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Abstract

Most popular benchmarks for comparing LLMs rely on a limited set of prompt
templates, which may not fully capture the LLMs’ abilities and can affect the
reproducibility of results on leaderboards. Many recent works empirically verify
prompt sensitivity and advocate for changes in LLM evaluation. In this paper,
we consider the problem of estimating the performance distribution across many
prompt variants instead of finding a single prompt to evaluate with. We introduce
PromptEval, a method for estimating performance across a large set of prompts
borrowing strength across prompts and examples to produce accurate estimates
under practical evaluation budgets. The resulting distribution can be used to
obtain performance quantiles to construct various robust performance metrics (e.g.,
top 95% quantile or median). We prove that PromptEval consistently estimates
the performance distribution and demonstrate its efficacy empirically on three
prominent LLM benchmarks: MMLU, BIG-bench Hard, and LMentry; for example,
PromptEval can accurately estimate performance quantiles across 100 prompt
templates on MMLU with a budget equivalent to two single-prompt evaluations.
Moreover, we show how PromptEval can be useful in LLM-as-a-judge and best
prompt identification applications.2

1 Introduction
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Figure 1: Average estimation error for performance
quantiles across 100 templates given a limited budget
(in multiples of one-template MMLU evaluations).

In recent years, the rapid progress of large
language models (LLMs) has significantly
influenced various fields by enhancing au-
tomated text generation and comprehen-
sion. As these models advance in com-
plexity and functionality, a key challenge
that arises is their robust evaluation [Perlitz
et al., 2023]. Common evaluation meth-
ods, which often rely on a single or limited
number of prompt templates, may not ad-
equately reflect the typical model’s capa-
bilities [Weber et al., 2023b]. Furthermore,
this approach can lead to unreliable and in-
consistent rankings on LLM leaderboards,
as different models may perform better or
worse depending on the specific prompt
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template used. An ideal evaluation framework should minimize dependence on any single prompt
template and instead provide a holistic summary of performance across a broad set of templates.
Mizrahi et al. [2023], for example, suggests using summary statistics, such as the average performance
across many templates, as a way to compare the abilities of different LLMs. However, the main
drawback of this method is the high computational cost when dealing with numerous templates and
examples.

We introduce PromptEval, a method for efficient multi-prompt evaluation of LLMs. With a small
number of evaluations, PromptEval estimates performance across a large and given pool of different
prompt templates. Our approach is grounded in robust theoretical foundations and utilizes well-
established models from the fields of educational assessment and psychometrics, such as Item
Response Theory (IRT) [Cai et al., 2016, Van der Linden, 2018, Brzezińska, 2020, Lord et al.,
1968]. Our method is based on an IRT model that allows borrowing strength across examples and
prompt templates to produce accurate estimates of all considered prompts with an evaluation budget
comparable to evaluating a single prompt. In Figure 1, we demonstrate the ability of our method to
jointly estimate various performance quantiles across 100 prompt templates with an evaluation budget
ranging from one to four times of a conventional single-prompt evaluation on MMLU [Hendrycks
et al., 2020].

Performance distribution across prompts can be used to accommodate various contexts when compar-
ing LLMs [Choshen et al., 2024]. For example, it can be used to compute the mean performance as
suggested by Mizrahi et al. [2023]. One can also use performance distributions directly to compare
LLMs via various notions of stochastic dominance for risk-sensitive scenarios [Nitsure et al., 2023].
Here we primarily focus on the full distribution and its quantiles as they provide a flexible statistic
that can inform decisions in varying contexts. For instance, a typical model performance corresponds
to a median (50% quantile), 95% quantile can be interpreted as performance achievable by an expert
prompt engineer, while 5% quantile is of interest in consumer-facing applications to quantify low-end
performance for a user not familiar with prompt engineering. We also demonstrate (§6) how our
method can be used to account for prompt sensitivity in the LLM-as-a-judge framework [Li et al.,
2023] and to do best prompt identification [Shi et al., 2024].

Our main contributions are:

• We propose (§3) a novel method called PromptEval which permits efficient multi-prompt evaluation
of LLMs for a given pool of prompt templates with a limited number of evaluations. Moreover,
we theoretically show (§4) that PromptEval has desirable statistical properties such as consistency
in estimating performance distribution and its quantiles.

• We practically demonstrate (§5) efficacy of PromptEval in estimating performance across 100+
prompts and finding the best-performing prompt for various LLMs using data derived from three
popular benchmarks: MMLU [Hendrycks et al., 2020], BIG-bench Hard (BBH) [Suzgun et al.,
2022], and LMentry [Efrat et al., 2022].

• We show (§6) how PromptEval can be applied to account for prompt sensitivity in the LLM-as-a-
judge framework and to identify the best prompt in a large pool of options.

• We conduct the first large-scale study of prompt sensitivity of 15 popular open-source LLMs on
MMLU. We present our findings based on evaluating 100 prompt templates in Section 7 and
release the evaluation data.

1.1 Related work

LLMs’ sensitivity to prompt templates The sensitivity of Large Language Models (LLMs) to
the prompts is well-documented. For example, Sclar et al. [2023] revealed that subtle variations
in prompt templates in few-shot settings can lead to significant performance discrepancies among
several open-source LLMs, with differences as large as 76 accuracy points in tasks from the SuperNat-
uralInstructions dataset [Wang et al., 2022]. Additionally, they report that the performance of different
prompt templates tends to correlate weakly between models. This finding challenges the reliability
of evaluation methods that depend on a single prompt template. To measure LLMs sensitivity, the
researchers suggested calculating a “performance spread,” which represents the difference between
the best and worst performances observed. Mizrahi et al. [2023] conducted a complementary analysis
using state-of-the-art models and subsets of BigBench and LMentry [Srivastava et al., 2022, Efrat
et al., 2022]. The authors arrive at similar conclusions with respect to LLMs’ sensitivity to the used
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prompt templates and empirically showed that the LLM ranking considering different formats are
usually weakly or intermediately correlated with each other. As a solution to the lack of robustness in
LLM evaluation, the authors propose the use of summary statistics, as the average performance, for
LLM evaluation. Some other works, e.g., Voronov et al. [2024], Weber et al. [2023b,a], show that even
when in-context examples are given to the models, the prompt templates can have a big impact on
the final numbers, sometimes reducing the performance of the strongest model in their analyses to a
random guess level [Voronov et al., 2024]. In a different direction, Shi et al. [2024] acknowledges that
different prompt templates have different performances and proposes using best-arm-identification to
efficiently select the best template for an application at hand. One major bottleneck is still on how to
efficiently compute the performance distribution for LLMs over many prompt templates; we tackle
this problem.

Efficient evaluation of LLMs The escalating size of models and datasets has led to increased
evaluation costs. To streamline evaluations, Ye et al. [2023b] considered minimizing the number
of tasks within Big-bench [Srivastava et al., 2022]. Additionally, Perlitz et al. [2023] observed that
evaluations on HELM [Liang et al., 2022] rely on diversity across datasets, though the quantity of
examples currently utilized is unnecessarily large. Perlitz et al. [2023] also highlighted the problems
in evaluating with insufficient prompts and called to evaluate on more, suggesting evaluating the
typical behavior by sampling prompts and examples together by employing stratified sampling, where
subscenarios give the strata; in our work, we also apply stratification but consider prompt templates
and examples to give the strata. To accelerate evaluations for classification tasks, Vivek et al. [2023]
suggested clustering evaluation examples based on model confidence in the correct class. More
recently, Maia Polo et al. [2024] empirically showed that it is possible to shrink the size of modern
LLM benchmarks and still retain good estimates for LLMs’ performances. Similarly (and in parallel
to this work) Ashury-Tahan et al. [2024] recognized unlabeled examples that better distinguish
between models or prompts, by analyzing model outputs on them, hence saving costly annotation
for them. Despite these advancements in streamlining LLM evaluations, there are no other works
that propose a general and efficient method to estimate the benchmark performance of LLMs across
prompt templates to the best of our knowledge.

Item response theory (IRT) IRT [Cai et al., 2016, Van der Linden, 2018, Brzezińska, 2020, Lord
et al., 1968] is a collection of statistical models initially developed in psychometrics to assess
individuals’ latent abilities through standardized tests but with increasing importance in the fields
of artificial intelligence and natural language processing (NLP). For example, Lalor et al. [2016]
used IRT’s latent variables to measure language model abilities, Vania et al. [2021] applied IRT to
benchmark language models and examine the saturation of benchmarks, and Rodriguez et al. [2021]
explored various uses of IRT with language models, including predicting responses to unseen items,
categorizing items by difficulty, and ranking models. Recently, Maia Polo et al. [2024], Shabtay
et al. [2024] suggested using IRT for efficient LLM performance evaluation; both works used the
Performance-IRT (pIRT) estimator to evaluate LLMs. PromptEval is built upon pIRT.

2 Problem statement

In this section, we describe the setup we work on and what our objectives are. Consider that we
want to evaluate a large language model (LLM) in a certain dataset composed of J examples (also
known as questions or items in the literature) and each one of the examples is responded to by the
LLM through prompting; we assume that there exists I different prompt templates that can be used to
evaluate the LLM. After the prompt template i ∈ I ≜ [I] and example j ∈ J ≜ [J ] are channelled
through the LLM, some grading system generates a correctness score Yij ∈ {0, 1}, which assumes
1 when the prompt template i and example j jointly yield a correct response and 0 otherwise3. For
each one of the prompt templates i ∈ I, we can define its performance score as

Si ≜ 1
J

∑
j∈J Yij .

The performance scores Si’s can have a big variability, making the LLM evaluation reliant on the
prompt choice. To have a comprehensive evaluation of the LLM, we propose computing the full
distribution of performances and its corresponding quantile function, i.e.,

F (x) ≜ 1
I

∑
i∈I 1[Si,∞)(x) and Q(p) ≜ inf{x ∈ R : F (x) ≥ p}. (2.1)

3In some cases, the correctness score may be a bounded number instead of binary – see Appendix B.
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The main challenge in obtaining this distribution is that it can be very expensive since the exact values
for the performance scores Si’s require I · J evaluations. In this paper, we assume that only a small
fraction of evaluations is available, e.g., < 5% of the total number of possible I · J evaluations, but
we still aim to accurately estimate the performance distribution and its quantiles. More concretely,
we assume the correctness scores Yij’s are only evaluated for a small set of indices E ⊆ I × J ; in
compact notation, we define YE ≜ {Yij}(i,j)∈E . Here, the letter E stands for evaluations. Using
the observed data YE , our main objective is to estimate the performance scores distribution F (resp.
quantile function Q), i.e., computing a function F̂ (resp. Q̂) that is close to F (resp. Q).

3 Performance distribution and quantiles estimation

We propose borrowing strength across prompt templates and examples to produce accurate estimates
for the performance distribution and its quantile function. To achieve that, we need a model for
the correctness scores Yij’s that allows leveraging patterns in the observed data and estimators for
individual Si’s. We start this section by first introducing a general model for Yij’s and then we
introduce our estimators for the performance distribution and quantile functions.

3.1 The correctness model

We assume the observations Yij’s are independently sampled from a Bernoulli model parameterized
by prompt/example-specific parameters. That is, we assume

Yij ∼ Bernoulli(µij), (3.1)
where µij denotes the mean of the Bernoulli distribution specific to prompt format i and example j.
We can write µij = µ(θi, βj), where θi’s are prompt-specific parameters, βj’s are example-specific
parameters and µ is a function that maps those parameters to the Bernoulli mean. This probabilistic
model is very general and comprehends factor models such as the large class of Item Response
Theory (IRT) models [Cai et al., 2016, Van der Linden, 2018, Brzezińska, 2020, Lord et al., 1968]; as
we will see, our model can be seen as a general version of an IRT model. For generality purposes,
we assume that the parameters θi’s and βj’s can be written as functions of prompt-specific (xi’s)
and example-specific (zj’s) vectors of covariates. That is, we assume θi = fψ(xi) or βj = gγ(zj),
where ψ and γ are global parameters that can be estimated. These covariates can be, for example,
embeddings of prompt templates in the case of xi’s and some categorization or content of each of the
examples in the case of zj’s. In this work, we adopt µ(θi, βj) = σ(θi − βj) = σ(fψ(xi)− gγ(zj)),
where σ denotes the standard logistic function and the functions fψ and gγ have their image in R.
That is, our model assumes that

P(Yij = 1;ψ, γ) = σ
(
fψ(xi)− gγ(zj)

)
≜

1

1 + exp[−(fψ(xi)− gγ(zj))]
. (3.2)

The functions fψ and gγ can be represented with neural networks. On the simpler side, one could
just assume fψ and gγ are linear, that is, θi = ψ⊤xi or βj = γ⊤zj ; this formulation is known as the
linear logistic test model in psychometrics [Fischer, 1973, De Boeck, 2004]. We consider that, in
some cases, a constant can be embedded in xi in order to include an intercept in the model. When xi
and zj are one-hot encoded vectors, i.e., vector of zeros but with 1’s on the entries i and j, the model
in (3.2) reverts to a popular IRT model known as the Rasch model [Georg, 1960, Chen et al., 2023],
which is widely used in fields such as recommendation systems [Starke et al., 2017] and educational
testing [Clements et al., 2008]. One major limitation of the basic Rasch model is that the number of
parameters is large, compromising the quality of the estimates for ψ and γ when either the number of
prompt formats I or the number of examples J is large and |E| is small, i.e., only a few evaluations
are carried out. This degradation in the quality of the estimates can directly affect the quality of the
performance distribution estimates. Finally, we fit the parameters ψ and γ, obtaining the estimates ψ̂
and γ̂, by maximizing the log-likelihood of the observed data (negative cross-entropy loss), i.e.,

(ψ̂, γ̂) ∈ argmax
ψ,γ

∑
(i,j)∈E

Yij logP(Yij = 1;ψ, γ) + (1− Yij) log (1− P(Yij = 1;ψ, γ)) . (3.3)

Realize that fitting the model with linear/affine fψ and gγ , including the Rasch model case4, reduces
to fitting a logistic regression model with xi and zj as the covariates. This observation highlights that

4For a detailed fitting procedure in the Rasch model case, please check Chen et al. [2023].
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Algorithm 1: PromptEval
1 Input: (i) YE , (ii) covariates xi’s and zj’s.
2 Output: Estimates for the performances

distribution and its quantile function (2.1).
3 Fit ψ and γ using observed scores YE and

covariates xi’s and zj’s (3.3).

4 For each i ∈ I, compute Ŝi = Ê[Si | YE ] (3.4).
5 Compute estimates

F̂ (·) ≜ 1
I

∑
i∈I 1[Ŝi,∞)(·)

Q̂(·) ≜ inf{x ∈ R : F̂ (x) ≥ ·}
return F̂ and Q̂.

Algorithm 2: Two-way balanced sampling
1 Input: (i) sets I and J , (ii) budget B.
2 Output: Observed indices E .
3 Initialize E = {}.
4 for b = 0 to B − 1 do
5 Among i ∈ I with the least number of

evaluations, randomly pick one of them and
call it î.

6 Among j ∈ J such that (̂i, j) ̸∈ E , randomly
pick ĵ from the ones with the least number
of evaluations.

7 Update E ← E ∪ {(̂i, ĵ)}

8 return E .

the fitting process is expected to be very cheap in practice. For example, in our experiments, we fit
logistic regression models in datasets with less than 2k samples and a couple of hundred (or a few
thousand) columns, which is performed in a few seconds by a modern laptop. We include some more
comments on the computational complexity of our method in Appendix C.

3.2 Performance distribution and quantiles estimation using the correctness model

The model in (3.1) can be naturally used for performance estimation. That is, after observing YE , the
best approximation (in the mean-squared-error sense) for the performance of prompt format i ∈ I,
Si, is given by the following conditional expectation

E[Si | YE ] =
λi
|Ji|

∑
j∈Ji

Yij +
1− λi
|J \ Ji|

∑
j ̸∈Ji

µij

where Ji ≜ {j ∈ J : (i, j) ∈ E} and λi = |Ji|/J . In practice, computing E[Si | YE ] is
impossible because the parameters θi’s and βj’s are unknown. We can, however, use a plug-in
estimator for the conditional expectation using their maximum likelihood estimators, changing µij
for σ

(
fψ̂(xi)− gγ̂(zj)

)
:

Ê[Si | YE ] =
λi
|Ji|

∑
j∈Ji

Yij +
1− λi
|J \ Ji|

∑
j ̸∈Ji

σ
(
fψ̂(xi)− gγ̂(zj)

)
. (3.4)

The basic version of this estimator, when no elaborate covariates (e.g., embeddings) are included,
is known as the Performance-IRT (pIRT) estimator [Maia Polo et al., 2024]. We can apply our
extended version of pIRT, which we call X-pIRT, to estimate the performance distribution across
prompt templates. After observing YE and fitting (ψ̂, γ̂), we can compute Ŝi ≜ Ê[Si | YE ] for all
i ∈ I. Then, we define our estimators for the distribution of performances and its corresponding
quantile function 2.1 as

F̂ (x) ≜ 1
I

∑
i∈I 1[Ŝi,∞)(x) and Q̂(p) ≜ inf{x ∈ R : F̂ (x) ≥ p}. (3.5)

We name the procedure of obtaining F̂ and Q̂ as PromptEval and summarize it in Algorithm 1.

Sampling YE We have assumed YE is given so far. In practice, however, we need to choose E , with
|E| ≤ B where B ∈ N is the budget, and then sample the entries Yij for all (i, j) ∈ E . One possible
option is sampling (i, j) without replacement from I ×J giving the same sampling probability to all
entries. This option is, however, suboptimal because of its high instability: with a high chance, there
will be some prompt formats (or examples) with a very low number of evaluations while others will
have many. A more stable solution is given by Algorithm 2, which balances the number of times each
prompt format and examples are evaluated. Algorithm 2 can be seen as two-way stratified random
sampling in which the number of examples observed for each prompt format is (roughly) the same
and the number of prompt formats that observe each one of the examples is (roughly) the same.
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4 Theoretical guarantees

In this section, we claim the consistency of the distribution and quantile estimators detailed in
Algorithm 1 as I, J → ∞. We prove a result for the case in which fψ and gγ are linear/affine
functions. Before we introduce our results we need to introduce some basic conditions. As an extra
result, in Appendix I.1 we also show that our extended version of pIRT (3.4), X-pIRT, is uniformly
consistent over all i ∈ I, which can be useful beyond this work. We start by assuming that the
covariates are uniformly bounded.
Condition 4.1. There is a universal constant c > 0 such that supi∈I ∥xi∥2 , supj∈J ∥zj∥2 < c.

The next condition requires the number of unseen examples to increase sufficiently fast as I, J → ∞,
which is a realistic condition under the low-budget setup. Weaker versions of this condition are
possible; we adopt this one because it makes our proof simpler.
Condition 4.2. Assume (i) m = |J \ Ji| is the same for all i’s and grows to infinity and (ii)
exp(δm)/I → ∞ as I, J → ∞ for any δ > 0.

The third condition requires the model we work with to be correctly specified and the maximum
likelihood estimator defined in (3.3) to be consistent as I, J → ∞, i.e., approach the true value.
Evidently, |E| needs to grow to infinity as I, J → ∞; nevertheless, it could be the case that
|E|/(I · J) → 0. When fψ and gγ are linear/affine, the maximum likelihood procedure (3.3) is
equivalent to fitting a logistic regression model and, in that case, the convergence of (ψ̂, γ̂) is well-
studied and holds under mild conditions when the dimensions of the covariates are fixed; see, for
example, Fahrmeir and Kaufmann [1985].
Condition 4.3. The data point Yij is sampled from a Bernoulli distribution with mean σ(ψ⊤

0 xi −
γ⊤0 zj) for some true global parameter values ψ0 and γ0. Moreover, we assume that (ψ̂, γ̂) → (ψ0, γ0)
in probability as I, J → ∞.

We now introduce the main result in Theorem 4.4, which shows the consistency of the distribution
and quantile functions estimators introduced in Algorithm 1. See Appendix I for the proof.
Theorem 4.4. Under conditions 4.1, 4.2, and 4.3, it is true that∣∣∣Q̂I(p)−QI(p)

∣∣∣→ 0 in probability as I, J → ∞ for any p ∈ [0, 1],

and that
W1(F, F̂ ) → 0 in probability as I, J → ∞,

where W1(F, F̂ ) is the Wasserstein 1-distance between the distributions F and F̂ .

5 Assessing multi-prompt evaluation strategies

General assessment We assess the performance distribution and quantile function estimation
methodology introduced in §3 in estimating the performance of LLMs and different prompt formats
on data from three popular benchmarks. For a given LLM and a dataset, we consider two evaluation
steps. First, we compare the full performance distribution with the estimated distribution, i.e., in this
case, all quantiles are considered. To compare the full performance distribution F and its estimate
F̂ , both defined in §3, we use the Wasserstein 1-distance which is equivalent to the average quantile
estimation error in this case, i.e.,

W1(F, F̂ ) =
∫ 1

0
|Q(t)− Q̂(t)|dt = 1

I

∑I
i=1 |S(i) − Ŝ(i)|,

where S(i) (resp. Ŝ(i)) is the i-th smallest value in {Si}i∈I (resp. {Ê[Si | YE ]}i∈I). Second, we
estimate some quantiles of interest (e.g., 5/25/50/75/95-th) for the performance distribution across
prompt formats and compare them with the true quantiles, that is, for some p ∈ [0, 1], we use
|Q(p)− Q̂(p)| to measure the quality of our estimations.

Data We use data derived from three popular benchmarks: MMLU [Hendrycks et al., 2020],
BIG-bench Hard (BBH) [Suzgun et al., 2022], and LMentry [Efrat et al., 2022]. In the following, we
give more details about each one of the used datasets.
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• MMLU is a multiple choice QA benchmark consisting of 57 subjects (tasks) comprising approx-
imately 14k examples. We ran 15 different open-source LLMs (including different versions of
Llama-3 [Meta, 2024], Mistral [Jiang et al., 2023], and Gemma [Gemma et al., 2024]) combined
with 100 different prompt variations for each one of the MMLU tasks. We found that, within
each one of the MMLU tasks, prompt templates can have great variability in their performances,
making within-task analysis most suitable for assessing our method. More details and analysis of
the collected data can be found in §7 and Appendix J.

• BIG-bench Hard (BBH) is a curated subset of BIG-bench [Srivastava et al., 2022], containing
challenging tasks on which LLMs underperform the average human score. For BBH, we use the
evaluation scores released by Mizrahi et al. [2023]. The evaluation data includes 11 open-source
LLMs combined with a different number of prompt variations, ranging from 136 to 188 formats,
for 15 tasks containing 100 examples each.

• LMentry consists of simple linguistic tasks designed to capture explainable and controllable
linguistic phenomena. Like BBH, we use data generated by Mizrahi et al. [2023]. The authors
made available the full evaluation data from 16 open-source LLMs combined with a different
number of prompt variations, ranging from 226 to 259 formats, for 10 tasks containing from 26 to
100 examples each.

Methods and baselines We consider different variations of the model presented in (3.2) coupled
with Algorithm 1; for all variations, we use linear fψ and gγ . The most basic version of the model in
(3.2) assumes xi and zj are one-hot encoded vectors, i.e., vector of zeros with 1’s on the entries i and
j, reverting the model to a Rasch model [Georg, 1960, Chen et al., 2023]. Despite its simplicity, we
show that it can perform well in some cases. A more advanced instance of (3.2) assumes xi are either
obtained using a sentence transformer [Reimers and Gurevych, 2019] to embed prompt templates or
by extracting discrete covariates from the text, e.g., as the presence of line breaks, colons etc.(see
Appendix Table 2). An example of a prompt template for LMentry used by Mizrahi et al. [2023] is
“Can {category} be used to classify all the {words} provided? Respond with either "yes" or "no".”
Our method also allows using example covariates zj , however, upon preliminary tests with sentence
transformer we didn’t observe improvements and chose to use one-hot-encoded vectors as in the basic
Rasch model to represent examples. Next we detail the methods for obtaining the prompt covariates:

• Prompt embeddings. We embed prompt templates using a pre-trained sentence transformer variant
[Karpukhin et al., 2020] and reduce their dimensionality to d = 25 using PCA. This is the most
general solution that also works well in practice. We call it EmbPT.

• Fine-tuned prompt embeddings. Sentence transformers in general might not be most suitable
for embedding prompt templates, thus we also consider fine-tuning BERT [Devlin et al., 2019]
as an embedder. To do so, we use evaluation data for all examples and prompt formats from
a subset of LLMs (these LLMs are excluded when assessing the quality of our estimators) and
fine-tune bert-base-uncased to predict Yij as in (3.3). We call this variation EmbFT and
provide additional details in Appendix L. We acknowledge that obtaining such evaluation data
for fine-tuning might be expensive, however, it might be justified in some applications if these
embeddings provide sufficient savings for future LLM evaluations.

• Discrete prompt covariates. For BBH and LMentry, we coded a heuristic function that captures
frequently occurring differences in common prompting templates. Examples of such covariates
are the number of line breaks or the count of certain special characters (e.g., dashes or colons).
Each one of these covariates is encoded in xi for each one of the prompt templates i ∈ I. A full
list of the used heuristics is detailed in Appendix M. For MMLU, we adopted approach of [Sclar
et al., 2023] to generate prompt variations via templates (see Algorithm 3), which also provides a
natural way to construct the covariates, e.g., the presence of dashes or colons.

To the best of our knowledge, the methods introduced in §3 are the first ones handling the problem of
efficient evaluation of performance distribution of LLMs across multiple prompts. Thus, we compare
different variations of our method with one natural baseline (“avg”) which estimates Si by simply
averaging Yij , that is, using the estimates Ŝavg

i = 1
|Ji|

∑
j∈Ji

Yij . The estimates for the distribution

and quantile function are then obtained by computing the function in (3.5) using Ŝavg
i instead of Ŝi.

To make comparisons fair, we sample the data using Algorithm 2 for all methods and the baseline.
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Figure 2: Performance distribution estimation errors measured with Wasserstein-1 distance on three benchmarks.
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Figure 3: Performance quantile estimation errors for varying quantiles (columns) and benchmarks (rows).

Key results We investigate the effectiveness of the different variations of PromptEval (PE) against
the “avg” baseline strategy in quantile estimation and overall performance distribution estimation
across prompt templates. In total, we consider five variations of PromptEval: (i) PE-Rasch (model
in (3.2) is a Rach model), (ii) PE-discrete (discrete covariates are used for prompt templates), (iii)
PE-EmbPT (pre-trained LLM embeddings are used for prompt templates), and (iv) PE-EmbFT
(fine-tuned LLM embeddings are used for prompt templates). Within each one of the benchmarks,
we conduct a different experiment for each one of the tasks, LLMs, and 5 random seeds used when
sampling YE . We report the average estimation error across tasks, LLMs, and seeds, while the error
bars are for the average estimation errors across LLMs. We collect results for four different numbers
of total evaluations, where |E| ∈ {200, 400, 800, 1600}. To make our results more tangible, 200
evaluations are equivalent, on average, to 1.15% to the total number of evaluations on BBH, 0.88% to
the total number of evaluations on LMentry, and 0.81% to the total number of evaluations on MMLU.

• Distribution estimation. Our results for distribution estimation can be seen in Figure 2. We see
that, in general, all variations of PromptEval, including its simplest version (PE-Rasch), can do
much better in distribution estimation when compared to the baseline. Among our methods, the
ones that use covariates are the best ones.

• Quantile estimation. Our results for quantile estimation are presented in Figure 3. As before, even
the simplest version of our method (PE-Rasch) does much better than the considered baseline.
For all the other variations of PromptEval, estimating extreme quantiles is usually hard and needs
more evaluations, while more central ones (e.g., median) can be accurately estimated with 200
evaluations, providing more than 100x compute saving in most cases. Regarding the different
variations of PromptEval, we found that the pre-trained embeddings are robust across benchmarks,
while the discrete covariates could not do well on LMentry data. Using covariates obtained
via fine-tuning the BERT model provides some further improvements, for example, for extreme
quantiles and small evaluation budget settings on MMLU. However, fine-tuning requires collecting
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Figure 4: Estimating LLM-as-a-judge distribution of scores for 100 prompt variations given to the judge.

large amounts of evaluation data and in most cases, we anticipate that it would be more practical
to use PromptEval with pre-trained embedder and moderate evaluation budget instead.

6 Further applications of PromptEval

6.1 Estimating the distribution of scores for the LLM-as-a-judge framework

In this subsection, we explore the concept of LLM-as-a-judge using the AlpacaEval 2.0 [Li et al.,
2023] benchmark. Specifically, we generate 100 prompt templates5 to present to the judge, GPT-4o-
mini [OpenAI, 2024], allowing us to assess how sensitive model evaluation is to different evaluation
prompts. We evaluated the performance of four LLMs with similar capabilities (Cohere Command6,
Qwen1.5-7B-Chat [Team, 2024], Mistral-7B-Instruct-v0.2 [Jiang et al., 2023], LLaMa-2-70B-Chat
[Touvron et al., 2023]) using only ≈ 2% of the total evaluations (1.6k/80.5k). In contrast to the
previous experiments, we do not make changes in the prompt templates given to the evaluated LLMs
when giving an instruction. To fit PromptEval, we binarize AlpacaEval 2.0 instance scores imposing
a threshold at 1/2, but we do not binarize the responses at test time. Figure 4 shows that the different
variations of PromptEval can obtain a much lower Wasserstein loss (W1) when compared with the
baseline “avg”. In Appendix G, we provide additional plots for this experiment. Specifically, Figure
11 presents the score distribution histograms for the four models under consideration, while Figure
12 illustrates how certain prompt templates consistently lead the judge to assign higher (or lower)
scores across models. Despite this pattern, we observe that the ranking of the four LLMs changes in
36% of the prompt templates.

6.2 Best-prompt identification
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Figure 5: Best-prompt identification.

The best-prompt identification task [Shi et al., 2024] is
to find the best prompt from a set of fixed templates, i.e.,
the one that gives the best performance for a task at hand.
Shi et al. [2024] propose framing this problem as a bandit
problem and using a linear model or an MLP to predict the
performance of each prompt template. To apply PromptE-
val in this setting we use our model (3.2) and X-pIRT to
estimate how good each template is coupled with sequen-
tial elimination algorithm [Azizi et al., 2021] (as in Shi
et al. [2024]) to select prompt-example pairs for evalua-
tion in each round. In Figure 5 we compare our PE to
the baseline TRIPLE-GSE [Shi et al., 2024] with a logis-
tic regression performance predictor and the same three
types of covariates (PE-OneHot corresponds to PE-Rasch
in previous experiments). For all covariate choices, we show that using PromptEval for best-prompt
identification results in lower regret, i.e., the performance of the best template minus the performance
of the chosen template. We include the full results for other benchmarks and also apply TRIPLE-GSE
with an MLP in Appendix H.

5We generate 10k variations using ChatGPT and undersample to 100 deleting prompts that are too similar to
each other. You can see our code here.

6https://docs.cohere.com/v2/docs/command-beta
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7 Analysis of prompt sensitivity on MMLU

Prior work reports strong sensitivity of LLMs to spurious prompt template changes (see Section 1.1).
For example, Sclar et al. [2023] observe performance changes of up to 80% for Natural Instructions
tasks [Wang et al., 2022] due to template changes. Despite its popularity, no such analysis exists for
the MMLU dataset to date. We here provide an in-depth analysis of MMLU prompt sensitivity.
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Figure 6: Accuracy spread across 57 subjects.

Performance spread When averaged across
subjects, we observe relatively small perfor-
mance spreads per LLM compared to other
datasets in the literature (see Figure 16 in the
Appendix K). For example, we can consistently
identify Llama-3-70B-Instruct as the best
performing model, independent of the prompt
template. On the other hand, scores within in-
dividual subjects are highly inconsistent. Fig-
ure 6 shows the distribution of prompt spreads
(max-min acc.) across subjects per LLM. Most
LLMs demonstrate a significant average spread
of around 10% at the subject level.

Template consistency In practice, having consistently performing templates is highly relevant
within a single LLM or across LLMs for the same subject. To evaluate the template consistency, we
rank template performances either across subjects or across LLMs to then calculate the agreement
across those rankings using Kendall’s W [Kendall and Smith, 1939, inspired by Mizrahi et al. 2023].

Within LLMs, we observe that Gemma-7B-it has a notably higher Kendall’s W of 0.45 than any
other model, meaning a fixed set of prompts performs best across many subjects (for full results,
see Table 1 in the Appendix). Across LLMs, we do not observe high correlations within any of
the subjects (see Figure 17 in Appendix K). Hence, similar to previous findings [e.g. Sclar et al.,
2023], we do not identify any coherent template preferences across LLMs (for detailed results, see
Appendix K).

8 Conclusion

PromptEval enables a more comprehensive evaluation of LLMs. We hope that comparing distributions
or quantiles across many prompt variants will enable more robust leaderboards and address the
common concern of comparing LLMs with a single pre-defined prompt. Prior to our work, a major
limitation of such evaluation was its cost. We demonstrated empirically across several popular
benchmarks that our method can produce accurate performance distribution and quantile estimates
at the cost of 2-4 single-prompt evaluations, out of hundreds possible. However, several questions
remain: how to decide on the set of prompts for evaluation and how to best utilize our distribution
estimates for comparison in various contexts. For the former, we utilized suggestions from prior
work [Mizrahi et al., 2023, Sclar et al., 2023] and for the latter, we primarily focused on quantiles as
well-established robust performance measures.

Besides evaluation, another common problem in practice is finding the best prompt for a given task.
Our method can be applied in this setting when there is a pre-defined set of candidate prompts (Figure
5). However, several recent works [Prasad et al., 2023, Yang et al., 2023, Li and Wu, 2023, Ye et al.,
2023a] demonstrate the benefits of dynamically generating new prompt candidates. For example,
Prasad et al. [2023] propose an evolutionary algorithm that creates new prompts based on the ones
that performed well at an earlier iteration. Extending PromptEval to accommodate an evolving set of
prompt candidates is an interesting future work direction.

We comment on the limitations of our work in Appendix A.
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A Limitations

While our method offers a more reliable and flexible evaluation, it relies on using multiple prompts.
As a result, if selecting a single prompt was a challenge in earlier benchmarks, determining the
appropriate set of prompt templates now becomes the key challenge. Although methods have been
proposed for generating and diversifying multiple prompts [Mizrahi et al., 2023], and the selection of
individual prompts becomes less critical when many are used, this remains a limitation for future
work to address.

Another limitation is that we do not focus on prompt engineering or attempt to solve this issue.
While addressing prompt engineering would be a significant contribution to the field, our approach
assumes a predefined set of prompts and focuses solely on evaluation or optimization within that
pool of prompts. This is a practical and widely used setting but does not address the broader prompt
engineering challenge.

B Adapting the correctness model for bounded Yij

There might be situations in LLM evaluation in which Yij /∈ {0, 1} but Yij ∈ [0, 1]. For example,
in AlpacaEval 2.0 [Li et al., 2023], the response variable is bounded and can be translated to the
interval [0, 1]. Also, some scenarios of HELM [Liang et al., 2022] and the Open LLM Leaderboard
[Beeching et al., 2023] have scores in [0, 1]. One possible fix is changing the model for Yij . For
example, if Yij are continuous, the Beta model would be appropriate. Another possibility that
offers a more immediate fix is binarizing Yij as proposed by Maia Polo et al. [2024]. That is,
using a training set containing correctness data from L LLMs, we could find a constant c such that∑
i,j,l Yijl ≈

∑
i,j,l 1[Yijl ≥ c], where the index l represents each LLM in the training set. Then, we

define Ỹij ≜ 1[Yij ≥ c] and work with this newly created variable.

C Comments on the computational complexity of PromptEval

Consider the case of our experiments in which prompts are represented by embeddings of fixed
size, examples are represented by one-hot encodings, and our model is given by logistic regression.
Because the dimension of the embeddings does not depend on the number of prompt variations, the
number of samples and variables used to fit our model does not vary with the number of prompt
variations. Then, computational costs are constant with respect to the number of prompt templates.
On the other hand, the number of variables (and consequently samples, to make estimation possible)
should increase linearly with the number of examples, which are usually hundreds or a few thousand.
Thus, this should not be a problem in most practical cases.

D Computing resources

All experiments were conducted using a virtual machine with 32 cores. The results for each benchmark
separately can be obtained within 3-6 hours.

For fine-tuning BERT embeddings, we employ multiple NVIDIA A30 GPUs with 24 GB vRAM,
requiring 70 hours of training and an additional approximately 350 hours for hyperparameter search.
Fine-tuning can be conducted on GPUs with smaller capacities.

E Estimation errors by task

In Figures 7, 8, and 9, we analyze the Wasserstein 1-distance per task for each benchmark when
using the method PE-EmbPT, a robust and versatile variation of PromptEval. The results show that
for BBH and LMentry, the estimation errors (Wasserstein 1-distance) are more uniform across tasks
compared to MMLU, where some tasks exhibit higher estimation errors. This discrepancy occurs
because all tasks in BBH and LMentry have the same number of examples, whereas tasks in MMLU,
particularly those with higher estimation errors, have a significantly larger number of examples when
compared to the others. In those cases, a larger number of evaluations is recommended.
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Figure 7: Estimation error for the BBH tasks.
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Figure 8: Estimation error for the LMentry tasks.

F The influence of the number of prompts in PromptEval performance

We repeat the main experiment in the paper (randomly) cutting the number of prompt templates by
a factor of 5. This means we use only 20 prompt variations in MMLU, for example. In summary,
PromptEval still does well, beating the baseline. However, the gap between PromptEval and the
baseline has shortened due to fewer variations. This fact highlights that the bigger the number of
templates, the more useful PromptEval can be relative to the baseline. The results are depicted in
Figure 10.

G Extra plots for the LLM-as-a-judge experiment

In Figure 11, we show the performance distribution histograms for the four considered models across
prompt templates. Figure 12 shows that prompt templates consistently lead the judge to assign higher
(or lower) scores across models; in this plot, we normalize the scores within rows so 0 is assigned to
the lowest score and 1 is assigned to the maximum score (brighter colors denote higher scores).

H Extra results for best-prompt identification

In Figures 13, 14, and 15, we can see the full results for MMLU, BBH, and LMentry. For all
benchmarks, we can see that within each triple “PE”, “TRIPLE-GSE”, “TRIPLE-MLP-GSE”, the
“PE” version always has some advantage with a lower regret.

The tuning and fitting process of the Multi-Layer Perceptron (MLP) classifier involves setting up
a pipeline that includes feature scaling and the MLP classifier itself, which has 30 neurons in its
hidden layer. This process begins by defining a range of values for critical hyperparameters: the l2
regularization strength is tested over the range from 0.001 to 10, and the initial learning rate is tested
over the range from 0.001 to 0.1. These values are systematically tested through cross-validation
to determine the optimal combination. During this phase, cross-validation ensures that the model
is evaluated on different subsets of the data to prevent overfitting and to ensure robust performance.
Once the best hyperparameters are identified, the final model is trained on the entire dataset using
these optimal settings, resulting in a well-tuned MLP classifier ready for deployment.
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Figure 9: Estimation error for the MMLU tasks.
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Figure 10: Performance estimation quality when we keep only 20% of the prompts variations for each
task. In summary, PromptEval still does beat the baseline. However, the gap between PromptEval
and the baseline has shortened due to fewer variations.

I Theoretical results

I.1 Consistency of X-pIRT

In Theorem I.1, we claim that the X-pIRT estimator is uniformly consistent over all i ∈ I.

Theorem I.1. Under conditions 4.1, 4.2, and 4.3, it is true that

supi∈I

∣∣∣Ê[Si | YS ]− Si

∣∣∣→ 0 in probability as I, J → ∞.

A direct consequence of Theorem I.1 is that∣∣∣ 1I ∑i∈I Ê[Si | YS ]− 1
I

∑
i∈I Si

∣∣∣ ≤ 1
I

∑
i∈I

∣∣∣Ê[Si | YS ]− Si

∣∣∣ ≤ supi∈I

∣∣∣Ê[Si | YS ]− Si

∣∣∣→ 0

in probability as I, J → ∞. This means that the mean of predicted performances is also consistent if
a practitioner wants to use it as a summary statistic.

The proof of Theorem I.1 is embedded in the proof of Theorem 4.4.

I.2 Proof of Theorem 4.4

For the following results, we denote ψ⊤xi as θi and γ⊤zj as βj , and ψ̂⊤xi as θ̂i and γ̂⊤zj as β̂j .
Moreover, if a sequence random variables (Xn) converge to 0 in distribution, we denote Xn = oP (1).
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Figure 11: Performance distribution histograms for the four considered models across prompt templates.
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Figure 12: Prompt templates consistently lead the judge to assign higher (or lower) scores across models..

Lemma I.2. Under Conditions 4.1 and 4.3, we have that supi∈I |θ̂i−θi| = oP (1) and supj∈J |β̂j−
βj | = oP (1) as I, J → ∞.

Proof. We prove that supi∈I |θ̂i − θi| = oP (1). The second statement is obtained in the same way.

See that

sup
i∈I

|θ̂i − θi| = sup
xi

|(ψ̂ − ψ)⊤xi| ≤ sup
xi

∥∥∥ψ̂ − ψ
∥∥∥
2
∥xi∥2 ≤ c

∥∥∥ψ̂ − ψ
∥∥∥
2
= oP (1)

as I, J → ∞. Where the first inequality is obtained using the Cauchy–Schwarz inequality, the second
is obtained using Condition 4.1, and the last equality is a consequence of Condition 4.3 and the
continuous mapping theorem [Resnick, 2019].

Lemma I.3. Under Conditions 4.1 and 4.3, it is true that

sup
i∈I

∣∣∣Ê[Si | YE ]− E[Si | YE ]
∣∣∣ = oP (1) as I, J → ∞.

Proof. See that

sup
i∈I

∣∣∣Ê[Si | YE ]− E[Si | YE ]
∣∣∣ = sup

i∈I

1− λi
J − |Ji|

∣∣∣∣∣∣
∑
j ̸∈Ji

σ(θ̂i − β̂j)− σ(θi − βj)

∣∣∣∣∣∣
≤ sup

i∈I

1− λi
J − |Ji|

∑
j ̸∈Ji

∣∣∣σ(θ̂i − β̂j)− σ(θi − βj)
∣∣∣

≤ sup
i∈I

1− λi
4(J − |Ji|)

∑
j ̸∈Ji

∣∣∣θ̂i − β̂j − θi + βj

∣∣∣
≤ 1− infi λi

4

(
sup
j

|θ̂i − θi|+ sup
j

|β̂j − βj |
)

≤ 1

4

(
sup
i

|θ̂i − θi|+ sup
j

|β̂j − βj |
)

= oP (1)

where the third step is justified by the fact that σ is 1/4-Lipschitz and the last step is justified by
Lemma I.2.

Lemma I.4. Under Condition 4.2, it is true that

sup
i∈I

|E[Si | YE ]− Si| = oP (1) as I, J → ∞.
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Figure 13: Best-prompt identification for MMLU
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Figure 14: Best-prompt identification for BBH

Proof. For an arbitrary ϵ > 0, see that

P
(
sup
i∈I

|E[Si | YE ]− Si| ≥ ϵ

)
= P

(⋃
i∈I

{|E[Si | YE ]− Si| ≥ ϵ}

)
≤
∑
i∈I

P (|E[Si | YE ]− Si| ≥ ϵ)

=
∑
i∈I

P

∣∣∣∣∣∣ λi|Ji|
∑
j∈Ji

Yij +
1− λi
|J \ Ji|

∑
j ̸∈Ji

σ(θi − βj)−
1

J

∑
j∈J

Yij

∣∣∣∣∣∣ ≥ ϵ


=
∑
i∈I

P

∣∣∣∣∣∣(1− λi)
1

|J \ Ji|
∑
j ̸∈Ji

Zij

∣∣∣∣∣∣ ≥ ϵ


≤
∑
i∈I

P

∣∣∣∣∣∣ 1m
∑
j ̸∈Ji

Zij

∣∣∣∣∣∣ ≥ ϵ


where Zij ≜ Yij − σ(θi − βj). Consequently, |Zij | ≤ 1 and E[Zij ] = 0. Applying Hoeffding’s
inequality, we obtain

P
(
sup
i∈I

|E[Si | YE ]− Si| ≥ ϵ

)
≤ 2Iexp

(
−2mϵ2

)
= 2exp

(
log I − 2ϵ2m

)
= 2exp

(
− log(exp(2ϵ2m)/I)

)
→ 0

Lemma I.5. Let a1, · · · , an and b1, · · · , bn be two lists of real numbers and let ai and bj be the
p-lower quantiles of those lists. Admit that there arem1 a’s lower than ai,m2 a’s equal to ai (besides
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Figure 15: Best-prompt identification for LMentry

ai itself), and m3 a’s greater than ai. Then, there are at least m1 + 1 b’s lower or equal to bj and at
least m3 + 1 b’s greater or equal to bj .

Proof. If ai is the p-lower quantile of A = {a1, · · · , an}, then by definition ai is the lowest value in
A such that

|{a ∈ A : ai = a}|︸ ︷︷ ︸
m2+1

+ |{a ∈ A : ai > a}|︸ ︷︷ ︸
m1

≥ p · n

Because ai is the lowest value in A to achieve that, then m1 < p · n. This implies that there are at
least m1 + 1 values in B = {b1, · · · , bn} lower or equal to bj as it is the p-lower quantile of B.

Finally, because m1 +m2 + 1 ≥ p · n, we know that B cannot have more than m1 +m2 values
strictly lower than bj , otherwise the p-lower quantile of B could not be bj but some of those values.
Therefore, B have at least m3 + 1 values greater or equal to bj .

Lemma I.6. Let î and i∗ be indices in I such that Q̂(p) = Ê[Sî | YS ] and Q(p) = Si∗ for an
arbitrary fixed p ∈ [0, 1]. Under supi∈I |Ê[Si | YE ] − Si| ≤ ϵ for an arbitrary ϵ > 0, if |Ê[Si′ |
YE ]− Si∗ | > 2ϵ, for some i′ ∈ I, then î ̸= i′. Consequently, if î = i′ then |Ê[Si′ | YE ]− Si∗ ]| ≤ 2ϵ

under supi∈I |Ê[Si | YE ]− Si| ≤ ϵ.

Proof. Define A ≜ {S1, · · · , Si} and assume that there are M1 values in A lower than Si∗ , M2

values equal to Si∗ (besides Si∗ itself), and M3 values greater than Si∗ . If |Si′ − Si∗ | > 2ϵ, for a
certain index i′, there are two possibilities: (i) Si′ + 2ϵ < Si∗ or (ii) Si∗ + 2ϵ < Si′ . Under the event
supi∈I |Ê[Si | YE ]− Si| ≤ ϵ, we have:

• If (i) holds, then there is at least M2+M3+1 values of Ê[Si | YE ]’s such that Ê[Si′ | YE ] <
Ê[Si | YE ] (including Ê[Si∗ | YE ]). This implies that at most M1 values of Ê[Si | YE ]’s will
be less or equal Ê[Si′ | YE ]. By Lemma I.5, we know that j′ ̸= ĵ.

• If (ii) holds, then there is at leastM1+M2+1 values of Ê[Si | YE ]’s such that Ê[Si′ | YE ] >
Ê[Si | YE ] (including Ê[Si∗ | YE ]). This implies that at most M3 values of Ê[Si | YE ]’s will
be greater or equal Ê[Si′ | YE ]. By Lemma I.5, we know that j′ ̸= ĵ.

This means that under supi∈I |Ê[Si | YE ]−Si| ≤ ϵ for an arbitrary ϵ > 0, if |Ê[Si′ | YE ]−Si∗ | > 2ϵ,
for some i′ ∈ I, then î ̸= i′.

Proof of Theorem 4.4 (Part 1). Let î and i∗ be indices in I such that Q̂(p) = Ê[Sî | YS ] and
Q(p) = Si∗ . Notice that Lemma I.6 guarantees that supi∈I |Ê[Si | YS ] − Si| ≤ ϵ implies |Ê[Sî |
YS ]− Si∗ | ≤ 2ϵ, for an arbitrary ϵ > 0. Consequently,

P
(
|Ê[Sî | YS ]− Si∗ | ≤ 2ϵ

)
≥ P

(
sup
i∈I

|Ê[Si | YS ]− Si| ≤ ϵ

)
= 1 + o(1)
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because

sup
i∈I

∣∣∣Ê[Si | YE ]− Si

∣∣∣ ≤ sup
i∈I

∣∣∣Ê[Si | YE ]− E[Si | YE ]
∣∣∣+sup

i∈I
|E[Si | YE ]− Si| = oP (1) as I, J → ∞

holds by lemmas I.3 and I.4. Because ϵ > 0 is arbitrary, we have that |Q̂(p)−Q(p)| = oP (1).

Proof of Theorem 4.4 (Part 2). We start this proof by showing that

|Q̂(U)−Q(U)| = oP (1)

with U ∼ Unif[0, 1] independent of Q̂ and Q.

For an arbitrary ϵ > 0, see that

lim
I,J→∞

P(|Q̂(U)−Q(U)| > ϵ) = lim
I,J→∞

E
[
P(|Q̂(U)−Q(U)| > ϵ | U)

]
= E

[
lim

I,J→∞
P(|Q̂(U)−Q(U)| > ϵ | U)

]
= 0

where the second equality is justified by the Dominated Convergence Theorem [Resnick, 2019] and
the last one is justified by |Q̂(p)−Q(p)| = oP (1). Now, we see that

lim
I,J→∞

E[W1(F, F̂ )] = lim
I,J→∞

E
[∫ 1

0

|Q(t)− Q̂(t)|dt
]

= lim
I,J→∞

E
[
|Q̂(U)−Q(U)|

]
= 0

where the last step is justified by Fubini’s Theorem [Resnick, 2019], |Q̂(U)−Q(U)| = oP (1), and
the Lebesgue Dominated Convergence Theorem [Resnick, 2019]. For an arbitrary ϵ > 0 and applying
Markov’s inequality, we get

lim
I,J→∞

P(W1(F, F̂ ) > ϵ) ≤ 1

ϵ
lim

I,J→∞
E[W1(F, F̂ )] = 0

J Details MMLU data

Algorithm 3 for automatically generating templates can be seen as a graph traversal of a template
graph, whose nodes are defined by which features they have: a separator SEP , a space SPA, and
an operator OP . By traversing this graph, we can collect unique templates that can used in the
evaluation of LLMs on tasks.

Algorithm 3: TemplateGeneration
1 Input: Base prompt template features: Separator SEP , Space SPA, Operator OP .
2 Output: Prompt templates.
3 From template agenda, pop a template. Swap SEP with another SEP , add to templates. Swap

SPA with another SPA, add to templates. Swap OP with another OP , add to templates. Add
the generated templates to the agenda.

4 return generated templates.

Next, we utilize the unitxt [Bandel et al., 2024] preprocessing library to build custom datasets
with the generated templates. Standardized and accurate evaluation is then carried out via the
LM-Eval-Harness [Gao et al., 2023] evaluation library.
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K Details MMLU spread analysis

Figure 16 depicts the performance of LLMs on the whole MMLU.
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Figure 16: MMLU accuracy (all 57 subjects).

To correlate the ranks from different judges, we can use Kendall’s W . Kendall’s W [Kendall
and Smith, 1939] ranges from 0 (no agreement) to 1 (perfect agreement) and is calculated as
W = 12S

m2(n3−n) , where S is the sum of squared deviations of the total ranks from the mean rank, m
is the number of rankers, and n is the number of objects ranked. In our case, we first have MMLU
subjects ranking prompt templates, and then we have LLMs ranking prompt templates.

In Figure 17, we see the distribution of Kendall’s W for subjects ranking templates. The correlation
is not significant, with the highest W around 0.25. This suggests that there is no "best" prompt for a
subject.
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Figure 17: Kendall’s W per MMLU subject: Here we see a distribution of Kendall’s W over the 57
subjects of MMLU.
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In Table 1, we see the values of Kendall’s W for each model. For most models, the W value is not
high, but for gemma-7b and mistral-7b-v0-1, the value of W is 0.45 and 0.35, respectively. Curiously,
both of the top-ranked prompt templates have lots of commas. The best-ranked prompt is "The,
following, are, multiple, choice, questions, (with, answers), about, topic], question], Answers],
choices], Answer]". Interestingly, the comma separation of each word or phrase in this prompt
template may aid the model in parsing and effectively understanding the different components of the
prompt structure.

Table 1: Kendall’s W per LLM

Model Kendall’s W

meta-llama/llama-3-8b-instruct 0.126027
meta-llama/llama-3-8b 0.252835
meta-llama/llama-3-70b-instruct 0.101895
mistralai/mistral-7b-instruct-v0-2 0.219841
mistralai/mistral-7b-v0-1 0.345592
mistralai/mixtral-8x7b-instruct-v01 0.131487
codellama/codellama-34b-instruct 0.287066
ibm-mistralai/merlinite-7b 0.146411
google/gemma-7b-it 0.445478
google/gemma-7b 0.179373
google/flan-t5-xl 0.066501
google/flan-t5-xxl 0.056257
google/flan-ul2 0.109076
tiiuae/falcon-180b 0.165600
tiiuae/falcon-40b 0.100173

Figure 18 illustrates sensitivity for llama-3-8b, gemma-7b, and merlinite-7b, respectively. On the
template graph, a distance 1 means templates differ by only 1 feature, a distance 2 means templates
differ by 2 features, etc. We see that there is no significant correlation between template distance and
the accuracy spread. In the cases of gemma-7b and merlinite-7b, the accuracy spread for templates
with smaller distance seems to be smaller, possibly implying that the template graph for these models
is smooth.
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Figure 18: Model sensitivity for llama-3-8b, gemma-7b, and merlinite-7b.

L BERT fine-tuning details

L.1 Model

We augment the BERT model by extending its input embeddings by |J | [Example ID] tokens which
we use to feed information about the example identity to the model. Additionally, we add a linear
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downward projection (d = 25) on top of the final BERT layer to reduce the dimensionality of the
resulting covariates.

L.2 Training data

To obtain training examples, we concatenate all prompting templates with all [Example ID] tokens
giving us |I| × |J | model inputs (giving us the following dataset sizes for the respective benchmarks:
BBH 209,280; LMentry 175,776; and MMLU 1,121,568). Labels consist of vectors of correctness
scores yij from the LLMs in the training set, making the training task a multi-label binary classification
problem. We train on an iid split of half of the LLMs at a time and test on the other half. Additionally,
the training data are split along the example axis into an 80% training and 20% validation set.

L.3 Hyperparameters

We run a small grid search over different plausible hyperparameter settings and settle on the following
setup: We employ the Adam optimizer [Kingma and Ba, 2014] with an initial learning rate of 2e-5
and a weight decay of 1e-5. The learning rate undergoes a linear warm-up over 200 steps, followed
by exponential decay using the formula lrcurrnt = γs · lrinit, where s is the number of steps after
the warmup phase and the decay factor γ is set to 0.99995. We train with a batch size of 96.

M Heuristics for discrete features

For the BBH and LMentry benchmarks, we use the following heuristics to construct feature represen-
tations of prompt templates.

Table 2: Overview of Discrete Features
Category Feature Name Description

Casing Features
All Caps Words Count of all uppercase words
Lowercase Words Count of all lowercase words
Capitalized Words Count of words with the first letter capitalized

Formatting Features Line Breaks Count of line breaks
Framing Words Count of capitalized or numeric words before a colon

Special Characters Features

Colon (:) Count of ’:’
Dash (-) Count of ’-’
Double Bar (||) Count of ’||’
Separator token Count of ’<sep>’
Double Colon (::) Count of ’::’
Parenthesis Left (() Count of ’(’
Parenthesis Right ()) Count of ’)’
Quotation (") Count of ’"’
Question Mark (?) Count of ’?’

Length Feature Space Count Count of spaces
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and Introduction section, we summarize the contributions and
the scope of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have included a section to discuss limitations in the appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The assumptions are discussed in the statements of the theorems and the proofs
are provided in the Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a general setting of the experiments in the paper and details are
provided in the code itself submitted as supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide simulation settings that are accessible and reproducible through
the submitted zip file.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We do specify those parameters in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide errorbars for the plots.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We include a section in the appendix about this.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, we followed the NeurIPS Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work may have potential societal consequences, none of which we feel
must be specifically highlighted here.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We make citations when needed.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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