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Abstract

We present a hierarchy of natural language un-001
derstanding abilities and argue for the impor-002
tance of moving beyond assessments of under-003
standing at the lexical and sentence levels to004
the discourse level. We propose the task of005
anaphora accessibility as a diagnostic for as-006
sessing discourse understanding, and to this007
end, present an evaluation dataset inspired by008
theoretical research in dynamic semantics. We009
evaluate human and LLM performance on our010
dataset and find that LLMs and humans align011
on some tasks and diverge on others. Such di-012
vergence can be explained by LLMs’ reliance013
on specific lexical items during language com-014
prehension, in contrast to human sensitivity to015
structural abstractions.016

1 Introduction017

The success of modern large language models018

(LLMs) depends on their capacity for natural lan-019

guage understanding (NLU), i.e., the ability to ex-020

tract the semantic information contained in a text.021

Systematic assessment of NLU abilities has been022

carried out using a diverse set of evaluation tasks,023

but few of them target whether LLMs accurately024

represent and update states of natural language dis-025

course. Successful interpretation of discourse re-026

quires the ability to use pronominal expressions to027

refer to entities that have been introduced in a text.028

The felicity of pronominal anaphora, i.e., us-029

ing pronouns to refer back to discourse referents030

introduced earlier, is influenced by the semantic031

scope of the antecedent:032

(1) {A, #Every} farmer worked in his field. He033

dreamed of the harvest.034

Example (1) shows that an entity introduced by035

an existential quantifier is accessible in the same036

sentence, as well as in subsequent sentences. In037

contrast, entities introduced by universal quanti-038

fiers are only accessible to pronouns in the same039

A farmer worked in his field. He dreamed of the harvest.

Every farmer worked in his field. He dreamed of the harvest.#farmer

farmer

He

He

Quantifier scopeDiscourse entity Anaphora
Infelicitous because outside of scope 

his

his

Figure 1: Quantifier scope and its impact on anaphora.

sentence; anaphora is infelicitous otherwise. This 040

is illustrated in Figure 1: the discourse referent is 041

subordinated to the universal quantifier — that 042

is, inaccessible outside its scope, which extends to 043

the end of the first sentence in the sequence. This 044

makes subsequent reference to he in the second 045

sentence infelicitous. 046

The process of introducing discourse referents is 047

formalized in ‘dynamic’ variants of formal seman- 048

tics (e.g., Heim, 1983; Groenendijk and Stokhof, 049

1991; Kamp et al., 2010). In dynamic semantics, ut- 050

terances precipitate changes in the discourse state, 051

for example by introducing discourse referents. 052

This gives rise to notions of discourse or textual 053

scope which differentiate (e.g.) existential and uni- 054

versal quantifiers, in line with Figure 1. 055

Here, we focus on one aspect of discourse-level 056

semantic knowledge, namely the fine-grained in- 057

teractions between semantic scope and referent ac- 058

cessibility. We investigate whether LLMs demon- 059

strate knowledge of the semantic scope properties 060

of various quantifiers and logical connectives, and 061

whether this knowledge is used to generate and up- 062

date representations of discourse states in human- 063

like ways. 064

Contribution We make the following contribu- 065

tions: 066

• In Section 2, we propose a hierarchy of lev- 067

els of semantic understanding abilities, which 068

can serve as a guideline for characterizing the 069

kinds of semantic knowledge that LLMs have. 070
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Level 1: Lexical Level Understanding:    
a word’s extension and intension

Level 2: Sentence Level Understanding: 
Integration of lexical meaning to 

coherent sentential meaning

Level 3: Sentence Level Understanding: 
Integration of sentence meaning to 

coherent discourse meaning
Discourse

w1 w2 … wt

SentenceA

v1 vt−1… vt

SentenceN…

Hierarchy Natural Language Structure Example Tasks!

Long-Document Understanding; 
Discourse Entity Recognition & 
Tracking; Discourse Parsing…

Natural Language Inference; 
Pragmatic Inference; Scope 

Ambiguity…

Word Sense Disambiguation; 
Taxonomy Construction; Lexical 
Entailment; Analogical Relation…

Figure 2: Proposed hierarchy of levels of semantic understanding abilities.

• In Section 3, we propose an evaluation dataset071

covering discourse anaphora across a variety072

of linguistic constructions, all of which re-073

quire sensitivity to the way in which the form074

of language determines the ways discourse075

states are implicitly updated in natural dis-076

course.077

• In Sections 4 through 6, we evaluate both078

LLMs and humans with our dataset, and un-079

cover intriguing patterns where human and080

model behavior align and differ.081

2 Levels of Semantic Understanding082

Figure 2 illustrates three different levels of natu-083

ral language understanding: (i) lexical level, (ii)084

sentential level, and (iii) discourse level. Semantic085

competence, we propose, requires knowledge of086

all of these. We discuss each one in detail and re-087

view existing work that has tried to evaluate LLM088

capacities at that level.089

2.1 Lexical Level090

We define lexical level understanding as knowing091

the meaning of individual lexical items. This092

requires knowledge of a word’s extension (the ob-093

jects in the world that a word picks out) and its094

intension (the objects it would pick out if the world095

were different). Such knowledge allows a com-096

petent speaker to make judgments of synonymy,097

antonymy, entailment and the like. In LLMs, lex-098

ical knowledge corresponds to vector representa-099

tions of individual tokens.100

Moskvoretskii et al. (2024) summarize a range101

of Natural Language Understanding (NLU) tasks102

that assess lexical level understanding: Word Sense103

Disambiguation, Hypernym Discovery, Taxonomy104

Construction, Lexical Entailment, etc. Another105

test of lexical semantic understanding derives from106

the analogical reasoning tests explored by Mikolov107

et al. (2013), where word meaning is needed to108

complete analogies such as man:king as woman:X. 109

All of these tasks rely on knowledge of word mean- 110

ing that is independent of the effects on mean- 111

ing that derives from the composition of words 112

in phrases and sentences. 113

2.2 Sentence Level 114

On top of the building blocks provided by lexi- 115

cal understanding, sentence understanding is the 116

ability to integrate lexical meanings in phrases 117

and to form coherent semantic representations 118

for sentences. Traditionally, sentence-level mean- 119

ing is identified with truth conditions and encoded 120

using a logical formalism with rigorously defined 121

semantics (e.g., Heim and Kratzer, 1998). 122

A model’s capacity to encode the truth condi- 123

tions of single sentences is implicated in impor- 124

tant NLU tasks such as Natural Language Infer- 125

ence (NLI), which requires LLMs to form accu- 126

rate meaning representations for two sentences and 127

classify their logical relations as entailment, contra- 128

diction, or neutral (Williams et al., 2018). Similar 129

evaluation tasks have been created for pragmatic 130

inferences, targeting implicature and presupposi- 131

tion (Jeretic et al., 2020). These works investigate 132

meaning representations of pairs of minimally dif- 133

ferent sentences, either with respect to logical re- 134

lations or pragmatic relations, without the need to 135

connect the two sentences in sequential order or 136

track changes at the discourse level. Another type 137

of work at the sentence level involves ambiguities, 138

such as scope ambiguity (e.g., Kamath et al., 2024): 139

a single sentence with multiple quantifiers might 140

allow different interpretations given specific scopal 141

arrangements between the quantifiers. 142

2.3 Discourse Level 143

We define discourse level understanding as the abil- 144

ity to integrate the meaning of consecutive sen- 145

tences into a unified discourse representation. 146
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Discourse-level meaning requires moving beyond147

formalisms that express meaning as a static repre-148

sentation of truth conditions to dynamic formalisms149

in which meaning accrues via update to a contex-150

tual representation or state.151

One type of task that probes discourse level un-152

derstanding is discourse parsing (e.g., Maekawa153

et al. 2024), which evaluates the ability of a model154

to determine the relationships between sentences,155

such as elaboration, attribution, etc. While infor-156

mative, this task requires the adoption of specific157

assumptions about the structure and categories that158

determine discourse relations.159

An alternative, more theory-neutral evaluation160

considers the accumulation of information through161

a discourse. Li et al. (2021) examine the tracking162

of the state of individuals and situations across a163

text. They probed the internal representations of164

encoder-decoder transformers and found localiz-165

able, interpretable structures, supporting the claim166

that pretrained language models implicitly simu-167

late entity tracking processes dynamically. Kim168

and Schuster (2023) extended the paradigm in Li169

et al. (2021) by removing the potential shortcuts170

that models can use in inferring the states of dis-171

course entities. This line of work uses natural lan-172

guage to explicitly describe the initial state of a173

situation as well as each subsequent change in the174

state (e.g. Box 1 contains the book. Box 2 contains175

the apple.... Move the book into Box 2...), thereby176

functionally similar to the core idea of dynamic177

semantics. However, because of the simplicity of178

the language involved, this task did not probe sen-179

sitivity to the specific lexical items and syntactic180

structures that impact the evolution of discourse181

state, the focus of the current work.182

Another line of evaluation targets how process-183

ing each sentence in a discourse impacts the entities184

that can be discussed, the task of discourse entity185

recognition (Schuster and Linzen, 2022; Zhu and186

Frank, 2024). Schuster and Linzen examine sen-187

sitivity to the scope of negation at the discourse188

level: an indefinite interpreted within the scope of189

negation should not introduce an entity that can190

be referred to. They found that while LLMs in-191

deed exhibit such sensitivity, their performance is192

not systematic. Zhu and Frank (2024) extended193

their paradigm by increasing the types of test items,194

which allows for the evaluation of the semantic195

properties that govern discourse entity introduction196

and reference. However, both Schuster and Linzen197

(2022) and Zhu and Frank (2024) only evaluated198

LLMs on sentences of a rather simple structure, 199

such as John owns a dog but Mark does not own 200

a dog, which only considers negation as the scope 201

that interacts with discourse entities. This gap in 202

the literature calls for a more comprehensive eval- 203

uation of other scopes (such as existentials, uni- 204

versals, conditionals, and disjunctions) that interact 205

with discourse entities, as in the present study. 206

3 Evaluating Discourse-level Meaning 207

Representation: Case Study on 208

Anaphora (In)accessiblity 209

As discussed in the previous section, existing work 210

on the evaluation of LLMs’ discourse level seman- 211

tic understanding leaves unexplored the implica- 212

tions of the fine details of semantic composition 213

and scope on the representation of discourse con- 214

text. As we elaborate below, the scopal properties 215

of quantifiers and logical connectives that are de- 216

termined by sentence level semantic interpretation 217

play a significant role in discourse level interpreta- 218

tion: depending on the semantic operator, they may 219

license discourse entities only within their scope. 220

We exploit such patterns of anaphora as a case 221

study for diagnosing sensitivity to the structure- 222

sensitive aspects of the discourse state-updating 223

process. Thus, our work provides another way of 224

studying LLMs’ state-tracking ability, through at- 225

tention to the linguistic details of the discourse as 226

opposed to the world model consequences of the 227

actions described in a discourse. 228

3.1 Constructions 229

We consider three operators whose scope plays 230

a significant role in licensing discourse anaphora: 231

universal quantifiers, negation, and disjunction. 232

3.1.1 Universal Quantifiers 233

Every The first case of anaphora (in)accessiblity
that we consider is the universal quantifier. We
start with a simple example, which contrasts the
behavior of sentences whose subjects involve the
quantifiers a and every.

(2) a. EXISTENTIAL: A farmer worked in the 234

field. 235

b. EVERY: #Every farmer worked in the 236

field. 237

c. CONTINUATION: He dreamed of the har- 238

vest. 239

As shown in Figure 1, (2c) is felicitous following 240

(2a), but not following (2b). This is because the 241
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The farmer owns a donkey, and he beats it. It is a big one.

If the farmer owns a donkey, he beats it. It is a big one.#donkey

donkey

Quantifier scopeDiscourse entity Anaphora
Infelicitous because outside of scope 

It

It

it

itThe farmer owns 

If the farmer owns 

Figure 3: Illustration of anaphora accessibility in donkey
conditionals.

semantic scope of the existential quantifier extends242

indefinitely to the right, but the pronoun he in (2c)243

is outside the scope of the universal quantifier in244

(2b).1 In sum, the scope of universal quantifiers245

serves as a boundary for anaphoric accessibility.246

An LLM capable of discourse level understanding247

should therefore accurately represent the effects248

on the discourse context of examples like (2b) and249

reject the infelicitous continuation (2c).250

Donkey Conditionals A more complex case of
anaphora accessibility is known as ‘donkey con-
ditionals’ in the dynamic semantics literature
(Kanazawa, 1994). In such cases, a discourse en-
tity is introduced via an existential quantifier in
the antecedent of a conditional. In such cases, the
indefinite licenses pronouns in the conditional’s
consequent, but not in subsequent sentences. We
consider 3 cases: two types of conditional sen-
tences, namely if and whenever conditionals, and
conjoined sentences with an existential object in
the first conjunct.

(3) a. EXISTENTIAL (Exi): John owns a don-251

key, and he beats it.252

b. CONDITIONAL (Cond): #If John owns a253

donkey, he beats it.254

c. WHENEVER (When): #Whenever John255

owns a donkey, he beats it.256

d. CONTINUATION (Cont): It is a big one.257

Such cases can be assimilated to the quantifier258

cases discussed above, if we assume the conditional259

clauses implicity introduce a universal quantifier260

that is not directly tied to a lexical quantifier (see261

Figure 3). Assuming this to be the case, the pro-262

noun it in (3d) is outside the scope of the implicit263

universal quantifier in (3b) and (3c), rendering the264

continuation (3d) infelicitous. The same continu-265

ation, however, is acceptable in (3a) for the same266

reasons as in why (2a). Thus, determining that this267

1Infelicitous examples are usually marked as # by linguis-
tics conventions. However, we use # to indicate the infelicity
of a sentence specifically in the context of the provided con-
tinuation.

The farmer owned a cow.cow

ScopeDiscourse entity Anaphora
The farmer didn’t own a cow.cow ItIt was away on the meadow.#

It was not the case that the farmer didn’t own a cow.cow

It was away on the meadow.It

Figure 4: Illustration of anaphora accessibility in nega-
tion cases.

continuation sentence is infelicitous after (3b) and 268

(3c) requires accurate processing of the context 269

sentence in preparation for the continuation and 270

subsequent integration, which is exactly what we 271

define as understanding at the discourse level. 272

3.1.2 Negation 273

Negation is another logical connective that modu-
lates anaphora accessibility—in general, it is im-
possible to refer back to discourse referents that
are introduced within its scope. However, double
negation is an exception (see Hofmann 2024 for
discussion and references).

(4) a. EXISTENTIAL (Exi): The farmer owned 274

a cow. 275

b. NEGATION (Neg): #The farmer didn’t 276

own a cow. 277

c. DOUBLENEGATION (DN): It was not the 278

case that the farmer didn’t own a cow. 279

d. CONTINUATION (Cont): (In fact,) It was 280

(just) away on the meadow. 281

Consider the four conditions (4a-c) with negation, 282

each followed by the same continuation (4d): As 283

is analyzed by Hofmann and illustrated in Figure 284

4, the local context of the cow referent in DOU- 285

BLENEGATION is veridical, and the speaker is 286

committed to the existence of a cow owned by 287

the farmer. In other words, two negations cancel 288

each other out. Thus, EXISTENTIAL is semanti- 289

cally equivalent to DOUBLENEGATION, and both 290

of them license the anaphora it in CONTINUATION. 291

In contrast, no discourse referent of a cow exists 292

outside the scope of negation in NEGATION, which 293

makes it an infelicitous context for the subsequent 294

anaphora. Here, we examine whether LLMs know 295

the semantic scope of negation and whether nega- 296

tion’s inaccessibility can be reversed in double 297

negation contexts. 298

3.1.3 Disjunction 299

Negation within disjunctions adds another layer 300

of complexity to anaphora accessibility. Evans 301
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ScopeDiscourse entity Anaphora

There is no bathroomThere is no manuscript There is no bathroom[There is a manuscript, and]

It was hidden by the librarian.

There is no disjunction

There is no manuscript There is no manuscript
It

Not possible for conjunction
❌

Figure 5: Illustration of anaphora accessibility in dis-
junction cases.

(1977) observes that discourse referents introduced302

through existentials within a first disjunct do not303

license anaphora in the second disjunct. Surpris-304

ingly, however, a discourse referent introduced with305

a negative quantifier in a first disjunct does. We see306

this contrast in the first two examples of (5):307

(5) a. EITHERPOSOR: #Either there was a308

manuscript, or it was hidden by the li-309

brarian.310

b. EITHEROR: Either there was no311

manuscript, or it was hidden by the li-312

brarian.313

c. OR: There was no manuscript, or it was314

hidden by the librarian.315

d. CONJUNCTION: #There was no316

manuscript, and it was hidden by the317

librarian.318

(5c) demonstrates that the presence or absence319

of the lexical item either to introduce the disjunct320

does not have any impact on the discourse seman-321

tics. Finally, (5d) shows that negative quantifiers in322

conjunction do not have similar effects.323

3.2 Experiment Design324

Model We investigated the performance of four325

open-source LLMs (Llama3-2-1B, Llama3-2-3B,326

Llama3-1-8B and Llama3-1-8B-Instruct327

(Dubey et al., 2024)), and two closed-source328

LLMs (GPT babbage-002 and davinci-002) on329

our constructed dataset through the Huggingface330

transformer API (Wolf et al., 2019) and the331

OpenAI API respectively.2 We ran inference using332

an NVIDIA A100 GPU with 32GB of memory333

allocated.334

Human Experiment To establish a human base-335

line for models’ performance, we recruited 104336

2We were also not able to examine more recent OpenAI
LLMs such as GPT-4o because the API for these models
does not support access to the log probabilities. However,
the perspective and evaluation tasks we propose in this paper
are still helpful in informing the discourse-level semantic
understanding of state-of-the-art LLMs.

participants over Prolific. Each participant did 66 337

forced-choice trials, with 22 experimental items 338

and 44 fillers. In each trial, participants were visu- 339

ally presented with 2 minimally different sentences 340

on the screen, and they were asked to choose the 341

more acceptable sentence from the pair. See Ap- 342

pendix A for more details on our experiment design. 343

Human results are presented in the following sec- 344

tions along with language model performance. 345

Corpus Experimental stimuli were generated 346

from a set of structural templates containing the 347

target constructions. For each experiment, we man- 348

ually constructed 32 semantically plausible simple 349

sentence frames with the help of GPT-4o (Ope- 350

nAI et al., 2024), following the example sentences 351

shown in Section 3.1. Test sentences were then 352

manually inspected by linguistics experts to ensure 353

semantic plausibility and (un)acceptability. This 354

yields a set of 9816 experimental sentences in total. 355

Metrics We adopt the evaluation paradigm in 356

Futrell et al. (2019) that considers LLMs as psy- 357

cholinguistic subjects. That is, for each evaluated 358

sentence, we take the surprisal (i.e., the negative 359

log probability) assigned by the model to individual 360

tokens, defined in Equation 1: 361

surprisal(wi) = log
1

P (wi|w1, ..., wi−1)
(1) 362

The total probability the model assigns to a sen- 363

tence or part of a sentence is obtained by taking 364

the sum of surprisal(wi) for each target token wi. 365

The surprisal values serve as the base measurement 366

for the analyses of each individual experiment de- 367

scribed in the following sections. 368

4 Experiment 1: Universal 369

In this section, we discuss models’ performance on 370

anaphora accessibility with regard to the universal 371

quantifier as discussed in Section 3.1.1. 372

In general, given different context sentences and 373

the same continuation, we expect models to assign 374

a higher conditional probability to the continuation 375

given a context in which it is felicitous than an- 376

other context in which it is infelicitous. In other 377

words, we expect the following inequalities to hold 378

if LLMs exhibit discourse level understanding abil- 379

ities with regard to universal quantifiers. 380

p(Cont|Exi) > p(Cont|Every) (2) 381

p(Cont|Exi) > p(Cont|Cond) (3) 382

p(Cont|Exi) > p(Cont|When) (4) 383

5
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Figure 6: LLMs’ performance on the comparisons involving existential vs. universal quantifiers. In the figures of
this paper, > signs indicate degrees of felicity. For example, exi>every, the label for the leftmost panel, means that
EXISTENTIAL should be more felicitous than EVERY sentences in the relevant comparison. Such felicity preference
is determined by whether models exhibit the inequality shown in equation (5).

However, one problem about this measure is that
it is too lenient – although continuations such as
(2c) are infelicitous after (2b), it should become
felicitous if he is instead embedded inside the scope
of (2b), such as the contrast below.

(6) a. CROSSSEN: Every farmer worked in the384

field. #He dreamed of the vest.385

b. SINGLESEN: Every farmer worked in the386

field before he dreamed of the harvest.387

Therefore, we would expect models to assign a388

higher probability to (6b) than (6a). Importantly,389

the contrast in example (6) does not exist for their390

counterparts with the existential quantifier—we391

would expect a smaller difference in probability392

between them if the LLMs that we tested have393

good discourse level understanding abilities. Thus,394

instead of using equations (2), (3), and (4) as our395

metric, we adopt the difference-of-difference met-396

ric with the general form shown in (5). We binarize397

the comparison of each trial by recording whether398

the inequality holds in the predicted direction.399

p(∃-SINGLESEN)− p(∃-CROSSSEN)

<

p(∀-SINGLESEN)− p(∀-CROSSSEN)

(5)400

Results As is shown in Figure 6, all models show401

above chance performance for the expected inequal-402

ity in equation (5). Specifically, for the simple com-403

parison between EXISTENTIAL and EVERY (left-404

most panel in Figure 6), we found that the Llama405

family models that we tested achieved higher accu-406

racy (around 75%) than babbage and davinci in407

the GPT family, while humans scored even higher408

at ceiling. In the other two comparisons where the409

universal quantifier is implicitly encoded through410

CONDITIONAL and WHENEVER, LLMs continue411

to score at ceiling. In contrast, humans had lower412

accuracy but still performed above chance. This413

pattern indicates that the LLMs examined know 414

the scope of the discourse entity introduced within 415

the universal quantifier and that it is infelicitous to 416

refer back to such entities outside of the scope. 417

0.00

0.25

0.50

0.75

1.00

exi>if exi>whenever
Comparison Type

%
 E

xp
ec

te
d

model
babbage davinci Llama3−2−1B Llama3−2−3B

Llama3−1−8B Llama3−1−8B−Instruct human

Figure 7: Model performance on he-continuations for
exi>if and exi>whenever.

In addition to the continuation in (3d) that 418

starts with it, for the comparisons exi>if and 419

exi>whenever, we also considered a variant where 420

the continuation starts with he, such as He also 421

feeds it. Given our framing of the anaphora ac- 422

cessibility task, there should not be a difference 423

between he-continuations and it-continuations— 424

they should both be infelicitous given a preceding 425

CONDITIONAL or WHENEVER context. Results 426

on this variant are shown in Figure 7. Interest- 427

ingly, there is a striking contrast between human 428

and models’ performance. While models continue 429

to exhibit the preference for EXISTENTIAL over 430

CONDITIONAL and WHENEVER, humans actually 431

prefer the universal counterparts for donkey con- 432

ditionals, which is not predicted in the literature. 433

We believe that this discrepancy could be due to 434

an effect called telescoping (Roberts, 1989). The 435

intuition is that humans have the tendency to inter- 436

pret he-continuations as being subordinated under 437

the scope of CONDITIONAL or WHENEVER, which 438

makes he-continuations more felicitous than they 439

should be. In comparison, it-continuations are less 440

likely to be interpreted in a subordinated way. An- 441

other potential factor that might contribute to the 442
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human performance difference between he- and443

it-continuations is subject bias: since the farmer444

is the subject of the context sentence, it is more445

saliently represented in the discourse. Therefore,446

humans are more likely to refer back to it in the447

continuation using he. In sum, the models’ success448

on this dataset shows their knowledge of the differ-449

ence between universal and existential quantifiers.450

5 Experiment 2: Negation451

As discussed in Section 3.1.2, the second construc-452

tion that we are interested in is negation. Following453

the reasoning there, we expect the following two454

inequalities to hold if the LLMs understand the455

semantic scope of negation:456

p(Cont|Exi) > p(Cont|Neg) (6)457

p(Cont|DN) > p(Cont|Neg) (7)458

Since every pair of sentences we compare shares459

the continuation but not the context sentences, we460

apply the conditional probabilities metric: compare461

the summed surprisal on tokens in the CONTINU-462

ATION, with the concatenated context fed to the463

model as a preamble.464

Results As shown in the top two panels of Fig-465

ure 8, all models succeed in preferring the EXIS-466

TENTIAL context over NEGATION, but three of the467

models struggle to favor DOUBLENEGATION over468

NEGATION. In particular, the two Llama3-1-8B469

models show a preference of NEGATION over DOU-470

BLENEGATION, which is the reverse of what is ex-471

pected. Human results, on the other hand, are high472

in Exi>Neg and exhibit a similar decrease from473

Exi>Neg to DN>Neg, but both are reliably above474

chance. The most straightforward way to inter-475

pret these results is that the LLMs have trouble476

understanding that EXISTENTIAL is equivalent to477

DOUBLENEGATION in terms of their power in li-478

censing subsequent anaphora to discourse referents479

introduced within their scopes. However, another480

hypothesis is that DOUBLENEGATION is dispre-481

ferred not because the LLMs failed to learn dou-482

ble negation elimination, but simply because DOU-483

BLENEGATION sentences have a more complex484

(and presumably less frequent) structure than its485

EXISTENTIAL counterpart.486

Influence of Specific Lexical Items To test this487

hypothesis, we considered a variant of the test sen-488

tences by adding the phrase in fact to the beginning489

Exi>Neg(infact) DN>Neg(infact)

Exi>Neg DN>Neg

0.00
0.25
0.50
0.75
1.00

0.00
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0.50
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1.00

model

%
 E

xp
ec

te
d

model
babbage davinci Llama3−2−1B

Llama3−2−3B Llama3−1−8B Llama3−1−8B−Instruct

human

Figure 8: Model performance in Experiment 2.

of each continuation sentence and computed accu- 490

racy using the same inequalities as in (6) and (7). 491

The intuition is that adding this phrase helps the 492

models to better process DOUBLENEGATION sen- 493

tences to a larger degree than to process EXISTEN- 494

TIAL ones. If the low accuracy that we observed 495

for the DN>Neg comparison is due to lexical-level 496

factors, we would expect an increase in accuracy 497

in the variants. In contrast, if models failed to learn 498

the difference between double negation and nega- 499

tion completely, the accuracy of the variants would 500

remain low. 501

Results are shown in the bottom two panels of 502

Figure 8. Compared to the base case, adding in fact 503

does help to lift the accuracy for the DN>Neg com- 504

parison, as most models now have a stronger pref- 505

erence of DOUBLENEGATION over NEGATION. 506

However, adding in fact also flips the direction of 507

the Exi>Neg comparison, as all models now favor 508

NEGATION over EXISTENTIAL sentences. In con- 509

trast, human patterns remain stable regardless of 510

the addition of in fact: they still show a clear pref- 511

erence for EXISTENTIAL and DOUBLENEGATION 512

over NEGATION. 513

One way to interpret the flipped result is that 514

the phrase in fact tends to co-occur with double 515

negation sentences, thereby increasing the condi- 516

tional probabilities of the continuation. Adding 517

in fact to existential sentences makes the dis- 518

course less coherent to process, thereby lowering 519

the accuracy in the Exi>Neg(infact) compari- 520

son. This results in the reversed DOUBLENEGA- 521

TION>NEGATION>EXISTENTIAL ranking by lan- 522

guage models. Although adding in fact to the con- 523

tinuation does not change anaphora accessibility, 524

the increase that we observed here suggests that 525

LLMs are sensitive to the presence of specific lexi- 526

cal items and that their performance with respect to 527

identifying the scope of negation is not systematic. 528
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Figure 9: Model performance in Experiment 3.

6 Experiment 3: Disjunction529

In the last experiment, we test the constructions530

presented in Section 3.1.3 with respect to disjunc-531

tion. Since the sentences that we compare share532

neither the context nor the continuation, we cal-533

culate the Syntactic Log-Odds Ratio score (SLOR)534

(Lau et al., 2017) on each sentence and compare535

the SLOR scores, which is defined as:536

SLOR(s) =
log pm(s)−

∑
w∈s log pu(w)

|s|
(8)537

where for sentence s, log pm(s) represents the log538

probability assigned by the model to the entire sen-539

tence (which is equivalent to summing up the sur-540

prisals for all tokens in s); log pu(w) represents541

the unigram probability of each token w in the sen-542

tence; and |s| represents the length of the sentence,543

which is the number of tokens in s. Intuitively, the544

SLOR score measures how much additional proba-545

bility the model assigns to the sentence compared546

to the same bag-of-word, which in turn represents547

the well-formedness of the sentence, both syntacti-548

cally and semantically. However, there is no stan-549

dard on how to interpret the absolute values of the550

SLOR scores. In the current study, we obtain the551

estimation of the unigram probabilities by counting552

the frequency of the tokens from a fragment of the553

OpenWebText Corpus (Gokaslan and Cohen, 2019)554

obtained from the tokenizers of the Llama3 family555

and the GPT3 family, respectively.3556

Recall from Section 3.1.3 that OR and EI-557

THEROR are felicitous, while CONJUNCTION and558

EITHERPOSOR are not. Translating the judgments559

to the metric, we expect the following four inequal-560

ities to hold if models exhibit discourse level un-561

3See the GitHub link for the unigram probability results.

derstanding abilities. 562

SLOR(OR) > SLOR(CONJUNCTION) (9) 563

SLOR(EITHEROR) > SLOR(CONJUNCTION)
(10)

564

SLOR(OR) > SLOR(EITHERPOSOR) (11) 565

SLOR(EITHEROR) > SLOR(EITHERPOSOR)
(12)

566

Results As shown in Figure 9, models achieved 567

ceiling performance for all comparisons involv- 568

ing EITHEROR—they demonstrate a preference 569

for this felicitous case over CONJUNCTION and 570

EITHERPOSOR, which is consistent with human 571

preferences. In contrast, the performance is 572

around chance for the or>conjunction compar- 573

ison, while humans show the predicted preference 574

pattern to a larger extent than all LMs. Strikingly, 575

models exhibit a preference for EITHERPOSOR 576

over OR (rightmost panel), which is the reverse pat- 577

tern of what we expect. Humans show no clear 578

preference in this comparison. Overall, the pattern 579

here repeats Experiment 2 in that LLMs’ ability to 580

differentiate contexts with different anaphora ac- 581

cessibility depends largely on lexical items and is 582

not systematic—although EITHEROR and OR are 583

equivalent to each other, models’ preference largely 584

depends on whether there is either in the sentence. 585

7 Conclusion 586

In this paper, we defined a hierarchy of semantic 587

understanding abilities consisting of lexical, sen- 588

tence, and discourse levels. Filling in the gap in 589

the literature, we constructed an evaluation task 590

of anaphora accessibility that allows for a fine- 591

grained examination of the understanding abilities 592

of LLMs. Results show that our task successfully 593

identified places of convergence and divergence 594

between model and human performance, where 595

LLMs rely on specific lexical cues but humans 596

don’t. This work is one further step toward improv- 597

ing the discourse understanding abilities of LLMs. 598
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Limitations599

Running the Dataset in SOTA Models In the600

current study, we only tested our datasets with a601

limited range of LLMs. It would be interesting to602

see the performances of state-of-the-art language603

models such as GPT-4o and the DeepSeek model604

family. The main reason impeding us from testing605

our dataset on the latest models is that we require606

access to the logits the models assign to each to-607

ken, which are not available for the closed-source608

models. Future studies could consider an alterna-609

tive version of conducting such evaluation with610

prompting-based methods.611

Evaluating More Subtle Constructions from612

Theoretical Predictions In addition to the three613

classes of quantifiers and logical connectives, there614

is a rich pool of linguistic constructions from the615

theoretical semantics literature that involve more616

complex scopal interactions that lead to other pre-617

dictions about anaphora accessibility. An example618

is modal subordination (e.g., Roberts, 1989, where619

the scope of if -conditional sentence interacts with620

modal operators. There are few empirical studies621

on how humans process such sentences. Future622

work could further extend our dataset to incorpo-623

rate a larger variety of constructions and acquire a624

human baseline.625

Behavioral versus Mechanistic Level Evalua-626

tions In Section 2, we reviewed related works627

(Kim and Schuster, 2023; Li et al., 2021) that628

explicitly investigate the state or discourse entity629

tracking capability by probing the internal activa-630

tion states of language models. The current study,631

despite investigating the discourse updates within632

natural language instead of simulating discourse633

updates, remains at the behavioral level and is634

empirical in nature. Developing methods that ex-635

plicitly target models’ internal representations that636

correlate with state-update behaviors would bring637

greater interpretability and could contribute to the-638

ory building. Future work could improve our under-639

standing of the processing level details of models640

on the current dataset by importing techniques from641

mechanistic interpretability.642
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A Human Experiment 904

We tested a total of 11 comparison types (3 in Ex- 905

periment 1, 4 each in Experiments 2 and 3) on 906

human subjects. Each comparison type includes 32 907

sentence pairs. In each test trial, participants were 908

presented with a pair of sentences in a multiple 909

choice format (see Figure 10 for the experimental 910

interface) and were asked to click on the sentence 911

that they found to be more acceptable. Each par- 912

ticipant received 22 test items and 44 filler items, 913

which sums to a total of 66 trials. The filler items 914

were the same across participants and were selected 915

from BLiMP (Warstadt et al., 2020) such that for 916

each filler minimal pair, one of the sentences is 917

strictly more acceptable than the other. Therefore, 918

we also used filler items as attention checks. Partic- 919

ipants who scored below 90% accuracy on the filler 920

items were excluded from the final results. The 921

experiment was also set up such that each test item 922

was rated by at least 5 participants. 923

We used the Gorilla Experiment Builder (www. 924

gorilla.sc) to create and host our experiment in- 925

terface (Anwyl-Irvine et al., 2020), and participants 926

were recruited through Prolific (www.prolific. 927

com) under a university-approved IRB. We re- 928

cruited a total of 104 native speakers of English 929

without any language or vision-related disorders 930

who also currently reside in the United States. 85 931

of them (81.73%) passed the filler check. Each 932

participant filled out a consent form prior to com- 933

pleting the experiment. They each received a com- 934
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Figure 10: Experimental interface on Gorilla with an example filler item where participants were expected to click
on Sentence 2.

12



pensation of $3, which is equal to an hourly rate of935

$14.41.936
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