
Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

SEMI-EQUIVARIANT CONDITIONAL NORMALIZING
FLOWS

Eyal Rozenberg and Daniel Freedman
Verily Research
Haifa, Israel
{eyalrozenberg,danielfreedman}@verily.com

ABSTRACT

We study the problem of learning conditional distributions of the form p(G|Ĝ),
whereG and Ĝ are two 3D graphs, using continuous normalizing flows. We derive
a semi-equivariance condition on the flow which ensures that conditional invari-
ance to rigid motions holds. We demonstrate the effectiveness of the technique in
the molecular setting of receptor-aware ligand generation.

1 INTRODUCTION

Data consisting of sets of three-dimensional points appear in a number of scientific and engineering
settings; examples include molecular chemistry, high energy physics, and computer vision. In many
cases, these point sets can be effectively described by a 3D graph, that is a graph whose vertices
correspond to points in R3. In this work, we are concerned with learning conditional distributions of
the form p(G|Ĝ), where G and Ĝ are two 3D graphs. Construction of such distributions is useful in
various scenarios: in the molecular setting, Ĝ will represent a receptor / target and G will represent
a ligand; in the setting of shape completion in computer vision, Ĝ will represent the part of the point
cloud that we have been given, and G will represent the completion of this point cloud.

We present a method for learning such conditional distributions based on continuous normalizing
flows. A critical aspect of the problem is to learn a distribution which respects the correct invari-
ances. Specifically, there must be an invariance to rigid motions which is a kind of “conditional
invariance” which is expressed jointly in terms of G and Ĝ. Our main theoretical result is that this
conditional invariance can be satisfied by a novel form of semi-equivariance of the normalizing flow.
We then empirically demonstrate the utility of our technique in the molecular setting: our method
allows for effective receptor-aware ligand generation. We discuss related work in Appendix A.

2 SEMI-EQUIVARIANT CONDITIONAL NORMALIZING FLOWS

2.1 NOTATION AND GOAL

Notation A 3D graph is given by G = (N,V,E,A), where N is the number of vertices; V is the
list of vertices; E is the list of edges; and A is the set of global graph properties, i.e. properties
which apply to the entire graph. The vertex list1 is V = (vi)

N
i=1 where each vertex is specified by

a vector vi = (xi,hi); in which xi ∈ R3 is the position of the vertex, and hi ∈ Rdh contains the
properties of the vertex. The edges in the graph G are undirected, and the edge list E is specified
by a neighbourhood relationship. Specifically, if ηi is the set of vertex i’s neighbours, then we write
E = (eij)i<j:j∈ηi . The vector eij ∈ Rde contains the properties of the edge connecting vertices i
and j. Finally, the graph properties are given by K individual properties, i.e. A = (a1, . . . ,aK).

Rigid Transformations The action of a rigid transformation T ∈ E(3) on a graph G is given by
TG = (TN, TV, TE, TA) where TV = (Tvi)

N
i=1 with Tvi = (Txi,hi). The other variables are

unaffected by T ; that is TN = N , TE = E, and TA = A.

1We use lists, rather than sets, so as to make the action of permutations clear.

1

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Permutations The action of a permutation π ∈ SN on a graph G with N(G) = N is given by
πG = (πN, πV, πE, πA) where πV = (vπi)

N
i=1 and πE =

(
eπiπj

)
i<j:j∈ηi

. The other variables
are unaffected by π; that is, πN = N and πA = A.

Goal We assume that we have both a base graph and a complement graph, each of which is specified
by a 3D graph. We denote the base graph as Ĝ = (N̂ , V̂ , Ê, Â) and the complement graph as
G = (N,V,E,A). Our goal is to learn a conditional generative model: given the base graph, we
would like to generate possible complement graphs. Formally, we want to learn p(G|Ĝ). We want
our generative model to respect two types of symmetries, expressed mathematically as:

p(TG|TĜ) = p(G|Ĝ) ∀T ∈ E(3) and p(πG|π̂Ĝ) = p(G|Ĝ) ∀π ∈ SN , π̂ ∈ SN̂ (1)

The first condition says that if we transform both the complement graph and the base graph with the
same rigid transformation, the probability should not change. The second condition says that per-
muting the order of either the complement graph or the base graph should not affect the probability.

General Approach We design our generative model p(G|Ĝ) by using a Markov decomposition:

p(G|Ĝ) = p(N,V,E,A|Ĝ) = p(N |Ĝ) · p(V |N, Ĝ) · p(E|N,V, Ĝ) · p(A|N,V,E, Ĝ) (2)

In this paper, we focus on the first two terms on the right-hand side of the equation: the Number
Distribution p(N |Ĝ) and the Vertex Distribution p(V |N, Ĝ). The latter two terms may also be
specified (e.g. see Appendix D), but are not the focus of our investigation in this paper.

2.2 TWO FLAVOURS OF EGNNS

In order to incorporate the relevant invariance properties, it will be helpful to use Equivariant Graph
Neural Networks, also known as EGNNs (Satorras et al., 2021b). We now introduce two separate
flavours of EGNNs, one which applies to the base graph alone, and a second which applies to the
combination of the base graph and the complement graph.

Base Graph EGNN This is the standard EGNN which is described in (Satorras et al., 2021b),
applied to the base graph. As we are referring to the base graph, we use hatted variables:

m̂`
ij = φ̂e(ĥ

`
i , ĥ

`
j , ‖x̂`i − x̂`j‖2, ‖x̂0

i − x̂0
j‖2, êij , {âk}) b̂`ij = σ(φ̂b(m̂

`
ij)) m̂`

i =
∑
j∈η̂i

b̂`ijm̂
`
ij

x̂`+1
i = x̂`i + φ̂x(m̂`

ij)
∑
j 6=i

(x̂`i − x̂`j)

‖x̂`i − x̂`j‖+ 1
ĥ`+1
i = ĥ`i + φ̂h(ĥ`i , m̂

`
i) (3)

The particular Base Graph EGNN is thus specified by the functions φ̂e, φ̂b, φ̂x, φ̂h.

Conditional EGNN It is possible to design a joint EGNN on the base graph and the complement
graph, by constructing a single graph to capture both. The main problem with this approach is that
in many applications, the base graph can be much larger than the complement graph; for example,
in the molecular scenario the receptor is 1-2 orders of magnitude larger than the ligand. As a result,
this naive approach will lead to a situation in which the complement graph is “drowned out” by the
base graph, making it difficult to learn about the complement graph. We therefore take a different
approach: we compute summary signatures of the base graph based on the Base Graph EGNN, and
use these as input to a Complement Graph EGNN. Our signatures will be based on the feature vari-
ables ĥ`j from each layer ` = 1, . . . , L̂. These variables are invariant to rigid body transformations
by construction; furthermore, we can introduce permutation invariance by averaging, that is by using
ĥ`av = ΣN̂j=1ĥ

`
j/N̂ . Thus, the base graph at layer ` of the complement graph’s EGNN is summarized

by the signature ĝ` which depends on both {ĥ`av}, as well as the time t of the normalizing flow ODE
(to be introduced shortly in Section 2.4):

ĝ0 = φ0
g

(
ĥ1
av, . . . , ĥ

L̂
av, t

)
and ĝ` = φ`g

(
ĝ`−1

)
` = 1, . . . , L (4)

The Conditional EGNN is then specified by a form similar to the equations in (3), but in which the
functions φe, φb, φx, φh (now non-hatted, as we are referring to the complement graph) each have
an additional dependence on the base graph signatures {ĝ`}L`=1. Further details are in Appendix B.

2

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

2.3 THE NUMBER DISTRIBUTION: p(N |Ĝ)

Construction Given the invariance conditions described in Equation (1), we propose the following
distribution. Let ζN indicate a one-hot vector, where the index corresponding to N is filled in with
a 1. Based on the output of the base graph EGNN, compute

p(N |Ĝ) = ζTNF2

(
ΣN̂i=1F1(ĥLi)/N̂

)
(5)

where F1 and F2 are multilayer perceptrons, and the last layer of F2 is a softmax of size equal to the
maximum number of atoms allowed. Since we use the ĥLi vectors (and not the x̂Li vectors), we have
rigid motion invariance, as T ĥLi = ĥLi . Since we use an average, we have permutation invariance.

Loss Function The loss function is straightforward: it is simply the negative log-likelihood of the
number distribution, i.e. L(θ) = EG,Ĝ[− log p(N |Ĝ; θ)].

2.4 THE VERTEX DISTRIBUTION: p(V |N, Ĝ) VIA CONTINUOUS NORMALIZING FLOWS

General Notation Define a vectorization operation on the vertex list V , which produces a vector
v; we refer to this as a vertex vector. Recall that V = (vi)

N
i=1 where vi = (xi,hi). Let

x = concat(x1, . . . ,xN) h = concat(h1, . . . ,hN) v = concat(x,h) (6)

The vertex vector v ∈ RdNv where dNv = (dh + 3)N . We denote the mapping from the vertex list
V to the vertex vector v as the vectorization operation vec(·): we write v = vec(V) and V =
vec−1(v). We have already described the action of rigid body transformations T and permutations
π on the vertex list V in Section 2.1. It is easy to extend this to vertex vectors v using the vec
operation; we have Tv = vec(Tvec−1(v)) and πv = vec(πvec−1(v)).

Given the above, it is sufficient for us to describe the distribution pvec(v|Ĝ) from which the vertex
distribution p(V |N, Ĝ) follows directly, p(V |N, Ĝ) = pvec(vec(V)|Ĝ). Note that we have sup-
pressed N in the condition in pvec(·), as v is a vector of dimension dNv , so the N dependence is
already implicitly encoded.

Complex-to-Complement Mapping and Semi-Equivariance Let γ be a function which takes as
input the complex consisting of both the complement graph G and base graph Ĝ, and outputs a new
vertex list V ′ for the complement graph G:

V ′ = γ(G, Ĝ) (7)

We refer to γ as a Complex-to-Complement Mapping. A rigid body transformation T ∈ E(3)
consists of a rotation and translation; let the rotation be denoted as Trot. Then we say that γ is
rotation semi-equivariant if

γ(TrotG,TĜ) = Trotγ(G, Ĝ) for all T ∈ E(3) (8)

γ is said to be permutation semi-equivariant if

γ(πG, π̂Ĝ) = πγ(G, Ĝ) for all π ∈ SN and π̂ ∈ SN̂ (9)

Note in the definitions of both types of semi-equivariance, the differing roles played by the comple-
ment graph and base graph; as the equivariant behaviour only applies to the complement graph, we
have used the term semi-equivariance.

Conditional Flow Let γ be a Complex-to-Complement Mapping. If v is a vertex vector, define Gv

to be the graphGwith the vertex set replaced by vec−1(v). Then the following ordinary differential
equation is referred to as a Conditional Flow:

du

dt
= vec

(
γ(Gu, Ĝ)

)
, with u(0) = z (10)

where the initial condition z ∼ N (0, I) is a Gaussian random vector of dimension dNv , and the ODE
is run until t = 1. u(1) is thus the output of the Conditional Flow.

Vertex Distributions with Appropriate Invariance We now have the necessary ingredients to
construct a distribution pvec(v|Ĝ) which yields a vertex distribution p(V |N, Ĝ) that satisfies the
required invariance conditions. The following is our main result (proof in Appendix C):

3

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Validity
Ours GraphBP

99.87% 99.75%

∆Binding
Ours GraphBP

35.7% 22.76%

Table 1: Comparison of molecule validity and ∆Binding between proposed method and GraphBP.

Theorem (Invariant Vertex Distribution). Let u(1) be the output of a Conditional Flow specified
by the Complex-to-Complement Mapping γ. Let the mean position of the base graph be given by
x̂av = 1

N̂

∑N̂
i=1 x̂i, and define the following quantities

α =
N

N + N̂
ΩĜ =

[
I3N − α

N 1N×N ⊗ I3 0
0 IdhN

]
ωĜ =

[
−(1− α)1N×1 ⊗ x̂av

0

]
(11)

where ⊗ indicates the Kronecker product. Finally, let v = Ω−1

Ĝ

(
u(1)− ωĜ

)
. Suppose that γ is

both rotation semi-equivariant and permutation semi-equivariant. Then the resulting distribution
on v, that is pvec(v|Ĝ), yields a vertex distribution p(V |N, Ĝ) = pvec(vec(V)|Ĝ) that satisfies
the invariance conditions in Equation (1).

Designing the Complex-to-Complement Mapping For the Complex-to-Complement Mapping,
we choose to use the Conditional EGNN; that is, V ′ = γ(G, Ĝ) is given by v′i = (xLi ,h

L
i), the

output of the EGNN’s final layer. In practice, we use a slightly modified version of the foregoing,
that is v′i = (xLi − xi,h

L
i), which we have found to converge well empirically. The rotation semi-

equivariance of γ (both versions - ordinary and modified) follows straightforwardly from the rotation
semi-equivariance of EGNNs and the rotation invariance of the base graph signatures {ĝ`}L`=1.
Similarly, the permutation semi-equivariance follows from the permutation equivariance of EGNNs
and the permutation invariance of the base graph signatures.

Loss Function The loss function and its optimization are implemented using standard techniques
for continuous normalizing flows (Chen et al., 2018b; Grathwohl et al., 2018; Chen et al., 2018a).
If the feature vectors contain discrete variables, then techniques based on variational dequantization
(Ho et al., 2019) and argmax flows (Hoogeboom et al., 2021) can be used, for ordinal and categorical
features respectively. This is parallel to the treatment in (Satorras et al., 2021a).

3 APPLICATIONS TO TARGET-AWARE MOLECULE GENERATION

We now apply the theory we have developed to the problem of target-aware structure based molecule
generation, in which the base graph plays the role of the receptor, while the complement graph
plays the role of the ligand; vertices are atoms and edges are bonds. We train our model on the
CrossDocked2020 dataset (Francoeur et al., 2020). Further details are included in Appendix E.

The validity is defined as the percentage of molecules that are chemically valid, in the sense that
they can be sanitized by RDKit, see (Landrum, 2016). As shown in Table 1, our model produces
ligands with a validity of 99.87%, surpassing the baseline, GraphBP (Liu et al., 2022). ∆Binding
measures the percentage of generated molecules that have higher predicted binding affinity to the
target binding site than the corresponding reference molecule. As can be seen in Table 1, our method
attains ∆Binding = 35.7% vs. 22.76% for GraphBP, which corresponds to a relative improvement
of 56.81%. Further details are included in Appendix F.

4

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

REFERENCES

Pedro J Ballester and John BO Mitchell. A machine learning approach to predicting protein–ligand
binding affinity with applications to molecular docking. Bioinformatics, 26(9):1169–1175, 2010.

Paul S Charifson, Joseph J Corkery, Mark A Murcko, and W Patrick Walters. Consensus scoring: A
method for obtaining improved hit rates from docking databases of three-dimensional structures
into proteins. Journal of medicinal chemistry, 42(25):5100–5109, 1999.

Changyou Chen, Chunyuan Li, Liqun Chen, Wenlin Wang, Yunchen Pu, and Lawrence Carin Duke.
Continuous-time flows for efficient inference and density estimation. In International Conference
on Machine Learning, pp. 824–833. PMLR, 2018a.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018b.

Tiejun Cheng, Xun Li, Yan Li, Zhihai Liu, and Renxiao Wang. Comparative assessment of scoring
functions on a diverse test set. Journal of chemical information and modeling, 49(4):1079–1093,
2009.

Tiejun Cheng, Qingliang Li, Zhigang Zhou, Yanli Wang, and Stephen H Bryant. Structure-based
virtual screening for drug discovery: a problem-centric review. The AAPS journal, 14(1):133–
141, 2012.

Robert S DeWitte and Eugene I Shakhnovich. Smog: de novo design method based on simple,
fast, and accurate free energy estimates. 1. methodology and supporting evidence. Journal of the
American Chemical Society, 118(47):11733–11744, 1996.

Pavol Drotár, Arian Rokkum Jamasb, Ben Day, Cătălina Cangea, and Pietro Liò. Structure-aware
generation of drug-like molecules. arXiv preprint arXiv:2111.04107, 2021.

Jacob D Durrant and J Andrew McCammon. Nnscore 2.0: a neural-network receptor–ligand scoring
function. Journal of chemical information and modeling, 51(11):2897–2903, 2011.

Vendy Fialková, Jiaxi Zhao, Kostas Papadopoulos, Ola Engkvist, Esben Jannik Bjerrum, Thierry
Kogej, and Atanas Patronov. Libinvent: reaction-based generative scaffold decoration for in silico
library design. Journal of Chemical Information and Modeling, 62(9):2046–2063, 2021.

Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, and Adam Oberman. How to train your neu-
ral ode: the world of jacobian and kinetic regularization. In International conference on machine
learning, pp. 3154–3164. PMLR, 2020.

Paul G Francoeur, Tomohide Masuda, Jocelyn Sunseri, Andrew Jia, Richard B Iovanisci, Ian Snyder,
and David R Koes. Three-dimensional convolutional neural networks and a cross-docked data set
for structure-based drug design. Journal of chemical information and modeling, 60(9):4200–4215,
2020.

Tianfan Fu, Wenhao Gao, Connor W Coley, and Jimeng Sun. Reinforced genetic algorithm for
structure-based drug design. arXiv preprint arXiv:2211.16508, 2022.

Arnab Ghosh, Harkirat Behl, Emilien Dupont, Philip Torr, and Vinay Namboodiri. Steer: Simple
temporal regularization for neural ode. Advances in Neural Information Processing Systems, 33:
14831–14843, 2020.

Holger Gohlke, Manfred Hendlich, and Gerhard Klebe. Knowledge-based scoring function to pre-
dict protein-ligand interactions. Journal of molecular biology, 295(2):337–356, 2000.

Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. Ffjord:
Free-form continuous dynamics for scalable reversible generative models. arXiv preprint
arXiv:1810.01367, 2018.

Mahmudulla Hassan, Daniel Castaneda Mogollon, Olac Fuentes, et al. Dlscore: A deep learning
model for predicting protein-ligand binding affinities. 2018.

5

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. Flow++: Improving flow-
based generative models with variational dequantization and architecture design. In International
Conference on Machine Learning, pp. 2722–2730. PMLR, 2019.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
and multinomial diffusion: Learning categorical distributions. Advances in Neural Information
Processing Systems, 34:12454–12465, 2021.

Sheng-You Huang and Xiaoqin Zou. Scoring and lessons learned with the csar benchmark using
an improved iterative knowledge-based scoring function. Journal of chemical information and
modeling, 51(9):2097–2106, 2011.

Nicholas A Hummell, Alexey V Revtovich, and Natalia V Kirienko. Novel immune modulators en-
hance caenorhabditis elegans resistance to multiple pathogens. Msphere, 6(1):e00950–20, 2021.

Arian Rokkum Jamasb, Ramon Viñas Torné, Eric J Ma, Yuanqi Du, Charles Harris, Kexin Huang,
Dominic Hall, Pietro Lio, and Tom Leon Blundell. Graphein-a python library for geometric deep
learning and network analysis on biomolecular structures and interaction networks. In ICML
2022 2nd AI for Science Workshop, 2022.

Douglas B Kitchen, Hélène Decornez, John R Furr, and Jürgen Bajorath. Docking and scoring in
virtual screening for drug discovery: methods and applications. Nature reviews Drug discovery,
3(11):935–949, 2004.

David Ryan Koes, Matthew P Baumgartner, and Carlos J Camacho. Lessons learned in empirical
scoring with smina from the csar 2011 benchmarking exercise. Journal of chemical information
and modeling, 53(8):1893–1904, 2013.

Jonas Köhler, Leon Klein, and Frank Noé. Equivariant flows: exact likelihood generative learning
for symmetric densities. In International conference on machine learning, pp. 5361–5370. PMLR,
2020.

Jonas Köhler, Leon Klein, and Frank Noé. Equivariant flows: sampling configurations for multi-
body systems with symmetric energies, 2019. URL https://arxiv.org/abs/1910.
00753.

Greg Landrum. Rdkit: Open-source cheminformatics software. 2016. URL https://github.
com/rdkit/rdkit/releases/tag/Release_2016_09_4.

Yibo Li, Jianfeng Pei, and Luhua Lai. Structure-based de novo drug design using 3d deep generative
models. Chemical science, 12(41):13664–13675, 2021.

Haitao Lin, Yufei Huang, Meng Liu, Xuanjing Li, Shuiwang Ji, and Stan Z Li. Diffbp: Generative
diffusion of 3d molecules for target protein binding. arXiv preprint arXiv:2211.11214, 2022.

Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. Graph normalizing
flows. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
1e44fdf9c44d7328fecc02d677ed704d-Paper.pdf.

Meng Liu, Youzhi Luo, Kanji Uchino, Koji Maruhashi, and Shuiwang Ji. Generating 3d molecules
for target protein binding. arXiv preprint arXiv:2204.09410, 2022.

Zhihai Liu, Minyi Su, Li Han, Jie Liu, Qifan Yang, Yan Li, and Renxiao Wang. Forging the basis
for developing protein–ligand interaction scoring functions. Accounts of chemical research, 50
(2):302–309, 2017.

Shitong Luo, Jiaqi Guan, Jianzhu Ma, and Jian Peng. A 3d generative model for structure-based
drug design. Advances in Neural Information Processing Systems, 34:6229–6239, 2021.

Campbell McInnes. Virtual screening strategies in drug discovery. Current opinion in chemical
biology, 11(5):494–502, 2007.

6

https://arxiv.org/abs/1910.00753
https://arxiv.org/abs/1910.00753
https://github.com/rdkit/rdkit/releases/tag/Release_2016_09_4
https://github.com/rdkit/rdkit/releases/tag/Release_2016_09_4
https://proceedings.neurips.cc/paper/2019/file/1e44fdf9c44d7328fecc02d677ed704d-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/1e44fdf9c44d7328fecc02d677ed704d-Paper.pdf

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Andrew T McNutt, Paul Francoeur, Rishal Aggarwal, Tomohide Masuda, Rocco Meli, Matthew
Ragoza, Jocelyn Sunseri, and David Ryan Koes. Gnina 1.0: molecular docking with deep learn-
ing. Journal of cheminformatics, 13(1):1–20, 2021.

Jens Meiler, Michael Müller, Anita Zeidler, and Felix Schmäschke. Generation and evaluation of
dimension-reduced amino acid parameter representations by artificial neural networks. Molecular
modeling annual, 7(9):360–369, 2001.

Ingo Muegge. A knowledge-based scoring function for protein-ligand interactions: Probing the
reference state. Perspectives in Drug Discovery and Design, 20(1):99–114, 2000.

Derek Onken, Samy Wu Fung, Xingjian Li, and Lars Ruthotto. Ot-flow: Fast and accurate continu-
ous normalizing flows via optimal transport. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 9223–9232, 2021.

Xingang Peng, Shitong Luo, Jiaqi Guan, Qi Xie, Jian Peng, and Jianzhu Ma. Pocket2mol: Efficient
molecular sampling based on 3d protein pockets. arXiv preprint arXiv:2205.07249, 2022.

Matthew Ragoza, Tomohide Masuda, and David Ryan Koes. Generating 3d molecules conditional
on receptor binding sites with deep generative models. Chemical science, 13(9):2701–2713, 2022.

Anthony K Rappé, Carla J Casewit, KS Colwell, William A Goddard III, and W Mason Skiff. Uff,
a full periodic table force field for molecular mechanics and molecular dynamics simulations.
Journal of the American chemical society, 114(25):10024–10035, 1992.

Danilo Jimenez Rezende, Sébastien Racanière, Irina Higgins, and Peter Toth. Equivariant hamilto-
nian flows, 2019. URL https://arxiv.org/abs/1909.13739.

Victor Garcia Satorras, Emiel Hoogeboom, Fabian B Fuchs, Ingmar Posner, and Max Welling. E(n)
equivariant normalizing flows. arXiv preprint arXiv:2105.09016, 2021a.

Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant graph neural net-
works. In International conference on machine learning, pp. 9323–9332. PMLR, 2021b.

Arne Schneuing, Yuanqi Du, Charles Harris, Arian Jamasb, Ilia Igashov, Weitao Du, Tom Blundell,
Pietro Lió, Carla Gomes, Max Welling, Michael Bronstein, and Bruno Correia. Structure-based
drug design with equivariant diffusion models. arXiv preprint arXiv:2210.13695, 2022.

Minyi Su, Qifan Yang, Yu Du, Guoqin Feng, Zhihai Liu, Yan Li, and Renxiao Wang. Comparative
assessment of scoring functions: the casf-2016 update. Journal of chemical information and
modeling, 59(2):895–913, 2018.

Morgan Thomas, Robert T Smith, Noel M O’Boyle, Chris de Graaf, and Andreas Bender. Com-
parison of structure-and ligand-based scoring functions for deep generative models: a gpcr case
study. Journal of cheminformatics, 13(1):1–20, 2021.

Oleg Trott and Arthur J Olson. Autodock vina: improving the speed and accuracy of docking
with a new scoring function, efficient optimization, and multithreading. Journal of computational
chemistry, 31(2):455–461, 2010.

Renxiao Wang, Yipin Lu, and Shaomeng Wang. Comparative evaluation of 11 scoring functions for
molecular docking. Journal of medicinal chemistry, 46(12):2287–2303, 2003.

Gregory L Warren, C Webster Andrews, Anna-Maria Capelli, Brian Clarke, Judith LaLonde, Mil-
lard H Lambert, Mika Lindvall, Neysa Nevins, Simon F Semus, Stefan Senger, et al. A critical
assessment of docking programs and scoring functions. Journal of medicinal chemistry, 49(20):
5912–5931, 2006.

Maciej Wójcikowski, Michał Kukiełka, Marta M Stepniewska-Dziubinska, and Pawel Siedlecki.
Development of a protein–ligand extended connectivity (plec) fingerprint and its application for
binding affinity predictions. Bioinformatics, 35(8):1334–1341, 2019.

Hong Zhang and Wenjun Zhao. Pnode: A memory-efficient neural ode framework based on high-
level adjoint differentiation. arXiv preprint arXiv:2206.01298, 2022.

7

https://arxiv.org/abs/1909.13739

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

A RELATED WORK

Continuous normalizing flows originated in the work of Chen et al. (2018a) and have been extended
in many ways, for example (Grathwohl et al., 2018; Zhang & Zhao, 2022; Onken et al., 2021; Ghosh
et al., 2020). Köhler et al. (2019) and Rezende et al. (2019) presented equivariant normalizing flows
which respect natural symmetries. Liu et al. (2019) introduced graph normalizing flows to obtain
generative models of graph structures. Köhler et al. (2020) and Satorras et al. (2021a) constructed
equivariant graph normalizing flows, by incorporating equivariant graph neural networks into an
ODE framework to obtain invertible equivariant functions. A variety of works have tackled the
problem of receptor-aware ligand generation, including methods based on VAEs, e.g. (Ragoza et al.,
2022); autoregressive models, e.g. (Luo et al., 2021; Liu et al., 2022; Peng et al., 2022; Drotár et al.,
2021); diffusion, e.g. (Schneuing et al., 2022; Lin et al., 2022); and reinforcement learning, e.g. (Li
et al., 2021; Thomas et al., 2021; Fialková et al., 2021; Fu et al., 2022).

B THE CONDITIONAL EGNN

The base graph at layer ` of the complement graph’s EGNN is summarized by the signature ĝ`

which depends on both {ĥ`av} and the ODE time t:

ĝ0 = φ0
g

(
ĥ1
av, . . . , ĥ

L̂
av, t

)
and ĝ` = φ`g

(
ĝ`−1

)
` = 1, . . . , L (12)

Note that there are L+ 1 separate functions {φ`g}L`=0.

These invariant base graph signatures {ĝ`}L`=1 are then naturally incorporated into the Conditional
EGNN as follows:

m`
ij = φe

(
h`i ,h

`
j , ‖x`i − x`j‖2, ‖x0

i − x0
j‖2, ĝ`, t

)
b`ij = σ(φb(m

`
ij , ĝ

`)) m`
i =

N∑
j=1

b`ijm
`
ij

x`+1
i = x`i +

∑
j 6=i

(x`i − x`j)

‖x`i − x`j‖+ 1

φx(m`
ij , ĝ

`) h`+1
i = h`i + φh(h`i ,m

`
i , ĝ

`) (13)

The particular Conditional EGNN is thus specified by the functions {φ`g}L`=0, φe, φb, φx, φh.

C PROOF OF THE INVARIANT VERTEX DISTRIBUTION THEOREM

In this section, we prove the Invariant Vertex Distribution Theorem presented in Section 2.4. We
begin with two lemmata, after which the proof of the theorem is presented.

Lemma 1. Let the mean position of the base graph be given by x̂av = 1
N̂

∑N̂
i=1 x̂i, and define the

following quantities

α =
N

N + N̂
ΩĜ =

[
I3N − α

N 1N×N ⊗ I3 0
0 IdhN

]
ωĜ =

[
−(1− α)1N×1 ⊗ x̂av

0

]
where ⊗ indicates the Kronecker product. Given the following mapping:

v = Ω−1

Ĝ

(
u− ωĜ

)
(14)

Let the inverse mapping be denoted by Γ1
Ĝ

, i.e. u = Γ1
Ĝ

(v). For any rigid transformation T ∈ E(3),
which consists of both a rotation and a translation, denote the transformation consisting only of the
rotation of T as Trot ∈ O(3). Then

Γ1
TĜ

(Tv) = TrotΓ
1
Ĝ

(v).

Furthermore, for any permutations π ∈ SN and π̂ ∈ SN̂ , then

Γ1
π̂Ĝ

(πv) = πΓ1
Ĝ

(v).

8

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Proof: The mapping u = Γ1
Ĝ

(v) is given by

u = ΩĜv + ωĜ (15)

Let us denote the parts of u corresponding to the coordinates and the features as xu and hu, respec-
tively; and use similar notation for v. Then we have that

hu = hv (16)

and
xu =

(
I3N −

α

N
1N×N ⊗ I3

)
xv − (1− α)1N×1 ⊗ x̂av (17)

Breaking down this last equation by vertex gives

xu
i = xv

i −
α

N

N∑
j=1

xv
j − (1− α)x̂av

= xv
i − (αxv

av + (1− α)x̂av)

= xv
i − x̄v (18)

where xv
av is the average coordinate position of xv, and x̄v indicates the average of all vertices in

the entire complex, i.e. taking both the complement graph and the base graph together.

Now, let us examine what happens when we apply the rigid transformation T to both v and the base
graph Ĝ; that is, let us examine

ũ = Γ1
TĜ

(Tv) (19)

In the case of the features h, they are invariant by design; thus

hũ = hTv

= hv

= hu (20)

where the last line follows from Equation (16). In the case of the coordinates, the transformation is
as follows:

xTv
i = Rxv

i + t (21)
where R ∈ O(3) is the rotation matrix, and t ∈ R3 the translation vector, corresponding to rigid
motion T . As we apply T to the base graph Ĝ, this has the effect of applying this transformation to
each of the base graph vertices, and hence to their mean and the mean of the entire complex:

x̂TĜav = Rx̂Ĝav + t ⇒ x̄Tv = Rx̄v + t (22)

Thus, following Equation (18), and substituting Tv and TĜ in place of v and Ĝ, we get

xũ
i = xTv

i − x̄Tv

= Rxv
i + t− (Rx̄v + t)

= R (xv
i − x̄v)

= Rxu
i (23)

Combining Equations (20) and (23), we have that

ũ = Trotu (24)

Since u = Γ1
Ĝ

(v) and ũ = Γ1
TĜ

(Tv), we have shown that Γ1
TĜ

(Tv) = TrotΓ
1
Ĝ

(v), as desired.

In the case of the permutations, let us now set

ũ = Γ1
π̂Ĝ

(πv) (25)

It is easy to see that π̂ has no effect; the only place the base graph enters is through the quantities N̂
and x̂av , both of which are permutation-invariant. For the features, we now have

hũ = hπv

= πhv

= πhu (26)

9

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

That is, the features are simply reordered according to π. With regard to the coordinates, we have
that

xũ
i = xπvi − x̄πv

= xv
π(i) − x̄v

= xu
π(i) (27)

The coordinates are also therefore simply reordered according to π. Summarizing, we have that

ũ = πu (28)

This is exactly equal to
Γ1
π̂Ĝ

(πv) = πΓ1
Ĝ

(v)

which concludes the proof.

Lemma 2. Let u(1) be the output of a Conditional Flow specified by the Complex-to-Complement
Mapping γ which is rotation semi-equivariant and permutation semi-equivariant. This Conditional
Flow maps the initial condition z to u(1); let the inverse mapping be denoted by Γ2

Ĝ
, i.e. z =

Γ2
Ĝ

(u(1)). Then
Γ2
TĜ

(Trotu) = TrotΓ
2
Ĝ

(u)

Furthermore, for any permutations π ∈ SN and π̂ ∈ SN̂ , then

Γ2
π̂Ĝ

(πu) = πΓ2
Ĝ

(u)

Proof: Our first goal is to show that Γ2
TĜ

(Trotu) = TrotΓ
2
Ĝ

(u). Let us define FĜ to be the inverse
of Γ2

Ĝ
, and let u = FĜ(z). Then

Γ2
TĜ

(Trotu) = TrotΓ
2
Ĝ

(u) ⇔ F−1

TĜ
(TrotFĜ(z)) = TrotF

−1

Ĝ
(FĜ(z))

⇔ F−1

TĜ
(TrotFĜ(z)) = Trotz

⇔ FTĜ(Trotz) = TrotFĜ(z) (29)

Thus, it is sufficient to show that FTĜ(Trotz) = TrotFĜ(z). For convenience, we shall set

u(1) = FĜ(z) and ũ(1) = FTĜ(Trotz) (30)

In this case, u(1) is defined by the ODE

du

dt
= vec

(
γ(Gu, Ĝ)

)
with u(0) = z (31)

whereas ũ(1) is defined by the ODE

dũ

dt
= vec

(
γ(Gũ, T Ĝ)

)
with ũ(0) = Trotz (32)

Now, let us define ŭ(t) = T−1
rot ũ(t), so that ũ(t) = Trotŭ(t). In this case, we have that:

1. ŭ(0) = T−1
rot ũ(0) = T−1

rotTrotz = z.

2. dũ
dt = Trot

dŭ
dt .

3. vec
(
γ(Gũ, T Ĝ)

)
= vec

(
γ(GTrotŭ, T Ĝ)

)
= Trotvec

(
γ(Gŭ, Ĝ)

)
, where the last

equality is from the definition of rotation semi-equivariance of γ.

Plugging the above three results into the flow for ũ in Equation (32) yields

Trot
dŭ

dt
= Trotvec

(
γ(Gŭ, Ĝ)

)
with ŭ(0) = z

⇒ dŭ

dt
= vec

(
γ(Gŭ, Ĝ)

)
with ŭ(0) = z (33)

10

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

But this is precisely identical to the flow described in Equation (31); thus, we have that

ŭ(t) = u(t) for all t (34)

But ũ(t) = Trotŭ(t) so that ũ(t) = Trotu(t), and in particular ũ(1) = Trotu(1). Comparing with
Equation (30) completes rigid motion part of the proof.

Let us now turn to permutations; the proof is similar, but we repeat it in full for completeness.
Our goal is to show that Γ2

π̂Ĝ
(πu) = πΓ2

Ĝ
(u). Let us define FĜ to be the inverse of Γ2

Ĝ
, and let

u = FĜ(z). Then

Γ2
π̂Ĝ

(πu) = πΓ2
Ĝ

(u) ⇔ F−1

π̂Ĝ
(πFĜ(z)) = πF−1

Ĝ
(FĜ(z))

⇔ F−1

π̂Ĝ
(πFĜ(z)) = πz

⇔ Fπ̂Ĝ(πz) = πFĜ(z) (35)

Thus, it is sufficient to shows that Fπ̂Ĝ(πz) = πFĜ(z). For convenience, we shall set

u(1) = FĜ(z) and ũ(1) = Fπ̂Ĝ(πz) (36)

In this case, u(1) is defined by the ODE

du

dt
= vec

(
γ(Gu, Ĝ)

)
with u(0) = z (37)

whereas ũ(1) is defined by the ODE

dũ

dt
= vec

(
γ(Gũ, π̂Ĝ)

)
with ũ(0) = πz (38)

Now, let us define ŭ(t) = π−1ũ(t), so that ũ(t) = πŭ(t). In this case, we have that:

1. ŭ(0) = π−1ũ(0) = π−1πz = z.

2. dũ
dt = π dŭdt .

3. vec
(
γ(Gũ, π̂Ĝ)

)
= vec

(
γ(Gπŭ, π̂Ĝ)

)
= πvec

(
γ(Gŭ, Ĝ)

)
, where the last equality

is from the definition of permutation semi-equivariance of γ.

Plugging the above three results into the flow for ũ in Equation (38) yields

π
dŭ

dt
= πvec

(
γ(Gŭ, Ĝ)

)
with ŭ(0) = z

⇒ dŭ

dt
= vec

(
γ(Gŭ, Ĝ)

)
with ŭ(0) = z (39)

But this is precisely identical to the flow described in Equation (37); thus, we have that

ŭ(t) = u(t) for all t (40)

But ũ(t) = πŭ(t) so that ũ(t) = πu(t), and in particular ũ(1) = πu(1). Comparing with Equation
(36) completes the proof.
Theorem. Let u(1) be the output of a Conditional Flow specified by the Complex-to-Complement

Mapping γ. Let the mean position of the base graph be given by x̂av = 1
N̂

∑N̂
i=1 x̂i, and define the

following quantities

α =
N

N + N̂
ΩĜ =

[
I3N − α

N 1N×N ⊗ I3 0
0 IdhN

]
ωĜ =

[
−(1− α)1N×1 ⊗ x̂av

0

]
(41)

where ⊗ indicates the Kronecker product. Finally, let

v = Ω−1

Ĝ

(
u(1)− ωĜ

)
(42)

Suppose that γ is both rotation semi-equivariant and permutation semi-equivariant. Then the result-
ing distribution on v, that is pvec(v|Ĝ), yields a vertex distribution p(V |N, Ĝ) = pvec(vec(V)|Ĝ)
that satisfies the invariance conditions in Equation (1).

11

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Proof: The Conditional Flow maps from the Gaussian random variable z to the variable u(1). As
this flow is a normalizing flow, it is invertible, so let us denote the inverse mapping by Γ2:

z = Γ2
Ĝ

(u(1)) (43)

Note that the dependence on the base graph Ĝ is denoted using a subscript, as the invertibility does
not apply to the base graph, but only to the complement graph. Equation (42) maps from the variable
u(1) to the variable v; let us denote its inverse mapping by Γ1:

u(1) = Γ1
Ĝ

(v) (44)

In this case, we have that
z = Γ2

Ĝ
(Γ1
Ĝ

(v)) ≡ ΓĜ(v) (45)

Now, our goal is to show that the following condition holds:

p(TV |N,TĜ) = p(V |N, Ĝ) for T ∈ E(3) (46)

Using the pvec notation, this translates to

pvec(Tv|TĜ) = pvec(v|Ĝ) (47)

Now, from Equation (45), the fact that Γ is invertible, and the change of variables formula, we have
that

pvec(v|Ĝ) = pz(ΓĜ(v))|det JΓĜ
(v)| (48)

where pz(·) is the Gaussian distribution from z is sampled; and JΓĜ
(·) is the Jacobian of ΓĜ(·).

Since ΓĜ = Γ2
Ĝ
◦ Γ1

Ĝ
, this can be expanded as

pvec(v|Ĝ) = pz(Γ2
Ĝ

(Γ1
Ĝ

(v)))|det JΓ2
Ĝ

(Γ1
Ĝ

(v))||det JΓ1
Ĝ

(v)| (49)

using the chain rule, and the fact that determinant of a product is the product of determinants.
Plugging this into Equation (47), we must show that

pz(Γ2
TĜ

(Γ1
TĜ

(Tv)))|det JΓ2
TĜ

(Γ1
TĜ

(Tv))||det JΓ1
TĜ

(Tv)|

= pz(Γ2
Ĝ

(Γ1
Ĝ

(v)))|det JΓ2
Ĝ

(Γ1
Ĝ

(v))||det JΓ1
Ĝ

(v)| for T ∈ E(3) (50)

A rigid transformation T ∈ E(3) consists of both a rotation and a translation. For brevity, denote
the transformation consisting only of the rotation of T as Trot ∈ O(3). Now, from Lemma 1, we
have that

Γ1
TĜ

(Tv) = TrotΓ
1
Ĝ

(v) (51)

From Lemma 2, we have that
Γ2
TĜ

(Trotu) = TrotΓ
2
Ĝ

(u) (52)

Combining Equations (51) and (52) gives that

pz(Γ2
TĜ

(Γ1
TĜ

(Tv))) = pz(Γ2
TĜ

(TrotΓ
1
Ĝ

(v)))

= pz(TrotΓ
2
Ĝ

(Γ1
Ĝ

(v)))

= pz(Γ2
Ĝ

(Γ1
Ĝ

(v))) (53)

where the last line follows from the rotation invariance of the Gaussian distribution.

Note that

JΓ1
TĜ

(Tv) =
∂

∂v

(
Γ1
TĜ

(Tv)
)

=
∂

∂v

(
TrotΓ

1
Ĝ

(v)
)

= Trot
∂

∂v

(
Γ1
Ĝ

(v)
)

= TrotJΓ1
Ĝ

(v) (54)

12

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Now, Trot can be represented by the dNv × dNv block diagonal matrix given by

Trot =

[
1N×1 ⊗R 0

0 IdhN

]
(55)

where R ∈ O(3), the top-left block corresponds to the coordinates x and the bottom-right block
corresponds to the feature h. Thus,

det
(
JΓ1

TĜ
(Tv)

)
= det

(
TrotJΓ1

Ĝ
(v)
)

= det(Trot) det
(
JΓ1

Ĝ
(v)
)

= det(R)
N

det(IdhN) det
(
JΓ1

Ĝ
(v)
)

= ±det
(
JΓ1

Ĝ
(v)
)

(56)

where the second line follows from the fact that the determinant of a product is the product of
determinants; the third line from the fact that the determinant of a block diagonal matrix is the
product of the determinants of the blocks; and the fourth line from the fact that the determinant of a
rotation matrix is ±1.

To simplify JΓ2
TĜ

(Γ1
TĜ

(Tv)), note that

Γ2
TĜ

(u) = Γ2
TĜ

(TrotT
−1
rotu)

= TrotΓ
2
Ĝ

(T−1
rotu) (57)

where we have used Equation (52). Thus,

JΓ2
TĜ

(u) =
∂

∂u

(
Γ2
TĜ

(u)
)

=
∂

∂u

(
TrotΓ

2
Ĝ

(T−1
rotu)

)
= TrotJΓ2

TĜ
(T−1
rotu)T−1

rot (58)

We wish to plug in u = Γ1
TĜ

(Tv). Note that from Equation (51), Γ1
TĜ

(Tv) = TrotΓ
1
Ĝ

(v). Thus,

JΓ2
TĜ

(Γ1
TĜ

(Tv)) = JΓ2
TĜ

(TrotΓ
1
Ĝ

(v))

= TrotJΓ2
TĜ

(T−1
rotTrotΓ

1
Ĝ

(v))T−1
rot

= TrotJΓ2
TĜ

(Γ1
Ĝ

(v))T−1
rot (59)

where in the second line we substituted Equation (58). Taking determinants gives

det
(
JΓ2

TĜ
(Γ1
TĜ

(Tv))
)

= det
(
TrotJΓ2

TĜ
(Γ1
Ĝ

(v))T−1
rot

)
= det

(
T−1
rotTrotJΓ2

TĜ
(Γ1
Ĝ

(v))
)

= det
(
JΓ2

TĜ
(Γ1
Ĝ

(v))
)

(60)

where in the second line, we used the fact that permuting the order of a matrix multiplication does
not affect the determinant.

Combining Equations (53), (56), and (60), we finally arrive at:

pz(Γ2
TĜ

(Γ1
TĜ

(Tv)))|det JΓ2
TĜ

(Γ1
TĜ

(Tv))||det JΓ1
TĜ

(Tv)|

= pz(Γ2
Ĝ

(Γ1
Ĝ

(v)))|det JΓ2
Ĝ

(Γ1
Ĝ

(v))||det JΓ1
Ĝ

(v)| (61)

which is exactly Equation (50). Thus, we have shown that p(TV |N,TĜ) = p(V |N, Ĝ), as desired.

13

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Let us turn now to the permutation case, which is quite similar. Similar to Equation (50), we need
to show

pz(Γ2
π̂Ĝ

(Γ1
π̂Ĝ

(πv)))|det JΓ2
π̂Ĝ

(Γ1
π̂Ĝ

(πv))|| det JΓ1
π̂Ĝ

(πv)|

= pz(Γ2
Ĝ

(Γ1
Ĝ

(v)))|det JΓ2
Ĝ

(Γ1
Ĝ

(v))||det JΓ1
Ĝ

(v)| for π ∈ Sn and π̂ ∈ SN̂ (62)

From Lemmata 1 and 2, we have that

Γ1
π̂Ĝ

(πv) = πΓ1
Ĝ

(v) and Γ2
π̂Ĝ

(πu) = πΓ2
Ĝ

(u) (63)

Thus

pz(Γ2
π̂Ĝ

(Γ1
π̂Ĝ

(πv))) = pz(Γ2
π̂Ĝ

(πΓ1
Ĝ

(v)))

= pz(πΓ2
Ĝ

(Γ1
Ĝ

(v)))

= pz(Γ2
Ĝ

(Γ1
Ĝ

(v))) (64)

where the last line follows from the permutation-invariance of the Gaussian distribution pz(·).

In a manner parallel to the derivation of Equation (54), we can show that

JΓ1
π̂Ĝ

(πv) = πJΓ1
Ĝ

(v) (65)

where π now indicates the permutation matrix associated with the permutation π. Thus, we have
that

det
(
JΓ1

π̂Ĝ
(πv)

)
= det(π) det

(
JΓ1

Ĝ
(v)
)

= ±det
(
JΓ1

Ĝ
(v)
)

(66)

where we have used the fact that a permutation matrix has determinant of±1. Similarly, in a manner
parallel to the derivation of Equation (59), we can show that

JΓ2
π̂Ĝ

(Γ1
π̂Ĝ

(πv)) = πJΓ2
Ĝ

(Γ1
Ĝ

(v))π−1 (67)

so that

det
(
JΓ2

π̂Ĝ
(Γ1
π̂Ĝ

(πv))
)

= det
(
πJΓ2

Ĝ
(Γ1
Ĝ

(v))π−1
)

= det
(
π−1πJΓ2

Ĝ
(Γ1
Ĝ

(v))
)

= det
(
JΓ2

Ĝ
(Γ1
Ĝ

(v))
)

(68)

Combining Equations (64), (66), and (68) yields Equation (62); completing the proof.

D THE EDGE AND PROPERTIES DISTRIBUTIONS

The Edge Distribution Given the invariance conditions described in Equation (1), we pro-
pose a distribution which displays conditional independence: p (E = (eij)i<j:j∈ηi |N,V, Ĝ) =∏
i<j:j∈ηi p(eij |N,V, Ĝ). We opt for conditional independence for two reasons: (1) The usual

Markov decomposition of the probability distribution with terms of the form p(eij |e<ij , N, V, Ĝ)
implies a particular ordering of the edges, and is therefore not permutation-invariant. (2) V is a
deterministic and invertible function of the flow’s noise vector z; thus, conditioning on V is the
same as conditioning on z. If E is a deterministic (but not necessarily invertible) function of z, then
conditional independence is correct.

To compute p(eij |N,V, Ĝ), we use a second Conditional EGNN. The key distinction between this
network and the Conditional EGNN used in computing the vertex distribution is the initial condi-
tions. In the case of the vertex distribution, the initial conditions are x1

i = 0 and h1
i = 0. In the

current case of the edge distribution, we are given V (we are conditioning on it); thus, we take the
initial conditions to be x̃1

i = xi(V) and h̃1
i = hi(V). In other words, the initial values are given the

vertex list V itself.

Given this second Conditional EGNN, we can compute the edge distribution as

p
(
eij |N,V, Ĝ

)
= eTij MLP

(
m̃L
ij

)
(69)

14

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

in the case of categorical properties (where MLP’s output is a softmax with de entries); analogous
expressions exist for ordinal or continuous properties. It is straightforward to see that this distribu-
tion satisfies the invariance properties in Equation (1). The corresponding loss function is a simple
cross-entropy loss (or regression loss for non-categorical properties).

The Property Distribution We propose the following distribution. We use a standard Markov
decomposition: p(A|N,V,E, Ĝ) =

∏K
k=1 p

(
ak|a1:(k−1), N, V,E, Ĝ

)
. Let

ξh =
1

N

N∑
i=1

MLP
(
h̃Li

)
ξe =

1

|E|
∑

i<j:j∈ηi

MLP (eij) ξa,k = MLP

k−1∑
j=1

Wjaj

 (70)

where the matrices W1, . . .WK all have the same number of rows. Then we set

p
(
ak

∣∣∣a1:(k−1), N, V,E, Ĝ
)

= aTk MLP (concat (ξh, ξe, ξa,k)) (71)

in the case of categorical properties; analogous expressions exist for ordinal or continuous properties.
Note that the only item which changes for the different properties k is the vector ξa,k. It is easy to
see that this distribution satisfies the invariance properties in Equation (1). The corresponding loss
function is a simple cross-entropy loss (or regression loss for non-categorical properties).

E EXPERIMENTAL SETUP

Molecular Dataset Datasets with a large number of receptor-ligand complexes are critical to our
endeavour. Many models have relied on the high quality PDBbind dataset which curates the Protein
Data Bank (PDB) (Liu et al., 2017); however, for the training of generative models, this dataset
is relatively small. CrossDocked2020 (Francoeur et al., 2020) is the first large-scale standardized
dataset for training ML models with ligand poses cross-docked against non-cognate receptor struc-
ture, greatly expanding the number of poses available for training. The dataset is organized by
clustering of similar binding pockets across the PDB; each cluster contains ligands cross-docked
against all receptors in the pocket. Each receptor-ligand structure also contains information indi-
cating the nature of the docked pair, such as root mean squared deviation (RMSD) to the reference
crystal pose and Vina cross-docking score (Trott & Olson, 2010) as implemented in Smina (Koes
et al., 2013). The dataset contains 22.5 million poses of ligands docked into multiple similar binding
pockets across the PDB. We use the authors’ suggested split into training and validation sets (Fran-
coeur et al., 2020). This dataset contains docked receptor-ligand pairs whose binding pose RMSD is
lower than 2Å. Based on considerations of training duration, we keep only those data points whose
ligand has 30 atoms or fewer with atom types in {C, N, O, F}. We also keep only data points with
potentially valid ligand-protein binding properties, i.e. whose ligands do not contain duplicate ver-
tices and whose predicted Vina scores (Trott & Olson, 2010) are within distribution. The refined
datasets consist of 132,863 training data points and 63,929 validation data points.

Features The ligand features that we wish to predict include the atom type ∈ {C, N, O, F} (categor-
ical); the stereo parity ∈ {not stereo, odd, even} (categorical); and charge ∈ {−1, 0,+1} (ordinal).
The receptor features that are used are computed with the Graphein library (Jamasb et al., 2022).
The vertex features include: the atom type ∈ {C, N, O, S, “other”} where “other” is a catch-all for
less common atom types2 (categorical); the Meiler Embeddings (Meiler et al., 2001) (continuous
∈ R7). The bond (edge) properties include: the bond order ∈ {Single, Double, Triple} (categorical);
covalent bond length (continuous ∈ R). The receptor overall graph properties (Â) contain the weight
of all chains contained within a polypeptide structure, see (Jamasb et al., 2022).

Training Training the model takes approximately 18 days using a single NVIDIA A100 GPU for
39 epochs. We proactively stopped the training procedure when the negative log-likelihood (NLL)
term reached a low improvement rate of between epochs. We train with the Adam optimizer, weight
decay of 10−12, batch size of 128, and learning rate of 2 × 10−4. To improve the stability of the
continuous flow model and to deal with ODE stiffness issues we use the ODE regularization term
described in (Finlay et al., 2020) with a value of 10−3; and perform gradient clipping, where the

2Specifically: Na, Mg, P, Cl, K, Ca, Co, Cu, Zn, Se, Cd, I, Hg.

15

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Validity
Ours GraphBP

99.87% 99.75%

Bond Length Distribution
Ref. Mols. Ours GraphBP

mean 1.42 1.45 1.65
std 0.08 0.10 0.95

(a) Ligand validity and bond length distribution

∆Binding
Ours GraphBP

35.7% 22.76%

Predicted Affinity Distribution
Ref. Mols. Ours GraphBP

mean 5.09 4.56 4.31
std 1.16 1.05 1.03

(b) ∆Binding and predicted affinity distribution

Table 2: Comparison of molecule validity and ∆Binding between proposed method and GraphBP.

clipping term is set by calculating a moving average of 50 steps of the normalizing flows gradient-
norm. This is parallel to the treatment in (Satorras et al., 2021a). We use dopri5 (Runge-Kutta 4(5)
of Dormand-Prince) as the ODE solver with relative (rtol) and absolute (atol) error tolerance values
of 10−4.

F DETAILED EXPERIMENTAL RESULTS

We first evaluate the utility of our technique as a conditional generative model. Given a receptor,
we generate ligands which may successfully bind to that receptor. To show that our method is
competitive as a generative model we compare against Liu et al. (2022) – one of the recent works that
showed promising results in similar settings. We then demonstrate the utility of our technique for
indicating the nature of the interaction of ligands with their corresponding binding site. The trained
model provides the conditional probability, p(G|Ĝ), which defines the likelihood of a binding event
occurring given a ligand, based on the presence of a specific target receptor.

Conditional Generative Model We perform inference using the method suggested in the baseline
(Liu et al., 2022). Given a receptor, we sample from the learned distribution, which generates
the ligands’ vertices; we then then apply OpenBabel (Hummell et al., 2021) to construct bonds.
Evaluation follows the standard procedure (Ragoza et al., 2022; Liu et al., 2022). First, the receptor
target is computed by taking all of the atoms in the receptor that are less than 15Å from the center
of mass of the reference ligand. We then generate 100 ligands for each reference binding site in
the evaluation set, and compute statistics (i.e. validity and ∆Binding, see below) on this set of
samples. As in (Ragoza et al., 2022; Liu et al., 2022), 10 target receptors for evaluation; each
target receptor has multiple associated ligands, leading to 90 (receptor, reference-ligand) pairs. We
train the baseline technique (Liu et al., 2022) on our filtered dataset. More specifically, the training
continues for 100 epochs, using the hyperparameters given in the paper, with one exception: we set
the atom number range of the autoregressive generative process according to the atom distribution
of the filtered dataset.

Validity The validity is defined as the percentage of molecules that are chemically valid among all
generated molecules. A molecule is valid if it can be sanitized by RDKit; for an explanation of the
sanitization procedure, see (Landrum, 2016). As shown in Table 2(a), our model produces ligands
with a validity of 99.87%, surpassing the baseline, GraphBP. We also compute the distribution of
bond distances of the two methods, and compare this to distribution of the reference ligands; see Fig-
ure 1. Our method’s distribution is considerably closer to the reference distribution than GraphBP;
some non-trivial fraction of the time, GraphBP produces unusual, very high bond distances. (In fact,
we have discarded values higher than 10Å on the GraphBP plot so as to display the distributions on
similar scales.) This impression is reinforced in Table 2(a) which compares the mean and standard
deviation of these distributions.

Binding Affinity A more interesting measure than validity is ∆Binding, which measures the per-
centage of generated molecules that have higher predicted binding affinity to the target binding site
than the corresponding reference molecule. To compute binding affinities, we follow the proce-
dure used by GraphBP. Briefly, we refine the generated 3D molecules by Universal Force Field
(UFF) minimization (Rappé et al., 1992); then, Vina minimization and CNN scoring are applied
to both generated and reference molecules by using gnina, a molecular docking program (McNutt

16

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Å

0
1
2
3
4
5
6
7

Ref. Mols
kernel density estimate

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Å

0

1

2

3

4

5

6
Ours

kernel density estimate

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Å

0.0

0.5

1.0

1.5

2.0

2.5

3.0

GraphBP
kernel density estimate

Figure 1: Normalized histogram of relative distances between atoms

Figure 2: Comparison between generated 3D molecules for target binding-site and reference
molecules. Receptor IDs, left to right: 1zyu, 2qu9, 2hw1, 3lcg, 3zt3, 5lvq. Top: generated lig-
and (colour) + receptor. Middle: generated ligand chemical structure. Bottom: reference ligand
chemical structure.

et al., 2021). As can be seen in Table 2(b), our result improves significantly on the baseline. Raw
GraphBP attains ∆Binding = 13.45%. By playing with the minimum and the maximum atom num-
ber of the baseline autoregressive model, we were able to improve this to 22.76%; however, note
that this results in a reduction in validity from 99.75% to 99.54%. Our method attains ∆Binding =
35.7%, which is a relative improvement of 56.81% over the better of the two GraphBP scores.

Qualitative Results We show examples of generated ligands in Figure 2, along with their chemical
structures. Note that the structures of the generated molecules differ substantially from the reference
molecules, indicating that the model has indeed learn to generalize to interesting novel structures.

Binding Likelihood The CrossDocked2020 dataset (Francoeur et al., 2020) includes quantitative
measures indicating the quality of the binding of each docked receptor-ligand structure: (i) root
mean squared deviation (RMSD) to the reference crystal pose; (ii) Vina cross-docking score (Trott
& Olson, 2010) as implemented in Smina (Koes et al., 2013). Scoring functions that represent and
predict ligand-protein interactions are important for applications in structure-based drug discovery
(e.g. energy minimization, molecular dynamics simulations, and hit identification/lead optimization
(DeWitte & Shakhnovich, 1996; McInnes, 2007; Charifson et al., 1999)), and particularly impor-
tant for molecular docking where one seeks to predict the probability that binding occurs given a
specified orientation and conformation (i.e. pose) of a ligand with respect to a target receptor (Su
et al., 2018; Wang et al., 2003; Kitchen et al., 2004; Warren et al., 2006; Cheng et al., 2009; Huang
& Zou, 2011; Trott & Olson, 2010; Cheng et al., 2012). We show how the conditional probability
of our model may also be used as such indicator. As we have seen in Section 2, our method is not
trained on either of the binding quality indicators (Vina / RMSD), but instead is the result of learn-
ing a conditional probability distribution from ligand-receptor pairs; therefore it may be viewed as
a complementary scoring method. Specifically, given the conditional probability p(G|Ĝ) from the
trained model, its negative log-likelihood (NLL) may be used a scoring method. Such an approach
can be considered as a member of the family of knowledge-based methods (Muegge, 2000; Gohlke
et al., 2000; Durrant & McCammon, 2011; Huang & Zou, 2011; Ballester & Mitchell, 2010; Hassan
et al., 2018; Wójcikowski et al., 2019) which are constructed from entirely non-physical statistical
potentials derived from known receptor-ligand complexes.

17

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Vina Score ↑
0 < Vina < 5 5 < Vina < 9 9 < Vina < 15

NLL ↓ -77.83 -144.30 -180.37

RMSD ↓
0 < RMSD < 1 1 < RMSD < 1.5 1.5 < RMSD < 2

NLL ↓ -137.70 -135.72 -130.67

(a) Ligand-receptor Vina score and RMSD vs average negative log-likelihood (NLL).

NLL under rigid transformation ↓
Rotation

θx ∼ U(−π
u
, π
u
), θy ∼ U(− π

2u
, π
2u

), θz ∼ U(−π
u
, π
u
)

u = 20 u = 10 u = 20
3 u = 5

Tr
an

sl
at

io
n

τ
∼
U

([−
t,
t]
3
) −134.34 −132.18 −124.15 −110.45 −91.94

t = 2Å −133.98 −130.80 −122.49 −109.22 −90.75

t = 5Å −129.28 −126.28 −118.57 −104.94 −86.02

t = 10Å −113.99 −111.80 −103.74 −91.15 −71.83

t = 15Å −88.85 −87.26 −76.85 −66.19 −45.89

(b) Average negative log-likelihood (NLL) under varying degrees of 3D rigid body transformations (translation
and rotation) of ligand pose. θx, θy, θz are rotational Euler angles and τ ∈ R3 is translation factor.

Table 3: Binding Likelihood. ↓ (↑) indicates stronger binding for lower (higher) values.

Vina and RMSD We split the 63,929 validation data points into three different groups according
their Vina scores: (a) Vina ∈ [0, 5] (b) Vina ∈ (5, 9] (c) Vina ∈ (9, 15]. We randomly sample 10,000
receptor-ligand complexes from each group. Using the trained model, we calculate the average NLL
for each group separately, where lower NLL indicates better conditional likelihood. The results
in Table 3(a) show good correspondence between the Vina scores (higher values describe better
affinity) with the binding likelihood outcomes of our model (lower NLL is better).

We then repeat this experiment, but using RMSD values instead of Vina scores. Again, we divide
the validation set into three groups according to their RMSD values: (a) RMSD ∈ [0, 1] (b) RMSD
∈ (1, 1.5] (c) RMSD ∈ (1, 2] (all values in Angstroms). Again, we see a good correspondence
between the RMSD values (lower values describe a better connected complex) with the binding
likelihood outcomes of our model (lower NLL is better).

Rigid Transformations The nature of binding between receptor and corresponding ligand is affected
by the position of the ligand in the binding site. The ligand pose for each ligand-receptor pair in the
validation data points was refined using the UFF force-field and then optimized with respect to the
receptor structure using the Vina scoring function. We randomly select 10,000 validation data points
and apply a rigid body transformation solely to the minimized ligand-graph pose. Any such changes
to the ligand pose with respect to the binding site potentially affect and reduce the binding affinity.
The results in Table 3(b) show the NLL under varying degrees of rigid transformations. The more
significant the transformation, the lower the binding likelihood (i.e. the higher the NLL) gets.

18

	Introduction
	Semi-Equivariant Conditional Normalizing Flows
	Notation and Goal
	Two Flavours of EGNNs
	The Number Distribution: p(N |)
	The Vertex Distribution: p(V | N,) via Continuous Normalizing Flows

	Applications to Target-Aware Molecule Generation
	Related Work
	The Conditional EGNN
	Proof of the Invariant Vertex Distribution Theorem
	The Edge and Properties Distributions
	Experimental Setup
	Detailed Experimental Results

