
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RIEMANNIAN OPTIMIZATION FOR HYPERBOLIC PRO-
TOTYPICAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper addresses the utilization of hyperbolic geometry within a Prototype
Learning framework. Specifically, we introduce Riemannian optimization for Hy-
perbolic Prototypical Networks (RHPN), a novel approach that leverages Prototype
Learning on Riemannian manifolds applied to the Poincaré ball. RHPN capitalizes
on the efficiency and effectiveness of updating prototypes during training, cou-
pled with a regularization term crucial to boost the performances. We setup an
extensive experimentation that shows that RHPN is able to outperform the state-
of-the-art in Prototype Learning, both in low and high dimensions, extending the
impact of hyperbolic spaces to a wider range of scenarios.

1 INTRODUCTION

In recent years, there has been a surge of interest among researchers in exploring the embeddings of
data onto specific manifolds. This choice can enable the use of metric elements (such as angles and
distances) that are particularly suitable to shape the underlying similarity between data, directly in
the representation space.

In this context, Prototype Learning (PL) has shown promising results and proved to be a viable
alternative to more conventional approaches in various domains, such as image classification Yang
et al. (2018); Chen et al. (2019); Mettes et al. (2019), few-shot learning Snell et al. (2017); Dong
& Xing (2018), and zero-shot learning Snell et al. (2017); Dong & Xing (2018). The core idea of
PL is to build a representation of the target classes within the embedding space (i.e. the prototypes),
enabling the utilization of metric information to compare new examples with the prototypes and
infer the probability of predicting a given class.

Identifying the optimal prototype for a class poses a non-trivial challenge and leveraging prior in-
formation on the data can significantly improve the performances. For instance, when the labels are
organized hierarchically, changing the geometry used for the embeddings may substantially improve
results Landrieu & Garnot (2021); Fonio et al. (2023); Ghadimi Atigh et al. (2021).

When the data exhibit a latent hierarchical structure, it is reasonable to suggest the usage of geome-
tries capable of representing more effectively inter-example distances. Indeed, it is well known that
the standard Euclidean geometry does not help in adequately represent trees Linial et al. (1995),
while hyperbolic geometries are provably better equipped for dealing with this kind of data Sala
et al. (2018); Nickel & Kiela (2018).

In recent years, there has been a surge of interest in the neural networks community about leveraging
the unique properties of non-Euclidean geometries. This exploration began with the seminal work
by Ganea et al. (2018), and further studied by Ryohei et al. (2021), Van Spengler van Spengler et al.
(2023), and Gulcehre Gulcehre et al. (2018).

For what it concerns PL, there have been explorations into non-Euclidean PL within specific data
domains Fonio et al. (2023); Hamzaoui et al. (2024); Khrulkov et al. (2020), while tasks such as
image classification remain relatively unexplored. The main work tackling the image classification
task with an hyperbolic prototypical approach is by Ghadimi Atigh et al. (2021), where the authors
prove the effectiveness of hyperbolic manifolds when the embedding space is low-dimensional.

A key characteristic of prototype learning (PL) methods based on neural networks is how prototypes
are positioned within the embedding space. Some studies Snell et al. (2017) initialize the prototypes

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

image
image
image

Backbone

expκ0

Prototype Update

Figure 1: Illustration of Hyperbolic Prototypical Networks on a generic manifold.

at the start of training, allowing the neural network to warp the embedding space so that classification
based on those prototypes works effectively. In contrast, other approaches allow the prototypes to
move to different regions of the space throughout the learning process Yang et al. (2018).

In this study, we extend this line of research by proposing Riemannian optimization on Hyperbolic
Prototypical Networks (RHPN), a prototype learning (PL) framework that exploits hyperbolic geom-
etry and learns prototypes during training by defining them as parameters of the neural network. This
approach allows the neural network to optimize the positions of the prototypes (which represent the
labels) while considering the data distribution. Furthermore, we incorporate a regularization term
that controls the norm of the embeddings, which proves to be a key technique in making hyperbolic
representation learning effective regardless of the embedding dimension.

In summary, the contributions of this work are threefold:

• we propose a framework for updating prototypes on generic Riemannian manifolds;

• we deeply explore the behavior of the embeddings and the key aspects that make hyperbolic
representation learning effective;

• we empirically validate the effectiveness of our method using the Poincaré ball, surpassing
existing state-of-the-art methods in PL.

2 RELATED WORKS

Prototype Learning Prototypical networks are the deep generalization of learning Vector Quan-
tization machines Somervuo & Kohonen (1999) and nearest centroid classifiers Tibshirani et al.
(2002).

In most of the approaches, the prototypes are defined as centroids of the representations Snell et al.
(2017), positioned a priori Mettes et al. (2019); Fonio et al. (2023); Long et al. (2020) or learnt
alongside the training Yang et al. (2018); Landrieu & Garnot (2021). In particular the work from
Landrieu & Garnot (2021) introduces the importance of updating the prototypes alongside the train-
ing phase and the relevance of adding hierarchical information. On the other hand, Mettes et al.
(2019) introduces a non-Euclidean geometry in PL, i.e. the hyperspherical prototypical networks,
keeping the prototypes fixed on the hypersphere, maximizing the cosine separation among them.
They also highlight the importance of adding hierarchical information in this non-Euclidean con-
text, as investigated also by Fonio et al. (2023). Our approach extends the effort of updating the
prototypes on hyperbolic manifolds, defining them as parameters of the network. This approach
overcomes the computational issue in calculating the hyperbolic centroid, which is particularly de-
manding Mettes et al. (2024), and provides better performances than using fixed prototypes as the
existing methods do.

Hyperbolic Representation Learning Hyperbolic manifolds are claimed to represent hierarchi-
cal data with arbitrarily low distortion Sala et al. (2018). For what concerns the hyperbolic mod-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

els, five different ones have been defined: Poincaré ball, Lorentz model (Hyperboloid), Poincarè
half-plane model, hemisphere model, Beltrami-Klein disk. In the following, we will focus on the
Poincaré ball as done by Guo et al. (2022), Khrulkov et al. (2020), van Spengler et al. (2023);
Long et al. (2020). While not central to our endeavor, it is worth noting that several works have been
based on the Lorentz model Law et al. (2019); Nickel & Kiela (2018), with a comparison of the
numerical stability of the Poincaré ball and of the Lorentz model provided in Mishne et al. (2023).

Hyperbolic representations have been also studied in the context of few-shot learning, where some
works highlighted the ability of models built on hyperbolic spaces to outperform the state-of-the-art
Khrulkov et al. (2020); Hamzaoui et al. (2024). Among these, Khrulkov et al. (2020) gained par-
ticular relevance in the recent literature, as it presented the first hyperbolic prototypical framework.
However, it is worth noting that this framework is meant for few-shot learning. The adaptation of
the proposed method to the image classification task is not considered, nor is it trivial. The use of
centroids as prototypes in PL has been proposed by Guerriero et al. (2018), but there is no trace of
adaptation to a hyperbolic setting. A few works have tackled the problem of exploiting hyperbolic
geometries for image classification. Ghadimi Atigh et al. (2021) pioneered this approach, while Yue
et al. (2024) explored the impact of changing the temperature parameter in a contrastive loss when
exploring a hyperbolic space. Ghadimi Atigh et al. (2021) introduces a method with fixed ideal pro-
totypes positioned on the boundary of the Poincaré ball, which is conceptually at an infinite distance
from the center of the hyperbole. To overcome the problems derived from placing the prototypes in
this way, the authors introduce the usage of the Busemann distance to make it possible to compare a
point on the manifold and the prototypes.

In our work we place the prototypes within the Poincaré ball (i.e., not on the boundary), but allow
them to be updated to better capture the structure of the data distribution.

3 BACKGROUND

Definition 1. A manifoldM of dimension n is a topological space such that each point’s neighbor-
hood can be locally approximated by the Euclidean space Rn.

In this paper we are considering the Poincaré ball, i.e.:

Bn
κ = {x ∈ Rn : κ∥x∥2 < 1}

Definition 2. Given a point x ∈ M, the tangent space TxM of M at x is the n-dimensional
vector-space, omeomorphic to Rn, built as the first order approximation ofM around x.

Definition 3. The Riemannian metric is the metric tensor that gives a local notion of angle, length
of curves, surface and volume. For a manifoldM, the Riemannian metric gx is a smooth collection
of inner products on the associated tangent space: gx : TxM × TxM → R. A Riemannian
manifold is defined as a manifold equipped with a Riemannian metric g, and is written (M, g).

The Riemannian metric of Bn is given by:

gBx = λκ
xg

E , (1)

with:

λκ
x =

1

1− κ∥x∥22
, (2)

where x ∈ Bn, κ is the curvature of the hyperbolic manifold, and gE = In is the Euclidean metric
(the identity matrix).

Definition 4. A geodesics γ is the shortest path between two points on the manifold. It can be seen
as the generalization of the straight line in Euclidean spaces. Given x, y ∈ M the distance d(x, y)
is defined by measuring the length of the geodesic segment connecting the two points.

In the case of the Poincaré ball, we have:

dκ(x, y) =
2√
κ
tanh−1(

√
κ∥(−x)⊕κ y∥2) (3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Definition 5. Given a point x ∈ M and a vector v ∈ TxM, the exponential map projects v to
the manifoldM, expκx(v) : TxM→M. The projection is obtained by moving the point along the
geodesic γ : [0, 1] → M uniquely defined by γ(0) = x and γ′(0) = v. The projection is defined
to be expκx(v) = γ(1). The precise definition of the exponential map depends on the manifold; its
inverse function is called the logarithmic map, logκx(·).

IfM = Bn
κ and x = 0:

expκ0 (v) =
1√
κ
tanh(

√
κ∥v∥/2) v

∥v∥
. (4)

x v

Figure 2: Illustration of the expo-
nential map (Eq. 4) applied onto a
generic manifold M (shown as a
sphere in the picture).

As a measure to calculate the hyperbolicity of the embed-
dings, the δ-hyperbolicity has been generally accepted by
the community. It is a well-established mathematical tool
that relies on calculating the curvature of a space, taking
into account triplets and quadruplets of points. In the pio-
neering work by Khrulkov et al. (2020), the authors used δ-
hyperbolicity as a score to justify the embedding of images
onto an hyperbolic manifold. A lower δ-hyperbolicity in-
dicates a stronger hyperbolicity. The following definition is
taken from Khrulkov et al. (2020).

Definition 6. Let X be a metric space endowed with the dis-
tance function d. The Gromov Product for x, y, z ∈ X is
defined as:

(y, z)x =
1

2
(d(x, y) + d(x, z)− d(y, z)).

Definition 7. The δ-hyperbolicity of the metric space X is the minimal δ value such that for any
x, y, z, w ∈ X:

(x, z)w ≥ min((x, y)w, (y, z)w)− δ.

4 METHOD

Yang et al. (2018) and Landrieu & Garnot (2021) introduced the idea of extending deep networks
to learn prototypes by embedding the prototype representations as network parameters. In this sec-
tion we introduce RHPN, which extends this idea to work with non-Euclidean geometries and, in
Section 5.2, we show how crucial aspects of hyperbolic embeddings impact on the performances.

Our methodology involves extracting the output from a backbone network, such as a ResNet18, and
projecting it onto the Poincaré ball. Subsequently, distances from class prototypes are computed.
These distances are interpreted as a probability distribution using softmax activation, which is then
employed in a cross-entropy loss function for learning purposes.

We assume to be given a dataset X = {(xi, yi)}Ni=1, with xi taking values in a sample space X ,
yi ∈ C = {1 . . . C}, and |X| = N . A backbone network f(·, θ) : X → Rd is augmented with
parameters Π = {πj , j ∈ C} representing the prototypes, with πj ∈ Bd

κ (here and in the following,
we will assume κ = 1). Prototypes πj are initialized by sampling randomly from [−0.1, 0.1] and
then projecting the sampled points onto the Poincaré ball via the exponential map. We train a RHPN
model, by solving:

argmin
θ,Π
L(θ,Π; γ),

i.e., finding the parameters θ and Π minimizing over the training set the distance based cross-entropy
loss Yang et al. (2018):

L(θ,Π; γ) =
1

N

∑
(xi,yi)∈X

− log
e−γd(zi,πyi

)∑
j∈C e

−γd(zi,πj)
, (5)

where zi = exp0(f(xi)) ∈ Bd
1, f is the backbone network, γ is the temperature parameter Yang

et al. (2018), and d(·, ·) ≡ d1(·, ·) is the distance defined in equation 3 with κ = 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

It is important to notice that prototypes within this context possess a dual nature: they function as
parameters of the architecture, while existing as entities within the embeddings space. Computing
the gradient involves operating within the parameter space, but it is instead crucial to maneuver the
prototypes within the embedding space (i.e. the Poincaré ball).

For this reason we update the prototypes using the Riemannian SGD Bonnabel (2013) update rule:

π ← expπ(−µ · ∇R
πL), (6)

where ∇R
x = ∇x/(λ

κ
x)

2 is the Riemannian gradient, λκ
x is defined in equation 2, and ∇x is the

standard euclidean gradient. The intuition about how the update rule operates is that the exponential
map folds the gradient vector on the tangent space onto the Poincaré ball (see Figure 3).

π ∇R
πL

Figure 3: Illustration of the Rie-
mannian SGD update rule.

As shown by Guo et al. (2022), embeddings with norm close
to the boundary can bring to a vanishing gradient problem.
To overcome this problem, we clip the features to be at most
1 before applying the exponential map, which corresponds to
clipping the norm of the embeddings in the Poincaré ball to
0.76.

To further pressure the embeddings to sway afar from the
boundary, we adopt the regularization term proposed in
(Ghadimi Atigh et al., 2021):

Lreg(z) = −λ · d log(1− ∥z∥2), (7)

where d is the embedding dimension. The parameter λ, re-
ferred to as the slope, regulates the extent to which the embeddings are drawn towards the center. As
shown in Section 5, our method exhibits significant sensitivity to variations in the slope parameter.

5 EXPERIMENTS

We tested RHPN over 4 datasets and compared its results against 4 methods that use PL: HPS ex-
ploits an hyperspherical geometry Mettes et al. (2019) with fixed prototypes; CHPS exploits an
hyperspherical geometry and optimizes a similarity-based cross-entropy loss Fonio et al. (2023),
with fixed prototypes; ECL exploits a Euclidean geometry and optimizes a distance-based cross-
entropy loss, updating the prototypes Landrieu & Garnot (2021). HBL exploits an hyperbolic ge-
ometry Ghadimi Atigh et al. (2021) with fixed prototypes. As a further baseline, XE exploits a
traditional training minimizing a cross-entropy loss. To the best of our knowledge, RHPN is the first
non-Euclidean method where prototypes are not fixed. We refer to RHPN for our proposed method-
ology without regularization (λ = 0) and RHPN* for the best λ value. In our experiments, for RHPN
we used clip value equal to 1, curvature of the space fixed to 1, temperature in Eq.5 γ = 10. For
the slope parameter, after a hyperparameter optimization we have kept 0.1 for the first dimension of
each dataset and 0.01 from the second dimension on. For what concerns the backbone, each method
trained a ResNet18 from scratch. Further details about the experiments are available in appendix A.

For what concerns the datasets, we have chosen benchmark datasets in Computer Vision for Fine-
Grained image classification.

Cifar-100 (Krizhevsky, 2009) 100 classes, 50000/10000 examples (train/test);
CUB (Wah et al., 2011) 200 classes, 5994/5794 examples (train/test);
Aircraft (Maji et al., 2013) 100 classes, 6667/3333 examples (train/test);
Cars (Krause et al., 2013) 196 classes, 8144/8041 examples (train/test).

We have reproduced the competitors in their setting. More details about the training procedure and
the hyperparameter-optimization are in the Appendix A. For complete reproducibility, we release
the code, available at https://anonymous.4open.science/r/RHPN-ICLR25-D029.

5.1 RESULTS

We present the results of our experiments in Table 1, Table 2, Table 3 and Table 4. They show the
average test accuracy over 3 runs (with their standard deviation) for each method and each dataset.

5

https://anonymous.4open.science/r/RHPN-ICLR25-D029

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Percentage of test accuracy on CUB for our proposed method and the competing ap-
proaches. The best results among all the methods are in bold, while the second best method is
underlined.

Embedding dimension

Method 16 64 128 200
XE - - - 48.17 ± 0.59

HPS 14.33 ± 0.20 39.53 ± 0.71 43.91 ± 0.70 46.76 ± 0.46

CHPS 27.00 ± 0.97 40.19 ± 0.87 45.19 ± 0.69 46.37 ± 0.33

ECL 36.03 ± 0.51 43.64 ± 1.49 47.84 ± 0.76 50.16 ± 0.53

HBL 28.99 ± 0.87 27.28 ± 1.39 45.34 ± 1.00 44.10 ± 1.58

RHPN 39.96 ± 0.84 45.96 ± 1.08 47.16 ± 0.48 46.97 ± 0.72

RHPN* 46.28 ± 0.71 50.44 ± 0.91 52.68 ± 0.18 53.19 ± 0.49

Improvement 10.25 6.8 4.84 3.03

Table 2: Percentage of test accuracy on Cars for our proposed method and the competing approaches.
The best results among all the methods are in bold, while the second best method is underlined.

Embedding dimension

Method 16 64 128 196
XE - - - 73.21 ± 0.53

HPS 7.18 ± 2.09 42.82 ± 2.38 57.09 ± 1.45 60.94 ± 0.96

CHPS 25.23 ± 8.14 55.77 ± 1.27 63.58 ± 0.49 66.63 ± 0.64

ECL 60.66 ± 1.58 65.94 ± 0.62 69.13 ± 0.10 70.69 ± 1.22

HBL 32.68 ± 0.73 38.63 ± 1.67 58.28 ± 2.95 46.48 ± 2.77

RHPN 65.22 ± 1.22 69.15 ± 0.74 70.54 ± 0.59 71.21 ± 0.83

RHPN* 69.56 ± 0.81 72.45 ± 0.69 75.86 ± 1.12 77.68 ± 0.38

Improvement 8.9 6.51 6.73 4.47

For each dataset, we report experiments done varying the embedding dimension, we experimented
with embedding dimensions 16, 64, 128 for CUB and Cars and with embedding dimensions 8, 32,
64 for Aircraft and Cifar100. For each of them, we also report the results where the embedding
dimension is equal to the number of classes. It is worth noting that previous studies employing
hyperbolic geometries in image classification Ghadimi Atigh et al. (2021), emphasized the good
performances of hyperbolic spaces only in low dimensional settings, while we experiment using a
wider range of embedding dimensions.

In general, lower-dimensional embeddings negatively impact performances, as the same information
must be encoded in a less expressive space. For datasets with a large number of classes, this issue
is exacerbated, as they require more expressive feature spaces to effectively differentiate among the
increased number of categories.

Table 1 and Table 2 reports results of ours and competing methods over the CUB and Cars datasets.
We note that these datasets are the ones having the higher number of classes and our method seems
to be particularly effective. Specifically, the accuracy gap between RHPN and the second-best com-
petitor (typically ECL) is more pronounced in CUB and Cars datasets compared to Aircraft and
Cifar100 (see also Tables 3 and 4).

However, the effectiveness of RHPN is not limited to dataset with a high number of classes. Our
experiments clearly demonstrate that RHPN consistently outperforms state-of-the-art methods re-
gardless of the embedding dimension, on every dataset, except for dimension 8 in Cifar100.

Our experiments show that a performance loss when the embedding dimension is reduced is indeed
to be expected. Figure 6 makes this observation evident by reporting the loss in performances that
each method suffers when the embedding dimension is reduced from the maximal allowed. Interest-
ingly, RHPN shows to be very robust in these regards. Particularly on datasets with a large number

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 3: Percentage of test accuracy on Aircraft for our proposed method and the competing ap-
proaches. The best results among all the methods are in bold, while the second best method is
underlined.

Embedding dimension

Method 8 32 64 100
XE - - - 76.65 ± 0.36

HPS 29.76 ± 5.94 66.88 ± 2.08 69.79 ± 0.53 73.06 ± 0.63

CHPS 59.95 ± 0.47 72.75 ± 0.74 74.56 ± 0.52 75.87 ± 0.80

ECL 75.27 ± 0.74 77.81 ± 0.34 78.15 ± 0.45 78.06 ± 0.37

HBL 57.18 ± 2.55 70.75 ± 0.41 61.67 ± 0.34 63.89 ± 0.81

RHPN 76.68 ± 0.06 78.13 ± 0.44 77.65 ± 0.41 78.77 ± 0.31

RHPN* 78.11 ± 0.95 80.17 ± 0.68 80.83 ± 0.38 81.59 ± 0.45

Improvement 2.84 2.36 2.68 3.53

Table 4: Percentage of test accuracy on Cifar100 for our proposed method and the competing ap-
proaches. The best results among all the methods are in bold, while the second best method is
underlined.

Embedding dimension

Method 8 32 64 100
XE - - - 75.63 ± 0.26

HPS 54.37 ± 1.32 67.38 ± 0.67 68.96 ± 0.14 69.17 ± 0.25

CHPS 70.18 ± 0.48 73.71 ± 0.15 74.16 ± 0.34 74.16 ± 0.34

ECL 74.09 ± 0.43 74.31 ± 0.19 74.48 ± 0.19 74.28 ± 0.24

HBL 70.71 ± 0.30 72.03 ± 0.28 72.23 ± 0.36 70.32 ± 1.15

RHPN 72.29 ± 0.18 74.73 ± 0.11 74.95 ± 0.20 75.16 ± 0.21

RHPN* 73.26 ± 0.40 75.53 ± 0.05 76.31 ± 0.06 76.63 ± 0.28

Improvement -0.83 1.22 1.83 1.00

of classes, RHPN achieves the smallest performance degradation as the embedding dimension is re-
duced (see Figure 6d and Figure 6b). On the other hand, as shown in Figure 6c and Figure 6a, when
the number of classes is small, the method suffering the lowest degradation in performances is the
euclidean approach implemented in ECL. We further notice that, as expected, angle-based methods
(i.e. HPS and CHPS) suffer dramatically from low-dimensional spaces. Last, somewhat unexpect-
edly, there are a few cases where the HBL method seem to benefit from lowering the embedding
dimension.

Overall, RHPN shows to be more robust to dimensionality changes w.r.t. the competitors, in that its
performances are seldom and/or only mildly affected by the change.

However, a key aspect that impacts on the performances is the slope (λ) parameter. In all results
presented so far, RHPN is always dominated by RHPN*, which highlights the beneficial role of
regularising the norms of the embeddings. Figure 4a and Figure 4b show how performance vary
as the λ parameter changes. In all our experiments, λ = 0.1 proved to be the best one when the
embedding dimension is low, while λ = 0.01 works better for high embedding dimensions. In
Figure 4c and Figure 4d we show how the average norm of the embeddings behaves during learning
in different settings for the λ parameter.

5.2 δ-HYPERBOLICITY

Khrulkov et al. (2020) used the δ-hyperbolicity of the embeddings extracted from pre-trained visual
models to justify the use of hyperbolic spaces in Computer Vision. We believe it is interesting to
investigate this metric properly so to have an overview of the behavior of the embeddings built by
RHPN and by the competitors so to better provide a justification to using hyperbolic manifolds. In the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

20 40 60 80 100 120 140 160 180 200
Epochs

0.0

0.1

0.2

0.3

0.4
Ac

cu
rac

y

0
0.01
0.1
0.3

(a) Test Accuracy for CUB with embedding dimension
16.

20 40 60 80 100 120 140 160 180 200
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

Ac
cu

rac
y

(b) Test Accuracy for CUB with embedding dimension
200.

0 25 50 75 100 125 150 175 200
Epochs

0.3

0.4

0.5

0.6

0.7

Av
g.

em
be

dd
ing

 no
rm

(c) Average embedding norm for CUB with embed-
ding dimension 16.

0 25 50 75 100 125 150 175 200
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Av
g.

em
be

dd
ing

 no
rm

(d) Average embedding norm for CUB with embed-
ding dimension 200.

Figure 4: Impact of the slope parameter on the average embedding norm and the performances.

16 64 128 200
Embedding Dimension

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Method

RHPN*
HPS
MGP
CHPS
XE

(a) CUB

8 32 64 100
Embedding Dimension

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(b) Aircraft

Figure 5: Illustration of the δ-hyperbolicity according to the different geometries used in the embed-
ding space.

case of RHPN, we compute the δ-hyperbolicity on the embeddings built by the backbone network,
i.e., before projecting them on the Poincaré ball. For the hyperspherical methods (HPS and CHPS),
we use the normalized embeddings as devised in the respective methods. In all other cases, as no
projection is needed, we compute the measure directly on the output of the Neural Network. The
δ-hyperbolicity is measured for each batch of the test dataset, and then averaged.

From our experiments it is clear that the geometry used during training affects the hyperbolicity
of the embeddings. As we can see from Figure 5, the embeddings learnt by our method show a
very low δ when compared to the other methods (i.e., they are more likely to live on a hyperbolic
manifold than the embeddings built by the competitors). Since the initial dataset is the same for all
methods, this observation suggests that employing a hyperbolic geometry during learning, guides
the embeddings to conform to it, hopefully better aligning them to the intrinsic structure of the data.

We also observe that the slope hyper-parameter in the loss can significantly affect the hyperbolicity
of the embeddings. It is worth mentioning that embeddings near the boundary of the Poincaré ball

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

8 32 64
Embedding dimension

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Di
ffe

ren
ce

 in
 A

cc
ura

cy

Method
XE
HPS
CHPS
ECL
HBL
RHPN
RHPN*

(a) Cifar100

16 64 128
Embedding dimension

10

0

10

20

30

40

50

Di
ffe

ren
ce

 in
 A

cc
ura

cy

(b) Cars

8 32 64
Embedding dimension

0

10

20

30

40

Di
ffe

ren
ce

 in
 A

cc
ura

cy

(c) Aircraft

16 64 128
Embedding dimension

0

5

10

15

20

25

30

Di
ffe

ren
ce

 in
 A

cc
ura

cy

(d) CUB

Figure 6: Difference in accuracy between the highest embedding dimension tested (i.e. the number
of classes) and the corresponding dimension on the x-axis.

16 64 128 200
Embedding Dimension

0.00

0.05

0.10

0.15

0.20

0.25 0.3
0.1
0.01
0.0

(a) CUB

8 32 64 100
Embedding Dimension

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(b) Aircraft

Figure 7: Illustration of the δ-hyperbolicity according to the different slopes using RHPN.

are supposed to show an hyperspherical behavior, rather than a hyperbolic one. However, in our
experiments this is not observed. In fact, when using λ = 0, RHPN is able to learn embeddings that
are close to the boundary and still have δ that are visibly smaller than those obtained by hyperspher-
ical methods (see Figures 7 and 5). In addition, as expected, embeddings learnt with larger slopes
(i.e. closer to the center) appear to have higher hyperbolicity (lower δ). It is important to stress
that we are not implying that higher hyperbolicities are necessarily related to better performances.
Indeed, Figure 8 shows that very high slope values (leading to higher hyperbolicities) can bring the
embeddings to collapse towards the center, hindering learning performances. This is particularly
harmful for high-dimensional spaces as shown in Figure 8b and Figure 8d. It naturally follows that
the δ parameter needs to be carefully chosen to guarantee the correct “amount” of hyperbolicity to
the learnt embeddings.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 50 100 150 200
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ac
cu

rac
y

0.3

0.4

0.5

0.6

0.7

Av
g.

em
be

dd
ing

 no
rm

(a) CUB with embedding dimension 16.

0 50 100 150 200
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ac
cu

rac
y

Accuracy
Avg. embedding norm

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Av
g.

em
be

dd
ing

 no
rm

Accuracy
Avg. embedding norm

(b) CUB with embedding dimension 200.

0 50 100 150 200
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ac
cu

rac
y

0.2

0.4

0.6
Av

g.
em

be
dd

ing
 no

rm

(c) Aircraft with embedding dimension 8.

0 50 100 150 200
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ac
cu

rac
y

0.2

0.4

0.6

Av
g.

em
be

dd
ing

 no
rm

(d) Aircraft with embedding dimension 100.

Figure 8: Training performances and average embedding norm in presence of a slope λ = 0.3.

6 CONCLUSIONS

In conclusion, this study has introduced a methodology for dynamically updating the prototypes
during the training process within the context of hyperbolic representation learning. RHPN extends
the effectiveness of hyperbolic manifolds to any embedding dimension, leveraging the importance
of controlling the norm of the embeddings. We validate our findings through a wide range of exper-
iments.

For future work, we plan to leverage background knowledge to improve the initialization and posi-
tioning of prototypes during training. Additionally, we intend to explore other geometries, as RHPN
is flexible and not restricted to the Poincaré model.

REPRODUCIBILITY STATEMENT

To reproduce completely our experiments we provide the code in Section 5. The details of the
experimental setting, as well as the hardware capacities, can be found both in Section 5 and in the
Appendix A.

REFERENCES

Silvere Bonnabel. Stochastic gradient descent on riemannian manifolds. IEEE Transactions on
Automatic Control, 58(9):2217–2229, 2013.

Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan K Su. This looks
like that: deep learning for interpretable image recognition. Advances in neural information
processing systems, 32, 2019.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Nanqing Dong and Eric P Xing. Few-shot semantic segmentation with prototype learning. In BMVC,
volume 3, pp. 4, 2018.

Samuele Fonio, Lorenzo Paletto, Mattia Cerrato, Dino Ienco, Roberto Esposito, et al. Hierarchi-
cal priors for hyperspherical prototypical networks. In ESANN 2023-Proceedings, pp. 459–464.
ESANN, 2023.

Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks. Advances in
neural information processing systems, 31, 2018.

Mina Ghadimi Atigh, Martin Keller-Ressel, and Pascal Mettes. Hyperbolic busemann learning with
ideal prototypes. Advances in Neural Information Processing Systems, 34:103–115, 2021.

Samantha Guerriero, Barbara Caputo, and Thomas Mensink. Deepncm: Deep nearest class mean
classifiers. ICLR Workshop, 2018.

Caglar Gulcehre, Misha Denil, Mateusz Malinowski, Ali Razavi, Razvan Pascanu, Karl Moritz
Hermann, Peter Battaglia, Victor Bapst, David Raposo, Adam Santoro, et al. Hyperbolic attention
networks. In International Conference on Learning Representations, 2018.

Yunhui Guo, Xudong Wang, Yubei Chen, and Stella X Yu. Clipped hyperbolic classifiers are super-
hyperbolic classifiers. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11–20, 2022.

Manal Hamzaoui, Laetitia Chapel, Minh-Tan Pham, and Sébastien Lefèvre. Hyperbolic prototypical
network for few shot remote sensing scene classification. Pattern Recognition Letters, 177:151–
156, 2024.

Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova, Ivan Oseledets, and Victor Lempitsky.
Hyperbolic image embeddings. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 6418–6428, 2020.

Max Kochurov, Rasul Karimov, and Serge Kozlukov. Geoopt: Riemannian optimization in pytorch,
2020.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision work-
shops, pp. 554–561, 2013.

Jonathan Krause, Hailin Jin, Jianchao Yang, and Li Fei-Fei. Fine-grained recognition without part
annotations. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 5546–5555, 2015.

Alex Krizhevsky. Learning multiple layers of features from tiny images. https://www. cs. toronto.
edu/kriz/learning-features-2009-TR. pdf, 2009.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Loic Landrieu and Vivien Sainte Fare Garnot. Leveraging class hierarchies with metric-guided
prototype learning. In British Machine Vision Conference (BMVC), 2021.

Marc Law, Renjie Liao, Jake Snell, and Richard Zemel. Lorentzian distance learning for hyperbolic
representations. In International Conference on Machine Learning, pp. 3672–3681. PMLR, 2019.

Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some of its algo-
rithmic applications. Combinatorica, 15:215–245, 1995.

Teng Long, Pascal Mettes, Heng Tao Shen, and Cees GM Snoek. Searching for actions on the hyper-
bole. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 1141–1150, 2020.

S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi. Fine-grained visual classification of
aircraft. Technical report, 2013.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Pascal Mettes, Elise Van der Pol, and Cees Snoek. Hyperspherical prototype networks. Advances in
neural information processing systems, 32, 2019.

Pascal Mettes, Mina Ghadimi Atigh, Martin Keller-Ressel, Jeffrey Gu, and Serena Yeung. Hyper-
bolic deep learning in computer vision: A survey. International Journal of Computer Vision, pp.
1–25, 2024.

Gal Mishne, Zhengchao Wan, Yusu Wang, and Sheng Yang. The numerical stability of hyperbolic
representation learning. In International Conference on Machine Learning, pp. 24925–24949.
PMLR, 2023.

Maximillian Nickel and Douwe Kiela. Learning continuous hierarchies in the lorentz model of
hyperbolic geometry. In International conference on machine learning, pp. 3779–3788. PMLR,
2018.

Shimizu Ryohei, Mukuta Yusuke, and Harada Tatsuya. Hyperbolic neural networks++. In Proceed-
ings of International Conference on Learning Representations (ICLR), 2021.

Frederic Sala, Chris De Sa, Albert Gu, and Christopher Ré. Representation tradeoffs for hyperbolic
embeddings. In International conference on machine learning, pp. 4460–4469. PMLR, 2018.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Ad-
vances in neural information processing systems, 30, 2017.

Panu Somervuo and Teuvo Kohonen. Self-organizing maps and learning vector quantization for
feature sequences. Neural Processing Letters, 10:151–159, 1999.

Robert Tibshirani, Trevor Hastie, Balasubramanian Narasimhan, and Gilbert Chu. Diagnosis of
multiple cancer types by shrunken centroids of gene expression. Proceedings of the National
Academy of Sciences, 99(10):6567–6572, 2002.

Max van Spengler, Erwin Berkhout, and Pascal Mettes. Poincaré resnet. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 5419–5428, 2023.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011
dataset. Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.

Hong-Ming Yang, Xu-Yao Zhang, Fei Yin, and Cheng-Lin Liu. Robust classification with convolu-
tional prototype learning. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3474–3482, 2018.

Yun Yue, Fangzhou Lin, Guanyi Mou, and Ziming Zhang. Understanding hyperbolic metric learn-
ing through hard negative sampling. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pp. 1891–1903, 2024.

A APPENDIX

A.1 EXPERIMENTAL DETAILS

RHPN was trained for 200 epochs with SGD, using a learning rate of 0.1, weight decay 0.001,
momentum 0.9, and linear learning rate scheduler at epochs 60, 120 and 160. The backbone used
was a ResNet18. As discussed in section4, to update the prototypes we used RSGD Bonnabel
(2013) with learning rate 0.001 and momentum 0.9. The batch size was set to 128 for Aircraft
and Cifar100Krizhevsky et al. (2009) and to 64 for the other datasets. The embedding dimension
was set to 8 for Cifar10, 64 for Cifar100 and AircraftMaji et al. (2013), and 128 for CubWah et al.
(2011) and CarsKrause et al. (2015). The choice of the datasets favored the ones that sported an
accompanying hierarchy on the label set, as these kind of datasets has been suggested Khrulkov
et al. (2020) to better match the inductive bias imposed by learning in hyperbolic geometries. We
used the Geoopt library Kochurov et al. (2020) to implement the hyperbolic operations. Following
the insights provided by Guo et al. (2022), Hamzaoui et al. (2024) and Yue et al. (2024), we apply a
clipping of the features with clipping value equal to 1, before projecting them onto the Poincaré ball
and we use a temperature γ = 10.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

The experiments were run on a cluster with 4 ARM machine, which consists of Ampere Altra Q80-
30 CPU (80-core Arm Neoverse N1), 512GB of memory, 2 x NVIDIA A100 GPU (40GB vram).
We used geoopt [34] to implement the hyperbolic operations.

A.2 HYPERPARAMETERS SELECTION

In our experiments, we tried to replicate the settings in competitor papers when possible. Specifi-
cally, the basic configuration of RHPN has been selected to match the training settings from Landrieu
& Garnot (2021). We did run a few exploratory experiment to evaluate better settings, but we rapidly
found out that the given setting was already a very good one.

The most challenging method to reproduce was HBLGhadimi Atigh et al. (2021). To reproduce it,
we used the official repository of the paper. For CUB and Cifar100 datasets, we adopted the settings
provided in the original paper as these datasets were already part of the experimentation therein.
The only change with respect to this setting, was the adoption of a ResNet18 instead of a ResNet32,
which was necessary to ensure a fair comparison with other methods. This change explains why
some of the results in our experiments do not match the ones in the original paper. The comparison
remain fair since all methods have been tested using the same backbone networks. Also, the main
results from the Ghadimi Atigh et al. (2021) paper remain valid: the HBL method continues to
outpeform HPS in low dimensional spaces.

Cars and Aircraft were not discussed in the papers that introduced competitor methods. In these
cases, for each dataset, we started with the same hyper-parameters we adopted for the dataset that
was most similar in terms of number of classes: for Cars we adopted a setting similar to CUB, for
Aircraft we adopted a setting similar to Cifar100. We then finetuned the slope parameter for HBL
over a separate validation set, resulting in a slope of 0.001 for Cars and of 0.01 for Aircraft.

The slope parameter of RHPNwas set testing a few values over a separate validation set. Specifically,
we tried values of λ in {0, 0.01, 0.1, 0.3}. Since the similarity in terms of number of classes between
CUB and Cars and between Aircrafts and Cifar100, we finetuned λ on CUB and Aircrafts and
adopted the results over Cars and Cifar100 respectively.

13

	Introduction
	Related Works
	Background
	Method
	Experiments
	Results
	-Hyperbolicity

	Conclusions
	Appendix
	Experimental details
	Hyperparameters selection

