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ABSTRACT

Given the remarkable achievements in image generation through diffusion models,
the research community has shown increasing interest in extending these models to
video generation. Recent diffusion models for video generation have predominantly
utilized attention layers to extract temporal features. However, attention layers are
limited by their memory consumption, which increases quadratically with the length
of the sequence. This limitation presents significant challenges when attempting
to generate longer video sequences using diffusion models. To overcome this
challenge, we propose leveraging state-space models (SSMs). SSMs have recently
gained attention as viable alternatives due to their linear memory consumption
relative to sequence length. In the experiments, we first evaluate our SSM-based
model with UCF101, a standard benchmark of video generation. In addition, to
investigate the potential of SSMs for longer video generation, we perform an
experiment using the MineRL Navigate dataset, varying the number of frames to
64, 200, and 400. In these settings, our SSM-based model can considerably save
memory consumption for longer sequences, while maintaining competitive FVD
scores to the attention-based models.

1 INTRODUCTION

Research on video generation diffusion models (Sohl-Dickstein et al., 2015; Nichol & Dhariwal,
2021; Ho et al., 2020) is cutting-edge in the field of deep generative models. The success of image
generation using diffusion models, notably Denoising Diffusion Probabilistic Models (DDPMs) (Ho
et al., 2020), has sparked a surge in research on applying diffusion models to video generation. This
trend has been exemplified by the emergence of video diffusion models (VDMs) (Ho et al., 2022b).
By harnessing the substantial representational capacity inherent in diffusion models, their application
to video generation has showcased impressive performance in modeling the dynamic and intricate
nature of video content (Ho et al., 2022b; Singer et al., 2022; Ho et al., 2022a).

However, research on diffusion-model-based video generation faces significant challenges in terms
of computational complexity with respect to temporal sequence length. In diffusion-model-based
approaches to video generation, attention mechanisms (Vaswani et al., 2017) are employed to capture
temporal relationships (Ho et al., 2022b; Singer et al., 2022; Ho et al., 2022a; Blattmann et al.,
2023). In early studies on diffusion models for video generation, such as VDMs, to capture temporal
relationships across video frames, temporal attention layers were added subsequent to spatial attention
layers within the architecture of diffusion models for image generation, as described in Figure 1
(a). However, the memory demands of attention layers, which scale with the square of the sequence
length, present substantial challenges for extending these models to handle longer sequences.

Recently, state-space models (SSMs) (Gu et al., 2020; 2021; 2022; Smith et al., 2023) have been
identified as promising alternatives to attention mechanisms. A pioneering work by Gu et al. (2021)
has enabled SSMs to capture long-term dependencies of sequential data, and their model, named the
structured state space sequence model (S4), demonstrates superior performance in various benchmarks
of sequence modeling. In contrast to attention mechanisms, SSMs can handle sequential data with
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Figure 1: (a) U-Net based video diffusion models consist of spatial layers and temporal layers.
(b) In our temporal SSM layer, we replace an attention module with a bidirectional SSM module
+ a dual-layer MLP in a traditional temporal layer in VDMs. (c) Details of a bidirectional SSM
in our temporal SSM layer. Following common practices, GLU is used as an activation function.
Element-wise summation is utilized to aggregate features from bidirectional SSMs.

linear complexities, so they are expected to overcome the fundamental limitation of attention-based
models in many sequence modeling tasks.

However, in the field of video generation, the application of SSMs has not been explored. This is
because a methodology to effectively incorporate SSMs into video generation models has not been
established. In fact, we have empirically observed that a naive approach that directly replace temporal
attention layers of VDMs with SSMs works much worse than the original attention-based VDMs. To
bridge this gap, in this paper, we investigate an effective approach to incorporate SSMs with video
diffusion models. Our proposed model is summarized in Figure 1. A key insight of our investigation
is that using bidirectional SSMs is essential to achieve good performance for SSM-based VDMs. In
addition, to capture complex nonlinear dynamics of video sequences, adding a multi-layer perceptron
(MLP) after the bidirectional SSM is also very effective to improve the generative performance.

In the experiments, we demonstrate that by substituting temporal attention in video diffusion models
with our temporal SSM layers, it is feasible to show competitive or even better generative performance
in benchmarks of video generation, e.g., UCF101 (Soomro et al., 2012), in terms of the Fréchet Video
Distance (FVD) (Unterthiner et al., 2018). Moreover, we additionally observe that our SSM-based
model can be successfully trained with 400-frame videos of MineRL Navigate (Guss et al., 2019;
Saxena et al., 2021) with eight A100 GPUs, while attention-based VDM cannot due to huge memory
consumption.

2 DIFFUSION MODELS FOR VIDEO GENERATION

In diffusion models, the forward process involves progressively diminishing the original data signal,
x0, by gradually introducing Gaussian noise as the diffusion time, t, advances. The generation
process in diffusion models is the reverse process. This process starts with pure Gaussian noise
xT ∼ N (xT ;0, I) and gradually reconstructing the data towards the original x0. During the reverse
process, each step pθ(xt−1|xt) is modeled using a neural network. In terms of the architecture of
diffusion models, 2D U-Net (Ronneberger et al., 2015) architectures are commonly used for image
data. In 2D U-Net-based models, spatial attention layers are incorporated between the convolutional
layers. These spatial attention layers enhance the ability to focus on relevant spatial features and
improve the quality of the generated images.

2



Published as a conference paper at ICLR 2024

To generate videos, diffusion models need to encapsulate both spatial and temporal features across
frames. While DDPMs typically comprise a combination of U-Net and spatial attention layer,
their capability is predominantly confined to spatial feature capture. To address this limitation,
Video Diffusion Models (VDMs) (Ho et al., 2022b) were introduced as an initial attempt into video
generation using diffusion models. By incorporating mechanisms to capture temporal dynamics
within DDPMs, VDMs enhance their capability to capture temporal features (Figure 1(a)). Temporal
attention layer is commonly used in video generation diffusion models, such as VDMs, to leverage
time-series dependencies. However, temporal attention requires memory proportional to the square of
the sequence length, which imposes limitations on the maximum length of video sequences that can
be generated at once. In our study, we adopt VDMs as a baseline to explore the existing challenges
and potential improvements in video generation diffusion models.

3 METHOD

In this section, we propose the architecture of a temporal SSM (state-space model) layer for use
in diffusion models for videos. Recent diffusion model-based video generation techniques capture
temporal features through temporal attention layers, incurring memory costs proportional to the
square of the sequence length. Recently, SSMs have emerged as a promising alternative to attention,
offering linear memory costs with respect to time (Gu et al., 2020; 2021; 2022; Smith et al., 2023).
We first review the recent advancements in SSMs in prior works, followed by a detailed description
of our proposed temporal SSM layer architecture for video generation diffusion models.

3.1 STATE SPACE MODELS

Unlike the temporal attention commonly used in video diffusion models, state-space models (SSMs)
enable the processing of time series with spatial complexities proportional to the sequence length.
Recent studies proposed SSMs that could process inputs in parallel unlike recurrent neural networks
(RNNs) (Chung et al., 2014). SSMs are widely used as sequence models that define a mapping from
one-dimensional input signals u(t) to one-dimensional output signals y(t):

sk = Āsk−1 + B̄uk, yk = C̄sk. (1)

In this study, we consider discrete-time SSMs. Unlike RNNs but akin to attention mechanisms, linear
SSMs are capable of parallel computations through discrete convolutions, facilitated by the Fast
Fourier Transform. The memory requirements and parallelization capability of the modules managing
the time series data are concisely summarized in Table 1. In our research, we chose S4D Gu et al.
(2022) as our backbone model for our temporal SSM layer.

As delineated in Equations 1, SSMs are inherently designed to independently handle single-input,
single-output systems. Therefore, when employing SSMs to manage multidimensional inputs, it is
common practice to append a structure to capture dependencies (such as GLU (Dauphin et al., 2017))
between different dimensions of the output after the SSM (Gu et al., 2021; 2022) (see Figure 1 (c)).

3.2 TEMPORAL SSM LAYER FOR DIFFUSION MODEL-BASED VIDEO GENERATION

We incorporate state-space models (SSMs) within the temporal layers for the video generation
diffusion model. The structure of our proposed temporal SSM layer (Figure 1 (b)), is a key element of
our study and warrants detailed discussion. This design takes cues from the structure of the temporal
attention layer in VDMs, which consists of Layer Normalization (Ba et al., 2016) followed by an
attention mechanism and a skip connection (He et al., 2016).

In our model, we replace the self-attention component with an SSM. We adopt a bidirectional
structure, drawing from practices in Graves & Schmidhuber (2005); Wang et al. (2022); Yan et al.
(2023). This choice is motivated by the inherent limitation of a single SSM, which is typically
restricted to capturing unidirectional temporal transitions. By adopting a bidirectional approach,
SSMs can more comprehensively understand the temporal dynamics in video data, addressing the
constraints of traditional unidirectional SSMs. We employ element-wise summation for the integration
of forward and backward SSM outputs, rather than employing the methods taken by Wang et al.
(2022); Yan et al. (2023). Experimentally, this methodological choice is informed by its demonstrable
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Module Type Parallel Computation Memory Usage
RNN × BLD
Attention

√
B(L2 +DL)

Linear Attention
√

B(D2 +DL)
SSM

√
BLD

Table 1: Comparison of time-series handling modules in terms of parallelization capability and
memory usage related to batch size (B), sequence length (L) and hidden dimension (D).

superiority in boosting the generative capabilities of our temporal layer for video diffusion model to
the concatenation-based approach used in Yan et al. (2023).

Additionally, we recognize that SSM, while effective, has limitations in integrating information across
different dimensions, demonstrated in Equation 1. To overcome this, we supplement the SSM with a
multi-layer perceptron (MLP) after the bidirectional SSM module (Figure 1(b)). Our experiments
demonstrate that this addition significantly enhances the model’s performance, proving its importance
in the overall architecture.

Given an input X ∈ R(B×H×W )×L×C , where L is the sequence length, C is channel size, H is
height, W is width of the input image, our proposed temporal SSM layer operates as follows:

H = LayerNorm(X),

F = GLU(SSMforward(H)),

B = GLU(SSMbackward(Flip(H))),

U = F+ Flip(B),

O = MLP(U) +H.

The final output O is then forwarded as the output. The ‘Flip‘ function is used to reverse the order of
the sequence for the backward SSM and then restore the original order after processing. Element-wise
summation is used to merge the forward and backward information flows, and the MLP serves to
integrate across the channel dimension, which is empirically critical for performance.

4 EXPERIMENTS

In this section, we introduce the incorporation of temporal SSM layers as temporal layers in diffusion
models for video generation. This method facilitates the generation of longer video sequences while
maintaining generative performance, overcoming the limitations imposed by memory constraints in
attention-based temporal layers of video diffusion models. To empirically validate our hypothesis,
we conducted a series of experiments comparing our temporal SSM layer with the temporal attention
layer in video diffusion models. We also compared temporal linear attention, which has a linear
spatial complexity similar to our temporal SSM layer.

4.1 EXPERIMENTAL SETUP

Datasets We used two datasets to compare the performance of the temporal layers under varying
conditions. Training details for each dataset and each frame length are shown in Appendix A.
UCF101 (Soomro et al., 2012) was selected as the standard video dataset. Following Ho et al.
(2022b), 13,320 videos from the training and test sets were used. We sampled clips with frame
lengths of 16 and downscaled their spatial resolution to 32× 32 or 64× 64 pixels for manageability.
Additionally, we incorporated the MineRL Navigate dataset (Guss et al., 2019; Saxena et al., 2021),
which includes 961 videos for training purposes. Each video has 500 frames. This choice was
motivated by our aim to validate the model’s performance with longer video sequences. In our
experiments, we explored including 64, 200 and 400 frames length, and downscaled the spatial
resolution to 32× 32 pixels.

Baseline We established our experimental baseline using VDMs (Ho et al., 2022b). Our analysis
was meticulously designed to alter only the temporal attention layers in VDMs with our proposed
temporal SSM layers. This strategy facilitated a direct comparison with the existing temporal layers.
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Dataset UCF101 MineRL

# of Frames 16 16 64 200 400
Resolution 32× 32 64× 64 32× 32 32× 32 32× 32

Attention 272.152 618.005 1073.339 1032.514 –
Linear Attention 285.995 670.776 1175.453 1170.834 1072.001
Our SSM 226.447 634.546 1132.982 1116.339 972.306

Table 2: Comparison of FVD in UCF101 and MineRL Navigate. The absence of values for generating
400 frames using the attention mechanism is attributed to the training on NVIDIA A100 exceeding
the maximum memory capacity, rendering the experiment infeasible.

Evaluation Metrics In our validation process, we evaluated the sample quality of the videos
generated by the trained models. To evaluate the quality of the generated videos, we employ the
Fréchet Video Distance (FVD) metirc (Unterthiner et al., 2018), using an I3D network pretrained on
the Kinetics-400 dataset (Carreira & Zisserman, 2017). FVD is a recognized standard for assessing
the quality of generated videos (Ho et al., 2022b; Ge et al., 2022; Singer et al., 2022; Ho et al.,
2022a; Harvey et al., 2022), where lower scores denote superior quality. For the UCF101 dataset, we
evaluated FVD using all 13,320 videos and 10,000 generated samples. For the MineRL Navigate
dataset, the calculation involves all 961 videos and 1,000 generated samples.

4.2 BENCHMARK RESULTS

We initially focus on a standard video benchmark of UCF101 to compare generative performance
(measured using FVD) across different temporal layers. The quantitative results are in Table 2. The
qualitative results of this generation are presented in Figure 3. It is observed that the temporal SSM
layer outperforms both temporal attention and temporal linear attention in generative performance in
the 32× 32 setting and performs competitively in the 64× 64 setting.

We then utilize MineRL Navigate, a dataset with longer-term sequences, to observe the ability of
temporal SSM layers to generate video sequences of lengths unattainable by temporal attention layers,
while competitively maintaining generative performance. The transitions in these metrics as the video
length increases are illustrated in Table 2. Additionally, qualitative results of the generated videos are
shown in Figure 4.

While SSM exhibits competitive generative performance compared to temporal attention, it’s note-
worthy that temporal attention encounters memory errors at sequence lengths 400, a limitation not
faced by temporal SSM. This highlights SSM’s enhanced capability in handling longer sequences
without compromising computational efficiency. Furthermore, SSM outperforms temporal linear
attention in terms of generative performance. This finding underscores SSM’s superiority in its ability
to generate high-quality videos in longer video generation.

5 CONCLUSION

Our experimental findings demonstrate that incorporating SSM into the temporal layers of diffusion
models for video generation offers superior video modeling in terms of memory efficiency for
handling increased sequence lengths compared to traditional models employing temporal attention,
while maintaining competitive generative quality. It is empirically shown that, while attention-based
video generation diffusion models struggle to generate longer videos due to memory constraints,
SSM-based video diffusion models are capable of producing such videos.

The results of this study indicate that the incorporation of SSMs can lead to the development of
long-term video generation models that demand fewer memory resources. This has noteworthy
implications for broadening the accessibility of cutting-edge research in video generation diffusion
models. Even institutions with limited computational resources can engage in this advanced field,
potentially expediting the pace of research and innovation in video generation.
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A TRAINING DETAILS

To ensure a fair comparison of the modules extracting the temporal relationships under the same
resolution settings, all configurations except for the temporal layers, were the same in our experiments.
We used NVIDIA V100 ×4 or NVIDIA A100 ×8 (from a cloud provider). Detailed configuration is
shown in Table 3.

Dataset UCF101 MineRL

# of Frames 16 16 64 200 400
Resolution 32× 32 64× 64 32× 32 32× 32 32× 32
Base channel size 64 64 64 64 64
Channel multipliers 1, 2, 4, 8 1, 2, 4, 8 1, 2, 4, 8 1, 2, 4, 8 1, 2, 4, 8
Time embedding dimension 1024 1024 1024 1024 1024
Time embedding linears 2 2 2 2 2
# of attention heads (for attentions) 8 8 8 8 8
Dims of attention (for attentions) 64 64 64 64 64
SSM hidden dims (for SSMs) 512 512 512 512 512
MLP hidden dims (for SSMs) 512 512 512 512 512
Denoising timesteps (T) 256 1000 256 256 256
Loss type L2 loss of ϵ L2 loss of ϵ L2 loss of ϵ L2 loss of ϵ L2 loss of ϵ
Training steps 92k 106k 174k 255k 246k
Optimizer Adam Adam Adam Adam Adam
Training learning rate 0.0003 0.0001 0.0003 0.0003 0.00005
Train batch size 64 64 8 8 8
EMA decay 0.995 0.995 0.995 0.995 0.995
GPUs V100 ×4 A100 ×8 V100 ×4 A100 ×8 A100 ×8
Training Time 72 hours 120 hours 72 hours 100 hours 120 hours

Table 3: Experimental Setup for UCF101, MineRL Navigate datasets.

B ADDITIONAL RESULTS

In Figure 2, we present how training memory consumption and inference time vary with video
sequence length for each temporal layer, using 32 × 32 resolution images. Training memory
consumption data is based on a batch size of 8, while inference times reflect sample generation on a
single NVIDIA A100 GPU with the number of diffusion time steps T fixed at 256. Notably, for the
attention layer, experiments were capped at 275 frames instead of 400 due to memory limitations
of the devices, which restrict training of attention-based video diffusion models to a maximum of
approximately 275 frames. We also show qualitative results in Figure 3 and Figure 4.

C ABLATION STUDY

We conducted an ablation study to investigate the effectiveness of each component within our temporal
SSM layer. Through this analysis, we aim to identify the critical elements when integrating an SSM
into the temporal layer of video diffusion models.

C.1 ABLATION STUDY OF TEMPORAL SSM LAYERS

In the pursuit of temporal SSM layer in video generation diffusion models, our empirical findings
indicate a considerable influence of the temporal layer’s architecture on model performance. We
conduct an ablation study to investigate the effects of each component of temporal SSM layer.
Through this analysis, we aim to reveal which elements are instrumental to perform high generative
capacity when employing an SSM in the temporal layer of video diffusion models.

Bidirectional SSM Switching from bidirectional SSM to (unidirectional) SSM leads to a significant
reduction in generative performance (Table 4). This result show that the bidirectional usage of SSMs
significantly improves the ability of temporal SSM layer to capture temporal relationships.
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Figure 2: Left: Memory consumption during training with 8 NVIDIA A100 GPUs (40 GB) at a batch
size of 8 and resolution of 32 × 32. Right: Inference time for generating a sample with a single
NVIDIA A100 GPU at a resolution of 32× 32 and T = 256.

Figure 3: Qualitative generation results in UCF101 (64× 64, number of frames are 16).

We aggregate features from Bidirectional SSMs through element-wise summation (”add” in Table4),
unlike concatination-based aggregation approach taken by (Yan et al., 2023) (”concat” in the table).
Through empirical validation, it has been demonstrated that this aggregation technique enhances the
generative performance of video generation diffusion models.

MLPs in Temporal SSM Layers In this section, we shall discuss the configuration of the MLP
within our temporal SSM layer. The proposed temporal SSM layer is composed of a bidirectional
SSM followed by a dual-layer MLP with GeLU activation (Hendrycks & Gimpel, 2016). The
rationale behind placing the MLP after the bidirectional SSM was that the SSM part of bidirectional
SSM is a single-input, single-output system that was incapable of extracting relationships with other
dimensions of the input. Therefore, the MLP was used to enhance the extraction of relationships with
other input dimensions.
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Figure 4: Qualitative results in MineRL Navigate (32× 32, number of frames are 400).

SSM MLP FVD

Bidirectional Aggregation # of Layers Position UCF101 MineRL-64
√

add 2 post 226.447 1132.982√
add 2 pre 253.688 1129.245
– 2 post 669.582 1371.131√

concat 2 post 272.963 1224.561√
add 1 post 267.935 1189.216√
add 0 – 269.811 1193.491

Table 4: Quantitative results of ablation studies in our temporal SSM layers with UCF101 16 frames
and MineRL 64 frames.

In this section, we describe the ablations preformed on the MLP layers. Specifically, we compared the
following configurations: placing the MLP before the bidirectional SSM rather than after, replacing
the MLP with a single layer and removing the MLP altogether. The results of the ablations are listed
in Table 4.

Transitioning from a dual-layer MLP to a single linear layer, and eventually eliminating all such
components, consistently leads to a stepwise degradation in generative performance across two
datasets. The results also reveal that the placement of a dual-layer MLP, whether before or after
the SSM, does not significantly affect the generative capability. These findings imply that in video
diffusion models employing a temporal SSM layer, the generative performance heavily relies on the
expressive capacity of the temporal SSM layer, while the positioning of components relative to the
SSM plays a less crucial role in determining performance.

C.2 COMPARISON WITH PRIOR SSM ARCHITECTURES

Recent years have seen a surge in research efforts to apply SSMs across various domains, accompanied
by the proposal of numerous SSM architectures. Within this burgeoning field of study, gated state-
space (GSS) architectures have emerged as one of the effective structures (Mehta et al., 2023). For
instance, in Wang et al. (2022), bidirectional gated SSM (BiGS) architectures are employed for
language modeling and image generation (Wang et al., 2022; Yan et al., 2023). GSS and BiGS
architectures are composed of single linear layers for linear transformation, SSMs, skip connections
implemented through multiplication (gating), and a two-layer MLP.

Among other effective SSM architectures, the Mamba architecture has been proposed (Gu & Dao,
2023). The Mamba architecture is characterized by a structure that alternates between 1D Convolution
and SSM, and when combined with an SSM known as S6 (Gu & Dao, 2023), it has been applied to
language understanding and learning of visual representations (Wang et al., 2024; Liu et al., 2024).
For the learning of visual representations, a bidirectional version of Mamba, referred to here as
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Architecture Settings FVD

Architectures Bidirectional Dims of MLPs UCF101 MineRL-64

GSS dinput × 3 699.383 1683.820
BiGS

√
dinput × 3 233.277 1157.793

BiGS
√

512 237.244 1153.669

Mamba - 669.572 1722.097
Bi-Mamba

√
- 275.416 1156.891

Bi-Mamba + MLP
√

512 243.638 1138.779

Ours
√

512 226.447 1132.982

Table 5: FVD Comparison with SSM layers proposed in prior works across UCF101 16 frames and
MineRL Navigate 64 frames. The resolution of both datasets is 32× 32 pixels. The dimensionality
of the input processed by the temporal layer, dinput, is equal to the channel size, C, as inferred from
the dimensions of the input tensor X ∈ R(B×H×W )×L×C . In the experimental settings described in
this table, the channel sizes in the upper layers of the UNet architecture follow a sequential order of
64, 128, 256, and 512, starting from the topmost layer and progressing downwards.

Bi-Mamba, has also been proposed (Zhu et al., 2024). The architectures of these bidirectional SSM
layers, which are more complex compared to our proposed temporal SSM layer.

It is important to note that in this section, with the goal of ensuring a fair comparison of architectures,
the experiments with GSS, BiGS, Mamba, and Bi-Mamba all utilize the S4D as the SSM, similar to
our temporal S4D layer. Architecture details are shown in Figure 5.

The comparisons between GSS and BiGS, as well as between Mamba and Bi-Mamba, suggest that
the incorporation of bidirectionality significantly contributes to the capability of generating videos,
a phenomenon not limited to our temporal SSM layers. Furthermore, introducing a Multilayer
Perceptron (MLP) with a number of hidden layer dimensions that do not depend on the input
size, following the SSM layer as done in our temporal SSM layers, to both BiGS and Bi-Mamba
architectures, has been observed to result in performance improvements in some cases.

Then, we compare the generative performance of these structures and our proposed temporal SSM
layer when used as the temporal layer in VDMs. The results indicate that, even when bidirectionality
is applied and the size of the MLP’s hidden layers is aligned with ours, these models exhibit inferior
generative performance compared to our simple temporal SSM layer. A potential reason for this
discrepancy is that while GSS, BiGS, Mamba and Bi-Mamba focus on language and image modeling
using solely the SSM layers, our study seeks a temporal SSM layer specifically tailored to capture the
temporal features of video, making the former approaches excessively redundant for this purpose.

D RELATED WORKS

D.1 DEEP GENERATIVE MODELS FOR VIDEO GENERATION

The field of video synthesis has seen significant advancements through various studies. Prior to the
emergence of diffusion models, the use of generative adversarial networks (GANs) (Goodfellow
et al., 2014) dominated the scene. These methods extended traditional image-GAN frameworks to
video generation, focusing on enhancing their generative capabilities (Vondrick et al., 2016; Saito
et al., 2017; Tulyakov et al., 2018; Ge et al., 2022). These approaches primarily aimed to achieve
their objectives by extending common architectures of GANs for image generation. Additionally, the
development of long-term video generation techniques, particularly those leveraging the transitions
of latent variables in variational autoencoders (VAEs) (Kingma & Welling, 2013) are also well-
known. (Kim et al., 2019; Gregor & Besse, 2018; Saxena et al., 2021; Yan et al., 2021).

The advent of diffusion models in image generation (Sohl-Dickstein et al., 2015; Nichol & Dhariwal,
2021; Ho et al., 2020) marked a turning point, with their subsequent application to video distributions
demonstrating promising outcomes (Ho et al., 2022b; Singer et al., 2022; Ho et al., 2022a; Harvey
et al., 2022; Blattmann et al., 2023). These approaches have shown promising results. Nevertheless,
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(a) Gated State-Space (GSS), Bidirectional Gated SSM (BiGS)
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Figure 5: Details of architectures in prior works (Mehta et al., 2023; Wang et al., 2022; Gu & Dao,
2023; Zhu et al., 2024). +⃝ means element-wise summation and ×⃝ means element-wise product.
ϕ⃝ means GeLU activation (Hendrycks & Gimpel, 2016) and σ⃝ means SiLU activation (Elfwing
et al., 2018). In “Bi-Mamba + MLP“ experiments in Section 5, we replaced the last linear layer in
Bi-Mamba with a two-layer MLP.

the recent approaches adopt attention mechanisms to temporal layers, which requires memory
proportional to the square of the sequence length, the computational and memory demands of
video-diffusion models pose a substantial challenge. To mitigate this:

Spatiotemporal Downsampling Techniques like Singer et al. (2022) and Ho et al. (2022a) have been
developed to reduce computational costs by lowering spatial resolution and temporal frequency while
employing temporal attention layers for capturing temporal features. These methods complement our
research, which concentrates on lightening the module that captures temporal dynamics.

Latent Diffusion Models Exploring latent diffusion models presents an alternative approach (Rom-
bach et al., 2022), focusing on simpler latent variables rather than directly processing complex data.
Some strategies involve using pre-trained image diffusion models with additional trainable layers for
handling temporal features, emphasizing the training of these temporal layers to lessen the overall
computational load (Blattmann et al., 2023).

Flexible Diffusion Models (FDMs) In the realm of long-term video prediction using video diffusion
models, Flexible Diffusion Models (FDM) (Harvey et al., 2022) stand out. FDM predicts videos
through autoregressive sampling with flexible frame conditioning, allowing for efficient long-term
dependency modeling with minimal memory usage. Our research diverges from this by generating
videos from scratch, rather than predicting based on initial frames, and by focusing on architectural
improvements over sampling techniques.

D.2 STRUCTURED STATE SPACE SEQUENCE (S4) MODELS

Originally introduced in Gu et al. (2021), S4 represents a sequence modeling framework that first
solved all tasks in the Long-Range Arena (Tay et al., 2021). At its core lies the structured parameteri-
zation of state-space models (SSMs), offering efficient computation and demonstrating outstanding
performance, in capturing long-range dependencies (Gu et al., 2020; 2021). The mathematical
foundation of S4 is complex, prompting recent efforts to demystify, simplify, and improve S4 (Gu
et al., 2022; Smith et al., 2023; Gu & Dao, 2023). The S4D (Gu et al., 2022) used in our study is one
of such developments.
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S4 and its variants have been applied across various domains, including image and video classi-
fication (Nguyen et al., 2022; Knigge et al., 2023; Islam & Bertasius, 2022; Wang et al., 2023),
image representation learning (Liu et al., 2024), speech generation (Goel et al., 2022), time-series
generation (Zhou et al., 2023), language modeling (Mehta et al., 2023; Wang et al., 2022; Dao et al.,
2023), reinforcement learning (Bar David et al., 2023; Lu et al., 2023; Deng et al., 2023). In the
field of diffusion models using SSMs, DiffuSSM (Yan et al., 2023) have explored the integration of
SSMs with diffusion models, replacing the computationally intensive spatial attention mechanisms
in image generation with SSMs. However, the application of SSMs in video generation diffusion
models remains underexplored, an area our research aims to delve into and expand upon.

E EXPERIMENTAL CODES

Our codes are available at https://github.com/shim0114/
SSM-Meets-Video-Diffusion-Models.
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