words, the cost of
plan C(π,M) is defined by

∑
a∈π ca, the sum cost of all

actions within the plan, or ∞ if the goal is not met. The
solution to a planning problem is a plan π = ⟨a1...an⟩ such
that δM (I, π |= G). The optimal plan solution, π∗, is defined
by argminπ{C(π,M)∀π such that δM(I, π) |= G}.

Explainability in Plan-Based IDS Systems
The goal of a plan-based IDS system is to provide the user
with action recommendations aIDS ∈ π. In turn, the user,
who is given aIDS as input, must select their own action ah
to take in response. In the ideal case, the IDS guides the user
along some optimal plan π∗ by always recommending an
optimal action, aIDS = a∗ ∈ π∗, which results in the user
always taking the optimal action, ah = a∗ ∈ π∗. However,
there are two limitations to this idealized formulation.

First, in complex real-world scenarios an IDS systems
may not be able to generate an optimal plan, resulting in
suboptimal recommendations (Guerlain, Brown, and Mas-
trangelo 2000). In this case, the user is faced with the chal-
lenge to discern whether the IDS system’s recommended ac-
tion is optimal (i.e., aIDS

?
= a∗). Relating to this, we state

the following hypothesis:

H1: We hypothesize that there exists a type of ex-
planation, E , that when presented in conjunction with
aIDS can aid users in determining aIDS

?
= a∗.

Specifically, that with the aid of E , users will be able to ac-
cept aIDS with greater accuracy when aIDS = a∗ and cor-
rectly reject aIDS when aIDS ̸= a∗.

Second, in complex real-world scenarios an IDS system
may not always be available due to being offline, a failure,
or the query being outside its scope. In this case, the user
may suddenly be required to select ah without the benefit
of an IDS system’s guidance. This scenario will pose a par-
ticularly significant challenge to users who had previously
only performed the task under the support of an IDS system.
Relating to this, we state the following hypothesis:

H2: We hypothesize that exposure to explanations E
improves user understanding of the task, such that
when IDS recommendations are turned off, users with
previous exposure to E will achieve greater task per-
formance than users who had the same amount of do-
main experience but without exposure to E .

Specifically, we posit that users previously exposed to expla-
nation E will be able to select actions ah that lead to more
optimal task performance (C(πE

h ,M) < C(π�Eh ,M)) than
users who were not exposed to explanation E . In this per-
spective, explanations can be seen as a training mechanism
that leverages IDS to improve user understanding of the task.

Finally, prior work across many XAI applications has
demonstrated that incorporating explanations into the out-
put of automated systems improves user performance in a
given task (Das and Chernova 2020; Tabrez, Agrawal, and
Hayes 2019). Relating to this, we state the following two
hypotheses in the context of IDS systems:

H3: We hypothesize that user performance on the
task will improve when IDS output, aIDS , is supple-
mented with explanation E .
H4: We hypothesize that users will prefer the output



of a system that includes E over a system that only
includes aIDS .

Specifically, we posit that overall plan cost for users exposed
to explanations will be lower than for users who did not re-
ceive explanations (i.e., C(πE

h ,M) < C(π�Eh ,M)), and that
users will prefer to see explanations as part of an IDS output.

In the next sections, we first present a new variant of E for
explaining IDS systems action recommendations, leverag-
ing findings in psychology (Newell, Simon et al. 1972). We
then describe our validation domain, and the experiments
that were conducted to support the above hypotheses.

Subgoal-Based Explanations
Research in psychology shows that humans faced with a
complex sequential decision making task naturally construct
a mental model of the task as a decomposition of multi-
ple subgoals (Newell, Simon et al. 1972). Similarly, many
AI techniques utilize hierarchical structures to leverage the
improved computational efficiency of such representations
(Iovino et al. 2020; Kaelbling and Lozano-Pérez 2010).

In this work, inspired by the natural hierarchical represen-
tations used by both human users and AI systems, we intro-
duce a new type of explanation known as subgoal-based ex-
planations, ESB. The objective of ESB is to improve user task
performance both in optimal and suboptimal IDS settings.
Below we further detail the definition of ESB by leveraging
the definition of a planning problem (see previous section):

ESB : Given planning goal G, which is decomposed
into a set of subgoals ⟨g0...gn⟩, a subgoal-based ex-
planation is described by ESB = aIDS + gi(aIDS).

In other words, a subgoal-based explanation provides the
next recommended action from an IDS system, aIDS along
with the associated subgoal gi that is satisfied by aIDS .
An example of a ESB is “Chop the tomato to prepare the
lasagna,” where “to prepare the lasagna” is the subgoal.
Plan subgoals for explanation generation may be predefined
in the planning representation, or may be autonomously
derived using established methods (Richter, Helmert, and
Westphal 2008; Czechowski et al. 2021). In this work, we
encode the subgoals within our plan problem definition.

IDS in Restaurant Planning Domain
We investigate the efficacy of ESB explanations in the con-
text of a complex sequential planning scenario: running a
restaurant kitchen. In our task a user plays as a chef to de-
liver a set of M meals, each within unique delivery times,
with the help of an anthropomorphized IDS known as Man-
ager Molly. Below we further detail the restaurant planning
game and our plan-based IDS system.

Restaurant Game Overview
Figure 1 provides a visualization of the restaurant game;
inspired by the online game Overcooked, this domain has
been studied extensively in the sequential decision making
community (Carroll et al. 2019; Wu et al. 2021; Liu et al.
2020). Within the game, the user controls a chef avatar, and

utilizes five meal prep stations to prepare M meals consist-
ing of various ingredients. The game objective is to deliver
the meals to restaurant customers within the designated
meal prep time for each meal, denoted as tmgoal delivery . The
five meal prep stations are: gather station, cutting station,
cooking station, plating station, and delivery station. The
game state is represented as S, and displayed to the user
in a user-friendly manner in the bottom panel of the game
interface (see Fig. 1). Specifically, S = {Sl, Si} where
Sl defines the location of the chef and each ingredient
(i.e which station), and Si defines the state of each ingre-
dient,(i.e. chopped tomato, cooked chicken). The user is
able to perform an action ah from the action space A =
{cut, move-chef, move-item, start-cook, end-cook, deliver,
prepare-meal}, so long as the preconditions of ah are met
and that the effects of ah result in a valid state S. The game
does not allow players to perform an invalid action (e.g.,
preparing the steak meal without cooking the steak). When
ah is performed, game state S is updated and utilized by
the underlying planner to provide a recommendation to
the user, either in the form of a subgoal-explanation ESB,
a causal-link-chain explanation ECLC (Seegebarth et al.
2012), or as a default action recommendation aIDS . Given
a recommendation, the user can choice to conform to aIDS

or select an alternative action (i.e. ah ̸= aIDS). If the
user selects an alternative action, the underlying planner
in the game utilizes the updated state information to find
a new plan solution π

′
from which subsequent actions are

suggested to the user.

Restaurant Game Planner
To find a plan solution π, we utilize the Temporal Fast
Downward (TFD) planner (Eyerich, Mattmüller, and Röger
2009). Although TFD is a temporal planner with abilities
to handle durative actions, we formulate our planning prob-
lem as a classical planning problem in which the objective is
to minimize action costs as opposed to duration. We utilize
TFD to more accurately model a restaurant domain where
actions can occur simultaneously. To simulate multitasking,
we leverage TFD’s support for numeric fluents which allows
us to track the cost of actions a ∈ A being performed while
an ingredient is cooking to ensure that an appropriate dura-
tion has elapsed for an ingredient to cook.

To solve for a plan solution π, the planner utilizes the
same action space A and state space S as that available to
the user. The planner’s initial state I is defined with select,
pre-performed actions to avoid plan solutions longer than 35
actions and the goal state G is defined by reaching the deliv-
ered state for all necessary M meals. Each action a ∈ A has
a static cost of ca where the cost represents the time needed
to perform a. If each meal m is delivered at tmdelivered, the
objective of the planner is to minimize the overtime delivery
cost,

∑|M |
m=1 t

m
delivered − tmgoal delivery.

Generating Suboptimal Plans
A central objective of our work is to examine explanatory
action suggestions in the context of suboptimal IDS rec-
ommendations. To achieve this objective, we intentionally



Action (a ∈ π) Action Recommen-
dation (aIDS)

Causal-Link-Chain Explanation
(ECLC)

Subgoal-Based Explanation
(ESB)

cut chef gather-
Station cutStation
tomato1

Chop the tomato. Chop the tomato for the salad meal
or pasta meal or veggie burger meal.

Chop the tomato for the salad meal.

move-item chef
gatherStation plat-
eStation salmon1

Move the salmon to
the cooking station.

Move the salmon to the cooking sta-
tion to cook the salmon.

Move the salmon to the cooking
station for preparing the teriyaki
salmon meal.

end-cook chef
cookStation broth1

Finish cooking the
broth.

Finish cooking the broth for prepar-
ing the soup.

Finish cooking the broth for prepar-
ing the soup.

move-chef chef
plateStation gather-
Station

Move to the gather sta-
tion.

Move to the gather station to move
the tomato.

Move to the gather station for
preparing the pasta meal.

Table 1: Action recommendations (aIDS), causal-link chain explanations ECLC and subgoal explanations (ESB) for select a ∈ π.

corrupt the optimal plan, π∗, generated by our planner such
that the resulting plan π̃ is suboptimal. At run time, we ran-
domly select with probability p whether a recommended ac-
tion, aIDS , is provided from an optimal or suboptimal plan.
Specifically:

aIDS =

{
aIDS ∈ π̃, if rand() ≤ p

aIDS ∈ π∗, otherwise

Recall, the goal of the planner in our restaurant planning
domain is to minimize the overtime in delivering each meal
m ∈ M . Therefore, to generate a suboptimal plan π̃, we
replace the optimal action of interest required for a partic-
ular meal mi with a random action required for some other
random future meal mj . The resulting suboptimal action is
therefore still relevant to the overall cooking task, and is not
an obvious and trivially identifiable error (e.g., throw steak
on floor). Reordering actions in this way is guaranteed to re-
sult in a suboptimal plan because it delays meals and leads
meals to be completed out of order, causing the planner’s
overtime delivery cost to be non-zero.

Generating Subgoal-Based Explanations
Given a set of subgoals ⟨g1...gn⟩, we employ a post-hoc
search to map actions ⟨a0...an⟩ within π with a correspond-
ing subgoal gi ∈ G. In our work, subgoals are defined as the
designated meal for which an action a is being performed.
To present ESB in a manner understandable by novice users,
we leverage natural language. We parse each a output in π
for the contextual information the action a is acting upon.
In our work, the contextual information corresponds to the
ingredient(s) the action would be applied on or the loca-
tion the action would be applied to. In this manner, we tem-
plate our explanation as follows, “⟨action⟩ the ⟨ingredients
/location⟩ for ⟨gi(a)⟩”. Table 1 provides example explana-
tions of our ESB explanations in comparison to action sug-
gestions, aIDS , and causal link chain explanations ECLC . A
causal link l is defined as (s →p s′) which denotes that pre-
conditions p of a future plan step s′ are met by the effects of
the current plan step s′ (Seegebarth et al. 2012). Thus ECLC
justify the action a in the current plan step by indicating the
set of satisfied causal links l ∈ L. Alternatively, aIDS mod-
els the default output of current IDS systems.

Study Design
Our primary goal is to evaluate the effect ESB explanations
have on user task performance in IDS settings. We con-
ducted a seven-way, between-subjects study in which par-
ticipants were asked to play the restaurant planning game.
Specifically, we used a 3 x 2 factorial study design with one
factor being the type of IDS (with aIDS suggestions, ECLC
or ESB explanations) and the second factor being optimality
of IDS recommendation (optimal IDS and suboptimal IDS).
The seventh study condition was an additional baseline con-
dition in which participants did not receive any help from an
IDS. Below, we detail each study condition:

• None (Baseline): Participants receive no suggestions
from an IDS system.

• π(aIDS) (Baseline): Participants receive action recom-
mendations from an optimal IDS system, and is closely
modeled after the default action suggestion features
available in plan-based IDS systems.

• π(ECLC) (Baseline): Participants receive causal link
chain explanations from an optimal IDS system and is
closely modelled after the causal link explanations in
(Seegebarth et al. 2012).

• π(ESB): Participants receive subgoal-based explanations
from an optimal IDS system.

• π̃(aIDS): Participants receive action recommendations
from a suboptimal IDS system.

• π̃(ECLC): Participants receive causal link explanations
from a suboptimal IDS system.

• π̃(ESB): Participants receive subgoal-based explanations
from a suboptimal IDS system.

The study consisted of three stages in which participants
played a total of five games, each consisting of a unique set
of M meals to prepare. Participants proceeded to the next
game when they finished delivering all required M meals,
or when time cost in a game reached 80, whichever came
first. The study consisted of three stages: the familiarization
stage, IDS stage and an assessment stage, detailed below.

Familiarization: The participants first played through an
interactive tutorial which explained the components of the



interface as the participants made a burrito meal. While the
interactive tutorial remained the same across all conditions,
the None condition did not receive support from the IDS
system, whereas all other conditions received their respec-
tive guidance from the IDS system. Participants also played
a second game to get further acquainted with the system.
In the practice round, participants were tasked with mak-
ing two meals (BLT sandwich, hotdog), and participants re-
ceived IDS based on their study conditions. The familiariza-
tion stage was designed to familiarize users with all aspects
of the interface and to minimize learning effects in future
games.

IDS: Participants played two more games, each with the
objective of preparing three meals with the help from an
IDS system (or no help in the None condition). These games
were themed by cuisine: Italian Bistro (salad, pasta, veggie
burger) and Asian Fusion (chicken quesadilla, soup, sushi).
Prior to playing, participants were told that the anthropo-
morphized IDS system, Manager Molly, may provide sub-
optimal suggestions. The goals of the participants in all con-
ditions were to delivery meals on time and to identify sub-
optimal suggestions (in the four conditions with IDS). Both
games were counterbalanced, such that a random 50% of
participants played the Italian Bistro game first, while re-
maining played the Asian Fusion game first. In the two
suboptimal recommendation study conditions (π̃(aIDS) and
π̃(ESB)), p = 0.85, such that the accuracy of our IDS was
85%, and approximately 15% of recommendations viewed
by the users were corrupted to be suboptimal 1.

Assessment: Participants in all five conditions played a fi-
nal game, with no support from the IDS system. Similar
to the IDS stage, the assessment game required delivering 3
meals (teriyaki salmon, steak & potatoes, chili). In this as-
sessment, participants in all study conditions had one objec-
tive, which was to deliver meals by their designated delivery
time. The goal of the assessment stage was to simulate a
scenario where a failure occurs in an IDS system, and guid-
ance is no longer available to a novice user. Our goal is to
understand how previous exposure to IDS in an optimal or
suboptimal setting may impact participant performance on a
task when in the absence of any IDS.

Metrics & Hypotheses
To measure user task performance and overall understanding
of the task, we evaluate three metrics:

• User Plan Cost (UPC): represents participant overtime
cost in delivering meals per game. This metric is anal-
ogous to how the planner optimizes for the optimal
plan solution. Below, M represents the total number of
meals to complete for a game, tmdelivered represents the
accumulated time cost at which meal m is delivered,

1The level of acceptable error in a deployable IDS system varies
significantly by application (e.g., medical diagnosis systems may
be expected to perform with greater accuracy than those in lower
risk domains). From prior work, we find accuracy rates of 75-95%
across applications (Rodrı́guez, Gonzalez-Cava, and Pérez 2020;
Rathore, Loia, and Park 2018). We selected an accuracy of 85% as
it models many state of the art systems.

and tmgoal delivered represents the designated time cost at
which a meal should have been delivered.

UPC =

|M |∑
m=1

tmdelivered − tmgoal delivery (1)

• Optimal Action Conformance (OAC%): represents the
total percentage of optimal actions suggested from the
IDS system that participants performed.

• Suboptimal Action Avoidance (SAA%): represents the
total percentage of suboptimal actions suggested from
the IDS system that participants avoided.

• Perceived Preference (Pref%): represents the total per-
centages of aIDS or ESB IDS types preferred by partici-
pants for understanding the chef’s next action.

Both OAC and SAA are measured during the IDS Stage of
the user study, while UPC is measured for games within the
IDS Stage and Assessment Stage.

Participants
We recruited 120 individuals from Amazon’s Mechanical
Turk. We filtered participants that showed no effort to play
the game in the form of taking repeated actions until the
timeout. The filtration process yielded 105 remaining par-
ticipants (53 males, 52 females). All participants were 18
years or older (M = 36.3, SD =10.3). Each study condition
had 15 participants. The task took on average 40 minutes
and participants were compensated $5.00.

Study Results
The User Plan Cost (UPC) metric in Figure 3 and Figure 4
as well as the the Optimal Action Conformance (OAC) and
Suboptimal Action Avoidance (SAA) metrics were analyzed
with a one-way ANOVA, followed by a post-hoc Tukey
Test. H1: In Figure 2, we present user optimal action con-
formance (OAC%) as well as suboptimal action avoidance
(SAA%) in order to analyze the benefit of providing subgoal-
based explanations, ESB, for understanding suboptimality
in IDS systems. We observe in Figure 2(a) that π̃(aIDS),
π̃(ECLC) and π̃(ESB) conditions had similarly high OAC%s.
In other words, action recommendations, causal link chain
explanations and subgoal-based explanations helped partic-
ipants discern optimal recommendations. However, in Fig-
ure 2(b), we observe that participants in the π̃(aIDS) con-
dition and π̃(ECLC) condition had much lower SAA%s than
participants in the π̃(ESB) condition. In fact, in the Asian
Fusion game, we observe a significant difference in SAA%
between the π̃(aIDS) and π̃(ESB) conditions (t(42)=-2.80,
p < 0.05) as well as between the π̃(ECLC) and π̃(ESB) con-
ditions (t(42)=-2.95, p < 0.05). These results support H1,
indicating that in the context of an suboptimal IDS system,
subgoal-based explanations, ESB, help participants detect
and avoid more suboptimal suggestions compared to those
who only receive aIDS or ECLC .

H3: In Figure 3, we present user plan costs (UPC) across
each study condition in the two themed games to analyze the
impact of including subgoal information on IDS-supported



(a) (b)

Figure 2: User optimal action conformance and action avoidance percentages for participants that received ESB and aIDS from
suboptimal IDS systems.

(a) (b)

Figure 3: User Plan Cost across all conditions for the two themed games within the IDS Stage of the user study. Statistical
significance is reported as: *p <0.05, **p <0.01, ***p <0.001 for all figures.

user performance. Overall, we observe that in both games
participants in the π(ESB) conditions, subgoal-based expla-
nations from an optimal IDS system, have the best over-
all task performance in comparison to the other conditions.
Additionally, out of the explanation-based conditions, we
observe ECLC explanations to lead to the highest plan cost
under suboptimal IDS across both games. Specifically, par-
ticipants in π(ESB) had significantly lower UPC compared
to participants in the None condition for both the Italian
Bistro game (t(95)=-3.46, p < 0.05) and the Asian Fusion
game (t(101)=-4.00, p < 0.01). We additionally observe
that participants in the π(ESB) condition had significantly
lower UPC than participants in the π̃(aIDS) condition for
the Asian Fusion game (t(101)=8.17, p < 0.05). More-
over, we observe that participants in π(ESB) had signifi-
cantly lower UPC compared to participants in the π̃(ECLC)
in both the Italian Bistro (t(95)=4.08, p < 0.01) and Asian
Fusion game (t(101)=3.10, p < 0.05). These results sup-
port H3 by indicating that supplementing IDS outputs with

explanations grounded in subgoal information help partici-
pants understand the underlying motivation for a suggestion
and therefore perform the task significantly better those who
only receive aIDS or even causal-link based explanations
ECLC).

H2: In Figure 4, we present user plan cost (UPC) from
the Assessment stage across each study condition. None
of the participants had access to IDS recommendations in
this game, and the results allow us to assess how prior ex-
posure to ESB impacts user performance once IDS recom-
mendations are unavailable. Overall, we observe that both
π(ESB) and π̃(ESB) conditions have the lowest UPC com-
pared to the other study conditions, including prior work’s
ECLC . In fact, participants in the π(ESB) condition, those
previously received ESB explanations under an optimal IDS
system, have significantly lower UPC than participants in
the π̃(aIDS) condition (t(67)=2.83, p < 0.05). Similarly, we
observe participants in the π̃(ESB) condition, those who pre-
viously received ESB explanations under a suboptimal IDS



Figure 4: User Plan Costs for the assessment game in which
all participants did not receive any guidance from an IDS
system.

system, also have significantly lower UPC than those who
received π̃(aIDS) (t(67)=2.87, p < 0.05). These results
support H2, demonstrating the important role of subgoal-
based explanations, ESB, in training users to understand
the underlying task, compared to action-based recommen-
dations aIDS , even if IDS was suboptimal during training.

H4: To evaluate H4 we conducted an additional exper-
iment in which we presented users with three IDS system
output options, aIDS , ECLC , and ESB, and asked them to se-
lect their preferred IDS system output2. Specifically, each
participant was presented with 25 randomly shuffled, pre-
recorded videos of optimal actions the chef would perform
while preparing meals in the restaurant game. Each video
was 10-15 seconds in duration and included two actions
that the chef performed towards the goal. Participants were
tasked with watching each video, to gain contextual under-
standing of which portion of the task the chef was work-
ing on, and evaluate which form of the provided IDS out-
put, ESB, ECLC or aIDS , they preferred in understanding the
chef’s next action. Figure 5 presents the Perceived Prefer-
ence (Pref%) metric results for the above experiment, which
was analyzed with a one-way ANOVA with post-hoc Tukey
Test. We observe that participants significantly prefer ESB
explanations compared to both ECLC explanations (t(54)=-
3.50, p < 0.01), and aIDS (t(54)=-6.66, p < 0.001). Addi-
tionally, we observe that ECLC explanations are significantly
preferred compared to aIDS (t(54)=-3.17, p < 0.01). These
results support H4 demonstrating that ESB explanations are
more frequently preferred by users, a factor that may aid in
adoption of subgoal-based explanations for IDS systems.

Discussion
Our user study findings support H1-H4, demonstrating that
subgoal-based explanations (ESB) improve user task perfor-

2Since our previous study was between-subjects and partici-
pants were only exposed to one type of IDS, ESB, ECLC , or aIDS ,
we conducted an additional within-subjects study with 20 partic-
ipants from AMT (Male=11, Female=9, mean=36.4 SD=8.7) to
measure user preference between the three types of IDS system
outputs.

Figure 5: User perceived preferences towards both aIDS and
ESB in understanding the chef’s next action.

mance, improve user ability to distinguish optimal and sub-
optimal IDS recommendations, are preferred by users, and
enable more robust user performance in case of IDS fail-
ure. We find the results from the Assessment stage of the
study (H2) particularly surprising. All users received de-
tailed task instructions and performed the same tutorials; the
Assessment game was the 5th in the series of games, mean-
ing that participants were reasonably familiar with the task
at this stage. Yet ESB significantly impacted performance
such that in both the optimal and suboptimal IDS condition,
users learned the task objectives better than users who re-
ceived causal-link explanations, ECLC , and those who re-
ceived only action recommendations aIDS . These results
point to important benefits explanation-based IDS systems
can have in real-world deployments, highlighting that even
suboptimal IDS systems can serve as a useful training tool
for users when ESB are added to IDS output. To our knowl-
edge, this is the first use of ESB in suboptimal IDS systems.

Limitations and Future Work
Our work has several limitations that present opportunities
for future work. First, we conducted our study only with
novice users3. Further studies should explore whether the
observed benefits of ESB hold for expert users. Second,
we conducted our study over a limited period of time, and
thus factors such as long-term learning effects, fatigue, and
automation bias were not fully explored. Further work is
needed to fully explore the effect that explanations have on
long-term IDS deployment. Third, our subgoals were prede-
fined. Coupling our approach with autonomously identified
subgoals may yield new insights. Finally, further investiga-
tion is needed to see the benefits of ESB when subgoals are
more hierarchical. For example, in complex tasks there may
exist multiple hierarchical goals, or actions may satisfy mul-
tiple goals simultaneously. A more extensive comparison of
various types of explanations is required in this space.

3Our domain differs from both real world cooking and the Over-
cooked online game, and thus has significant novelty to all users.
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