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Abstract

Large language models (LLMs) have shown
strong performance across natural language
reasoning tasks, yet their reasoning processes
remain brittle and difficult to interpret. Prompt-
ing techniques like Chain-of-Thought (CoT)
enhance reliability by eliciting intermediate
reasoning steps or aggregating multiple
outputs. However, they lack mechanisms
for enforcing logical structure and assessing
internal coherence. We introduce Theorem-
of-Thought (ToTh), a novel framework that
models reasoning as collaboration among three
parallel agents, each simulating a distinct
mode of inference: abductive, deductive, and
inductive. Each agent produces a reasoning
trace, which is structured into a formal
reasoning graph. To evaluate consistency, we
apply Bayesian belief propagation guided by
natural language inference (NLI), assigning
confidence scores to each step. The most
coherent graph is selected to derive the final an-
swer. Experiments on symbolic (WEBOFLIES)
and numerical (MULTIARITH) reasoning
benchmarks show that ToTh consistently
outperforms CoT, Self-Consistency, and
CoT-Decoding across multiple LLMs, while
producing interpretable and logically grounded
reasoning chains. Our findings suggest a
promising direction for building more robust
and cognitively inspired LLM reasoning.
The implementation is available at https:
//github.com/KurbanIntelligenceLab/
theorem-of-thought.

1 Introduction

Large language models (LLMs) have achieved
impressive performance across a wide range of
natural language understanding and generation
tasks (Wang et al., 2024), enabled by advances
in in-context learning (Sia et al., 2024), instruction
tuning (Zhang et al., 2024), and chain-of-thought
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(CoT) prompting (Wei et al., 2022). These methods
have extended LLMs’ capabilities to handle com-
plex forms of reasoning, including mathematical,
logical, and commonsense inference.

Despite these advances, LLM reasoning remains
shallow and unreliable. Existing approaches of-
ten rely on single-shot or sampling-based decod-
ing along linear reasoning paths, making them sus-
ceptible to hallucinations (Abdaljalil et al., 2025),
logical inconsistencies (Uceda Sosa et al., 2024),
and weak generalization (Liu et al., 2025). Meth-
ods such as CoT and Self-Consistency (Wei et al.,
2022; Wang et al., 2023) encourage intermediate
steps and majority voting across sampled outputs,
but lack mechanisms to verify internal coherence
and model the logical structure of reasoning. As
a result, outputs may appear fluent and plausible
while remaining logically unsound.

This brittleness contrasts sharply with human
reasoning, which is inherently multifaceted. Draw-
ing on insights from cognitive science (Okoli,
2022), we observe that human inference typically
blends three complementary modes—abduction,
deduction, and induction—that support explana-
tion, derivation, and generalization. However,
LLMs typically conflate these distinct processes
into a single, undifferentiated flow, limiting both
interpretability and reliability.

To address this gap, we propose Theorem-of-
Thought (ToTh), a framework that models di-
verse reasoning strategies through structured, veri-
fiable interactions. ToTh employs three specialized
agents, each emulating a distinct cognitive mode:

• Abduction: inferring plausible explanations
for observed facts;

• Deduction: deriving valid conclusions from
given premises;

• Induction: generalizing from patterns or ex-
amples.

https://github.com/KurbanIntelligenceLab/theorem-of-thought
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Each agent independently generates a reasoning
trace, which is transformed into a Formal Reason-
ing Graph (FRG)—a directed graph where nodes
represent intermediate conclusions and edges cap-
ture logical dependencies. We evaluate the inter-
nal consistency of each FRG using Bayesian be-
lief propagation, with edge confidence scores cal-
ibrated via a Natural Language Inference (NLI)
model. A composite score balancing average belief
and logical entropy is used to select the most coher-
ent graph, from which the final answer is extracted.

Contributions. The key results of this work are:

• We introduce ToTh, a structured reasoning
framework that integrates abductive, deduc-
tive, and inductive inference into a modular
LLM-based pipeline.

• We develop a belief propagation mechanism
over reasoning graphs, leveraging NLI to
assess and score logical coherence through
Bayesian updates.

• We demonstrate that ToTh consistently out-
performs state-of-the-art reasoning methods
(e.g., CoT, Self-Consistency, CoT-Decoding)
across multiple LLMs.

• Our evaluation on symbolic (WEBOFLIES)
and numerical (MULTIARITH) benchmarks
highlights ToTh’s robustness on tasks requir-
ing multi-step inference—settings where di-
rect prompting often fails (Allen-Zhu and Li,
2025).

The remainder of the paper is organized as fol-
lows: Section 2 reviews related work. Section 3
presents the ToTh framework. Section 4 describes
the experimental setup, and Section 5 analyzes the
results obtained. Section 6 concludes with implica-
tions for structured reasoning in LLMs and future
research directions.

2 Related Work

Prompt-based Reasoning in LLMs. A growing
body of work explores prompting strategies to en-
hance the reasoning capabilities of LLMs. CoT
prompting (Wei et al., 2022) encourages models
to decompose problems into intermediate steps,
guiding reasoning along a linear path. Building
on this, Auto-CoT (Zhang et al., 2023) automates
prompt generation by sampling diverse questions

and producing corresponding reasoning traces, re-
ducing manual effort. Beyond prompt generation,
several works focus on optimizing prompt selec-
tion strategies. ActivePrompt (Diao et al., 2024)
identifies high-uncertainty instances for annotation,
improving data efficiency and reasoning robustness
through active learning. More recent approaches
introduce explicit structure into the reasoning pro-
cess. Tree-of-Thought (ToT) (Yao et al., 2023)
enables multi-path exploration with internal evalua-
tion, while Graph-of-Thought (GoT) (Yao et al.,
2024) structures reasoning as a graph to better
model dependencies between steps.

Instruction Tuning for Reasoning. Instruction
tuning and knowledge distillation offer alterna-
tive approaches to eliciting reasoning in LLMs
without relying on explicit prompts (Lobo et al.,
2025; Ranaldi and Freitas, 2024; Lai and Nissim,
2024). While effective, these methods typically
require computationally intensive fine-tuning on
large-scale datasets annotated with reasoning traces
and CoT examples, which are often costly and
domain-specific. Recent work has explored more
indirect supervision strategies. For instance, Liu
et al. (2024) introduce proxy tuning, which lever-
ages auxiliary models to contrast a base LLM with
its adapted variant. Although this approach reduces
the need for direct supervision, it still assumes ac-
cess to CoT-like outputs and pre-aligned reasoning
benchmarks.

3 Methodology

ToTh is a graph-based reasoning framework de-
signed to enhance the accuracy, interpretability, and
generalization capabilities of LLMs on complex
tasks. It decomposes reasoning into three modu-
lar agents, each simulating a classical inference
paradigm—abduction, deduction, and induction.
Each agent produces a structured reasoning trace,
which is composed into a FRG. Final answers are
derived via NLI-calibrated Bayesian belief propaga-
tion and composite graph scoring. The full pipeline
is depicted in Fig. 1.

ToTh differs from prior reasoning paradigms
along three axes: architecture, supervision, and
verification. Prompt-based methods (e.g., CoT,
ToT, GoT) elicit reasoning via linear or loosely
structured traces, yet lack mechanisms for enforc-
ing logical consistency. Instruction-tuned models
embed reasoning behavior through fine-tuning on
annotated traces, often requiring large datasets and



Figure 1: Overview of the Theorem-of-Thought (ToTh) reasoning pipeline. A question is independently processed
by three agents, each using a distinct reasoning style: abductive (Type 1), deductive (Type 2), and inductive
(Type 3). Each agent produces a structured reasoning graph, which is scored via Bayesian confidence propagation.
Abduction infers the best hypothesis H given observations O and knowledge K (i.e., argmaxH P (H | O,K));
deduction derives a conclusion C from premises {P1, . . . , Pn} (i.e., {Pi} ⊢ C); induction generalizes from
examples {x1, . . . , xn} to a rule R (i.e., {xi} ⇒ R). The highest-scoring graph contributes its final node as the
answer. ✓ and ✗ indicate whether a given agent’s output was selected.

remaining opaque at inference time. While both
families reflect growing interest in structured multi-
step reasoning, they typically operate within mono-
lithic or implicit architectures and do not support
formal consistency checking. In contrast, ToTh in-
stantiates distinct cognitive agents, integrates their
outputs into an interpretable graph, and explicitly
verifies reasoning coherence through NLI-guided
Bayesian inference—enabling modular, transpar-
ent, and verifiable reasoning beyond the scope of
existing methods.

Multi-Paradigm Reasoning Agents. Given a
natural language question q, ToTh deploys three
independent solver agents, each aligned with a dis-

tinct classical mode of inference: abductive, deduc-
tive, and inductive reasoning. These paradigms are
formally defined as follows.

The abductive reasoning agent a1 infers the most
plausible hypothesis H given a set of observations
O and background knowledge K, formalized as:

a1 : argmax
H

P (H | O,K).

The deductive reasoning agent a2 derives a conclu-
sion C that logically follows from a set of premises
{P1, P2, . . . , Pn}, represented as:

a2 : {P1, P2, . . . , Pn} ⊢ C.

The inductive reasoning agent a3 generalizes a rule



R from observed examples {x1, x2, . . . , xn}, ex-
pressed as:

a3 : {x1, x2, . . . , xn} ⇒ R.

Each agent ai ∈ {a1, a2, a3} independently pro-
duces a reasoning trace

r(i) =
[
r
(i)
1 , r

(i)
2 , . . . , r(i)si

]
,

where r
(i)
j denotes the j-th step in the agent’s rea-

soning process.

Formal Reasoning Graph Construction. Each
reasoning trace r(i) is transformed into a directed
graph G(i) = (V (i), E(i)), where V (i) denotes
the set of nodes representing individual reasoning
steps, and E(i) represents directed edges encod-
ing inferential relationships between those steps.
Edges (vu → vv) ∈ E(i) are inferred using a pre-
trained NLI model, which assesses the semantic
relationship between reasoning steps. Each edge is
annotated with a trust score θuv ∈ [0, 1] based on
the predicted label:

θuv =


0.95 if entailment
0.60 if neutral
0.10 if contradiction

These scores quantify the strength of logical en-
tailment between intermediate steps, providing a
calibrated basis for probabilistic reasoning in the
subsequent belief propagation stage.

Bayesian Confidence Propagation. To model
belief flow across the graph, belief values are prop-
agated using a Bayesian update rule, adapted from
classical formulations of belief propagation in prob-
abilistic graphical models (Pearl, 1988).

Each node v ∈ V is initialized with a prior con-
fidence P (v) = 0.5, reflecting maximum uncer-
tainty. For a node vc with a single parent vp and
associated trust score θpc, the updated belief is com-
puted using a Bayesian update rule:

P (vc) =
P (vp) · θpc

P (vp) · θpc + (1− P (vp)) · (1− θpc)
.

In the case of multiple parents {vp1 , . . . , vpm},
the belief for vc is computed as the average of
individual updates from each parent:

P (vc) =
1

m

m∑
j=1

f
(
P (vpj ), θpjc

)

f(p, θ) =
p · θ

p · θ + (1− p)(1− θ)
.

This recursive formulation propagates confi-
dence through the graph, amplifying agreement
across consistent reasoning paths while attenuating
belief when upstream uncertainty or contradiction
is detected.

Graph Scoring. Each reasoning graph G(i) is
evaluated based on a trade-off between average
node confidence and logical uncertainty. We pri-
oritize graphs that are both confident (high belief)
and low in uncertainty (low entropy). The mean
confidence is computed as

µ(i) =
1

|V (i)|
∑

v∈V (i)

P (v),

and the normalized binary entropy is given by

H(i) = − 1

|V (i)|
∑

v∈V (i)

h(P (v))

h(p) = p log p+ (1− p) log(1− p) .

The final score combines both terms:

Score(G(i)) = µ(i) −H(i).

The reasoning graph with the highest score is se-
lected as the final candidate:

G∗ = argmax
i

Score(G(i)).

Answer Extraction. The final answer is ex-
tracted from the terminal node of the selected graph
G∗, corresponding to the last step in the associated
reasoning trace.

Theoretical Complexity. Let k = 3 denote the
number of reasoning agents, and s the number of
reasoning steps generated per agent. The ToTh
framework involves three main stages of computa-
tion: trust estimation, belief propagation, and graph
scoring. During trust estimation, each agent pro-
duces a sequence of reasoning steps, and an NLI
model is applied to each adjacent pair to evaluate
the strength of logical connection. Since each trace
contains at most s− 1 such pairs, the total number
of NLI evaluations across all agents is O(k · s). In
the belief propagation stage, each node in the con-
structed reasoning graphs is visited exactly once
in topological order, and its posterior confidence
is updated based on incoming trust scores using



a Bayesian update rule, resulting in O(k · s) total
updates. Finally, graph scoring involves computing
the average confidence and entropy over all nodes
in each graph, which also requires O(k · s) time.
Therefore, the end-to-end complexity of the ToTh
pipeline is O(k · s), linear in both the number of
agents and the number of reasoning steps per agent.

This makes ToTh substantially more effi-
cient than sampling-based methods such as Self-
Consistency or CoT-Decoding, which require O(n)
decoding passes, where n is the number of sam-
pled reasoning chains. In contrast, ToTh executes
a single, structured reasoning pass per agent, fol-
lowed by lightweight verification and scoring, of-
fering a more scalable and interpretable alternative
to stochastic decoding.

4 Experiments

Data. ToTh was evaluated on two representative
reasoning benchmarks. MULTIARITH (Roy et al.,
2015) targets compositional numerical inference
through multi-step arithmetic word problems. WE-
BOFLIES (Suzgun et al., 2023), part of the BIG-
BENCH-HARD suite, involves determining truth
values among logically entangled symbolic state-
ments. These datasets are known to challenge
LLMs under direct prompting (Allen-Zhu and Li,
2025), making them suitable for testing structured
reasoning capabilities.

Models. Three publicly available LLMs were
selected to provide diversity in scale, alignment,
and architecture: (1) MISTRAL-7B (Jiang et al.,
2023)1, a general-purpose decoder model with ef-
ficient scaling; (2) DEEPSEEK-7B (DeepSeek-AI
et al., 2025)2, an instruction-tuned model optimized
for multi-turn reasoning and alignment; and (3)
PHI-3.5 MINI (Abdin et al., 2024)3, a lightweight
model designed for educational, low-cost reason-
ing tasks. This selection spans compact inference-
efficient models to instruction-aligned reasoning-
focused systems.

Baselines. ToTh was compared with three
strong baselines: CoT (Wei et al., 2022), Self-
Consistency (Wang et al., 2023), and CoT-
Decoding (Wang and Zhou, 2024). CoT prompts

1https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.3

2https://huggingface.co/deepseek-ai/
deepseek-llm-7b-chat

3https://huggingface.co/microsoft/Phi-3.
5-mini-instruct

the model to generate intermediate reasoning steps
before answering. Self-Consistency improves ro-
bustness by sampling n = 20 completions and
selecting the most frequent answer. CoT-Decoding
eliminates explicit prompting by using diverse de-
coding paths to stimulate latent reasoning behav-
iors.

Experimental Setup. All models were evaluated
in their released form without fine-tuning. De-
coding was performed with temperature 0.7 and a
maximum output length of 526 tokens. RoBERTa-
MNLI4 was used for scoring reasoning coherence,
consistent with prior work on NLI-based output
validation (Farquhar et al., 2024). Inputs were uni-
formly formatted as “Q: [question] \n A:” across
all methods for consistency with baselines (Wang
and Zhou, 2024).

To direct reasoning behavior, the following in-
struction was prepended to each input, with the
appropriate {style} keyword for each agent:

Use the {style} reasoning style
to answer the following question.
Follow these instructions
carefully:

• Break the problem into clear,
numbered reasoning steps
using {style}.

• Reference any known
principles, patterns, or
assumptions involved.

• Arrive at a final answer
that directly responds to the
question.

All experiments used a single decoding pass per
input. Random seeds were fixed, and decoding
settings were held constant for reproducibility.

5 Results

5.1 Main Experimental Results
Results are reported as answer accuracy (%) and
summarized in Figure 2.

Performance Across Models. ToTh consis-
tently outperforms all baseline methods on both
tasks when evaluated with MISTRAL-7B and
DEEPSEEK-7B, demonstrating clear gains in rea-
soning accuracy. On PHI-3.5 MINI, although CoT-
Decoding marginally surpasses ToTh on certain

4https://huggingface.co/FacebookAI/
roberta-large-mnli

https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
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Figure 2: Accuracy (%) comparison across reasoning pipelines on two benchmark tasks (WEBOFLIES and
MULTIARITH) using three open-source language models: MISTRAL-7B-V0.3, DEEPSEEK-7B, and Phi-3.5-mini.
Each group of bars corresponds to a different reasoning method: CoT-Greedy (blue), Self-Consistency (red),
CoT-Decoding (yellow), and our proposed Theorem-of-Thought (green).

instances, ToTh maintains consistently strong per-
formance across both symbolic and numerical tasks.
For example, on the WEBOFLIES dataset, ToTh
improves over CoT-Greedy by 29% and 14% on
MISTRAL-7B and DEEPSEEK-7B, respectively,
and remains within 3% of the top-performing
method on PHI-3.5 MINI. These results highlight
ToTh’s robustness and generalization across mod-
els of varying scale and alignment.

Comparison with CoT-Decoding. While CoT-
Decoding performs strongly on Phi-3.5-mini,
achieving near-perfect scores on WEBOFLIES

(99%), ToTh achieves comparable or slightly
lower performance (96%) while maintaining higher
consistency across models. For example, on
the MULTIARITH dataset, ToTh surpasses CoT-
Decoding by 4–5 points on both MISTRAL-7B and
DEEPSEEK-7B, indicating superior generalization
in numerical reasoning.

Self-Consistency Under-performance. Surpris-
ingly, Self-Consistency under-performs across all
settings, particularly on symbolic tasks. For in-
stance, it yields only 14% and 21% on WE-
BOFLIES and MULTIARITH with DEEPSEEK-7B
and MISTRAL-7B, respectively. This suggests
that majority-vote over stochastic generations fails
to capture structured dependencies, especially in
logic-heavy tasks.

Model Sensitivity. As expected, performance
scales with model capability. Phi-3.5-mini achieves
the highest absolute scores across all methods, re-
flecting its stronger alignment and training. How-
ever, ToTh’s margin over baselines remains mean-
ingful even at lower model scales, suggesting that
the architecture contributes to reasoning robustness
beyond just model size. While DEEPSEEK-7B
is trained with reasoning capabilities in mind, its
broader training objectives, including code genera-
tion and open-ended question answering, may dif-
fuse its specialization in structured reasoning tasks.
In contrast, Phi-3.5-mini benefits from a targeted
curriculum focused on educational and step-by-
step problem-solving, which likely accounts for its
superior performance on both symbolic and mathe-
matical benchmarks. Interestingly, MISTRAL-7B
consistently outperforms DEEPSEEK-7B despite
being similar in size. This may be attributed to
Mistral’s cleaner, reasoning-focused pretraining
data and architecture-level optimizations, which
enhance its ability to follow multi-step instructions
and maintain logical coherence across token spans.

5.2 Robustness Under Reasoning Complexity

To evaluate the robustness of ToTh under increas-
ing reasoning complexity, experiments were con-
ducted using the MISTRAL-7B model on both
symbolic and numerical tasks. Table 1 presents



WEBOFLIES MULTIARITH

3 4 5 d0/l3 d0/l4 d2/l3

CoT-G 41 32 19 57 26 14
SelfC 48 47 38 21 6 17
CoT-Dec 54 48 46 55 41 24
ToTh 70 56 43 59 45 21

Table 1: Accuracy (%) of MISTRAL-7B on symbolic
(WEBOFLIES) and mathematical (MULTIARITH) reasoning
tasks across increasing levels of difficulty. Columns 3–5 cor-
respond to symbolic reasoning with 3, 4, and 5 interdepen-
dent statements, respectively. Columns d0/l3, d0/l4, and
d2/l3 represent arithmetic reasoning problems categorized by
depth and length: d denotes operation depth and l indicates
sequence length. ToTh achieves the highest accuracy in 5 out
of 6 settings and remains competitive even on the most com-
plex instances, demonstrating consistent performance across
symbolic and numerical domains. Bold: best performance;
Underlined: second-best.

accuracy results stratified by problem difficulty:
the number of interdependent statements (3–5) for
WEBOFLIES, and operation depth/length combina-
tions for MULTIARITH.

ToTh maintains strong performance across all
difficulty levels, outperforming or closely matching
leading baselines. In symbolic reasoning, ToTh
achieves 43% accuracy on the most challenging
setting (5 statements), significantly exceeding CoT-
Greedy (19%) and Self-Consistency (38%), and
closely approaching CoT-Decoding (46%). This
trend persists across simpler instances, where ToTh
attains the highest scores at 3 and 4 statements.

For numerical reasoning, ToTh delivers
the strongest results at lower complexity lev-
els—achieving state-of-the-art performance
at d0/l3 (59%) and d0/l4 (45%)—and remains
competitive even at higher complexity (d2/l3), with
accuracy comparable to CoT-Decoding (21% vs.
24%). These findings highlight ToTh’s capacity to
generalize across task difficulty and suggest that its
structured, multi-agent reasoning design offers a
scalable advantage under increased inference load.

6 Conclusion and Future Work

This work presents Theorem-of-Thought (ToTh),
a graph-based reasoning framework that inte-
grates abductive, deductive, and inductive infer-
ence through a modular multi-agent design. Each
agent generates structured reasoning traces, which
are composed into formal graphs and verified using
NLI-calibrated Bayesian confidence propagation.
This approach supports both accurate prediction
and interpretable, logically grounded reasoning.

Empirical evaluations on symbolic and numerical
benchmarks demonstrate that ToTh consistently
outperforms strong prompting and decoding base-
lines, particularly in scenarios requiring structured
logical inference.

ToTh introduces a new paradigm in reasoning
with language models by treating inference as a ver-
ifiable, compositional process, rather than a mono-
lithic generation task. Future research will explore
dynamic agent routing based on input characteris-
tics, inter-agent collaboration protocols, and adap-
tive trust estimation via fine-tuned and ensemble-
based NLI models. Extending the framework to
scientific hypothesis validation, law and policy rea-
soning, and multimodal domains such as visual
question answering represents a promising direc-
tion for advancing general-purpose, verifiable rea-
soning in large language models.

Limitations

Fixed Reasoning Types. ToTh presumes a uni-
form decomposition into abductive, deductive, and
inductive reasoning across all inputs. While this
modularity improves interpretability, it imposes a
fixed cognitive scaffold that may not align with
tasks requiring hybrid or atypical inference pat-
terns. For example, creative tasks or ambiguous
prompts may benefit from dynamically blending
reasoning types or emphasizing one over others.
This rigidity can limit ToTh’s adaptability and lead
to suboptimal trace composition in such cases. Fu-
ture work may explore data-driven and context-
sensitive agent routing, allowing the framework
to selectively instantiate and suppress reasoning
paradigms based on input semantics.

Propagation Sensitivity. The Bayesian confi-
dence propagation mechanism is sensitive to noise
in low-confidence nodes, which may attenuate oth-
erwise valid reasoning chains or distort belief es-
timates in deeper regions of the graph. This can
occur in longer traces where errors in early rea-
soning steps propagate disproportionately, reduc-
ing the reliability of final predictions. Moreover,
current propagation is uniform and unregularized,
lacking robustness mechanisms against adversarial
and inconsistent intermediate steps. Incorporat-
ing calibrated uncertainty modeling, edge dropout,
and confidence smoothing—potentially informed
by fine-grained entailment distributions—could en-
hance stability and mitigate the amplification of
localized inconsistencies.
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