
Solving Minimum-Cost Reach Avoid using
Reinforcement Learning

Oswin So*
Department of Aeronautics and Astronautics

MIT
oswinso@mit.edu

Cheng Ge*
Department of Aeronautics and Astronautics

MIT
gec_mike@mit.edu

Chuchu Fan
Department of Aeronautics and Astronautics

MIT
chuchu@mit.edu

Abstract

Current reinforcement-learning methods are unable to directly learn policies that
solve the minimum cost reach-avoid problem to minimize cumulative costs subject
to the constraints of reaching the goal and avoiding unsafe states, as the structure
of this new optimization problem is incompatible with current methods. Instead, a
surrogate problem is solved where all objectives are combined with a weighted
sum. However, this surrogate objective results in suboptimal policies that do not
directly minimize the cumulative cost. In this work, we propose RC-PPO, a
reinforcement-learning-based method for solving the minimum-cost reach-avoid
problem by using connections to Hamilton-Jacobi reachability. Empirical results
demonstrate that RC-PPO learns policies with comparable goal-reaching rates to
while achieving up to 57% lower cumulative costs compared to existing methods
on a suite of minimum-cost reach-avoid benchmarks on the Mujoco simulator. The
project page can be found at https://oswinso.xyz/rcppo/.

1 Introduction

Many real-world tasks can be framed as a constrained optimization problem where reaching a goal at
the terminal state and ensuring safety (i.e., reach-avoid) is desired while minimizing some cumulative
cost as an objective function, which we term the minimum-cost reach-avoid problem.

The cumulative cost, which differentiates this from the traditional reach-avoid problem, can be used
to model desirable aspects of a task such as minimizing energy consumption, maximizing smoothness,
or any other pseudo-energy function, and allows for choosing the most desirable policy among many
policies that can satisfy the reach-avoid requirements. For example, energy-efficient autonomous
driving [1, 2] can be seen as a task where the vehicle must reach a destination, follow traffic rules,
and minimize fuel consumption. Minimizing fuel use is also a major concern for low-thrust or
energy-limited systems such as spacecraft [3] and quadrotors [4]. Quadrotors often have to choose
limited battery life to meet the payload capacity. Hence, minimizing their energy consumption, which
can be done by taking advantage of wind patterns, is crucial for keeping them airborne to complete
more tasks. Other use-cases important for climate change include plasma fusion (reach a desired
current, minimize the total risk of plasma disruption) [5] and voltage control (reach a desired voltage
level, minimize the load shedding amount) [6].

*These authors contributed equally to this work

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://oswinso.xyz/rcppo/

If only a single control trajectory is desired, this class of problems can be solved using numerical
trajectory optimization by either optimizing the timestep between knot points [7] or a bilevel opti-
mization approach that adjusts the number of knot points in an outer loop [8, 9, 10]. However, in this
setting, the dynamics are assumed to be known, and only a single trajectory is obtained. Therefore, the
computation will needs to be repeated when started from a different initial state. The computational
complexity of trajectory optimization prevents it from being used in real time. Moreover, the use of
nonlinear numerical optimization may result in poor solutions that lie in suboptimal local minim [11].

Alternatively, to obtain a control policy, reinforcement learning (RL) can be used. However, existing
methods are unable to directly solve the minimum-cost reach-avoid problem. Although RL has been
used to solve many tasks where reaching a goal is desired, goal-reaching is encouraged as a reward
instead of as a constraint via the use of either a sparse reward at the goal [12, 13, 14], or a surrogate
dense reward [14, 15]1. However, posing the reach constraint as a reward then makes it difficult to
optimize for the cumulative cost at the same time. In many cases, this is done via a weighted sum
of the two terms [18, 19, 20]. However, the optimal policy of this new surrogate objective may not
necessarily be the optimal policy of the original problem. Another method of handling this is to treat
the cumulative cost as a constraint and solve for a policy that maximizes the reward while keeping
the cumulative cost under some fixed threshold, resulting in a new constrained optimization problem
that can be solved as a constrained Markov decision process (CMDP) [21]. However, the choice of
this fixed threshold becomes key: too small and the problem is not feasible, destabilizing the training
process. Too large, and the resulting policy will simply ignore the cumulative cost.

To tackle this issue, we propose Reach Constrained Proximal Policy Optimization(RC-PPO), a
new algorithm that targets the minimum-cost reach-avoid problem. We first convert the reach-avoid
problem to a reach problem on an augmented system and use the corresponding reach value function
to compute the optimal policy. Next, we use a novel two-step PPO-based RL-based framework to
learn this value function and the corresponding optimal policy. The first step uses a PPO-inspired
algorithm to solve for the optimal value function and policy, conditioned on the cost upper bound.
The second step fine-tunes the value function and solves for the least upper bound on the cumulative
cost to obtain the final optimal policy. Our main contributions are summarized below:

• We prove that the minimum-cost reach-avoid problem can be solved by defining a set of augmented
dynamics and a simplified constrained optimization problem.

• We propose RC-PPO, a novel algorithm based on PPO that targets the minimum-cost reach-avoid
problem, and prove that our algorithm converges to a locally optimal policy.

• Simulation experiments show that RC-PPO achieves reach rates comparable with the baseline
method with the highest reach rate while achieving significantly lower cumulative costs.

2 Related Works

Terminal-horizon state-constrained optimization Terminal state constraints are quite common
in the dynamic optimization literature. For the finite-horizon case, for example, one method of
guaranteeing the stability of model predictive control (MPC) is with the use of a terminal state
constraint [22]. Since MPC is implemented as a discrete-time finite-horizon numerical optimization
problem, the terminal state constraints can be easily implemented in an optimization program as a
normal state constraint. The case of a flexible-horizon constrained optimization is not as common
but can still be found. For example, one method of time-optimal control is to treat the integration
timestep as a control variable while imposing state constraints on the initial and final knot points [7].
Another method is to consider a bilevel optimization problem, where the number of knot points is
optimized for in the outer loop [8, 9, 10].

Goal-conditioned Reinforcement Learning There have been many works on goal-conditioned
reinforcement learning. These works mainly focus on the challenges of tackling sparse rewards
[12, 14, 23, 15] or even learning without rewards completely, either via representation learning
objectives [24, 25, 26, 27, 28, 29, 30, 31, 32, 33] or by using contrastive learning to learn reward
functions [34, 35, 36, 37, 38, 39, 40, 41, 42, 43], often in imitation learning settings [44, 45]. However,

1If the dense reward is not specified correctly, however, it can lead to unwanted local minima [14] that
optimize the reward function in an undesirable manner, i.e., reward hacking [16, 17]

2

the manner in which these goals are reached is not considered, and it is difficult to extend these works
to additionally minimize some cumulative cost.

Constrained Reinforcement Learning One way of using existing techniques to approximately
tackle the minimum-cost reach-avoid problem is to flip the role of the cumulative-cost objective and
the goal-reaching constraint by treating the goal-reaching constraint as an objective via a (sparse or
dense) reward and the cumulative-cost objective as a constraint with a cost threshold, turning the
problem into a CMDP [21]. In recent year, there has been significant interest in deep RL methods for
solving CMDPs [46, 47, 48]. While these methods are effective at solving the transformed CMDP
problem, the optimal policy to the CMDP may not be the optimal policy to the original minimum-cost
reach-constrained problem, depending on the choice of the cost constraint.

State Augmentation in Constrained Reinforcement Learning To improve reward structures
in constrained reinforcement learning, especially in safety-critical systems, one effective approach
is state augmentation. This technique integrates constraints, such as safety or energy costs, into
the augmented state representation, allowing for more effective constraint management through the
reward mechanism [49, 50, 51]. While these methods enhance the reward structure for solving the
transformed CMDP problems, they still face the inherent limitation of the CMDP framework: the
optimal policy for the transformed CMDP may not always correspond to the optimal solution for the
original problem.

Reachability Analysis Reachability analysis looks for solutions to the reach-avoid problem. That
is, to solve for the set of initial conditions and an appropriate control policy to drive a system to
a desired goal set while avoiding undesireable states. Hamilton-Jacobi (HJ) reachability analysis
[52, 53, 54, 55, 56] provides a methodology for the case of dynamics in continuous-time via the
solution of a partial differential equation (PDE) and is conventionally solved via numerical PDE
techniques that use state-space discretization [54]. This has been extended recently to the case of
discrete-time dynamics and solved using off-policy [57, 58] and on-policy [59, 60] reinforcement
learning. While reachability analysis concerns itself with the reach-avoid problem, we are instead
interested in solutions to the minimum-cost reach-avoid problem.

3 Problem Formulation

In this paper, we consider a class of minimum-cost reach-avoid problems defined by the tuple
M := ⟨X ,U , f, c, g, h⟩. Here, X ⊆ Rn is the state space and U ⊆ Rm is the action space. The
system states xt ∈ X evolves under the deterministic discrete dynamics f : X × U → X as

xt+1 = f(xt, ut). (1)

The control objective for the system states xt is to reach the goal region G and avoid the unsafe set
F while minimizing the cumulative cost

∑T−1
t=0 c(xt, π(xt)) under control input ut = π(xt) for a

designed control policy π : X → U . Here, T denotes the first timestep that the agent reaches the
goal G. The sets G and F are given as the 0-sublevel and strict 0-superlevel sets g : X → R and
h : X → R respectively, i.e.,

G := {x ∈ X | g(x) ≤ 0}, F := {x ∈ X | h(x) > 0} (2)

This can be formulated formally as finding a policy π that solves the following constrained flexible
final-time optimization problem for a given initial state x0:

min
π, T

T−1∑
t=0

c
(
xt, π(xt)

)
(3a)

s.t. xT ∈ G, (3b)
xt ̸∈ F ∀t ∈ {0, . . . , T}, (3c)

xt+1 = f
(
xt, π(xt)

)
. (3d)

Note that as opposed to either traditional finite-horizon constrained optimization problems where T
is fixed or infinite-horizon problems where T = ∞, the time horizon T is also a decision variable.
Moreover, the goal constraint (3b) is only enforced at the terminal timestep T . These two differences
prevent the straightforward application of existing RL methods to solve (3).

3

3.1 Reachability Analysis for Reach-Avoid Problems

In discrete time, the set of initial states that can reach the goal G without entering the avoid set F can
be represented by the 0-sublevel set of a reach-avoid value function V π

g,h [58]. Given functions g, h
describing G and F and a policy π, the reach-avoid value function V π

g,h : X → R is defined as

V π
g,h(x0) = min

T∈N
max

{
g(xπ

T), max
t∈{0,...,T}

h(xπ
t)
}
, (4)

where xπ
t denote the system state at time t under a policy π starting from an initial state xπ

0 = x0. In
the rest of the paper, we suppress the argument x0 for brevity whenever clear from the context. It
can be shown that the reach-avoid value function satisfies the following recursive relationship via the
reach-avoid Bellman equation (RABE) [58]

V π
g,h(x

π
t) = max

{
h(xπ

t), min{g(xπ
t), V

π
g,h(x

π
t+1)}

}
, ∀t ≥ 0. (5)

The Bellman equation (5) can then be used in a reinforcement learning framework (e.g., via a
modification of soft actor-critic[61, 62]) as done in [58] to solve the reach-avoid problem.

Note that existing methods of solving reach-avoid problems through this formulation focus on
minimizing the value function V π

g,h. This is not necessary as any policy that results in V π
g,h ≤ 0 solves

the reach-avoid problem, albeit without any cost considerations. However, it is often the case that we
wish to minimize a cumulative cost (e.g., (3a)) on top of the reach-avoid constraints (3b)-(3c) for a
minimum-cost reach-avoid problem. To address this class of problems, we next present a modification
to the reach-avoid framework that additionally enables the minimization of the cumulative cost.

3.2 Reachability Analysis for Minimum-cost Reach-Avoid Problems

We now provide a new framework to solve the minimum-cost reach-avoid by lifting the original
system to a higher dimensional space and designing a set of augmented dynamics that allow us to
convert the original problem into a reachability problem on the augmented system.

Let I denote the shifted indicator function defined as

Ib∈B :=

{
+1 b ∈ B,

−1 b ̸∈ B.
(6)

Define the augmented state as x̂ = (x, y, z) ⊆ X̂ := X×{−1, 1}×R. We now define a corresponding
augmented dynamics function f ′ : X̂ × U → X̂ as

f̂
(
xt, yt, zt, ut

)
=
(
f(xt), max{If(xt)∈F , yt}, zt − c(xt, ut)

)
, (7)

where y0 = Ix0∈F . Note that yt = 1 if the state has entered the avoid set F at some timestep from 0
to t and is unsafe, and yt = 0 if the state has not entered the avoid set F at any timestep from 0 to
t and is safe. Moreover, zt is equal to z0 minus the cost-to-come, i.e., for state trajectory x0:t and
action trajectory u0:t, i.e.,

zt+1 = z0 −
t∑

k=0

c(xt, ut). (8)

Under the augmented dynamics, we now define the following augmented goal function ĝ : X̂ → R as

ĝ(x, y, z) := max{g(x), Cy, −z}, (9)

where C > 0 is an arbitrary constant.2 With this definition of ĝ, an augmented goal region Ĝ can be
defined as

Ĝ := {x̂ | ĝ(x̂) ≤ 0} = {(x, y, z) | x ∈ G, y = −1, z ≥ 0}. (10)
In other words, starting from initial condition x̂0 = (x0, y0, z0), reaching the goal on the augmented
system x̂T ∈ ĝ at timestep T implies that 1) the goal is reached at xT for the original system, 2)
the state trajectory remains safe and does not enter the avoid set F , and 3) z0 is an upper-bound on
the total cost-to-come:

∑T−1
t=0 c(xt, ut) ≤ z0. We call this the upper-bound property. The above

intuition on the newly defined augmented system is formalized in the following theorem, whose proof
is provided in Appendix D.1.

2In practice, we use C = maxx∈X g(x).

4

Theorem 1. For given initial conditions x0 ∈ X , z0 ∈ R and control policy π, consider the trajectory
for the original system {x0, . . . xT } and its corresponding trajectory for the augmented system
{(x0, y0, z0), . . . (xT , yT , zT)} for some T > 0. Then, the reach constraint xT ∈ G (3b), avoid
constraint xt ̸∈ F ∀t ∈ {0, 1, . . . , T} (3c) and the upper-bound property z0 ≥

∑T−1
k=0 c

(
xk, π(xk)

)
hold if and only if the augmented state reaches the augmented goal at time T , i.e., (xT , yT , zT) ∈ Ĝ.

With this construction, we have folded the avoid constraints xt ̸∈ F (3c) into the reach specification
on the augmented system. In other words, solving the reach problem on the augmented system results
in a reach-avoid solution of the original system. As a result, we can simplify the value function (4) and
Bellman equation (5), resulting in the following definition of the reach value function Ṽĝ : X̂ → R

Ṽ π
ĝ (x̂0) = min

t∈N
ĝ(x̂π

t). (11)

Similar to (4), the 0-sublevel set of Ṽĝ describes the set of augmented states x̂ that can reach the
augmented goal Ĝ. We can also similarly obtain a recursive definition of the reach value function Ṽĝ

given by the reachability Bellman equation (RBE)

Ṽ π
ĝ (xπ

t , y
π
t , z

π
t) = min

{
ĝ(xπ

t , y
π
t , z

π
t), Ṽ

π
ĝ (xπ

t+1, y
π
t+1, z

π
t+1)

}
∀t ≥ 0, (12)

whose proof we provide in Appendix D.2.

We now solve the minimum-cost reach-avoid problem using this augmented system. By Theorem 1,
the z0 is an upper bound on the cumulative cost to reach the goal while avoiding the unsafe set if and
only if the augmented state x̂ reaches the augmented goal. Since this upper bound is tight, the least
upper bound z0 that still reaches the augmented goal thus corresponds to the minimum-cost policy
that satisfies the reach-avoid constraints. In other words, the minimum-cost reach-avoid problem for
a given initial state x0 can be reformulated as the following optimization problem.

min
π, z0

z0 (13a)

s.t. Ṽ π
ĝ (x0, Ix0∈F , z0) ≤ 0. (13b)

We refer to Appendix B for a detailed derivation of the equivalence between the transformed
Problem 13 and the original minimum-cost reach-avoid Problem 3.
Remark 1 (Connections to the epigraph form in constrained optimization). The resulting optimization
problem (13) can be interpreted as an epigraph reformulation [63] of the minimum-cost reach-avoid
problem (3). The epigraph reformulation results in a problem with linear objective but yields the
same solution as the original problem [63]. The construction we propose in this work can be seen as
a dynamic version of this epigraph reformulation technique originally developed for static problems
and is similar to recent results that also make use of the epigraph form for solving infinite-horizon
constrained optimization problems [59].

4 Solving with Reinforcement Learning

In the previous section, we reformulated the minimum-cost reach-avoid problem by constructing an
augmented system and used its reach value function (11) in a new constrained optimization problem
(13) over the cost upper-bound z0. In this section, we propose Reachability Constrained Proximal
Policy Optimization (RC-PPO), a two-phase RL-based method for solving (13) (see Figure 1).

4.1 Phase 1: Learn z-conditioned policy and value function

In the first step, we learn the optimal policy π and value function Ṽ π
ĝ , as functions of the cost

upper-bound z0, using RL. To do so, we consider the policy gradient framework [64]. However,
since the policy gradient requires a stochastic policy in the case of deterministic dynamics [65], we
consider an analog of the developments made in the previous section but for the case of a stochastic
policy. To this end, we redefine the reach value function Ṽ π

ĝ using a similar Bellman equation under
a stochastic policy as follows.

5

Phase one

Original System

Augmented Dynamic
System

Training

…

Minimize

Phase two

Fine-Tune

Calculate

Execution

Figure 1: Summary of the RC-PPO algorithm. In phase one, the original dynamic system is
transformed into the augmented dynamic system defined in (7). Then RL is used to optimize value
function Ṽ π

ĝ and learn a stochastic policy π. In phase two, we fine-tune Ṽ π
ĝ on a deterministic version

of π and compute the optimal upper-bound z∗ to obtain the optimal deterministic policy π∗.

Definition 1 (Stochastic Reachability Bellman Equation). Given function ĝ in (9), a stochastic policy
π, and initial conditions x0 ∈ X , z0 ∈ R, the stochastic reach value function Ṽ π

ĝ is defined as the
solution to the following stochastic reachability Bellman equation (SRBE):

Ṽ π
ĝ (x̂t) = Eτ∼π[min{ĝ(x̂t), Ṽ

π
ĝ (x̂t+1)}] ∀t ≥ 0, (14)

where x̂0 = (x0, y0, z0) with y0 = Ix0∈F .

For this stochastic Bellman equation, the Q function [66] is defined as

Q̃π
ĝ (x̂t, ut) = min{ĝ(x̂t), Ṽg(x̂t+1)}. (15)

We next define the dynamics of our problem with stochastic policy below.
Definition 2 (Reachability Markov Decision Process). The Reachability Markov Decision Process is
defined on the augmented dynamic in Equation (7) with an added absorbing state s0. We define the
transition function f ′

r with the absorbing state as

f ′
r(x̂, u) =

{
f̂(x̂, u), if Ṽ π

ĝ (x̂) > ĝ(f̂(x̂, u)),

s0, if Ṽ π
ĝ (x̂) ≤ ĝ(f̂(x̂, u)).

(16)

Denote by d′π(x̂) the stationary distribution under stochastic policy π starting at x̂ ∈ X ×{−1, 1}×R.

We now derive a policy gradient theorem for the Reachability MDP in Definition 2 which yields an
almost identical expression for the policy gradient.
Theorem 2. (Policy Gradient Theorem) For policy πθ parameterized by θ, the gradient of the policy
value function Ṽ πθ

ĝ satisfies

∇θṼ
πθ

ĝ (x̂) ∝ Ex̂′∼d′
π(x̂),u∼πθ

[
Q̃πθ (x̂′, u)∇θ lnπθ (u | x̂′)

]
, (17)

under the stationary distribution d
′

π(x̂) for Reachability MDP in Definition 2

The proof of this new policy gradient theorem (Theorem 2) follows the proof of the normal policy
gradient theorem [66], differing only in the expression of the stationary distribution. We provide the
proof in Appendix D.3.

Since the stationary distribution d′π(x̂) in Definition 2 is hard to simulate during the learning process,
we instead consider the stationary distribution under the original augmented dynamic system. Note
that Definition 1 does not induce a contraction map, which harms performance. To fix this, we apply
the same trick as [58] by introducing an additional discount factor γ into the Bellman equation (12):

Ṽ π
ĝ (x̂t) = (1− γ)ĝ(x̂t) + γEx̂t+1∼τ [min{ĝ(x̂t), Ṽ

π
ĝ (x̂t+1)}]. (18)

6

This provides us with a contraction map (proved in [58]) and we leave the discussion of choosing γ
in Appendix C. The Q-function corresponding to (18) is then given as

Q̃π
ĝ (x̂t, ut) = (1− γ)ĝ(x̂t) + γmin{ĝ(x̂t), Ṽ

π
ĝ (x̂t+1)}. (19)

Following proximal policy optimization (PPO) [67], we use generalized advantage estimation (GAE)
[68] to compute a variance-reduced advantage function Ãπ

ĝ = Q̃π
ĝ − Ṽ π

ĝ for the policy gradient

(Theorem 2) using the λ-return [66]. We refer to Appendix A for the definition of Âπ(GAE)
ĝ and

denote the loss function when θ = θl as
Jπ(θ) = Ex̂,u∼πθl

[
Aπθl (x̂, u)

]
, (20)

Aπθl (x̂, u) = max

(
− πθ(u | x̂)
πθl(u | x̂)

Â
πθl

(GAE)

ĝ (x̂, u), CLIP
(
ϵ,−Â

πθl
(GAE)

ĝ (x̂, u)
))

. (21)

We wish to obtain the optimal policy π and the value function Ṽ πθ

ĝ conditioned on z0. Hence, at the
beginning of each rollout, we uniformly sample z0 within a user-specified range [zmin, zmax]. Since
the optimal z0 is the cumulative cost of the policy that solves the minimum-cost reach-avoid problem,
zmin and zmax are user-specified bounds on the optimal cost. In particular, when the cost-function is
bounded and the optimal cost is non-negative, we can choose zmin to be some negative number and
zmax to be the maximum possible discounted cost.

4.2 Phase 2: Solving for the optimal z

In the second phase, we first compute a deterministic version π∗ of the stochastic policy π from phase
1 by taking the mode. Next, we fine-tune V π

ĝ based on the now deterministic π∗ to obtain Ṽ ∗
ĝ .

Given any state x, the final policy is then obtained by solving for the optimal cost upper-bound z∗

from Equation (13), which is a 1D root-finding problem and can be easily solved using bisection. Note
that Equation (13) must be solved online for z∗ at each state x. Alternatively, to avoid performing
bisection online, we can instead learn the map (x, y) 7→ z∗ offline using regression with randomly
sampled (x, y) pairs and z∗ labels obtained from bisection offline.

We provide a convergence proof of an actor-critic version of our method without the GAE estimator
in Appendix E.

5 Experiments

Baselines We consider two categories of RL baselines. The first is goal-conditioned reinforcement
learning which focuses on goal-reaching but does not consider minimization of the cost. For this
category, we consider the Contrastive Reinforcement Learning (CRL) [33] method. We also compare
against safe RL methods that solve CMDPs. As the minimum-cost reach-avoid problem (3) cannot
be posed as a CMDP, we reformulate (3) into the following surrogate CMDP:

min
π

Ext,ut∼dπ

∑
t

[
− γtr(xt, ut)

]
(22a)

s.t. Ext,ut∼dπ

∑
t

[
γt
1xt∈F × Cfail

]
≤ 0, (22b)

Ext,ut∼dπ

∑
t

[
γtc(xt, ut)

]
≤ Xthreshold. (22c)

where the reward r incentivies goal-reaching, Cfail is a term balancing two constraint terms, and
Xthreshold is a hyperparameter on the cumulative cost. For this category, we consider the CPPO [48]
and RESPO [60]. Note that RESPO also incorporates reachability analysis to adapt the Lagrange
multipliers for each constraint term. We implement the above CMDP-based baselines with three
different choices of Xthresholds: XL, XM and XH. For RESPO, we found XM to outperform both XL

and XH and thus only report results for XM.

We also consider the static Lagrangian multiplier case. In this setting, the reward function becomes
r(xt)−β(1xt∈F ×Cfail+ c(xt, ut)) for a constant Lagrange multiplier β. We consider two different
levels of β (βL, βH) in our experiments, resulting in the baselines PPO_βL, PPO_βH, SAC_βL,
SAC_βH. More details are provided in Appendix F.

7

Pendulum Safety Hopper WindField PointGoal Safety HalfCheetah FixedWing

Figure 2: Illustrations of the benchmark tasks. In each picture, red denotes the unsafe region to be
avoided, while green denotes the goal region to be reached.

0.0 0.2 0.4 0.6 0.8 1.0

RC-PPO
RESPO
PPO_βL
PPO_βH
SAC_βL
SAC_βH

CPPO_L
CPPO_M
CPPO_H

CRL

Reach Rate ↑

Pendulum
0.0 0.2 0.4 0.6 0.8

RC-PPO
RESPO
PPO_βL
PPO_βH
SAC_βL
SAC_βH

CPPO_L
CPPO_M
CPPO_H

CRL

Reach Rate ↑

Safety Hopper
0.0 0.2 0.4 0.6 0.8

RC-PPO
RESPO
PPO_βL
PPO_βH
SAC_βL
SAC_βH

CPPO_L
CPPO_M
CPPO_H

CRL

Reach Rate ↑

WindField

0.0 0.2 0.4 0.6 0.8

RC-PPO
RESPO
PPO_βL
PPO_βH
SAC_βL
SAC_βH

CPPO_L
CPPO_M
CPPO_H

CRL

Reach Rate ↑

PointGoal
0.0 0.2 0.4 0.6

RC-PPO
RESPO
PPO_βL
PPO_βH
SAC_βL
SAC_βH

CPPO_L
CPPO_M
CPPO_H

CRL

Reach Rate ↑

Safety HalfCheetah
0.0 0.2 0.4 0.6 0.8

RC-PPO
RESPO
PPO_βL
PPO_βH
SAC_βL
SAC_βH

CPPO_L
CPPO_M
CPPO_H

CRL

Reach Rate ↑

FixedWing

Figure 3: Reach rates under the sparse reward setting. RC-PPO consistently achieves the highest
reach rates in all benchmark tasks. Error bars denote the standard error.

Benchmarks We compare RC-PPO with baseline methods on several minimum-cost reach-avoid
environments. We consider an inverted pendulum (Pendulum), an environment from Safety Gym
[69] (PointGoal) and two custom environments from MuJoCo [70], (Safety Hopper, Safety
HalfCheetah) with added hazard regions and goal regions. We also consider a 3D quadrotor
navigation task in a simulated wind field for an urban environment [71, 72] (WindField) and an
Fixed-Wing avoid task from [59] with an additional goal region (FixedWing). More details on the
benchmark can be found in Appendix G.

Evaluation Metrics Since the goal of RC-PPO is minimizing cost consumption while reaching
goal without entering the unsafe region F . We evaluate algorithm performance based on (i) reach rate,
(ii) cost. The reach rate is the ratio of trajectories that enter goal region G without violating safety
along the trajectory. The cost denotes the cumulative cost over the trajectory

∑T
k=0 c(xk, π(xk)).

5.1 Sparse Reward Setting

We first compare our algorithm with other baseline algorithms under a sparse reward setting (Figure 3).
In all environments, the reach rate for the baseline algorithms is very low. Also, there is a general
trend between the reach rate and the Lagrangian coefficient. CPPO_XL, PPO_βH and SAC_βH have
higher Lagrangian coefficients which lead to a lower reach rate.

5.2 Comparison under Reward Shaping

Reward shaping is a common method that can be used to improve the performance of RL algorithms,
especially in the sparse reward setting [73, 74]. To see whether the same conclusions still hold even
in the presence of reward shaping, we retrain the baseline methods but with reward shaping using a
distance function-based potential function (see Appendix F for more details).

The results in Figure 4 demonstrate that RC-PPO remains competitive against the best baseline
algorithms in reach rate while achieving significantly lower cumulative costs. The baseline methods
(PPO_βH, SAC_βH, CPPO_XL) fail to achieve a high reach rate due to the large weights placed
on minimizing the cumulative cost. CRL can reach the goal for simpler environments (Pendulum)
but struggles with more complex environments. However, since goal-conditioned methods do not
consider minimize cumulative cost, it achieves a higher cumulative cost relative to other methods.

8

80 160 240 320
CRL

CPPO_H
CPPO_M

SAC_βL
PPO_βL
RESPO

RC-PPO
Additional Cumulative Cost ↓

0.0 0.2 0.4 0.6 0.8 1.0

RC-PPO
RESPO
PPO_βL
PPO_βH
SAC_βL
SAC_βH

CPPO_L
CPPO_M
CPPO_H

CRL

Reach Rate ↑

Pendulum

150 200 250
CPPO_H

CPPO_M

SAC_βL

PPO_βL

RESPO
RC-PPO

Additional Cumulative Cost ↓

0.0 0.2 0.4 0.6 0.8

RC-PPO
RESPO
PPO_βL
PPO_βH
SAC_βL
SAC_βH

CPPO_L
CPPO_M
CPPO_H

CRL

Reach Rate ↑

PointGoal

50 75 100 125
CPPO_H

PPO_βL

RESPO

RC-PPO
Additional Cumulative Cost ↓

0.0 0.2 0.4 0.6

RC-PPO
RESPO
PPO_βL
PPO_βH
SAC_βL
SAC_βH

CPPO_L
CPPO_M
CPPO_H

CRL

Reach Rate ↑

Safety HalfCheetah

180 240 300 360
CPPO_H

CPPO_M

SAC_βL

PPO_βL

RESPO
RC-PPO

Additional Cumulative Cost ↓

0.0 0.2 0.4 0.6 0.8 1.0

RC-PPO
RESPO
PPO_βL
PPO_βH
SAC_βL
SAC_βH

CPPO_L
CPPO_M
CPPO_H

CRL

Reach Rate ↑

WindField

Figure 4: Cumulative cost (IQM) and reach rates under reward shaping on four selected
benchmarks. RC-PPO achieves significantly lower cumulative costs while retaining comparable
reach rates even when compared with baseline methods that use reward shaping.

0 π 2π
θ

−7.5

−5.0

−2.5

0.0

2.5

5.0

ω

GoalCPPO_H

0 π 2π
θ

−5

0

5

ω

RESPO

0 π 2π
θ

−5

0

5

ω

RC-PPO

0 100 200 300 400
Timestep

0

200

400

600

Cu
m
ul
at
iv
e

Co
st

RC-PPO
RESPO

CPPO_H

(a) Pendulum

0 50 100 150 200 250
Timestep

0

100

200

300
Cu

m
ul
at
iv
e

Co
st

RC-PPO
RESPO

CPPO_H

Goal

(b) WindField

Figure 5: Trajectory comparisons. On Pendulum, RC-PPO learns to perform an extensive energy
pumping strategy to reach the goal upright position (green line), resulting in vastly lower cumulative
energy. On WindField, RC-PPO takes advantage instead of fighting against the wind field, resulting
in a faster trajectory to the goal region (green box) that uses lower cumulative energy. The start of the
trajectory is marked by ■.

Other baselines focus more on goal-reaching tasks while putting less emphasis on the cost part. As a
result, they suffer from higher costs than RC-PPO. We can also observe that RESPO achieves lower
cumulative cost compared to CPPO_XM which shares the same Xthreshold. This is due to RESPO
making use of reachability analysis to better satisfy constraints.

To see how RC-PPO achieves lower cumulative costs, we visualize the resulting trajectories for
Pendulum and WindField in Figure 5. For Pendulum, we see that RC-PPO learns to perform energy
pumping to reach the goal in more time but with a smaller cumulative cost. The optimal behavior is
opposite in the case of WindField, which contains an additional constant term in the cost to model
the energy draw of quadcopters (see Appendix G). Here, we see that RC-PPO takes advantage of the
wind at the beginning by moving downwind, arriving at the goal faster and with less cumulative cost.

We also visualize the learned RC-PPO policy for different values of z on the Pendulum benchmark
(see Appendix H.2). For small values of z, the policy learns to minimize the cost, but at the expense of
not reaching the goal. For large values of z, the policy reaches the goal quickly but at the expense of
a large cost. The optimal zopt found using the learned value function Ṽ πθ

ĝ finds the z that minimizes
the cumulative cost but is still able to reach the goal.

5.3 Optimal solution of minimum-cost reach-avoid cannot be obtained using CMDP

Though the previous subsections show the performance benefits of RC-PPO over existing methods,
this may be due to badly chosen hyperparameters for the baseline methods, particularly in the
formulation of the surrogate CMDP (22). We thus pose the following question: Can CMDP
methods perform well under the right parameters of the surrogate CMDP problem (22) ?.

9

200
300

0.0 0.2 0.4 0.6 0.8 1.0
Reach Rate ↑

0

20

40

60

80

100

Ad
di

tio
na

l C
um

ul
at

iv
e

Co
st

 ↓
RC-PPO

PPO across different
reward coefficients

Figure 6: Pareto front of PPO across different reward coefficients. RC-PPO outperforms the entire
Pareto front of what can be achieved by varying the reward function coefficients of the surrogate
CMDP problem when solved using PPO.

Empirical Study. To answer this question, we first perform an extensive grid search over both the
different coefficients in (22) and the static Lagrange multiplier for PPO (see Appendix H.3) and plot
the result in Figure 6. RC-PPO outperforms the entire Pareto front formed from this grid search,
providing experimental evidence that the performance improvements of RC-PPO stem from having a
better problem formulation as opposed to badly chosen hyperparameters for the baselines.

Theoretical Analysis on Simple Example. To complement the empirical study, we provide an exam-
ple of a simple minimum-cost reach-avoid problem where we prove that no choice of hyperparameter
leads to the optimal solution in Appendix I.

5.4 Robustness to Noise

Finally, we investigate the robustness to varying levels of control noise in Appendix H.4. Even with
the added noise, RC-PPO achieves the lowest cumulative cost while maintaining a comparable reach
rate to other methods.

6 Conclusion and Limitations

We have proposed RC-PPO, a novel reinforcement learning algorithm for solving minimum-cost
reach-avoid problems. We have demonstrated the strong capabilities of RC-PPO over prior methods
in solving a multitude of challenging benchmark problems, where RC-PPO learns policies that match
the reach rates of existing methods while achieving significantly lower cumulative costs.

However, it should be noted that RC-PPO is not without limitations. First, the use of augmented
dynamics enables folding the safety constraints within the goal specifications through an additional
binary state variable. While this reduces the complexity of the resulting algorithm, it also means
that two policies that are both unable to reach the goal can have the same value Ṽ π

g′ even if one is
unsafe, which can be undesirable. Next, the theoretical developments of RC-PPO are dependent
on the assumptions of deterministic dynamics, which can be quite restrictive as it precludes the
use of commonly used techniques for real-world deployment such as domain randomization. We
acknowledge these limitations and leave resolving these challenges as future work.

Acknowledgments and Disclosure of Funding

This work was partly supported by the National Science Foundation (NSF) CAREER Award #CCF-
2238030, the MIT Lincoln Lab, and the MIT-DSTA program. Any opinions, findings, conclusions, or
recommendations expressed in this publication are those of the authors and don’t necessarily reflect
the views of the sponsors.

10

References
[1] Xuewei Qi, Yadan Luo, Guoyuan Wu, Kanok Boriboonsomsin, and Matthew Barth. Deep

reinforcement learning enabled self-learning control for energy efficient driving. Transportation
Research Part C: Emerging Technologies, 99:67–81, 2019.

[2] Ying Zhang, Tao You, Jinchao Chen, Chenglie Du, Zhaoyang Ai, and Xiaobo Qu. Safe and
energy-saving vehicle-following driving decision-making framework of autonomous vehicles.
IEEE Transactions on Industrial Electronics, 69(12):13859–13871, 2021.

[3] Mirco Rasotto, Roberto Armellin, and Pierluigi Di Lizia. Multi-step optimization strategy for
fuel-optimal orbital transfer of low-thrust spacecraft. Engineering Optimization, 48(3):519–542,
2016.

[4] Jack Langelaan. Long distance/duration trajectory optimization for small uavs. In AIAA
guidance, navigation and control conference and exhibit, page 6737, 2007.

[5] Allen M Wang, Oswin So, Charles Dawson, Darren T Garnier, Cristina Rea, and Chuchu
Fan. Active disruption avoidance and trajectory design for tokamak ramp-downs with neural
differential equations and reinforcement learning. arXiv preprint arXiv:2402.09387, 2024.

[6] Renke Huang, Yujiao Chen, Tianzhixi Yin, Xinya Li, Ang Li, Jie Tan, Wenhao Yu, Yuan
Liu, and Qiuhua Huang. Accelerated deep reinforcement learning based load shedding for
emergency voltage control. arXiv preprint arXiv:2006.12667, 2020.

[7] Christoph Rösmann, Frank Hoffmann, and Torsten Bertram. Timed-elastic-bands for time-
optimal point-to-point nonlinear model predictive control. In 2015 european control conference
(ECC), pages 3352–3357. IEEE, 2015.

[8] Robin M Pinson and Ping Lu. Trajectory design employing convex optimization for landing on
irregularly shaped asteroids. Journal of Guidance, Control, and Dynamics, 41(6):1243–1256,
2018.

[9] Haichao Hong, Arnab Maity, and Florian Holzapfel. Free final-time constrained sequential
quadratic programming–based flight vehicle guidance. Journal of Guidance, Control, and
Dynamics, 44(1):181–189, 2021.

[10] Kyle Stachowicz and Evangelos A Theodorou. Optimal-horizon model predictive control
with differential dynamic programming. In 2022 International Conference on Robotics and
Automation (ICRA), pages 1440–1446. IEEE, 2022.

[11] Damien Ernst, Mevludin Glavic, Florin Capitanescu, and Louis Wehenkel. Reinforcement
learning versus model predictive control: a comparison on a power system problem. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(2):517–529, 2008.

[12] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience
replay. Advances in neural information processing systems, 30, 2017.

[13] Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn
Powell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, et al. Multi-goal
reinforcement learning: Challenging robotics environments and request for research. arXiv
preprint arXiv:1802.09464, 2018.

[14] Alexander Trott, Stephan Zheng, Caiming Xiong, and Richard Socher. Keeping your dis-
tance: Solving sparse reward tasks using self-balancing shaped rewards. Advances in Neural
Information Processing Systems, 32, 2019.

[15] Minghuan Liu, Menghui Zhu, and Weinan Zhang. Goal-conditioned reinforcement learning:
Problems and solutions. arXiv preprint arXiv:2201.08299, 2022.

[16] Jack Clark and Dario Amodei. Faulty reward functions in the wild, 2016.

[17] Pulkit Agrawal. The task specification problem. In Conference on Robot Learning, pages
1745–1751. PMLR, 2022.

11

[18] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[19] Gabriel B Margolis, Tao Chen, Kartik Paigwar, Xiang Fu, Donghyun Kim, Sangbae Kim, and
Pulkit Agrawal. Learning to jump from pixels. arXiv preprint arXiv:2110.15344, 2021.

[20] Dhawal Gupta, Yash Chandak, Scott Jordan, Philip S Thomas, and Bruno C da Silva. Behavior
alignment via reward function optimization. Advances in Neural Information Processing
Systems, 36, 2024.

[21] Eitan Altman. Constrained Markov decision processes. Routledge, 2004.

[22] Lorenzo Fagiano and Andrew R Teel. Generalized terminal state constraint for model predictive
control. Automatica, 49(9):2622–2631, 2013.

[23] Yifan Wu, George Tucker, and Ofir Nachum. The laplacian in rl: Learning representations with
efficient approximations. arXiv preprint arXiv:1810.04586, 2018.

[24] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Over-
coming exploration in reinforcement learning with demonstrations. In 2018 IEEE international
conference on robotics and automation (ICRA), pages 6292–6299. IEEE, 2018.

[25] Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu, Coline Devin, Benjamin Eysenbach,
and Sergey Levine. Learning to reach goals via iterated supervised learning. arXiv preprint
arXiv:1912.06088, 2019.

[26] Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine.
Visual reinforcement learning with imagined goals. Advances in neural information processing
systems, 31, 2018.

[27] David Warde-Farley, Tom Van de Wiele, Tejas Kulkarni, Catalin Ionescu, Steven Hansen, and
Volodymyr Mnih. Unsupervised control through non-parametric discriminative rewards. arXiv
preprint arXiv:1811.11359, 2018.

[28] Hao Sun, Zhizhong Li, Xiaotong Liu, Bolei Zhou, and Dahua Lin. Policy continuation with
hindsight inverse dynamics. Advances in Neural Information Processing Systems, 32, 2019.

[29] Suraj Nair and Chelsea Finn. Hierarchical foresight: Self-supervised learning of long-horizon
tasks via visual subgoal generation. arXiv preprint arXiv:1909.05829, 2019.

[30] Andres Campero, Roberta Raileanu, Heinrich Küttler, Joshua B Tenenbaum, Tim Rocktäschel,
and Edward Grefenstette. Learning with amigo: Adversarially motivated intrinsic goals. arXiv
preprint arXiv:2006.12122, 2020.

[31] Suraj Nair, Silvio Savarese, and Chelsea Finn. Goal-aware prediction: Learning to model what
matters. In International Conference on Machine Learning, pages 7207–7219. PMLR, 2020.

[32] Russell Mendonca, Oleh Rybkin, Kostas Daniilidis, Danijar Hafner, and Deepak Pathak. Dis-
covering and achieving goals via world models. Advances in Neural Information Processing
Systems, 34:24379–24391, 2021.

[33] Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Russ R Salakhutdinov. Contrastive
learning as goal-conditioned reinforcement learning. Advances in Neural Information Process-
ing Systems, 35:35603–35620, 2022.

[34] David Fischinger, Markus Vincze, and Yun Jiang. Learning grasps for unknown objects in
cluttered scenes. In 2013 IEEE international conference on robotics and automation, pages
609–616. IEEE, 2013.

[35] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

[36] Annie Xie, Avi Singh, Sergey Levine, and Chelsea Finn. Few-shot goal inference for visuomotor
learning and planning. In Conference on Robot Learning, pages 40–52. PMLR, 2018.

12

[37] Justin Fu, Avi Singh, Dibya Ghosh, Larry Yang, and Sergey Levine. Variational inverse control
with events: A general framework for data-driven reward definition. Advances in neural
information processing systems, 31, 2018.

[38] Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond sub-
optimal demonstrations via inverse reinforcement learning from observations. In International
conference on machine learning, pages 783–792. PMLR, 2019.

[39] Ksenia Konyushkova, Konrad Zolna, Yusuf Aytar, Alexander Novikov, Scott Reed, Serkan
Cabi, and Nando de Freitas. Semi-supervised reward learning for offline reinforcement learning.
arXiv preprint arXiv:2012.06899, 2020.

[40] Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski,
Chelsea Finn, Sergey Levine, and Karol Hausman. Mt-opt: Continuous multi-task robotic
reinforcement learning at scale. arXiv preprint arXiv:2104.08212, 2021.

[41] Danfei Xu and Misha Denil. Positive-unlabeled reward learning. In Conference on Robot
Learning, pages 205–219. PMLR, 2021.

[42] Konrad Zolna, Scott Reed, Alexander Novikov, Sergio Gomez Colmenarejo, David Budden,
Serkan Cabi, Misha Denil, Nando de Freitas, and Ziyu Wang. Task-relevant adversarial imitation
learning. In Conference on Robot Learning, pages 247–263. PMLR, 2021.

[43] Suraj Nair, Eric Mitchell, Kevin Chen, Silvio Savarese, Chelsea Finn, et al. Learning language-
conditioned robot behavior from offline data and crowd-sourced annotation. In Conference on
Robot Learning, pages 1303–1315. PMLR, 2022.

[44] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

[45] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse
reinforcement learning. arXiv preprint arXiv:1710.11248, 2017.

[46] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization.
In International conference on machine learning, pages 22–31. PMLR, 2017.

[47] Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization.
arXiv preprint arXiv:1805.11074, 2018.

[48] Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning
by pid lagrangian methods. In International Conference on Machine Learning, pages 9133–9143.
PMLR, 2020.

[49] Aivar Sootla, Alexander I Cowen-Rivers, Taher Jafferjee, Ziyan Wang, David H Mguni, Jun
Wang, and Haitham Ammar. Sauté rl: Almost surely safe reinforcement learning using state
augmentation. In International Conference on Machine Learning, pages 20423–20443. PMLR,
2022.

[50] Hao Jiang, Tien Mai, Pradeep Varakantham, and Minh Huy Hoang. Solving richly con-
strained reinforcement learning through state augmentation and reward penalties. arXiv preprint
arXiv:2301.11592, 2023.

[51] Hao Jiang, Tien Mai, Pradeep Varakantham, and Huy Hoang. Reward penalties on augmented
states for solving richly constrained rl effectively. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pages 19867–19875, 2024.

[52] Claire J Tomlin, John Lygeros, and S Shankar Sastry. A game theoretic approach to controller
design for hybrid systems. Proceedings of the IEEE, 88(7):949–970, 2000.

[53] John Lygeros. On reachability and minimum cost optimal control. Automatica, 40(6):917–927,
2004.

[54] Ian M Mitchell, Alexandre M Bayen, and Claire J Tomlin. A time-dependent hamilton-jacobi
formulation of reachable sets for continuous dynamic games. IEEE Transactions on automatic
control, 50(7):947–957, 2005.

13

[55] Kostas Margellos and John Lygeros. Hamilton–jacobi formulation for reach–avoid differential
games. IEEE Transactions on automatic control, 56(8):1849–1861, 2011.

[56] Somil Bansal, Mo Chen, Sylvia Herbert, and Claire J Tomlin. Hamilton-jacobi reachability: A
brief overview and recent advances. In 2017 IEEE 56th Annual Conference on Decision and
Control (CDC), pages 2242–2253. IEEE, 2017.

[57] Jaime F Fisac, Neil F Lugovoy, Vicenç Rubies-Royo, Shromona Ghosh, and Claire J Tomlin.
Bridging hamilton-jacobi safety analysis and reinforcement learning. In 2019 International
Conference on Robotics and Automation (ICRA), pages 8550–8556. IEEE, 2019.

[58] Kai Chieh Hsu, Vicenç Rubies-Royo, Claire J Tomlin, and Jaime F Fisac. Safety and liveness
guarantees through reach-avoid reinforcement learning. In 17th Robotics: Science and Systems,
RSS 2021. MIT Press Journals, 2021.

[59] Oswin So and Chuchu Fan. Solving stabilize-avoid optimal control via epigraph form and deep
reinforcement learning. arXiv preprint arXiv:2305.14154, 2023.

[60] Milan Ganai, Zheng Gong, Chenning Yu, Sylvia Herbert, and Sicun Gao. Iterative reachability
estimation for safe reinforcement learning. Advances in Neural Information Processing Systems,
36, 2024.

[61] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan,
Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms
and applications. arXiv preprint arXiv:1812.05905, 2018.

[62] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pages 1861–1870. PMLR, 2018.

[63] Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

[64] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

[65] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International conference on machine learning,
pages 387–395. Pmlr, 2014.

[66] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[67] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[68] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

[69] Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep rein-
forcement learning. arXiv preprint arXiv:1910.01708, 7(1):2, 2019.

[70] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ international conference on intelligent robots and systems, pages
5026–5033. IEEE, 2012.

[71] Steven Waslander and Carlos Wang. Wind disturbance estimation and rejection for quadrotor
position control. In AIAA Infotech@ Aerospace conference and AIAA unmanned... Unlimited
conference, page 1983, 2009.

[72] Sanjeeb T Bose and George Ilhwan Park. Wall-modeled large-eddy simulation for complex
turbulent flows. Annual review of fluid mechanics, 50:535–561, 2018.

14

[73] Maja J Mataric. Reward functions for accelerated learning. In Machine learning proceedings
1994, pages 181–189. Elsevier, 1994.

[74] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transfor-
mations: Theory and application to reward shaping. In Icml, volume 99, pages 278–287,
1999.

[75] Dongjie Yu, Haitong Ma, Shengbo Li, and Jianyu Chen. Reachability constrained reinforcement
learning. In International Conference on Machine Learning, pages 25636–25655. PMLR, 2022.

[76] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018.

15

A GAE estimator Definition

Note, however, that the definition of return (19) is different from the original definition and hence
will result in a different equation for the GAE.

To simplify the form of the GAE, we first define a “reduction” function ϕ(n) : Rn → R that applies
itself recursively to its n arguments, i.e.,

ϕ(n)(x1, x2, . . . , xn) := ϕ(1)
(
x1, ϕ

(n−1)(x2, . . . , xn)
)

where

ϕ(1)(x, y) := (1− γ)x+ γmin{x, y}.

The k-step advantage function Â
π(k)
ĝ can then be written as

Â
π(k)
ĝ (x̂t) = ϕ(k)

(
ĝ(x̂t), . . . , ĝ(x̂t+k−1), Ṽ

π
ĝ (x̂t+k)

)
− Ṽ π

g (x̂t).

We can then construct the GAE Â
π(GAE)
ĝ as the λk-weighted sum over the k-step advantage functions

Â
π(k)
ĝ : Overall, the GAE estimator can be described as

Â
π(GAE)
ĝ (x̂t) =

1

1− λ

∞∑
k=1

λkÂ
π(k)
ĝ (x̂t).

B Equivalence of Problem 3 and Problem 13

The equivalence between the transformed Problem 13 and the original minimum-cost reach-avoid
Problem 3 can be shown in the following sequence of optimization problems that yield the exact
same solution if feasible:

min
π,T

T∑
k=0

c(xk, π(xk)) s.t g(xT) ≤ 0, max
k=0,...,T

h(xk) ≤ 0 (23)

=min
π,T

T∑
k=0

c(xk, π(xk)) s.t g(xT) ≤ 0, I(maxk=0,...,T h(xk)>0) ≤ 0 (24)

= min
z0,π,T

z0 s.t.
T∑

k=0

c(xk, π(xk)) ≤ z0, g(xT) ≤ 0, I(maxk=0,...,T h(xk)>0) ≤ 0 (25)

= min
z0,π,T

z0 s.t. max

(
T∑

k=0

c(xk, π(xk))− z0, g(xT), I(maxk=0,...,T h(xk)>0)

)
≤ 0 (26)

= min
z0,π,T

z0 s.t. ĝ(x̂T) ≤ 0 (27)

=min
z0

z0 s.t. min
π

min
T

ĝ(x̂T) ≤ 0 (28)

=min
z0

z0 s.t. min
π

Ṽ π
ĝ (x̂T) ≤ 0 (29)

This shows that the minimum-cost reach-avoid Problem 3 is equivalent to the formulation we solve
in this work (29), which is Problem 13 in the paper. The formulation of RC-PPO solves (29) and thus
also solves Problem 3 because they are equivalent.

C Optimal Reach Value Function

As shown in (18), we introduce an additional discount factor into the estimation of Ṽ π
ĝ . It will incur

imprecision on the calculation of Ṽ π
ĝ defined in Definition 1. In this section, we show that for a large

enough discount factor γ < 1, we could reach unbiased z̃ in phase two of RC-PPO.

16

Theorem 3. We denote maxx̂∈X̂ {ĝ(x̂)} = Gmax and maximal episode length Tmax. If there exists
a positive value ϵ where

ĝ(x̂) < 0 ⇒ ĝ(x̂) < −ϵ.

Then for any γTmax

1−γTmax
> Gmax

ϵ , for any deterministic policy π satisfies 18. If there exists a trajectory

under given policy π leading to the extended goal region Ĝ. We have

Ṽ π
ĝ (x̂) < 0.

The proof for Theorem 3 is provided in Appendix D.4.

D Proofs

D.1 Proof for Theorem 1

Proof. We separately consider three elements in augmented state (xT , yT , zT). First, note that 3b
holds if and only if xT ∈ G. For the second element y, from the definition of the augmented dynamics
7, it holds that

yT = max
i∈{0,...,T}

Ixi∈F (30)

As a result 3c holds if and only if yT = −1. For the third element z, note that zT = z0 −∑T−1
k=0 c(xk, u(xk)). Hence, zT ≥ 0 if and only if z0 ≥

∑T−1
k=0 c(xk, u(xk)).

D.2 Proof for Property 12

Proof. From Definition 12, we know

Ṽ π
ĝ (x̂) = min

t∈N
ĝ(x̂t | x̂0 = x̂)

= min{ĝ(x̂), min
t∈N+

ĝ(x̂t | x̂0 = x̂)}

= min{ĝ(x̂), Ṽ π
g (x̂t+1)}

D.3 Proof for Theorem 2

We first derive the state value function in a recursive form similar as [66]

Proof.

∇θṼ
πθ

ĝ (x̂) =∇θ

(∑
u∈U

πθ(u | x̂)Q̃πθ

ĝ (x̂, u)

)

=
∑
u∈U

(
∇θπθ(u | x̂)Q̃πθ

ĝ (, u) + πθ(u | x̂)∇θQ̃
πθ

ĝ (x̂, u)

)

=
∑
u∈U

(
∇θπθ(u | x̂)Q̃πθ

ĝ (x̂, u)

+ πθ(u | x̂)∇θ min{ĝ(x̂), Ṽ π
g (x̂′)}

)

=
∑
u∈U

(
∇θπθ(u | x̂)Q̃πθ

ĝ (x̂, u)

+ πθ(u | x̂)1ĝ(x̂)>Ṽ
πθ
g (x̂′)∇θṼ

πθ
g (x̂′)

)

17

where x̂′ = f̂(x̂, u)

Next, we consider unrolling Ṽ πθ
g (x̂′) under Reachability MDP in Definition 2. We define Pr(x̂ →

x̂†, k, πθ) as the probability of transitioning from state x̂ to x̂† in k steps under policy πθ in 2. Note
that 1ĝ(x̂)>Ṽ

πθ
g (x̂′) is absorbed using the absorbing state in 2. Then we can get

∇θṼ
πθ

ĝ (x̂) =
∑
x̂†∈X̂

(∞∑
k=0

Pr
(
x̂ → x̂†, k, π

))∑
u∈U

∇πθ(u | x̂†)Q̃πθ

ĝ (x̂†, u)

∝ Ex̂′∼d′
π(x̂),u∼πθ

[
Q̃πθ (x̂′, u)∇θ lnπθ (u | x̂′)

]

D.4 Proof for Theorem 3

Proof. Consider trajectory {x̂0, . . . , x̂T } where x̂T ∈ Ĝ. We consider the worst-case scenario where
ĝ(x̂t) = gmax for t ∈ {0, . . . , T − 1}. Then

Ṽ π(x̂0) = (1− γ)ĝ(x̂0) + γmin{Ṽ π(x̂1), ĝ(x̂1)}
≤ (1− γ)gmax + γṼ π(x̂1)

≤ (1− γ)gmax + γ((1− γ)gmax + γṼ π(x̂1))

≤
T−1∑
i=0

γi(1− γ)gmax + γT Ṽ π(x̂T)

< (1− γT)gmax + γT ϵ

< 0

E Convergence Guarantee on an Actor-Critic Version of Our Method

In this section, we provide the convergence proof of phase one of our method under the actor-critic
framework. Notice that similar to Bellman equation (18) for Ṽ π

ĝ . We could also derive the Bellman
equation for Q̃π

ĝ as

Q̃π
ĝ (x̂t, ut) = (1− γ)ĝ(x̂t) + γEx̂t+1∼τ,ut+1∼π[min{ĝ(x̂t), Q̃

π
g (x̂t+1, ut+1)}]

Next, we show our method under the actor-critic framework without GAE estimator in Algorithm 1

Algorithm 1 RC-PPO (Actor Critic)

Require: Initial policy parameter θ0, Q function parameter ω0, horizon T, convex projection operator
ΓΘ, and value function learning rate β1(k), policy learning rate β2(k)

1: for k = 0, 1, . . . do
2: for t = 0 to T-1 do
3: Sample trajectories τt : {x̂t, ut, x̂t+1}
4: Critic update: ωk+1 = ωk − β1(k)∇ωQ̃ĝ (x̂t, ut;ωk) ·
5:

[
Q̃ĝ (x̂t, ut;ωk)−

(
(1− γ)ĝ(x̂t) + γmin

{
ĝ(x̂t), Q̃ĝ (x̂t+1, ut+1;ωk)

})]
6: Actor Update: θk+1 = ΓΘ

(
θk + β2(k)Q̃ĝ (x̂t, ut;ωk)∇θ log πθ (ut | x̂t)

)
7: end for
8: end for
9: return parameter θ, ω

18

In this algorithm, the ΓΘ(θ) operator projects a vector θ ∈ Rk to the closest point in a compact and
convex set Θ ⊂ Rk, i.e., ΓΘ(θ) = argminθ′∈Θ ∥θ′ − θ∥2.

Next, we provide the convergence analysis for Algorithm 1 under the following assumptions.
Assumption 1. (Step Sizes) The step size schedules {β1(k)} and {β2(k)} have below properties:∑

k

β1(k) =
∑
k

β2(k) = ∞∑
k

β1(k)
2,
∑
k

β2(k)
2 < ∞

β2(k) = o(β1(k))

Assumption 2. (Differentiability and and Lipschitz Continuity) For any state and action pair (x̂, u),
Q̃ĝ(x̂, u;ω) and π(x̂; θ) are continuously differentiable in ω and θ. Furthermore, for any state and
action pair (x̂, u), ∇ωQ̃ĝ(x̂, u;ω) and π(x̂; θ) are Lipschitz function in ω and θ.

Also, we assume that X and U are finite and bounded and the horizon T is also bounded by Tmax,
then the cost function c can be bounded by Cmax and g can be bounded within Gmax. We can limit
the space of cost upper bound z ∈ [−Gmax, T · Cmax] instead of R. This is due to ĝ(x̂) = −z for
z ≤ −Gmax. Next, we could do discretization on [−Gmax, T · Cmax] and cost function c to make
the augmented state set X̂ finite and bounded.

With the above assumptions, we can provide a convergence guarantee for Algocrithm 1.
Theorem 4. Under Assumptions 1 and 2, the policy update in Algorithm 1 converge almost surely to
a locally optimal policy.

Proof. The proof follows from the proof of Theorem 2 in [75], differing only in whether an update
exists for the Lagrangian multiplier. We provide a proof sketch as

• First, we prove that the critic parameter almost surely converges to a fixed point ω∗.

This step is guaranteed by the assumption of finite and bounded state and action set and Assumption 1.
The γ-contraction property of the following operator

B[Q̃ĝ(x̂, u)] =(1− γ)ĝ(x̂) + γEx̂′∼τ,u∼π[min{ĝ(x̂), Q̃π
g (x̂

′, u)}] (31)
is also proved in Lemma B.1 in [75] to make sure the convergence of the first step.

• Second, due to the fast convergence of ω∗, we can show policy paramter θ converge almost
surely to a stationary point θ∗ which can be further proved to be a locally optimal solution.

We refer to [75] for proof details.

F Implementation Details of Algorithms

In this section, we will provide more details about CMDP-based baselines (different between opti-
mization goal with multiple constraints) and other hyperparameter settings like Xthreshold.

F.1 CMDP-based Baselines

In this section, we will clarify the optimization target for CPPO and RESPO under CMDP formulation
of both hard and soft constraints. Recall that our formulation of CMDP is

min
π

Ext,ut∼dπ

∑
t

[
− γtr(xt, ut)

]
(32a)

s.t. Ext,ut∼dπ

∑
t

[
γt
1xt∈F × Cfail

]
≤ 0, (32b)

Ext,ut∼dπ

∑
t

[
γtc(xt, ut)

]
≤ Xthreshold (32c)

19

We then denote
V π
r (xt) := Ext,ut∼dπ

∑
t

[
γtr(xt, ut)

]
V π
f (xt) := Ext,ut∼dπ

∑
t

[
γt
1xt∈F × Ccost

]
V π
c (xt) := Ext,ut∼dπ

∑
t

[
γtc(xt, ut)

]
The optimization goal formulation for CPPO is as follows:

min
π

max
λ

(
L(π, λ) = −V π

r (x) + λc · (V π
c (x)−Xthreshold) + λf · V π

f (x)
)

In this formulation, the soft constraint V π
c has the same priority as the hard constraint V π

f . This leads
to a potential imbalance between soft constraints and hard constraints. Instead, the optimization goal
for RESPO is as follows:

min
π

max
λ

L(π, λ) =
(
− V π

r (x) + λc · (V π
c (x)−Xthreshold)

+ λf · V π
f (x)

)
· (1− p(x)) + p(x) · V π

f (x)

where p(x) denotes the probability of entering the unsafe region F start from state x. It is called
the reachability estimation function (REF). This formulation prioritizes the satisfaction of hard
constraints but still suffers from balancing soft constraints and reward terms.

F.2 Hyperparameters

We first clarify how we set proper Xthreshold for each environment. First, we will run our method
RC-PPO and calculate the average cost, we denote it as caverage. We set Xlow =

caverage

10 , Xmedium =
caverage

3 and Xhigh = caverage. For static lagrangian multiplier β, we set βlo = 0.1 and βhi = 10.
Also, we set Cfail = 20 in every environment.

Note that CRL is an off-policy algorithm, while RC-PPO and other baselines are on-policy algo-
rithms. We provide Table 1 showing hyperparameters for on-policy algorithms and Table 2 showing
hyperparameters for off-policy algorithm (CRL).

F.3 Implementation of the baselines

The implementation of the baseline follows their original implementations:

• RESPO: https://github.com/milanganai/milanganai.github.io/tree/main/NeurIPS2023/code
(No license)

• CRL: https://github.com/google-research/google-research/tree/master/
contrastive_rl (No License)

G Experiment Details

In this section, we provide more details about the benchmarks and the choice of reward function
r, g, cost function c and Ccost in each environment. Under the sparse reward setting, we apply the
following structure of reward design

r(xt, ut, xt+1) = Rgoal × 1xt+1∈G
where Rgoal is an constant. After doing reward shaping, we add an extra term γϕ(xt+1)− ϕ(xt) and
the reward becomes

r(xt, ut, xt+1) = Rgoal × 1xt+1∈G + γϕ(xt+1)− ϕ(xt)

where γ denotes the discount factor.

Note that we set Rgoal = Ccost = 20 in all the environments. Note that if there is a gap between
max{g(x) | g(x) < 0}, we could get unbiased z̃ during phase two of RC-PPO guaranteed by
Theorem 3. To achieve better performance in phase two of RC-PPO, we set

g(x) = −300

for all x ∈ G to maintain such a gap. Also, we implement all the environments in Jax [76] for better
scalability and parallelization.

20

https://github.com/milanganai/milanganai.github.io/tree/main/NeurIPS2023/code
https://github.com/google-research/google-research/tree/master/contrastive_rl
https://github.com/google-research/google-research/tree/master/contrastive_rl
https://github.com/google-research/google-research/tree/master/contrastive_rl
https://github.com/google-research/google-research/tree/master/contrastive_rl

Table 1: Hyperparameter Settings for On-policy Algorithms

Hyperparameters for On-policy Algorithms Values

On-policy parameters
Network Architecture MLP
Units per Hidden Layer 256
Numbers of Hidden Layers 2
Hidden Layer Activation Function tanh
Entropy coefficient Linear Decay 1e-2 → 0
Optimizer Adam
Discount factor γ 0.99
GAE lambda parameter 0.95
Clip Ratio 0.2
Actor Learning rate Linear Decay 3e-4 → 0
Reward/Cost Critic Learning rate Linear Decay 3e-4 → 0

RESPO specific parameters
REF Output Layer Activation Function sigmoid
Lagrangian multiplier Output Layer Activation function softplus
Lagrangian multiplier Learning rate Linear Decay 5e-5 → 0
REF Learning Rate Linear Decay 1e-4 → 0

CPPO specific parameters
KP 1
KI 1e-4
KD 1

Table 2: Hyperparameter Settings for Off-policy Algorithms

Hyperparameters for Off-policy Algorithms Values

Off-policy parameters
Network Architecture MLP
Units per Hidden Layer 256
Numbers of Hidden Layers 2
Hidden Layer Activation Function tanh
Entropy target -2
Optimizer Adam
Discount factor γ 0.99
Actor Learning rate Linear Decay 3e-4 → 0
Critic Learning rate Linear Decay 3e-4 → 0
Actor Target Entropy 0
Replay Buffer Size 1e6 transitions
Replay Batch Size 256
Train-Collect Interval 16
Target Smoothing Term 0.005

21

G.1 Pendulum

The Pendulum environment is taken from Gym [18] and the torque limit is set to be 1. The state
space is given by x = [θ, θ̇] where θ ∈ [−π, π], θ̇ ∈ [−8, 8]. In this task, we do not consider unsafe
regions and set

G := {[θ, θ̇] | θ · (θ + θ̇ · dt) < 0}
where dt = 0.05 is the time interval during environment simulation. This is for preventing environ-
ment overshooting during simulation.

In the Pendulum environment, cost function c is given by

c(xt, ut, xt+1) =

{
0 if ∥ut∥ < 0.1

8∥u∥2 if ∥ut∥ ≥ 0.1

for better visualization of policies with different energy consumption. g is given by

g(x) =

{
100θ2 if x ̸∈ G
−300 if x ∈ G

G.2 Safety Hopper

The Safety Hopper environment is taken from Safety Mujoco, we add static obstacles in the envi-
ronment to increase the difficulty of the task. We use x to denote the x-axis position of the head of
Hopper, y to be the y-axis position of the head of Hopper. Then the goal region can be described as

G := {(x, y) | ∥[x, y]− [2.0, 1.4]∥ < 0.1}
The unsafe set is described as

F := {(x, y) | 0.95 ≤ x ≤ 1.05, y ≥ 1.3}
We use x̃thigh, x̃leg, x̃foot to denote the angular velocity of the thigh, leg, foot hinge. The cost
function is described as

c(xt, ut, xt+1) = l(xthigh
t , u1

t) + l(xleg
t , u2

t) + l(xfoot
t , u3

t)

where

l(a, b) =

{
0 if ∥a · b∥ < 0.4

0.15a2 · b2 if ∥a · b∥ > 0.4

g is given by

g(x̃) =

{
100
√
(x− 2)2 + 100(y − 1.4)2 − 40 if x̃ ̸∈ G

−300 if x̃ ∈ G

G.3 Safety HalfCheetah

The Safety HalfCheetah environment is taken from Safety Mujoco, we add static obstacles in the
environment to increase the difficulty of the task. We use xfront to denote the x-axis position of the
front foot of Halfcheetah, yfront to be the y-axis position of the back foot of Halfcheetah, xback to
denote the x-axis position of the back foot of Halfcheetah, yback to be the y-axis position of the back
foot of Halfcheetah, xhead to denote the x-axis position of the head of Halfcheetah, yhead to be the
y-axis position of the head of Halfcheetah. Then the goal region can be described as

G := {(xhead, yhead) | ∥[xhead, yhead]− [5.0, 0.0]∥ < 0.2}
The unsafe set is described as

F :={(xfront, yfront) | yfront < 0.25, 2.45 < xfront < 2.55}
∪ {(xback, yback) | yback < 0.25, 2.45 < xback < 2.55}

The cost function is described as
c(xt, ut, xt+1) = ∥ut∥2

g is given by

g(x̃) =

{
100
√

(xhead − 2)2 + (yhead − 1.4)2 − 20 if x̃ ̸∈ G
−300 if x̃ ∈ G

22

G.4 FixedWing

FixedWing environment is taken from [59] and we follow the same design of F as [59]. We denote
the xPE as the eastward displacement of F16 with given state x. Then the goal region G is given by

G := {x | 1975 ≤ xPE ≤ 2025}

The cost c is given by

c(xt, ut, xt+1) = 4∥ut/[1, 25, 25, 25]∥2

and g is given by

g(x) =

{
∥xPE−2000∥−25

4 if x ̸∈ G
−300 if x ∈ G

G.5 Quadrotor in Wind Field

We take quadrotor dynamics from crazyflies and wind field environments in the urban area from [71].
The wind field will disturb the quadrotor with extra movement on both x-axis and y-axis. There are
static building obstacles in the environment and we treat them as the unsafe region F . The goal for
the quadrotor is to reach the mid-point of the city. We divide the whole city into four sections and
train single policy on each of the sections. We use x ∈ [−30, 30] to denote the x-axis position of
quadrotor, y ∈ [−30, 30] to be the y-axis position of quadrotor.

G := {(x, y) | ∥[x, y]∥ ≤ 4}

The cost c is given by

c(xt, ut, xt+1) =
∥ut∥2

2

g is given by

g(x̃) =

{
10
√

(x− xgoal)2 + 10(y − ygoal)2 − 40 if x ̸∈ G
−300 if x ∈ G

G.6 PointGoal

The PointGoal environment is taken from Safety Gym [69] We implement PointGoal environments
in Jax. In Safety Gym environment, we do not perform reward-shaping and use the original reward
defined in Safety Gym environments. In this case, the distance reward is set also to be 20 in order to
align* with Cgoal and Ccost. Different from sampling outside the hazard region which is implemented
in Safety Gym, we allow Point to be initialized within the hazard region. We use x to denote the
x-axis position of Point, y to be the y-axis position of Point, xgoal to denote the x-axis position of
Goal, and ygoal to denote the y-axis position of Goal. The goal region is given by

G := {(x, y) | ∥[x, y]− [xgoal, ygoal]∥ ≤ 0.3}

The cost c is given by

c(xt, ut, xt+1) =
∥ut∥2

2

g is given by

g(x̃) =

{
100
√

(x− xgoal)2 + (y − ygoal)2 − 30 if x ̸∈ G
−300 if x ∈ G

G.7 Experiment Harware

We run all our experiments on a computer with CPU AMD Ryzen Threadripper 3970X 32-Core
Processor and with 4 GPUs of RTX3090. It takes at most 4 hours to train on every environment.

23

H Additional Experiment Results

We put additional experiment results in this section.

H.1 Additional Cumulative Cost and Reach Rates

We show the cumulative cost and reach rates of the final converged policies for additional environ-
ments (F16 and Safety Hopper) in Figure 7.

80 160 240
CPPO_H

CPPO_M

SAC_βL

PPO_βL

RESPO
RC-PPO

Additional Cumulative Cost ↓

0.0 0.2 0.4 0.6 0.8

RC-PPO
RESPO
PPO_βL
PPO_βH
SAC_βL
SAC_βH

CPPO_L
CPPO_M
CPPO_H

CRL

Reach Rate ↑

(a) FixedWing

100 200 300 400
CRL

CPPO_H
CPPO_M

SAC_βL
PPO_βL
RESPO

RC-PPO
Additional Cumulative Cost ↓

0.0 0.2 0.4 0.6 0.8 1.0

RC-PPO
RESPO
PPO_βL
PPO_βH
SAC_βL
SAC_βH

CPPO_L
CPPO_M
CPPO_H

CRL

Reach Rate ↑

(b) Safety Hopper

Figure 7: Cumulative cost and reach rates of the final converged policies.

H.2 Visualization of learned policy for different z

To obtain better intuition for how the learned policy depends on z, we rollout the policy choices of z0
in the Pendulum environment and visualize the results in Figure 8.

0 π 2π
θ

−5.0

−2.5

0.0

2.5

5.0

ω

zopt−300

0 π 2π
θ

−7.5

−5.0

−2.5

0.0

2.5

5.0

ω

zopt−200

0 π 2π
θ

−5

0

5

ω

zopt−100

0 π 2π
θ

−5

0

5

ω

zopt

0 π 2π
θ

−5

0

5

ω

zopt+100

0 π 2π
θ

−5

0

5

ω

zopt+200

0 π 2π
θ

−5

0

5

ω

zopt+300

0 100 200 300 400 500
Timestep

0

100

200

300

Cu
m
ul
at
iv
e

Co
st

zopt−300
zopt−200
zopt−100zopt

zopt+100
zopt+200

zopt+300

Figure 8: Learned RC-PPO policy for different z on Pendulum. For a smaller cost lower-bound z,
cost minimization is prioritized at the expense of not reaching the goal. For a larger cost lower-bound
z, the goal is reached using a large cumulative cost. Performing rootfinding to solve for the optimal
zopt automatically finds the policy that minimizes cumulative costs while still reaching the goal.

24

Algorithm Reach Rate + Small Noise + Large Noise
RCPPO 1.00 1.00 1.00
RESPO 1.00 1.00 1.00
PPO βL 1.00 1.00 1.00
PPO βH 0.31 0.38 0.34
SAC βL 1.00 1.00 1.00
SAC βH 0.21 0.37 0.20
CPPO XL 0.67 0.65 0.65
CPPO XM 1.00 1.00 1.00
CPPO XH 1.00 1.00 0.99
CRL 1.00 1.00 1.00

Table 3: Reach rate of final converged policies with different levels of noise to the output control

Algorithm Additional Cumulative Cost + Small Noise + Large Noise
RCPPO 35.3 41.4 132.9
RESPO 92.0 93.6 179.2
PPO βL 97.7 98.6 150.2
SAC βL 156.3 157.6 270.5
CPPO XM 223.2 220.5 209.0
CPPO XH 212.7 299.8 298.4
CRL 228.3 229.1 261.1

Table 4: Additional cumulative cost of final converged policies with different levels of noise to the
output control

H.3 Grid search

We perform an extensive grid search over different reward coefficients for the baseline PPO method
and plotted the Pareto front across the reach rate and cost in Figure 6. The reward we use is

r = Rgoal × 1x∈G − Pgoal × 1x̸∈G − βc(x, u).

and we search over the Cartesian product of Rgoal = {2, 20, 200, 2000, 20000}, Pgoal =
{1, 10, 100, 1000, 10000}, β = {0.1, 1, 10}.

H.4 Performance with external noise

We also performed additional experiments to illustrate the performance of RC-PPO under a changing
environment. Specifically, we add uniform noise to the output of the learned policy and see what
happens in the Pendulum environment.

We first compare the reach rates of the different methods in Table 3. In this environment, we see that
noise does not affect the reach rate too much.

Next, we look at how the cumulative cost changes with noise by comparing methods with a near
100% reach rate in Table 4. Unsurprisingly, larger amounts of noise reduce the performance of almost
all policies. Even with the added noise, RC-PPO uses the least cumulative cost compared to all other
methods.

I Discussion on Limitation of CMDP-Based Algorithms

In this section, we will use an example to illustrate further why CMDP-based algorithms won’t solve
the minimum-cost reach-avoid problem optimally compared with our method. We focus on two parts
of CMDP formulation:

• Weight coefficient assigned to different objectives

• Threshold assigned to each constraint

25

A

G1 G2

B

G3 I

𝑝𝑝𝐴𝐴 1 − 𝑝𝑝𝐴𝐴 𝑝𝑝𝐵𝐵 1 − 𝑝𝑝𝐵𝐵

𝐶𝐶 = 10 𝐶𝐶 = 20 𝐶𝐶 = 30 𝐶𝐶 = 0

Figure 9: Minimum-cost reach-avoid example to illustrate the limitation of CMDP-based formulation.

Consider the minimum-cost reach-avoid problem shown in Figure 9, where we use C to denote the
cost. States A and B are two initial states with the same initial distribution probability. State G1,
G2, and G3 are three goal states. State I is the absorbing state (non-goal). We use pA and pB to
denote the policy parameter, which represents the probability of choosing left action on state A and
B separately.

The optimal policy for this minimum-cost reach-avoid problem is to take the left action from both A
and B, i.e., pA = pB = 1, which gives an expected cost of

0.5 · 10 + 0.5 · 30 = 20

To convert this into a multi-objective problem, we introduce a reward that incentivizes reaching the
goal as follows (we use R to denote reward):

R(A,G1) = 10, R(A,G2) = 20, R(B,G3) = 20, R(A, I) = 0 (33)

This results in the following multi-objective optimization problem:

min
pA,pB∈[0,1]

(−R,C) (34)

I.1 Weight assignment

We first consider solving multi-objective optimization Problem 34 by assigning weights on different
objectives. We introduce w ≥ 0, giving

min
pA,pB∈[0,1]

−R+ wC (35)

Solving the scalarized Problem 34 gives us the following solution as a function of w:

pA = 1(w≥1), pB = 1(w≤ 2
3)

(36)

Notice that the *true* optimal solution of pA = pB = 1 is NOT an optimal solution to the original
minimum-cost reach-avoid problem shown in Figure 9 under any w.

Hence, the optimal solution of the surrogate multi-objective problem can be suboptimal for the
original minimum-cost reach-avoid problem under any weight coefficients.

Of course, this is just one choice of reward function where the optimal solution of the minimum-cost
reach-avoid problem cannot be recovered. Given knowledge of the optimal policy, we can construct
the reward such that the multi-objective optimization problem does include the optimal policy as a
solution. However, this is impossible to do if we do not have prior knowledge of the optimal policy,
as is typically the case.

I.2 Threshold assignment

Next, we consider solving multi-objective optimization Problem 34 by assigning a threshold X_thresh
on the cost constraint:

0.5(10pA + 20(1− pA)) + 0.5(30pB) ≤ Xthresh (37)

The optimal solution to this CMDP can be solved to be

pA = 0, pB =
Xthres − 10

15
. (38)

26

However, the true optimal solution of pA = pB = 1 is NOT an optimal solution to the CMDP.
To see this, taking X_thresh = 20, the real optimal solution pA = pB = 1 gives a reward of R = 15,
but the CMDP solution pA = 0, pB = 20−10

15 = 2
3 gives R = 23.33 > 15. Moreover, any uniform

scaling of the rewards or costs does not change the solution.

We can "fix" this problem if we choose the rewards to be high only along the optimal solution
pA = pB = 1, but this requires knowledge of the optimal solution beforehand and is not feasible for
all problems.

Another way to "fix" this problem is if we consider a "per-state" cost threshold, e.g.,

10pA + 20(1− pA) ≤ XA, 10pB + 20(1− pB) ≤ XB (39)

Choosing exactly the cost of the optimal policy, i.e., XA = 10 and XB ≥ 30, also recovers the
optimal solution of pA = pB = 1. This now requires knowing the smallest cost to reach the goal
for every state, which is difficult to do beforehand and not feasible. On the other hand, RC-PPO
does exactly this in the second phase when optimizing for z0. We can thus interpret RC-PPO as
automatically solving for the best cost threshold to use as a constraint for every initial state.

J Broader impact

Our proposed algorithm solves an important problem that is widely applicable to many different
real-world tasks including robotics, autonomous driving, and drone delivery. Solving this brings
us one step closer to more feasible deployment of these robots in real life. However, the proposed
algorithm requires GPU training resources, which could contribute to increased energy usage.

27

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main contributions of the paper are summarized in the Introduction section
as well as in the abstract of the paper, describing the proposed method briefly as well as its
advantages compared to the existing methods.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

28

Justification: Yes, we have discussed about the limitation of the work in Section 6
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Yes. The completed proofs are provided in the Appendix (see Appendix C for
example)
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes. We provide details on all experiments and baselines used. Moreover, we
provide the code used to reproduce our results.
Guidelines:

29

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Yes, the code used for generating the results in the paper has been provided.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

30

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes. The full details are provided in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes, we report confidence intervals in our plots. See Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes, all the required computational resources used for generating the results
are provided with the experiment details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.

31

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, the research conducted in this paper adheres to the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Yes, see Appendix J.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

32

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The license of our baselines are mentioned in Appendix F.3.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: we include the code of the algorithm in the supplementary materials. Imple-
mentation details are introduced in Section 4 and Appendix F.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]

33

paperswithcode.com/datasets

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

34

	Introduction
	Related Works
	Problem Formulation
	Reachability Analysis for Reach-Avoid Problems
	Reachability Analysis for Minimum-cost Reach-Avoid Problems

	Solving with Reinforcement Learning
	Phase 1: Learn z-conditioned policy and value function
	Phase 2: Solving for the optimal z

	Experiments
	Sparse Reward Setting
	Comparison under Reward Shaping
	Optimal solution of minimum-cost reach-avoid cannot be obtained using CMDP
	Robustness to Noise

	Conclusion and Limitations
	GAE estimator Definition
	Equivalence of Problem 3 and Problem 13
	Optimal Reach Value Function
	Proofs
	Proof for Theorem 1
	Proof for Property 12
	Proof for Theorem 2
	Proof for Theorem 3

	Convergence Guarantee on an Actor-Critic Version of Our Method
	Implementation Details of Algorithms
	CMDP-based Baselines
	Hyperparameters
	Implementation of the baselines

	Experiment Details
	Pendulum
	Safety Hopper
	Safety HalfCheetah
	FixedWing
	Quadrotor in Wind Field
	PointGoal
	Experiment Harware

	Additional Experiment Results
	Additional Cumulative Cost and Reach Rates
	Visualization of learned policy for different z
	Grid search
	Performance with external noise

	Discussion on Limitation of CMDP-Based Algorithms
	Weight assignment
	Threshold assignment

	Broader impact

