
Published as a conference paper at ICLR 2025

A MULTI-POWER LAW FOR LOSS CURVE PREDICTION
ACROSS LEARNING RATE SCHEDULES

Kairong Luo1 Haodong Wen2 Shengding Hu1 Zhenbo Sun1

Zhiyuan Liu1 Maosong Sun1 † Kaifeng Lyu3 † Wenguang Chen1,4 †
1Department of Computer Science and Technology, Tsinghua University
2Qian Xuesen College, Xi’an Jiaotong University
3Simons Institute, University of California, Berkeley
4Peng Cheng Laboratory
{luokr24,sunzb20}@mails.tsinghua.edu.cn
{herrywenh,shengdinghu}@gmail.com
kaifenglyu@berkeley.edu
{liuzy,sms,cwg}@tsinghua.edu.cn

ABSTRACT

Training large models is both resource-intensive and time-consuming, making it
crucial to understand the quantitative relationship between model performance
and hyperparameters. In this paper, we present an empirical law that describes
how the pretraining loss of large language models evolves under different learning
rate schedules, such as constant, cosine, and step decay schedules. Our proposed
law takes a multi-power form, combining a power law based on the sum of learn-
ing rates and additional power laws to account for a loss reduction effect induced
by learning rate decay. We extensively validate this law on various model sizes and
architectures, and demonstrate that after fitting on a few learning rate schedules,
the law accurately predicts the loss curves for unseen schedules of different shapes
and horizons. Moreover, by minimizing the predicted final pretraining loss across
learning rate schedules, we are able to find a schedule that outperforms the widely
used cosine learning rate schedule. Interestingly, this automatically discovered
schedule bears some resemblance to the recently proposed Warmup-Stable-Decay
(WSD) schedule (Hu et al., 2024) but achieves a slightly lower final loss. We be-
lieve these results could offer valuable insights for understanding the dynamics of
pretraining and designing learning rate schedules to improve efficiency.

1 INTRODUCTION

Large Language Models (LLMs) can achieve strong performance if pretrained with an appropriate
configuration of hyperparameters, such as model width, depth, number of training steps, and learning
rate. However, tuning these hyperparameters at scale is extremely costly since one pretraining run
can take weeks or even months.

To reduce the cost of hyperparameter tuning, various scaling laws have been proposed to predict
pretraining loss or downstream performance by capturing empirical relationships between key hy-
perparameters and model performance. A notable example is the Chinchilla scaling law (Hoffmann
et al., 2022), which approximates the final pretraining loss as a simple function of the model size N
and total training steps T (or total training tokens), L(N,T) = L0 +A ·T−α +B ·N−β . By fitting
parameters L0, A,B, α, β from a few training runs with varying N and T , one can use the formula
to infer the optimal choice of N and T given a fixed compute budget C ∝ NT .

A key challenge that existing scaling laws have not addressed is how to set the Learning Rate (LR)
optimally over time. LR is arguably the most critical hyperparameter in optimization, as it can
significantly affect the training speed and stability. A large LR can quickly reduce the training loss,
but in the long term, it may cause overshooting and oscillation along sharp directions on the loss

†Corresponding authors.

1

Published as a conference paper at ICLR 2025

5000 10000 15000 20000 25000
Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(L

R
 x

 1
0

4)

17500 18000 185002.9

3.0

3.1

WSD
Cosine
WSD (Tuned)
WSDLD (Tuned)
Opt

(a) Comparison of Optimized LR Schedules

5000 10000 15000 20000 25000
Step

2.8

3.0

3.2

3.4

3.6

Lo
ss

22000 23000
2.72

2.74

WSD
Cosine
WSD (Tuned)
WSDLD (Tuned)
Opt

(b) Loss Curves for Different LR Schedules

Figure 1: Optimizing the LR schedule induces a schedule (Opt) better than cosine and WSD schedules. We
conduct evaluation experiments on a 400M Llama-2 (Touvron et al., 2023) model trained over 12B tokens.
Zoom-in regions facilitate the readers who are interested in the local details. (a) Our optimized schedule
comprises constant and decay stages post-warmup, aligning with WSD (Hu et al., 2024). (b) Loss curves
demonstrate that our optimized schedule outperforms cosine schedules and two major variants of WSD with
tuned hyperparameters (WSD with exponential decay and WSDLD with linear decay).

landscape. In contrast, a small LR ensures a more stable training process but also slows down the
convergence. Practitioners often balance these trade-offs by starting training with a large LR and
then gradually reducing it over time, following a Learning Rate schedule (LR schedule) (Bengio,
2012). These LR schedules sometimes include a warmup phase at the beginning, where the LR
linearly increases from zero to a large value over a few thousand steps, and only after this warmup
phase does the LR start to decay. The most commonly used LR schedule in LLM pretraining is
the cosine schedule (Loshchilov & Hutter, 2017), which decays the LR following a cosine curve.
Other schedules include the cyclic (Smith, 2017), Noam (Vaswani, 2017), and Warmup-Stable-
Decay (WSD) schedules (Hu et al., 2024), but there is no consensus on the optimal choice.

Existing scaling laws sidestep the complexity of LR schedules by fitting parameters on a fixed fam-
ily of LR schedules. For instance, Hoffmann et al. (2022) fitted the parameters in the Chinchilla
scaling law for training runs that have gone through the entire cosine LR schedule. As a result, it
does not generalize well to other LR schedules, or even to the same schedule with early stopping.
Moreover, existing scaling laws lack a term to account for LR schedules, limiting their ability to
provide practical guidance on setting the LRs. This issue can become even more pronounced when
scaling up training to trillions of tokens (Dubey et al., 2024; DeepSeek-AI et al., 2024), where the
extreme cost of training makes it impractical to experiment with multiple LR schedules.

In this paper, we aim to quantify how LR schedules influence the evolution of training loss in LLM
pretraining through empirical analysis. More specifically, we study the following problem, which we
call the schedule-aware loss curve prediction problem: Can we use a simple formula to accurately
predict the training loss curve L(t) (1 ≤ t ≤ T) given a LR schedule E := {η1, η2, . . . , ηT } for T
steps of training? To align with standard practices in LLM pretraining and to enable a more precise
analysis tailored to this setting, we impose the following reasonable restrictions on the problem.
First, we take fresh samples from a data stream at each training step, so there is no generalization
gap between the training and test loss. Second, we focus on LR schedules that decay the LR over
time, i.e., η1 ≥ η2 ≥ η3 ≥ · · · . Finally, as most LR schedules used in practice start with a
warmup phase before the LR decays, we make a minor modification to the problem and include a
fixed warmup phase before the decay phase we are interested in. We assume that the shape and
the peak LR ηmax of the warmup phase have been carefully picked, potentially through a series of
short training runs, and we are only interested in understanding how different LR decay schedules
after warmup affect the training loss curve. For convenience, we shift the time index so that t = 1
corresponds to the first step after the warmup phase.

In contrast to most existing scaling laws that rely on only two or three hyperparameters (Kaplan
et al., 2020; Hoffmann et al., 2022; Muennighoff et al., 2023; Goyal et al., 2024), solving the above
problem poses unique challenges, as it requires predicting the loss curve based on the entire LR
schedule, which is inherently high-dimensional. This complexity necessitates a more sophisticated
approach to understand and quantify the relationship between the LR schedule and the loss curve.

Our Contribution: Multi-Power Law. In this paper, we propose the following empirical law (1)
for schedule-aware loss curve prediction:

L(t) = L0 +A · (S1(t) + SW)−α − LD(t), where S1(t) :=

t∑
τ=1

ητ . (1)

2

Published as a conference paper at ICLR 2025

8000 24000

0.50

1.00

1.50

2.00

2.50

3.00

8000 12000
3.05

3.10

3.15

3.20

3.25

8000 16000 24000
2.75

3.00

3.25

3.50

3.75

4.00

25M

400M

100M

20000 24000
2.70

2.75

2.80

2.85

2.90

8000 24000
Step

0.50

1.00

1.50

2.00

2.50

3.00

8000 12000
3.05

3.10

3.15

3.20

3.25

8000 16000 24000
Step

2.75

3.00

3.25

3.50

3.75

4.00

25M

400M

100M

20000 24000
3.25

3.30

3.35

3.40

Training Set Two-Stage
B = 9 × 10 5ConstCosine

Test Set Two-Stage
B = 3 × 10 5

Two-Stage
B = 1.8 × 10 4WSDWSDLD

Le
ar

ni
ng

 R
at

e
(x

10
4)

Lo
ss

LR
Loss
Prediction

LR
Loss
Prediction

Figure 2: The Multi-Power Law (MPL) with parameters fitted on cosine, constant, and two-stage schedules
can accurately predict the loss curves of unseen schedules, including WSDLD, WSD, and two-stage schedules
with a different LR in the second stage. See Table 1 for evaluation metrics.

Here, SW denotes the sum of learning rates used in the warmup phase. The expression L0 + A ·
(S1(t)+SW)−α can be viewed as an extension of the Chinchilla scaling law by replacing the number
of steps T with the cumulative sum of learning rates up to step t, while neglecting the dependence
on the model size. While this alone provides a crude approximation of the loss curve by linearizing
the contribution of the LR at each step (see Section 3.1 for further discussion), it does not account
for the specific shape of the LR decay. The additional term LD(t) serves as a correction term, which
captures the effect of LR decay in further reducing the loss:

LD(t) := B

t∑
k=1

(ηk−1 − ηk) ·G(η−γ
k Sk(t)), Sk(t) :=

t∑
τ=k

ητ , G(x) := 1− (Cx+ 1)−β . (2)

More specifically, LD(t) is linear with a cumulative sum of the LR reductions ηk−1 − ηk over
time, scaled by a nonlinear factor G(η−γ

k Sk(t)). This factor gradually saturates to a constant as the
training progresses, which follows a power law in a scaled sum of learning rates η−γ

k Sk(t).

We call this law of L(t) the Multi-Power Scaling Law (MPL) as it consists of multiple power-law
forms. L0, A,B,C, α, β, γ are the parameters of the law and can be fitted by running very few
pretraining experiments with different LR schedules. Our main contributions are as follows:

1. We propose the Multi-Power Law (1) for schedule-aware loss curve prediction, and empirically
validate that after fitting the parameters of the law on at most 3 pretraining runs, it can predict
the loss curve for unseen LR schedules with remarkable accuracy (see Figure 2). Unlike the
Chinchilla scaling law, which relies solely on the final loss of each training run to fit its param-
eters, our approach utilizes the entire loss curve of each training run to fit the parameters, thus
significantly reducing the number of training runs and compute resources needed for accurate
predictions (Figure 5). Extensive experiments are presented for various model architectures,
sizes, and training horizons (Section 4).

2. Our Multi-Power Law is accurate enough to be used to search for better LR schedules. We show
that by minimizing the predicted final loss according to the law, we can obtain an optimized LR
schedule that outperforms the standard cosine schedule. Interestingly, the optimized schedule
has a similar shape as the recently proposed WSD schedule (Hu et al., 2024), but its shape is
optimized so well that it outperforms WSD with grid-searched hyperparameters (Section 5).

3. We use a novel “bottom-up” approach to empirically derive the Multi-Power Law. Starting from
two-stage schedules, we conduct a series of ablation studies on LR schedules with increasing
complexity, which has helped us to gain strong insights into the empirical relationship between
the LR schedule and the loss curve (Section 3).

4. We present a theoretical analysis for quadratic loss functions and show that the Multi-Power
Law can arise when the Hessian and noise covariance matrices have a power-law decay in their
eigenvalues (Appendix B).

3

Published as a conference paper at ICLR 2025

2 PRELIMINARY

Learning Rate Schedule. A learning rate (LR) schedule is a sequence E := {η1, . . . , ηT } that
specifies the LR at each step of the training process. For language model pretraining, the cosine
LR schedule (Loshchilov & Hutter, 2017) is the most popular schedule, which can be expressed as
ηt = 1+α

2 ηmax + 1−α
2 ηmax cos(

πt
T). Here, ηmax is the peak LR and α is usually set to 0.1. The

Warmup-Stable-Decay (WSD) schedule (Hu et al., 2024) is a recently proposed LR schedule. This
schedule first goes through a warmup phase, then maintains at a stable LR ηmax with Tstable steps,
and finally decays in the form of f(t−Tstable)ηmax for Tstable ≤ t ≤ Ttotal. Here f(x) ∈ (0, 1) can be
chosen as linear or exponential decay functions. We visualize these two LR schedules in Figure 1(a).

Warmup Phase. Many LR schedules, such as WSD, include a warmup phase in which the LR
gradually increases from 0 to the peak LR ηmax over a few thousand steps. We denote the number
of warmup steps as W . By default, the LR increases linearly, so the total LR sum during warmup is
given by SW = 1

2ηmaxW . Our analysis focuses on the training process after the warmup, where the
LR is decaying in almost all LR schedules. We count training steps starting from the end of warmup
and set t = 1 as the first step after warmup. Accordingly, {η1, . . . , ηT } represents the post-warmup
schedule, and the LR at the last warmup step η0 = ηmax is the peak LR of the entire schedule.

Power Law of Data Scaling Prior studies (Hoffmann et al., 2022; Kaplan et al., 2020) demonstrate
that, for a fixed model size, the final loss follows a power law of the data size or, equivalently, the
total training step number T in a constant-batch-size setting. This relationship is expressed as:

L(T) ≈ L̂(T) := L0 + Ã · T−α, (3)

where L0, Ã, α are parameters to fit. This law is typically fitted over the final losses of a set of
training curves generated from a specific LR schedule family, such as a cosine schedule with a
given peak LR (ηmax), ending LR (αηmax) and warmup steps (W). However, applying (3) directly
to intermediate steps (t < T) introduces bias, as the LR schedule up to t bears insufficient decay
compared to the full schedule over T , resulting in different loss trajectories. This discrepancy is
confirmed in Figure 5(b). We refer to (3) as the Chinchilla Data Scaling Law (abbreviated as CDSL)
throughout the paper since it is simplified from the Chinchilla scaling law (Hoffmann et al., 2022)
to highlight the data dimension.

3 EMPIRICAL DERIVATION OF THE MULTI-POWER LAW

In this section, we present the empirical derivation of the Multi-Power Law (MPL) for schedule-
aware loss curve prediction. Our key insights are summarized as follows:

1. If two training runs share the same sum of learning rates,
∑T

t=1 ηt, then their final losses tend
to be similar, though a non-negligible discrepancy remains (Section 3.1).

2. In particular, for a training run with a given LR schedule, the final loss L(T) is similar to that
of another training run using a constant learning rate schedule with the same total LR sum. This
motivates us to decompose L(T) into two components: (1) the final loss of the corresponding
constant LR run; and (2) a residual term that captures the effect of LR decay, defined as the
difference between the final loss of the target run and the constant LR run. (Section 3.1)

3. Empirically, we observe that training runs with constant learning rates exhibit a Chinchilla-like
power-law behavior in the loss curve and can thus be well approximated by a simple power law.
(Section 3.2.1)

4. To approximate the residual term, instead of analyzing it directly, we imagine a sequence of
training runs with schedules that gradually transition from a constant LR to the target schedule,
all while maintaining the same total LR sum. Using a novel “bottom-up” approach, we derive
an approximation formula for the loss difference introduced by each incremental change in the
LR schedule, first by analyzing simple two-stage schedules and then extending the results to
more complex schedules. (Sections 3.2.2 and 3.3)

Finally, we sum up all the approximation terms above, leading to our MPL. Below, we elaborate on
our approach in detail.

4

Published as a conference paper at ICLR 2025

8000 8180 8360 8540 8720
Step

3.0

2.5

2.0

1.5

1.0

0.5

Le
ar

ni
ng

 R
at

e
(x

10
4)

(0)

(1)

(2)

(3)

(4)

(5)

(6)
(7)
(8)

(2)

t(1) t(2)

Equal LR Sum

8000 8180 8360 8540 8720
Step

3.44

3.46

3.48

3.50

3.52

3.54

Lo
ss

LD(8720)

LD(2)(t(2))

t(1) t(2)

Equal LR Sum

0.3

0.4

0.5

0.8

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

Figure 3: A multi-stage schedule (Appendix A.2) example to illustrate the learning rate (LR) sum matching
(Section 3.1) and fine-grained loss reduction decomposition (Section 3.2.2). The step points with the equal LR
sum as the final step T9 = 8720 are marked and linked with the dash-point line. Each stage spans 90 steps.
T1 = 8000, T2 = 8090, t(1) = ZT2(T9), t(2) = ZT3(T9). See Appendix G.3 for experiment details. Left:
The actual multi-stage schedule and schedules for auxiliary processes. LR gap between adjacent points denotes
the LR reduction ∆η(i) = η(i−1) − η(i). Right: Corresponding training curves for the multi-stage schedule
and the auxiliary processes. The total loss reduction is LD(T9) and can be decomposed as the intermediate loss
reduction sum. The loss gap between adjacent points denotes the stage-wise loss reduction LD(i)(t(i)).

3.1 OUR APPROACH: LEARNING RATE SUM MATCHING

Auxiliary Training Process. As introduced above, we construct a series of auxiliary training runs
with LR schedules gradually changing from a constant LR schedule to the target schedule E :=
{η1, . . . , ηT }. Our construction is detailed as follows. We define the l-th auxiliary process shares
the first l steps of learning rates, {η1, . . . , ηl}, with the actual training process with LR schedule E,
and continues with the constant LR ηl afterwards. The corresponding loss curve for the l-th auxiliary
process is denoted as Ll(t). In particular, the 0-th auxiliary process shares only the warmup phase
with the actual training process and uses a constant LR η0 = ηmax after warmup. We especially
call it the constant process and use Lconst(t) to represent its loss curve. The T -th auxiliary process
coincides with the actual training run with the target LR schedule, so LT (t) = L(t).
Learning Rate Sum Matching Decomposition The Multi-Power Law (MPL) approximates the
loss curve L(t) of the actual training process through the following decomposition. We define Z(t)
as the equivalent step in a constant LR process that shares the same cumulative LR sum as the actual
process up to step t, where Z(t) = S(t)

η0
and S(t) =

∑t
τ=1 ητ represents the sum of post-warmup

LRs. The loss at step t is then decomposed as:

L(t) = Lconst(Z(t))− (Lconst(Z(t))− L(t))︸ ︷︷ ︸
=: LD(t)

, (4)

where Lconst(Z(t)) interpolates the loss for non-integer Z(t) in the constant LR process. We first
approximate L(t) using the training loss Lconst(Z(t)) at step Z(t), and then write the residual term
LD(t) representing the approximation error. We call LD(t) the Loss reDuction term, as it quantifies
the loss reduction due to LR decay. We will approximate these two terms by parts in Section 3.2,
with Lconst(Z(t)) detailed in Section 3.2.1 and LD(t) in Section 3.2.2.

Motivation: Continuous Approximations of the Training Dynamics. The rationale behind this
approach is that two training runs with the same LR sum should result in similar training losses,
thus making it natural to decompose the loss curve into a major term corresponding to the loss of
a run with the same LR sum and a small residual term. To see this, we use SGD as an example.
If the learning rates η1, . . . , ηT are small, then SGD can be seen as a first-order approximation of
its continuous counterpart, gradient flow, under mild conditions (Li et al., 2017; Cheng et al., 2020;
Elkabetz & Cohen, 2021). Here gradient flow describes a continuous-time process in which the
parameters θ(τ) evolve according to the differential equation dθ(τ)

dτ = −∇L(θ(τ)), where ∇L(θ)

5

Published as a conference paper at ICLR 2025

is the gradient at θ, and τ denotes the continuous time. In this approximation, the t-th step of SGD
corresponds to evolving θ(τ) over a small time interval of length ηt. When the learning rates are
sufficiently small, the parameters after t steps of SGD are close to θ(τ) at time τ =

∑t
k=1 ηk.

This connection naturally motivates us to compare the losses of two training runs with the same LR
sum. While we use SGD for illustration, other optimization methods such as Adam can be similarly
approximated by their continuous counterparts (Ma et al., 2022).

3.2 APPROXIMATION BY PARTS

3.2.1 CONSTANT PROCESS LOSS APPROXIMATION

Motivated by the continuous approximation of the training dynamics, we hypothesize that losses
of constant LR processes with identical LR sums are closely aligned. This insight inspires us to
represent Lconst(Z(t)) as a function of S(t) + SW , where S(t) + SW represents the cumulative
LR sum up to step t, including the warmup phase part SW . Analogous to (3), we propose that
Lconst(Z(t)) follows a power law over the LR sum:

L̂const(Z(t)) = L0 +A · (S(t) + SW)
−α

, (5)

where A is a parameter counterpart of Ã. We perform extensive empirical validation and ablation
studies across different model sizes, training horizons, and learning rates to confirm the robustness
of (5), as detailed in Appendix G.1 and illustrated in Figure 11.

3.2.2 LOSS REDUCTION APPROXIMATION

Now we turn to the loss reduction term LD(t). We start by proposing a simple yet effective linear
approximation as a warmup, then we further break down the term with a finer-grained LR sum
matching approach.

A Crude Linear Approximation. We first generate training loss curves across various LR sched-
ule types, including cosine and WSD schedules, alongside the loss curves of their corresponding
constant processes. Then we can compute the loss reduction LD(t) for different LR schedules and
analyze their dependency. As demonstrated in Figure 10, LD(t) is approximately proportional to the
LR reduction, ∆ηk = η0−ηk across different schedules. This leads to the following approximation:

LD(t) ≈ B(η0 − ηk), (6)
where B is a constant. This finding highlights a strong correlation between the loss gap and the LR
gap at equivalent LR sum points on the loss landscape. However, while the linear approximation
offers insights into the shape of LD(t), deviations from the actual loss reduction remain. Notably,
when the LR decreases abruptly (e.g., in step-wise schedules), it predicts an instant loss drop at
the stage switch, whereas the true loss decline remains smoother during the training process. See
Appendix C for further discussion.

Fine-Grained LR Sum Matching Decomposition. In practice, the loss reduction term LD(t) can
have a more complex dependency on the LR schedule. To provide a more accurate approximation
than the linear approximation above, we employ LR sum matching between adjacent auxiliary pro-
cesses and decompose the loss reduction LD(t) into the sum of intermediate loss reductions between
adjacent auxiliary processes. We define the intermediate loss reduction between adjacent auxiliary
processes as:

LDk(tk+1) := Lk(Ak(tk+1))− Lk+1(tk+1). (7)
Lk and Lk+1 are the loss curves for k-th and (k + 1)-th auxiliary processes respectively. Ak(tk+1)
denotes the step in k-th auxiliary process, which has the same LR sum as step tk+1 in the (k+1)-th
auxiliary process. Then we consider the steps in all the auxiliary processes sharing the LR sum
with step t in the actual training. Thus, analogous to Z(t), the equal-LR-sum step in k-th auxiliary
process can be computed through

Zk(t) = k − 1 +
1

ηk
Sk(t), (8)

where Sk(t) =
∑t

τ=k ητ , representing the cumulative LR sum. Clearly, Zk(t) and Zk+1(t) have
the same LR sum in the adjacent auxiliary processes, so we obtain

Ak(Zk+1(t)) = Zk(t). (9)
Consequently, we can derive from (7) and (9):

LDk(Zk+1(t)) = Lk(Zk(t))− Lk+1(Zk+1(t)). (10)

6

Published as a conference paper at ICLR 2025

10000 20000 30000 40000 50000 60000 70000
Step

3.2

3.3

3.4

3.5

Lo
ss 60000 62500 65000 67500 70000

3.20

3.22

3.24

3.26

3.28

3.30

Learning Rate
Loss
Multi-power
One-power 0.0

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

(a) Cyclic Schedule

10000 20000 30000 40000 50000 60000 70000
Step

3.2

3.3

3.4

3.5

Lo
ss 60000 62500 65000 67500 70000

3.20

3.22

3.24

3.26

3.28

Learning Rate
Loss
Multi-power
One-power 0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

(b) Random-Polyline Schedule

Figure 4: The examples of long-horizon non-monotonic schedules. The one-power line represents the constant
process prediction. (a) The cyclic schedule with 72,000 steps, where each half-cycle spans 8,000 steps, and
the first decay begins after 16,000 steps. (b) The random-polyline schedule, consisting of piecewise linear
interpolation between randomly selected intermediate learning rates in the range of 3×10−5 to 3×10−4, with
LR milestones occurring at intervals of 8,000 steps.

Finally, the total loss reduction can be decomposed as the sum of intermediate loss reductions:

LD(t) = Lconst(Z(t))− L(t) = L0(Z0(t))− Lt(Zt(t)) =

t−1∑
k=0

LDk(Zk+1(t)). (11)

Here, Z0(t) = Z(t), ensuring that L0(Z0(t)) = Lconst(Z(t)).

By leveraging this fine-grained decomposition, a refined estimation of LDk(tk+1) enables a more
precise approximation of LD(t). Where the context is clear, we simplify notation by omitting sub-
scripts and denoting intermediate loss reduction as LDk(t).

3.3 BOTTOM-UP DERIVATION: TWO-STAGE, MULTI-STAGE, AND GENERAL SCHEDULES

The challenges in approximating the intermediate loss reduction LDk(t) are twofold. First, for
commonly used schedules, the learning rate (LR) reduction at intermediate steps is often too small to
induce a measurable loss reduction. Second, LDk(t) may depend intricately on all previous learning
rates {η1, . . . , ηk}, which we refer to as the LR prefix in this section. To address these issues, we
derive the form of LDk(t) using a “bottom-up” approach regarding schedule structures. Initially, we
propose its form through schedules comprising two constant LR stages, leveraging significant LR
reductions. Next, we examine its dependency on the LR prefix using schedules of multiple stages.
Finally, we generalize the form to encompass all schedules and conclude with a multi-power law.
The discussion of two-stage and multi-stage schedule is detailed in Appendices A.1 and A.2.

For general LR schedules, we extrapolate our findings from the two-stage and multi-stage cases in
Appendices A.1 and A.2, and propose to approximate the intermediate loss reduction at step k as
the following power form:

LDk(t) ≈ L̂Dk(t) := B(ηk − ηk+1)

(
1−

(
Cη1−γ

k+1 (t− k) + 1
)−β

)
, (12)

with LR-prefix independent constants B, C, γ and β.

Thus, the loss reduction between the constant process and the actual process can be approximated
as

L̂D(t) :=

t−1∑
k=0

L̂Dk(Zk+1(t)) =

t−1∑
k=0

B(ηk − ηk+1)
(
1− (Cη1−γ

k+1 (Zk+1(t)− k) + 1)−β
)
.

By the definition of Zk(t), we have Zk+1(t)− k = Sk+1(t)
ηk+1

. Therefore, we can conclude

LD(t) ≈ L̂D(t) =

t∑
k=1

B
(
ηk−1 − ηk)(1− (Cη−γ

k Sk(t) + 1)−β
)
, (13)

where we also change the subscript indices from k + 1 to k. Combining the above ansatz for the
loss reduction term with the power-law ansatz for the auxiliary loss in Equation (5) leads to our
multi-power law:

L(t) ≈ L0 +A · (S1(t) + SW)−α −
t∑

k=1

B(ηk−1 − ηk)(1− (Cη−γ
k Sk(t) + 1)−β). (14)

7

Published as a conference paper at ICLR 2025

0 2 4 6 8 10 12
Step (x104)

2.6

2.8

3.0

3.2

Lo
ss 12.50 12.75 13.00

2.550

2.575
Loss Curves(C)
Loss Curves(M)
Loss Ends(C)
Loss Ends(M)
Pred(C)
Pred(M)
Loss Curve(Test)
Target Loss

(a) Fitting Sample Efficiency Comparison

0 1 2 3 4 5
Step (x105)

2.0

2.1

2.2

2.3

2.4

2.5

Lo
ss

Loss
Multi-power
Chinchilla

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

Linear Schedule

(b) Whole Curve Fitting Comparison

Figure 5: (a) Target loss predictions at 128,000-step for a cosine schedule using MPL and CDSL fitting, with
a 400M model. CDSL fitting requires six cosine losses (Loss Curve(C)) from 14,960 steps to 72,000 steps but
relies solely on their final losses (Loss Ends(C)). In contrast, MPL leverages the entire 24,000-step constant
and cosine loss curves (Loss Curves(M)). Final loss predictions are denoted as Pred(C) for CDSL and Pred(M)
for MPL respectively. (b) Comparison of MPL and CDSL fittings on the whole loss curve of the open-source
7B OLMo model, trained with a linear schedule.

See Appendix C for the discussion about the simplification of the multi-power law.
4 EMPIRICAL VALIDATION OF THE MULTI-POWER LAW

The Multi-Power Law (MPL) comes from our speculations based on our experiments with special
types of LR schedules. Now we present extensive experiments to validate the law for common LR
schedules used in practice. Our experiments demonstrate that MPL requires only two or three LR
schedules and their corresponding loss curves in the training set to fit the law. The fitted MPL can
then predict loss curves for test schedules with different shapes and extended horizons.

4.1 RESULTS

Generalization to Unseen LR Schedules. MPL can accurately predict loss curves for LR sched-
ules outside the training set. As illustrated in Figure 2, despite the absence of WSD schedules in the
training set and the variety of decay functions, MPL successfully predicts their loss curves with high
accuracy. Furthermore, MPL can generalize to two-stage schedules with different ηB values from
the training set, effectively extrapolating curves for both continuous and discontinuous cases.

Generalization to Longer Horizons. MPL demonstrates the ability to extrapolate loss curves for
horizons exceeding three times the training set length. In our runs, the training set contains approxi-
mately 22,000 post-warmup steps, while the test set includes curves with up to 70,000 post-warmup
steps. These results validate MPL’s capability to generalize to longer horizons. Notably, the data-
to-model ratio for a 25M-parameter model trained over 72,000 steps (36B tokens) is comparable to
Llama2 pretraining (70B model, 2T tokens), consistent with trends favoring higher data volumes for
fixed model sizes (Dubey et al., 2024).

Generalization to Non-monotonic Schedules. MPL extends effectively to complex non-
monotonic schedules, although derived for monotonic decay schedules. We test the fitted MPL
over challenging cases such as cyclic schedules and the random-polyline schedule, where LR val-
ues are randomly selected at every 8,000 steps and connected by a polyline. These experiments,
conducted on a 25M-parameter model over 72,000 steps, also represent a demanding long-horizon
scenario. As shown in Figure 4, MPL accurately predicts these long-horizon non-monotonic sched-
ules, demonstrating its robustness and adaptability.

4.2 COMPARISON WITH BASELINES

Comparison with Chinchilla Law. While Chinchilla-style data scaling laws, which we abbreviate
as CDSLs, are widely adopted (Muennighoff et al., 2023; Hoffmann et al., 2022), MPL offers several
distinct advantages: (1) MPL incorporates LR dependency, unlike CDSLs, and (2) MPL predicts the
entire loss curve, whereas CDSLs are limited to estimating only the final loss. These advantages
enable MPL to achieve higher sample efficiency than CDSLs. Notably, we demonstrate that a single
constant and cosine schedule curve suffices to fit MPL with strong generalization. As illustrated in
Figure 5(a), MPL reduces final loss prediction to less than 1/3 that of CDSLs while requiring about
1/5 compute budget. Furthermore, MPL excels in fitting the open-source 7B OLMo (Groeneveld

8

Published as a conference paper at ICLR 2025

Table 1: Model performance comparison. R2, MAE, RMSE, PredE, and WorstE are the coefficient
of determination, Mean Absolute Error, Root Mean Square Error, Prediction Error, and Worst-case
Error, respectively.

Model Size Method R2 ↑ MAE ↓ RMSE ↓ PredE ↓ WorstE ↓

25M Momentum Law 0.9904 0.0047 0.0060 0.0014 0.0047
Multi-Power Law (Ours) 0.9975 0.0039 0.0046 0.0012 0.0040

100M Momentum Law 0.9959 0.0068 0.0095 0.0022 0.0094
Multi-Power Law (Ours) 0.9982 0.0038 0.0051 0.0013 0.0058

400M Momentum Law 0.9962 0.0071 0.0094 0.0025 0.0100
Multi-Power Law (Ours) 0.9971 0.0053 0.0070 0.0019 0.0070

Table 2: Downstream performance comparison for the cosine and our optimized schedules. Percent-
age changes (↑ or ↓) indicate relative improvements or regressions compared to the cosine schedule.

Schedule LAMBADA HellaSwag PIQA ARC-E C3 RTE
Cosine 46.54 37.12 65.13 43.56 48.44 52.71

Optimized 48.71 37.74 65.07 44.09 50.30 53.79
(↑ 2.17%) (↑ 0.62%) (↓ 0.06%) (↑ 0.53%) (↑ 1.86%) (↑ 1.08%)

et al., 2024), as shown in Figure 5(b). Additional details of the comparison with Chinchilla Law are
provided in Appendix H.2.

Comparison with Momentum Law. The MPL outperforms the recently proposed Momentum
Law(MTL) (Tissue et al., 2024)1 in both accuracy and applicability to discontinuous learning rate
schedules. While MTL incorporates LR annealing effects by modeling loss reduction through the
momentum of LR decay, it indicates an exponential loss reduction for two-stage LR schedules, in-
consistent with our observations (see Appendix A.1). Across the diverse schedules in the test set,
MPL consistently outperforms MTL in both average and worst-case prediction accuracy, as sum-
marized in Table 1. Additionally, for WSD schedules with linear LR decay, MPL more accurately
captures the loss reduction trend during the decay stage, as highlighted in Figure 14(b), compared to
MTL. Further details on MTL and its relationship to MPL can be found in Appendix C, with fitting
specifcs provided in Appendix H.2.

5 THE MULTI-POWER LAW INDUCES BETTER LR SCHEDULES

Due to the high cost of each pretraining run and the curse of dimensionality for LR schedules, it is
generally impractical to tune the LR for every training step. To address this, we propose leveraging
the Multi-Power Law (MPL) to predict the final loss as a surrogate function to optimize the entire
LR schedule, achieving a lower final loss and outperforming the cosine schedule and WSD variants.

5.1 METHOD

The Multi-Power Law (MPL) provides an accurate loss estimation, enabling its final loss prediction
to serve as a surrogate for evaluating schedules. We represent the learning rate (LR) schedule as a
T -dimensional vector E = (η1, . . . , ηT), with the final loss denoted as L(E) under given hyper-
parameters. Our goal is to find the optimal LR schedule E∗ = argminE L(E). Using MPL, we
parameterize the predicted final loss as LΘ(E) with parameters Θ = {L0, A,B,C, α, β, γ}, esti-
mated as outlined in Section 4. We approximate E∗ by optimizing the surrogate loss LΘ̂(E) subject
to monotonicity constraints:

Ê = min
E
LΘ̂(E) s.t. 0 ≤ ηt ≤ ηt−1, ∀ 1 ≤ t ≤ T. (15)

This optimization induces an “optimal” schedule Ê derived from MPL with parameter Θ̂. We set
the peak LR η0 = 3 × 10−4 and assume ηt is monotonically non-increasing, reflecting established
training practices. We view E as a high-dimensional vector and optimize it using the Adam opti-
mizer. Further details are provided in Appendix I. Results for a 400M model are shown in Figure 1,
with additional experiments for 25M and 100M models in Figure 18.

1Concurrent work. Early versions of our work are available at https://openreview.net/pdf?id=
KnoS9XxIlK(October 2024).

9

https://openreview.net/pdf?id=KnoS9XxIlK
https://openreview.net/pdf?id=KnoS9XxIlK

Published as a conference paper at ICLR 2025

0 2 4 6
Step (x104)

2.5

3.0

3.5

4.0

Lo
ss

25M

100M

400M

1B

Const loss
Const pred
Cosine loss
Cosine pred

(a) Long-Horizon Prediction of MPL

0 2 4 6
Step (x104)

2.4

2.6

2.8

3.0

3.2

Lo
ss

6 7

2.375
2.400
2.425

0.0

0.5

1.0

1.5

2.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

Cosine
Opt(Ours)
WSDSC(Ours)

Loss
LR

Cosine
Opt(Ours)
WSDSC(Ours)

Loss
LR

(b) Loss Curves Comparison for 1B Models

Figure 6: (a) Long-horizon loss predictions using MPL for cosine and constant schedules, with model sizes
ranging from 25M to 1B (top to bottom). (b) Loss curve comparison for 1B models across the optimized sched-
ule (Opt), cosine schedule (Cosine), and simplified optimized schedule (WSDSC, see Section 5.2), featuring a
WSD schedule with sqrt-cube decay.

5.2 RESULTS

Optimized LR Schedule Exhibits Stable-Decay Pattern. The optimized LR schedule follows a
Warmup-Stable-Decay (WSD) structure, comprising two main post-warmup phases: a stable phase
with a constant peak LR, and a decay phase ending with a lower LR, as illustrated in Figures 1
and 18. By contrast, the momentum law (Tissue et al., 2024) theoretically yields a collapsed learning
rate schedule, as proved in Appendix J. However, unlike traditional WSD schedules (Hu et al., 2024),
which decays linearly or exponentially to 1/10 of the peak LR, our optimized schedule reaches lower
ending learning rates, typically below 1/20 of the peak, even close to zero. Using normalized steps
t̃ and normalized learning rates η̃avg, We find that the decay function of the optimized schedule
roughly follows η̃avg = (1− t̃)1.5, capturing the near-zero ending LR (t̃ = 1, η̃avg = 0).

Optimized LR Schedule Outperforms Cosine Schedules. Across comparison experiments of
different model sizes and training steps, our optimized schedules consistently outperform the co-
sine schedules, achieving a margin exceeding 0.02. Notably, no WSD-like schedule is present in
the training set, highlighting MPL’s extrapolation capability. Figure 19 extends this comparison to
longer training horizons and Figure 6(b) validates the superiority for 1B model. we further validate
the effectiveness of our optimized schedules by evaluating the downstream task performance. As
shown in Table 2, our optimized schedule leads to overall improvements in downstream tasks against
the cosine schedules, showing practical gains from loss improvements. Ablation details for longer
horizons and larger models are in Appendix I.

Optimized LR Schedule Outperforms Tuned WSD Variants. For a 400M model, the decay
step of a 24000-step optimized schedule (Figure 1) is close to the optimally tuned step (6,000) for
WSD and WSDLD schedules, determined via grid search over {3,000, 4,000, 5,000, 6,000, 7,000}.
However, it surpasses these decay-ratio-tuned variants, suggesting that tuning the decay ratio alone
is insufficient. Adjusting the ending LR to near-zero (see Appendix I) or altering the decay function
also falls short. We propose a WSD variant with sqrt-cube decay (WSDSC), whose decay function
is η̃avg = (1− t̃)1.5. WSDSC is effective across various model sizes and architectures, as evidenced
in Figures 6(b) and 15(a), offering an alternative decay function for WSD schedules. Yet, it still falls
short of the optimized schedule (Figure 6(b)), possibly due to untuned decay ratios. See Appendix I
for more details.

6 CONCLUSIONS

This paper proposes the Multi-Power Law (MPL) to capture the relationship between loss and LR
schedule, derived bottom-up from stage-wise schedules using LR sum matching decomposition and.
The fitted MPL can accurately predict the entire loss curve while reducing the computational cost
of fitting compared to traditional scaling laws. Through a theoretical analysis of a quadratic loss
function, We discuss the possible underlying mechanism for MPL. Furthermore, we get optimized
schedules via minimizing the predicted final loss of MPL, and extensively validate their superiority
over commonly used schedules, thereby improving training efficiency.

10

Published as a conference paper at ICLR 2025

REFERENCES

Armen Aghajanyan, Lili Yu, Alexis Conneau, Wei-Ning Hsu, Karen Hambardzumyan, Susan
Zhang, Stephen Roller, Naman Goyal, Omer Levy, and Luke Zettlemoyer. Scaling laws for gen-
erative mixed-modal language models. In International Conference on Machine Learning, pp.
265–279. PMLR, 2023.

Alexander Atanasov, Jacob A Zavatone-Veth, and Cengiz Pehlevan. Scaling and renormalization in
high-dimensional regression. arXiv preprint arXiv:2405.00592, 2024.

Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining neural
scaling laws. Proceedings of the National Academy of Sciences, 121(27):e2311878121, 2024.

Yoshua Bengio. Gradient-based optimization of hyperparameters. Neural computation, 12(8):1889–
1900, 2000.

Yoshua Bengio. Practical Recommendations for Gradient-Based Training of Deep Architectures,
pp. 437–478. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-
35289-8. doi: 10.1007/978-3-642-35289-8 26. URL https://doi.org/10.1007/
978-3-642-35289-8_26.

Shane Bergsma, Nolan Dey, Gurpreet Gosal, Gavia Gray, Daria Soboleva, and Joel Hestness.
Straight to zero: Why linearly decaying the learning rate to zero works best for llms. arXiv
preprint arXiv:2502.15938, 2025.

James Bergstra, Dan Yamins, David D Cox, et al. Hyperopt: A python library for optimizing the
hyperparameters of machine learning algorithms. SciPy, 13:20, 2013.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Blake Bordelon, Alexander Atanasov, and Cengiz Pehlevan. A dynamical model of neural scaling
laws. arXiv preprint arXiv:2402.01092, 2024.

David Brandfonbrener, Nikhil Anand, Nikhil Vyas, Eran Malach, and Sham Kakade. Loss-to-loss
prediction: Scaling laws for all datasets. arXiv preprint arXiv:2411.12925, 2024.

Abdulkadir Canatar, Blake Bordelon, and Cengiz Pehlevan. Spectral bias and task-model align-
ment explain generalization in kernel regression and infinitely wide neural networks. Nature
communications, 12(1):2914, 2021.

Xiang Cheng, Dong Yin, Peter Bartlett, and Michael Jordan. Stochastic gradient and langevin
processes. In International Conference on Machine Learning, pp. 1810–1819. PMLR, 2020.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Hugo Cui, Bruno Loureiro, Florent Krzakala, and Lenka Zdeborová. Generalization error rates
in kernel regression: The crossover from the noiseless to noisy regime. Advances in Neural
Information Processing Systems, 34:10131–10143, 2021.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J.L. Cai, Jian Liang, Jianzhong Guo, Jiaqi
Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li,
Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang,
Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun
Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan
Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R.J.

11

https://doi.org/10.1007/978-3-642-35289-8_26
https://doi.org/10.1007/978-3-642-35289-8_26

Published as a conference paper at ICLR 2025

Chen, R.L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang,
Ruyi Chen, S.S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng
Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shut-
ing Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W.L. Xiao, Wangding Zeng, Wanjia Zhao, Wei
An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X.Q. Li, Xiangyue Jin,
Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang
Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin
Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan
Li, Xuecheng Su, Xuheng Lin, Y.K. Li, Y.Q. Wang, Y.X. Wei, Y.X. Zhu, Yang Zhang, Yanhong
Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang,
Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi Piao,
Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen
Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma,
Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z.F. Wu, Z.Z. Ren, Zehui
Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu,
Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song,
Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437,
2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Omer Elkabetz and Nadav Cohen. Continuous vs. discrete optimization of deep neural networks.
Advances in Neural Information Processing Systems, 34:4947–4960, 2021.

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse
gradient-based hyperparameter optimization. In International conference on machine learning,
pp. 1165–1173. PMLR, 2017.

Jonas Geiping and Tom Goldstein. Cramming: Training a language model on a single gpu in one
day. In International Conference on Machine Learning, pp. 11117–11143. PMLR, 2023.

Sachin Goyal, Pratyush Maini, Zachary C. Lipton, Aditi Raghunathan, and J. Zico Kolter. Scal-
ing laws for data filtering– data curation cannot be compute agnostic. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 22702–22711,
June 2024.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, et al. Olmo: Accelerating the
science of language models. arXiv preprint arXiv:2402.00838, 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Alexander Hägele, Elie Bakouch, Atli Kosson, Loubna Ben Allal, Leandro Von Werra, and Martin
Jaggi. Scaling laws and compute-optimal training beyond fixed training durations. arXiv preprint
arXiv:2405.18392, 2024.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022. URL https://arxiv.org/abs/
2203.15556.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models
with scalable training strategies. arXiv preprint arXiv:2404.06395, 2024.

Peter J Huber. Robust estimation of a location parameter. In Breakthroughs in statistics:
Methodology and distribution, pp. 492–518. Springer, 1992.

12

https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556

Published as a conference paper at ICLR 2025

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In Learning and Intelligent Optimization: 5th International
Conference, LION 5, Rome, Italy, January 17-21, 2011. Selected Papers 5, pp. 507–523. Springer,
2011.

Marcus Hutter. Learning curve theory. arXiv preprint arXiv:2102.04074, 2021.

Adam Ibrahim, Benjamin Thérien, Kshitij Gupta, Mats L Richter, Quentin Anthony, Timothée
Lesort, Eugene Belilovsky, and Irina Rish. Simple and scalable strategies to continually pre-train
large language models. arXiv preprint arXiv:2403.08763, 2024.

Ayush Jain, Andrea Montanari, and Eren Sasoglu. Scaling laws for learning with real and surrogate
data. arXiv preprint arXiv:2402.04376, 2024.

Yuchen Jin, Tianyi Zhou, Liangyu Zhao, Yibo Zhu, Chuanxiong Guo, Marco Canini, and Arvind
Krishnamurthy. Autolrs: Automatic learning-rate schedule by bayesian optimization on the fly.
arXiv preprint arXiv:2105.10762, 2021.

Arlind Kadra, Maciej Janowski, Martin Wistuba, and Josif Grabocka. Scaling laws for hyperpa-
rameter optimization. In Thirty-seventh Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?id=ghzEUGfRMD.

Arlind Kadra, Maciej Janowski, Martin Wistuba, and Josif Grabocka. Scaling laws for hyperparam-
eter optimization. Advances in Neural Information Processing Systems, 36, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020. URL https://arxiv.org/abs/2001.08361.

Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank Hutter. Learning curve prediction
with bayesian neural networks. In International conference on learning representations, 2022.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization. Journal of Machine Learning
Research, 18(185):1–52, 2018.

Qianxiao Li, Cheng Tai, and E Weinan. Stochastic modified equations and adaptive stochastic
gradient algorithms. In International Conference on Machine Learning, pp. 2101–2110. PMLR,
2017.

Zhiyuan Li and Sanjeev Arora. An exponential learning rate schedule for deep learning. arXiv
preprint arXiv:1910.07454, 2019.

Licong Lin, Jingfeng Wu, Sham M Kakade, Peter L Bartlett, and Jason D Lee. Scaling laws in linear
regression: Compute, parameters, and data. arXiv preprint arXiv:2406.08466, 2024.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In
International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=Skq89Scxx.

Chao Ma, Lei Wu, and Weinan E. A qualitative study of the dynamic behavior for adaptive gra-
dient algorithms. In Joan Bruna, Jan Hesthaven, and Lenka Zdeborova (eds.), Proceedings of
the 2nd Mathematical and Scientific Machine Learning Conference, volume 145 of Proceedings
of Machine Learning Research, pp. 671–692. PMLR, 16–19 Aug 2022. URL https://
proceedings.mlr.press/v145/ma22a.html.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimiza-
tion through reversible learning. In International conference on machine learning, pp. 2113–2122.
PMLR, 2015.

Alexander Maloney, Daniel A Roberts, and James Sully. A solvable model of neural scaling laws.
arXiv preprint arXiv:2210.16859, 2022.

13

https://openreview.net/forum?id=ghzEUGfRMD
https://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx
https://proceedings.mlr.press/v145/ma22a.html
https://proceedings.mlr.press/v145/ma22a.html

Published as a conference paper at ICLR 2025

Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra
Piktus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language
models. Advances in Neural Information Processing Systems, 36:50358–50376, 2023.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bhagia,
Yuling Gu, Shengyi Huang, Matt Jordan, et al. 2 olmo 2 furious. arXiv preprint arXiv:2501.00656,
2024.

Rui Pan, Haishan Ye, and Tong Zhang. Eigencurve: Optimal learning rate schedule for sgd on
quadratic objectives with skewed hessian spectrums. arXiv preprint arXiv:2110.14109, 2021.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Fabian Schaipp, Alexander Hägele, Adrien Taylor, Umut Simsekli, and Francis Bach. The surpris-
ing agreement between convex optimization theory and learning-rate scheduling for large model
training. arXiv preprint arXiv:2501.18965, 2025.

Utkarsh Sharma and Jared Kaplan. A neural scaling law from the dimension of the data manifold.
arXiv preprint arXiv:2004.10802, 2020.

Yikang Shen, Matthew Stallone, Mayank Mishra, Gaoyuan Zhang, Shawn Tan, Aditya Prasad, Adri-
ana Meza Soria, David D Cox, and Rameswar Panda. Power scheduler: A batch size and token
number agnostic learning rate scheduler. arXiv preprint arXiv:2408.13359, 2024.

Leslie N Smith. Cyclical learning rates for training neural networks. In 2017 IEEE winter conference
on applications of computer vision (WACV), pp. 464–472. IEEE, 2017.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25, 2012.

Stefano Spigler, Mario Geiger, and Matthieu Wyart. Asymptotic learning curves of kernel methods:
empirical data versus teacher–student paradigm. Journal of Statistical Mechanics: Theory and
Experiment, 2020(12):124001, 2020.

Kai Sun, Dian Yu, Dong Yu, and Claire Cardie. Investigating prior knowledge for challenging
chinese machine reading comprehension. Transactions of the Association for Computational
Linguistics, 8:141–155, 2020.

Yunfei Teng, Jing Wang, and Anna Choromanska. Autodrop: Training deep learning models with
automatic learning rate drop. arXiv preprint arXiv:2111.15317, 2021.

Howe Tissue, Venus Wang, and Lu Wang. Scaling law with learning rate annealing. arXiv preprint
arXiv:2408.11029, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. Advances in neural information processing systems, 32, 2019.

Kaiyue Wen, Zhiyuan Li, Jason Wang, David Hall, Percy Liang, and Tengyu Ma. Understanding
warmup-stable-decay learning rates: A river valley loss landscape perspective. arXiv preprint
arXiv:2410.05192, 2024.

Zhen Xu, Andrew M Dai, Jonas Kemp, and Luke Metz. Learning an adaptive learning rate schedule.
arXiv preprint arXiv:1909.09712, 2019.

14

Published as a conference paper at ICLR 2025

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
12104–12113, 2022.

15

Published as a conference paper at ICLR 2025

7000 8000 9000 10000 11000 12000
Step t

0

1

2

3

Le
ar

ni
ng

 R
at

e
(L

R
 x

 1
0

4)
Area B Area A=

A B

LR A
LR B

Area A
Area B

Mark A
Mark B

(a) LR vs Step t

8000 10000 12000
Step t

3.400

3.425

3.450

3.475

3.500

3.525

3.550

3.575

Lo
ss

LD(TA + xB)

Loss A
Loss B

Mark A
Mark B

(b) Loss vs Step t

0 1000 2000 3000 4000
Step x

0.00

0.02

0.04

0.06

0.08

Lo
ss

 R
ed

uc
tio

n

LD(TA + xB)Power:
Error=5.16e-07

Exponential:
Error=1.21e-05

Exponential Model
Power Model
Loss Reduction

(c) Loss Reduction vs Step x

Figure 7: Loss reduction (LD) of two-stage schedule exhibits a power law. Example setting: tB = 11000,
xB = 3000, ηB = 9× 10−5, ηA = 3× 10−4, TA = 8000. (a) A and B have the equal LR sums: xA = 900,
tA = 8900. (b) Loss reduction at B: LD(TA + xB) = LA(tA) − LB(tB). (c) Fitting loss reduction
L̂D(TA + xB) with power form results in 0.13(1− (1 + 0.21x)0.15); Fitting with exponential form results in
0.0790(1− e−0.01x). The shape of loss reduction is closer to a power form than exponential.

A BOTTOM-UP DERIVATION: TWO-STAGE, MULTI-STAGE (SECTION 3.3)

A.1 CASE 1: TWO-STAGE LEARNING RATE SCHEDULE

The two-stage schedule keeps learning rates at ηA for TA steps, directly drops to ηB, and continues
for TB steps. Then the LR reduction ηA−ηB could be significant enough to induce LDTA

(t), which
is also the loss reduction LD(t) for step t on Stage 2. See Appendix G.2 for experiment details.

Loss Reduction Term Follows a Power Law. As shown in Figure 7, the number of steps x :=
t− TA in Stage 2 increases, LD(TA + x) monotonically rises from 0 to around 0.09 and eventually
saturates. This motivates us to approximate LD(TA+x) in the form B̃ · (1−U(ηBx)), where B̃ is a
parameter and U(s) is a function that decreases from 1 to 0 as s = ηBx increases from 0 to infinity.
The reason we choose ηBx instead of x as the argument of U will be clear in the general case.

But at what rate should U(s) decrease? After trying different forms of U(s) to fit LD(TA + x), we
find that the power-law form U(s) = (C̃ · s+ 1)−β for some C̃, β > 0 fits most properly as shown
in Figure 7, which leads to the following power-law form for the loss reduction term:

LD(TA + x) ≈ L̂D(TA + x) := B̃(1− (C̃ · ηBx+ 1)−β). (16)
Appendix A.1 shows that this power law aligns well with the actual loss reduction term LD(TA+x).
In contrast, the exponential form U(s) = e−Bs (so LD(TA + x) ≈ A(1 − e−BηBx)) struggles to
match the slow and steadily increase of LD(TA + x) when x is large.

Parameter Pattern of Power Law. We further investigate how to estimate the parameters B̃, C̃, β
in the power law. Based on our preliminary experiments, we set β = 0.4, a constant that works well.
Then we conduct experiments to understand how the best parameters B̃, C̃ to fit LD(t) depend on
ηA, ηB, TA, where we set default values ηA = 3×10−4, ηB = 3×10−5, TA = 8000 and change one
variable at a time. The details of ablation experiments can refer to Appendix G.2. The observations
are summarized as follows.

(1) B̃ is Linear to LR Reduction. As shown in the first row of Figure 8, B̃ linearly decreases with
ηB and approximately increases linearly with ηA, especially when ηA is not too large. Moreover,
the slope of B̃ over ηA and ηB are approximately opposite to each other. This motivates us to
hypothesize that B̃ ∝ ηA−ηB and reparameterize B̃ as B̃ = B(ηA−ηB), where B is a constant.

(2) C̃ Follows a Power Law of ηB. As shown in the second row of Figure 8, C̃ is very sensitive to
ηB but much less dependent on ηA. We hypothesize that C̃ follows a power law C̃ ∝ η−γ

B , and
reparameterize C̃ as C̃ = Cη−γ

B , where C > 0 and γ > 0 are constants.

(3) LR Reduction Term Depends Less on TA. We also find that B̃ and C̃ are less sensitive to TA,
relatively stable as TA varies, as shown in the last column in Figure 8. This suggests that the
loss reduction has a weak dependency of loss reduction on LR prefix length.

16

Published as a conference paper at ICLR 2025

0.05

0.10

0.15

B B = 400.521 A + 0.027

B vs A

Fit
B = 403.270 B + 0.126

B vs B

Fit
B vs TA

2.5 5.0 7.5
A (x10 4)

500

1000
C

C vs A

0 1 2 3
B (x10 4)

C = 5.707 0.480
B

C vs B

Fit

1 2
TA (x104)

C vs TA

Figure 8: The dependency patterns of B̃, C̃ over ηA, ηB and TA in the two-stage cases. B̃ is approximately
proportional to ηA − ηB , and C̃ manifests power-law pattern over ηB . The dependency of ηA over C̃ and the
impacts of TA on B̃, C̃ are unpredictable or negligible, which are approximately ignored in our discussion.

Approximation Form. Putting all the above observations together, we have the final approxima-
tion form for the loss reduction term in the two-stage schedule:

LD(TA + x) ≈ L̂D(TA + x) := B(ηA − ηB)
(
1− (Cη1−γ

B x+ 1)−β
)
. (17)

A.2 CASE 2: MULTI-STAGE LEARNING RATE SCHEDULE

In the two-stage case, the LR prefix is constant at ηA, leaving uncertainty about whether the interme-
diate loss reduction conforms to the power form when the LR prefixes vary. To investigate this, we
analyze the multi-stage step decay schedule. Consider an n-stage LR schedule E = {η1, . . . , ηT },
where the i-th stage spans from step Ti+1 to Ti+1 and uses the LR η(i) (0 ≤ T1 < · · · < Tn+1 = T ,
with η0 = η(0) > η(1) > · · · > η(n), 1 ≤ i ≤ n). An example is illustrated in Figure 3.

Stage-Wise Loss Reduction. In the multi-stage schedule, given stage index 1 ≤ i ≤ n, the
stage-wise loss reduction is defined as LD(i)(t) = LDTi

(t)2. The LR reduction between stages,
∆η(i) = η(i−1)−η(i), is also measurable. Using this, we estimate the shape of LD(i)(t) for different
stages. Regard Ti as TA in the two-stage case and define x := t − Ti. As shown in Figure 9(a),
LD(i)(Ti + x) approximately conforms to a similar power law as (16) for the two-stage case:

LD(i)(Ti + x) ≈ L̂D
(i)
(Ti + x) := B̃(i)

(
1−

(
C̃(i) · η(i)x+ 1

)−β
)
, (18)

where B̃(i) and C̃(i) are constants dependent on the LR prefix {η1, . . . , ηTi
} for stage i.

Intermediate Loss Reduction Weakly Depends on the LR Prefix Shape. For stage i, the LR
prefix is {η1, . . . , ηTi

}, which varies in length and scale across stages. To evaluate the effect of the
LR prefix on the intermediate loss reduction form, we examine its impact on B̃(i) and C̃(i). Inter-
estingly, as shown in Figure 9(b), we observe that B̃(i) ≈ B(η(i−1) − η(i)) and C̃(i) ≈ C(η(i))−γ ,
which align closely with the two-stage results. Here, B, C, and γ are constants largely independent
of the stage index. This suggests that intermediate loss reductions are relatively insensitive to the
LR prefix compared to the LR reductions ∆η(i) and the stage LR η(i). Moreover, this weak depen-
dence on the LR prefix may extend to general schedules, indicating a broader applicability of the
power-law form for intermediate loss reduction.

B HOW MIGHT THE MULTI-POWER LAW ARISE?

In this section, we present a preliminary theoretical analysis to understand how the multi-power law
might arise. More specifically, we consider a simple setting where SGD optimizes a quadratic loss
function with certain gradient noise, and show that the multi-power law naturally emerges when
the Hessian and noise covariance matrices exhibit power-law decay in their eigenvalues. While this
analysis does not capture the full complexity of deep learning, we believe it sheds light on how the
multi-power law is related to certain power-law structures in the optimization landscape.

2Note that LD(i)(t) = LDt(i)(t) for each Ti + 1 ≤ t(i) ≤ Ti+1, as these auxiliary processes for a specific
stage coincide.

17

Published as a conference paper at ICLR 2025

0 20 40 60 80
Stage Step

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Lo
ss

 R
ed

uc
tio

n
(x

10
3)

(1)=2.5e-04
(2)=2.0e-04
(3)=1.5e-04
(4)=1.0e-04
(5)=8.0e-05
(6)=5.0e-05
(7)=4.0e-05
(8)=3.0e-05

(a) Power Fitting of LD(i)(t)

1 2 3 4 5
(i 1) (i) (x10 5)

0.005

0.010

0.015

0.020

0.025

0.030

B

B=547.767((i 1) (i))

lr=3e-04
lr=2e-04
lr=2e-04
lr=1e-04
lr=8e-05
lr=5e-05
lr=4e-05
lr=3e-05

0.5 1.0 1.5 2.0 2.5
(i) (x10 4)

200

300

400

500

600

700

800

C

C = 4.951((i)) 0.483

lr=3e-04
lr=2e-04
lr=2e-04
lr=1e-04
lr=8e-05
lr=5e-05
lr=4e-05
lr=3e-05

(b) LD(i)(t) Parameter Patterns

Figure 9: The intermediate loss reductions of a multi-stage schedule (Figure 3) and their shape patterns. (a)
The loss reduction LD(i)(t) between the adjacent stages of the multi-stage schedules still follows the power
form. (b) B̃ ∝ η(i−1) − η(i), C̃ ∝ (η(i))−γ . The parameter patterns in the two-stage setting hold in the
multi-stage setting approximately. The shape of patterns is similar to the patterns in the two-stage experiments,
as shown in Figure 8.

B.1 SETUP

We consider a quadratic loss function L(θ) = 1
2 (θ−θ∗)

⊤H(θ−θ∗), where θ ∈ Rd represents the
trainable parameters, θ∗ is the ground truth and H ∈ Rd×d is the Hessian matrix. Linear regression
is a special case of this formulation. More generally, any loss function can be locally approximated
by such a quadratic form near the optimum.

We use SGD with LR schedule E = {η1, . . . , ηT } to optimize the loss function, where the t-th
iteration is given by θt = θt−1 − ηtgt, with gt being the stochastic gradient at step t. We assume
that the stochastic gradient gt equals the true gradient ∇L(θt) = Hθt−1 plus Gaussian noise
N (0,Σ), where Σ ∈ Rd×d is the covariance matrix. We use Φ(θ0, E) to denote the distribution of
the T -th iteration θT of SGD starting from θ0.

From spectra to scaling law for the loss. We now aim to analyze the scaling behavior of the loss
for the quadratic loss function defined above during training. This behavior is typically determined
by the eigenvalue spectrum of the Hessian and the spectrum of the diagonal elements of the noise
covariance matrix Σ in the gradient noise. Specifically, if we make certain assumptions about the
Hessian matrix H and the noise covariance matrix Σ, similar to the previous works (Canatar et al.,
2021; Spigler et al., 2020; Maloney et al., 2022; Cui et al., 2021; Brandfonbrener et al., 2024), we
can show that the loss follows a multi-power law.

Assumption 1. Let λi be the ith eigenvalue of H , and Σii be the element of Σ in the ith column
and ith row. λi

i.i.d.∼ p(λ) ∝ λα, Σii
i.i.d.∼ q(Σ) for all i ∈ {1, 2, . . . , d}, where α > −1 and

λ ∈ [0, D]. Also, given some ρ ∈ R and µ ∈ R+, we have that
Eq[Σ|λ] ∝ λρ exp(−Gλ), Eq[Σ] = µ,

where D,G are positive constants independent of LR schedule E.

B.2 LOSS FORMULA

The following theorem provides an accurate estimate of the expected loss at step t.

Theorem 1. Under Assumption 1, given θT ∼ Φ(θ0, E), and S1(t) >
1

ηmax
, we have the following

estimate of E[L(θt)] for any 0 ≤ t ≤ T :

M̃t(θ0, E) :=L0 +A · S1(t)
−α−2 −B

T∑
k=2

(ηk−1 − ηk)
(
1− (C Sk(t) + 1)−α−ρ−1

)
,

where L0 = d
4ηmaxµ, and A =

∥θ0∥2
2µγ(α+2,D)
2α+3Zλ

, B = dµ
4 , C = 2

G ≥ 0 are constants in-
dependent of LR schedule E, γ(·, ·) denotes the lower incomplete gamma function such that
γ(s, x) :=

∫ x

0
ts−1e−tdtand Si(t) :=

∑t
k=i ηk, and Zλ is the partition function for probability

measure. The estimation error is bounded as
|E[L(θt)]− M̃t(θ0, E)| = O(S1(t)

−α−1 + η2max).

18

Published as a conference paper at ICLR 2025

5000 10000 15000 20000 25000
Step

3.4

3.6

3.8

4.0
Lo

ss

loss
LR
loss
LR

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

0.0 0.5 1.0 1.5 2.0 2.5
LR Reduction (x10 4)

0.00

0.02

0.04

0.06

0.08

0.10

Lo
ss

 R
ed

uc
tio

n

linear regression
(LR reduction, Loss reduction)

Const
WSDLD
WSD-Cosine
Cosine
WSD

Figure 10: Linear regression of loss reduction versus LR reduction across different schedules for a 25M model
over 24,000 steps. Decay steps are set at 4,000 for WSD and its variants, among which WSD-Cosine specifi-
cally denotes the WSD schedule with cosine decay function. Left: Visualization of learning rate schedules and
their corresponding loss curves. Right: Scatter plot of loss reductions against LR reductions, accompanied by a
linear regression fit (mean R2 = 0.9980), demonstrating a strong linear relationship between the two variables.

A characterizes the overall size of the item Lconst, which is proportional to the distance of the initial
parameter from the optimal parameter ∥θ0−θ∗∥22, and also proportional to the expectation of noise µ
during training. The term B represents the influence of loss drop induced by learning rate reduction,
which is proportional to the data dimension d and noise expectation µ. Compared to the original
Multi-Power Law in Equation (14), we notice that the term Cη−γ

k is replaced by a simpler constant
C in this theoretical equation, which is a little misalignment between theory and practice. This
theorem shows that there exists a theoretical setting where Multi-Power arises in the learning curve.
The detailed proof of Theorem 1 can be found in Appendix K.

Beyond this quadratic case, to get more systematic theoretical results, which are also more realistic,
we should take inspiration from data and the loss landscape side. Recent work proposes a river-
valley loss landscape perspective based on sharpness analysis, to understand the advantage of the
WSD schedules (Wen et al., 2024).

C FORMULA COMPONENT ABLATION

Table 3: Summary of fitting results for simplified versions and variants of the MPL. Metrics include
R2, MAE, RMSE, PredE, and WorstE, where higher R2 values and lower values of other metrics
indicate better fitting performance. See Table 1 for metric definitions.

Formula Features R2 ↑ MAE↓ RMSE↓ PredE↓ WorstE↓
OPL LD(t) = 0 (B = 0) 0.8309 0.0378 0.0412 0.0111 0.0241

LLDL G(x) = 1 0.9797 0.0077 0.0101 0.0023 0.0108
No-γ γ = 0 0.9961 0.0046 0.0053 0.0014 0.0041
SPL x = t− k 0.9921 0.0066 0.0075 0.0020 0.0069
MEL G(x) = 1− e−Cx, γ = 0 0.9934 0.0044 0.0057 0.0013 0.0047
MTL G(x) = 1− e−Cx, x = t− k 0.9904 0.0047 0.0060 0.0014 0.0047
MPL G(x) = 1− (Cx+ 1)−β , 0.9975 0.0039 0.0046 0.0012 0.0040

(Ours) x = η−γ
k

∑t
τ=k ητ

To understand and evaluate the role of each component in our Multi-Power Law (MPL; See (1)),
we systematically simplify the MPL formula at various levels and explore alternative formulations.
Table 3 summarizes the fitting performance of these simplified versions and variants of the MPL.
The fitting experiments are conducted on 25M models, using the same experimental setup described
in Appendix F.

19

Published as a conference paper at ICLR 2025

No Loss Reduction. The necessity of the loss reduction term LD(t) can be assessed by fitting a
One-Power Law (OPL), a simplified MPL where LD(t) = 0 or equivalently B = 0:

LOPL(t) = L0 +A · (S1(t) + SW)
−α

, S1(t) :=

t∑
τ=1

ητ . (19)

This formulation approximates the loss curve by matching the LR sum without correction term,
as discussed in Section 3.1. The fitted results (first row of Table 3) exhibit significant degradation
compared to the full MPL, demonstrating the critical role of LD(t).

Linear Approximation of Loss Reduction. Based on the observation in Section 3.2.2, the loss
reduction term LD(t) (defined in Equation (2)) can be simplified by treating the scaling function
G(x) as a constant:

LD(t) ≈
t∑

k=1

B(ηk−1 − ηk) = B(η0 − ηt). (20)

Despite its simplicity, we observe a near-linear relationship between LD(t) and the LR reduction
(η0−ηt), regardless of the LR schedule type, as shown in Figure 10. This motivates the Linear Loss
reDuction Law (LLDL):

LLLDL(t) = L0 +A · (S1(t) + SW)
−α

+B(η0 − ηt). (21)
As shown in Table 3, LLDL achieves significantly better accuracy than OPL, although it underper-
forms the full MPL. However, this formulation is unsuitable for optimizing schedules, as its results
collapse to a trivial solution: ηk = η0 when k ≤ T − 1 and ηk = 0 when k = T .

Loss Reduction Without γ. Next, we simplify G(x) by setting γ = 0, yielding the No-γ Law:

LNo−γ = L0 +A · (S1(t) + SW)
−α

+B

t∑
k=1

(ηk−1 − ηk) ·G(Sk(t)). (22)

Results (third row of Table 3) show a slight performance drop, confirming that γ enhances fitting
accuracy with minimal additional computational cost. Thus, we retain γ in the final MPL.

Step-Based Approximation. An alternative is to replace G(η−γ
k Sk(t)) with a step-based formu-

lation, G(t− k + 1). This yields the Step Power Law (SPL):

LSPL = L0 +A · (S1(t) + SW)
−α

+B

t∑
k=1

(ηk−1 − ηk) ·G(t− k + 1). (23)

While simpler, this approximation reduces prediction accuracy and contradicts empirical results,
because it implies loss reduction continues to increase even when LR reaches zero.

Exponential Approximation. Substituting G(x) with an exponential function G(x) = 1− e−Cx

gives the Multi-Exponential Law (MEL):

LMEL = L0 +A · (S1(t) + SW)
−α

+B

t∑
k=1

(ηk−1 − ηk) ·G(Sk(t)). (24)

Results (fifth row of Table 3) show a performance drop compared to the power-based MPL, consis-
tent with observations in Appendix A.1 that Ũ(t, ηk) takes a power form rather than an exponential
form.

Relation to Momentum Law. The concurrently proposed MomenTum Law (MTL) is in the form
of

LMTL(t) = L0 +A · (S1 + SW)
−α

+B · S2, where S1 =

t∑
i=1

ηi, S2 =

t∑
i=1

i∑
k=1

(ηk−1 − ηk)λ
i−k,

where λ is a hyper-parameter of MTL and λ < 1. It is indeed a variant of MPL since

S2 =

t∑
i=1

i∑
k=1

(ηk−1 − ηk)λ
i−k =

t∑
k=1

(ηk−1 − ηk)

t∑
i=k

λi−k =

t∑
k=1

(ηk−1 − ηk)

(
1− λt−k+1

1− λ

)
.

Thus, MTL is a variant of MPL with an exponential step-based approximation:
LMTL(t) = L0 +A · (S1(t) + SW)

−α
+B′ ·G(t− k + 1), G(x) = 1− e−C′x.

20

Published as a conference paper at ICLR 2025

Here, B′ = B
1−λ , C ′ = − log λ. MTL incorporates step-based decay and its performance (last

second row of Table 3) even lags behind MEL, highlighting the limitations of step-based approxi-
mations.

D LIMITATION AND FUTURE DIRECTION

Although our Multi-Power Law (MPL) exhibits excellent prediction accuracy and enables practical
schedule optimization, certain limitations remain. The reliance on a pre-determined peak LR may
limit the broader applicability of our Multi-Power Law. Furthermore, we observe slight deviations
between our predictions and the actual training curves, which may arise from several simplifications
in our derivation of the Multi-Power Law. These include assumptions that the coefficient β remains
constant across different LR scales, that intermediate loss reduction are independent of prior LR
sequences, and that LR variations during the warm-up phase are not accounted for.

Our future work will pursue three objectives: (1) explore the theoretical understanding of the op-
timization landscape and scaling laws to uncover their underlying mechanisms, (2) investigate em-
pirical laws with unfixed maximum learning rates and other hyperparameters, and (3) refine our
Multi-Power Law to further enhance prediction accuracy and generalizability. We believe that en-
hancing the robustness and precision of this scaling law promises to further boost training efficiency,
particularly for large-scale models.

E RELATED WORK

Optimal Learning Rate Schedule. Designing effective learning rate (LR) schedules is a promi-
nent research focus in deep learning. Early work by Smith (2017) proposed a cyclical learning rate
schedule. Loshchilov & Hutter (2017), inspired by warm restarts, introduced the cosine learning
rate schedule, demonstrating its superiority across multiple experimental settings. From a theoret-
ical perspective, Li & Arora (2019) introduced an exponential decay learning rate schedule based
on the equivalence of weight decay. Xu et al. (2019); Teng et al. (2021) utilized reinforcement
learning algorithms or Bayesian optimization for adaptive LR tuning. Pan et al. (2021) proposed
an eigenvalue-dependent step schedule by incorporating the eigenvalue distribution of the objective
function’s Hessian matrix into the design of the learning rate schedule. Recently, Hu et al. (2024)
introduced the Warmup-Stable-Decay (WSD) schedule, which starts with a warmup phase, contin-
ues a main stable phase, and ends with a rapid decay phase, showing good performance in LLM
pretraining and enabling efficient continual training. Concurrent studies (Wen et al., 2024; Schaipp
et al., 2025) analyze WSD schedules via the loss landscape structures. Geiping & Goldstein (2023);
Zhai et al. (2022); Ibrahim et al. (2024); Hägele et al. (2024); Shen et al. (2024) also advocate slow-
decay or stable phase followed by a rapid decay. Recent open-source models (DeepSeek-AI et al.,
2024; OLMo et al., 2024) also adopt these kinds of stage-wise decay schedules. Additionally, a
linear-to-zero decay is proposed to be optimal in recent work (Bergsma et al., 2025).

However, some of these papers rely on heuristic designs on LR schedules lacking a comprehensible,
principled approach, while others try to optimize schedules within function subspaces, or draw
conclusions based on some assumptions over the real-world data distribution to facilitate the loss
landscape analysis. Consequently, the generality of these findings is often limited. Our paper seeks
to open the door to a principled and comprehensible path of the optimal learning rate schedule
design.

Scaling Laws. Scaling laws have arguably been the driving force behind the development of large
language models. Initially proposed by Kaplan et al. (2020) and further developed by Hoffmann
et al. (2022), Kadra et al. (2023), Aghajanyan et al. (2023) and Muennighoff et al. (2023), among
others, most scaling laws adopt a power law form. However, due to the lack of dependence on the
learning rate, these laws typically predict only the final loss of a training process, lacking guidance
for the full training curve. This is because only the final loss bears a full LR decay while the LR
decays at the intermediate steps are not sufficient. Typically, they need more than 10 training curves
to obtain the scaling law of the final losses for one particular schedule type, the cosine schedule
practically (Hoffmann et al., 2022; Muennighoff et al., 2023). As a comparison, we could fit the
LR-dependent Multi-Power Law applicable across different LR schedule types within only 2-3 loss
curves.

21

Published as a conference paper at ICLR 2025

Several explanations for the power law form of scaling laws have been proposed, ranging from the
perspective of data manifolds (Sharma & Kaplan, 2020) to the power law distribution of eigenvalues
in the loss landscape (Lin et al., 2024). In our paper, we do not delve into the discussion about the
model dimension scaling, we discuss the scaling along the data dimension and the LR dimension.
We believe it offers new perspectives and a novel starting point for theoretical investigations.

Hyperparameters Optimization. Hyperparameter optimization has long been a focal point of
research within the machine learning community, with early efforts like Bengio (2000) exploring
gradient-based approaches (Bengio, 2000; Franceschi et al., 2017; Maclaurin et al., 2015) to improve
the hyperparameter optimization. For learning rate schedules (LR schedule), early works primarily
employed Bayesian optimization-based approaches (Hutter et al., 2011; Snoek et al., 2012; Bergstra
et al., 2013) or bandit-based solutions (Li et al., 2018) to tune hyperparameters. These methods often
model LR schedules as learnable constants or parametric function families, prioritizing theoretical
and experimental simplicity over comprehensive exploration of the whole LR schedule space. More
recent approaches, such as Teng et al. (2021); Jin et al. (2021), adjust LR schedule during training
automatically, but these approaches cannot identify the optimal LR schedule before training, and
they fail to fully generalize across different datasets, limiting their applicability to LLM training.
In contrast, Klein et al. (2022) selects hyperparameters based on differences in learning curves for
various hyperparameters, and Kadra et al. (2024) recognizes the power law phenomenon and de-
velops HP methods based on power law. Our contribution advances this field by proposing a more
robust scaling law than the power law specifically for the LR schedule dimension and present a
comprehensive framework for optimizing LR schedule.

Theory in Scaling Law. Although there are numerous experimental studies on scaling law, the
theoretical explanation of scaling law remains very limited. Sharma & Kaplan (2020) demonstrated
that the exponent of the power law is related to the intrinsic dimension of the data in a specific
regression task. Hutter (2021) examined a binary classification toy problem, deriving a scaling law
with respect to data dimensionality for this problem. Jain et al. (2024) investigated scaling laws in
the context of data selection. Bahri et al. (2024) assumed a power-law spectrum on the covariates,
obtaining a scaling law with respect to data and model dimensions in the setting of least squares loss.
Bordelon et al. (2024) considered scaling laws in regression problems under gradient flow. Atanasov
et al. (2024) and Lin et al. (2024) discussed the formation of scaling laws in high-dimensional linear
regression problems. Notably, our theoretical analysis provides a loss prediction throughout the
training process from the perspective of the learning rate schedule, formally resembling the Multi-
Power Law observed in our experiments.

F EXPERIMENT SETTING

Unless otherwise specified, the model training in the Section 3, 4 and 5 follows the following set-
tings.

Codename Embedding Dimension #Heads #Layers #Non-embeddings #Params

25M 640 5 5 25 89
100M 1024 8 8 101 205
400M 1536 12 12 340 493

1B 2048 32 16 822 1026
GPT-2 768 12 12 85 162

Table 4: The model series run in all the experiments. Hoffmann et al. (2022) utilizes the number
of non-embedding parameters (#Non-embeddings) to count model sizes, while Kaplan et al. (2020)
counts the total number of parameters (#Params). The unit of the Parameter is M in this table.

Our validation contains two steps: (1) fitting schedule-curve pairs from the training set and (2) pre-
dicting the loss curves for schedules in the test set. The training set contains only a single 24,000-step
constant and cosine schedule pair, alongside a 16,000-step two-stage schedule of ηB = 0.3ηA. The
test set has one 72,000-step constant and cosine schedule, 24,000-step unseen WSD and WSDLD
schedules, and 16,000-step two-stage schedules with ηB = 0.1ηA and ηB = 0.6ηA. The details are
provided in Table 6. We train Llama2 (Touvron et al., 2023) models of 25M, 100M, and 400M, and

22

Published as a conference paper at ICLR 2025

Default Hyperparameter Value
Sequence Batch Size 128
Sequence Length 4096
Optimizer Type AdamW
β1 0.9
β2 0.95
ϵ 1× 10−8

Weight Decay 0.1
Gradient Clipping 1.0
Peak Learning Rate 3× 10−4

Final Learning Rate 3× 10−5

Warmup Steps 2160

Table 5: Hyperparameters related to model training.

2000 4000 6000 8000 10000 12000 14000
Step

3.4

3.5

3.6

3.7

3.8

3.9

4.0

4.1

Lo
ss

loss
pred
loss
pred 36

24

16

12

10

6

3

1

Le
ar

ni
ng

 R
at

e
(x

10
4)

(a) Peak LR Ablation for Constant Schedules

0 10000 20000 30000 40000 50000 60000 70000
Step

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Lo
ss

Loss(400M)
Pred(400M)
Loss(100M)
Pred(100M)
Loss(25M)
Pred(25M)

(b) Model Size Ablation for Long-Horizon Training

Figure 11: Loss curves for constant LR schedules. pred denotes the fitted law prediction and loss represents
the ground-truth loss curve. See Appendix G.1 for details.

collect their loss curves, with model parameter details in Table 4. Training employs the AdamW
optimizer, with a weight decay of 0.1, gradient clipping at 1.0, β1 = 0.90, and β2 = 0.95, consistent
with the Llama2 training setup. Default hyperparameters include a peak LR of 3× 10−4, a warmup
period of 2160 steps, and a batch size of 0.5M. Additional hyperparameters are detailed in Table 5.
In ablation studies, we simplify the experiment to fit short constant and cosine schedules and predict
the loss for a long-horizon cosine schedule. The MPL fitting employs Huber loss (Huber, 1992) as
the objection function, aligning with prior work (Hoffmann et al., 2022; Muennighoff et al., 2023),
and uses the Adam optimizer for optimization. Unless otherwise specified, we report validation loss.
For fitting approaches and additional details see Appendix H.

G DISCUSSIONS OF MULTI-POWER LAW DERIVATION (SECTION 3)

G.1 CONSTANT PROCESS LOSS APPROXIMATION (SECTION 3.1)

The constant process employs a constant LR schedule with the same warmup phase and peak LR as
the actual process schedule. We validate (5), the LR sum power law of the loss curves for constant
schedules, through two series of experiments. First, we conduct ablation over the peak LR, ranging
from 3.0 × 10−4 to 3.6 × 10−3 over 14,400 steps, achieving an MSE of 1.55 × 10−5 and R2 of
0.9976 (Figure 11(a)). Second, we validate the power form over long-horizon curves (72,000 steps)
for model sizes of 25M, 100M, and 400M, with a peak LR of 3.0× 10−4, yielding an average MSE
of 8.04× 10−5 and R2 of 0.9947 (Figure 11(b)).

23

Published as a conference paper at ICLR 2025

G.2 TWO-STAGE EXPERIMENTS (APPENDIX A.1)

In this section, we provide details on the investigation of the variation of coefficients in the power
law for two-stage LR schedules.

Experiment Setting and Law Fitting. The experiment setting aligns with Appendix F. Default
configuration uses ηA = 3 × 10−4, ηB = 3 × 10−5, TA = 8000. In the ablation experiments, ηA
ranges from 5×10−5 to 1×10−3, ηB ranges from 4×10−5 to 2.9×10−4, and TA ranges from 4000
to 28000. The second stage lengths spanning 1,000 to over 6,000 steps. Validation loss is sampled
every 2 steps due to the rapid loss changes after the stage switch. Following Hoffmann et al. (2022),
we fit the law utilizing Huber loss as the objection function (Huber, 1992),

min
Θ

∑
x

Huberδ(log L̂DΘ(TA + x)− log LD(TA + x)), (25)

where Θ = {B̃, C̃, β}, and we set δ = 1× 10−2. For each experiment, we use the Adam optimizer
with a learning rate at 1 × 10−4 and total steps of 20000. Here we do not conform to the L-BFGS
algorithm like Hoffmann et al. (2022) due to its sensitivity to the initialization. In our fitting, the
parameters are initialized based on the loss reduction curve shape: B̃ corresponds to the estimation
of asymptotic values of loss reduction and C̃ can be estimated according to the slope at x = 0 step
(Equation (16)).

Fixed β Experiments for Parameter Patterns. We fit the power-law form in Equation (16) across
ablation experiments to identify the loss curve shape and power-law parameter patterns. For the sake
of further derivation, we fix the exponent β as LR-independent parameter 0.4 based on the warmup
experiments. Then we re-fit the loss curves fixing β = 0.4 to confirm the validity of the power
form. Figure 12 includes the re-fitted curves and ground truths for the ablation experiments over ηA
and ηB, showing feasible error margins for further derivation despite fixed β. We further investigate
the dependency of different parameters on the ηA, ηB, and TA, with pair-wise relations presented in
Figure 8 and summarized in Appendix A.1.

0 1000 2000 3000 4000 5000 6000
Step

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Lo
ss

 R
ed

uc
tio

n

Average Error: 2.75e-06
loss reduction
pred
loss reduction
pred 5

10
15
20
25
30

40

60

100

A
 (x

10
5)

(a) ηA Ablation

0 1000 2000 3000 4000 5000 6000
Step

0.00

0.02

0.04

0.06

0.08

0.10

Lo
ss

 R
ed

uc
tio

n

Average Error: 4.99e-06
loss reduction
pred
loss reduction
pred

4

7

12

16

18

22

26

29

B
 (x

10
5)

(b) ηB Ablation

Figure 12: Power-law fitting of loss reductions versus steps x for two-stage LR schedules.

G.3 MULTI-STAGE EXPERIMENTS (APPENDIX A.2)

We analyze intermediate loss reduction dependency on the LR prefix, through experiments of a
multi-stage schedule and its auxiliary (intermediate) processes. As shown in Figure 3, our multi-
stage schedule consists of 9 stages, with a first stage of 8,000 steps at 3 × 10−4, followed by eight
90-step stages. The validation interval is also set to 2 steps. For adjacent stages i−1 and i (x ≤ 90),
We compute LD(i)(Ti+x), as defined in Appendix A.2 and fit it going through the same law fitting
process as Equation (25). The fitting of loss reductions for different stages is presented in the left
panel of Figure 9. Moreover, parameter trends, analogous to the two-stage findings, reveal B̃(i)

changing with η(i−1) − η(i) and C̃(i) changing with η(i), shown in the right two sub-figures of
Figure 9.

24

Published as a conference paper at ICLR 2025

H DETAILS OF VALIDATION EXPERIMENTS (SECTION 4)

H.1 TRAINING SET AND TEST SET

Set Schedule Type Total Lengths ηB/ηA

Training
Constant 24,000
Cosine 24,000

Two-stage 16,000 0.3

Test

WSD 24,000
WSDLD 24,000

Two-stage 16,000 0.1
Two-stage 16,000 0.6
Constant 72,000
Cosine 72,000

Table 6: Summary of training and test sets.

Our validation frames the Multi-Power Law (MPL) fitting as a machine learning task, training on
schedule-loss curve pairs from the training set and predicting loss curves for the test set. The training
set contains a 24,000-step constant and cosine schedule pair, and a 16,000-step two-stage schedule
with ηB = 0.3ηA. The test set includes a 72,000-step constant and cosine schedule, a 24,000-step
unseen WSD and WSDLD schedule, and 16,000-step two-stage schedules with ηB = 0.1ηA and
ηB = 0.6ηA. The peak learning rate is 3×10−4, and the ending learning rate is 3×10−5 for the co-
sine, WSD, and WSDLD schedules. For all two-stage schedules, TA = 8000. All schedules include
a warmup phase of 2,160 steps. Detailed descriptions of the training and test sets are summarized in
Table 6.

H.2 LAW FITTING

Similar to the two-stage fitting, we fit the parametric law using the Huber loss as the objective (Hu-
ber, 1992):

min
θ

∑
t

Huberδ(logLθ(Xt)− logLgt(Xt)), (26)

where Lgt(Xt) denotes the ground truth of validation loss, and Lθ(Xt) is the predicted loss, and δ is
a hyperparameter for the Huber loss. The total fitting loss sums up the Huber loss over the validation
steps. In practice, we compute the area under the linearly interpolated polyline of the learning rate at
validation steps as a surrogate for the LR sum. This approach reduces the computational cost since
requiring only step numbers, learning rates, and losses at validation steps.

Multi-Power Law. For the Multi-Power Law (MPL), θ = {A,B,C, α, β, γ, L0}, and Xt =
{η1, . . . , ηt}. We use the Adam optimizer to fit the MPL due to its flexibility, with a learning
rate of 5 × 10−3 for the index parameters (α, β, and γ) and 5 × 10−2 for the coefficient or con-
stant parameters (A, B, C, and L0). We also perform a second optimization with a learning rate of
1 × 10−5 and 1 × 10−6, initialized with parameters from the first optimization. Each optimization
runs for 5 × 104 steps, selecting the lowest training loss result. Fitted parameters are listed in Ta-
ble 7. In the discussion of Appendix C, we also fit simplified MPL or MPL variants in this manner,
except for the momentum law (Appendix H.2). In Figure 13, we present the fitting and prediction
results for a subset of experiments, with a zoom-in window highlighting predictions near the end of
training. In long-horizon experiments, the zoomed-in view reveals slight discrepancies between the
MPL predictions and the actual training curves, targeted for future refinement.

Momentum Law. For the momentum law (MTL; Appendix C), θ = {A,B, α, L0}, with
λ as a tunable hyperparameter. The input Xt for MTL is the same as MPL’s input. Fol-
lowing Tissue et al. (2024), we use L-BFGS to minimize Equation (26), grid-searching λ ∈
{0.95, 0.99, 0.995, 0.999, 0.9995} and selecting the best fit based on training accuracy. Predictions
are evaluated across the test set (Table 6), with comparisons to MPL in Table 1 and Figure 14. In
Figure 14, we compare them specifically over the WSDLD schedule. In the decay stage, MPL not

25

Published as a conference paper at ICLR 2025

7500 10000 12500 15000 17500 20000 22500
Step

3.30

3.35

3.40

3.45

3.50

3.55

Lo
ss 20000 21000 22000 23000

3.30

3.32

3.34

Learning Rate
Loss
Multi-power
One-power

0.5

1.0

1.5

2.0

2.5

Le
ar

ni
ng

 R
at

e
(x

10
4)

6000 8000 10000 12000 14000 16000
Step

2.85

2.90

2.95

3.00

3.05

Lo
ss 13000 13500 14000 14500 15000 15500

2.84

2.86

2.88

Learning Rate
Loss
Multi-power
One-power 1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

7000 8000 9000 10000 11000 12000 13000 14000
Step

3.400

3.425

3.450

3.475

3.500

3.525

3.550

Lo
ss 11500 12000 12500 13000 13500 14000

3.39

3.40

3.41

3.42

3.43

Learning Rate
Loss
Multi-power
One-power 1.8

2.0

2.2

2.4

2.6

2.8

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

10000 20000 30000 40000 50000 60000 70000
Step

2.6

2.7

2.8

2.9

3.0

Lo
ss 60000 62500 65000 67500 70000

2.60

2.62

2.64

2.66

2.68

Learning Rate
Loss
Multi-power
One-power

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

7500 10000 12500 15000 17500 20000 22500
Step

2.95

3.00

3.05

3.10

3.15

3.20

3.25

Lo
ss 20000 21000 22000 23000

2.94

2.96

2.98

3.00

3.02

3.04

Learning Rate
Loss
Multi-power
One-power

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

10000 20000 30000 40000 50000 60000 70000
Step

2.95

3.00

3.05

3.10

3.15

3.20

3.25

Lo
ss 60000 62500 65000 67500 70000

2.935

2.940

2.945

2.950

Learning Rate
Loss
Multi-power
One-power 2.85

2.90

2.95

3.00

3.05

3.10

3.15

Le
ar

ni
ng

 R
at

e
(x

10
4)

Figure 13: Fitting and Prediction Details. Subfigures depict loss curve fitting (training set) and prediction
(test set) across various configurations, labeled as (X,Y) for row X , column Y . The columns in the accom-
panying table indicate: F/P for Fitting (F) or Prediction (P), Model Size, Step Length, and Learning Rate
Schedule. Subfigure details follow:

(X,Y) F/P Model Size Step Length LR Schedule

(1, 1) F 25M 24,000 Cosine
(1, 2) F 400M 16,000 2-stage (3× 10−4 → 9× 10−5)
(2, 1) P 25M 16,000 2-stage (3× 10−4 → 1.8× 10−4)
(2, 2) P 400M 72,000 Cosine
(3, 1) P 100M 24,000 WSD
(3, 2) P 100M 72,000 Constant

26

Published as a conference paper at ICLR 2025

Table 7: Parameter values for optimized schedules across different model sizes, rounded to two
decimal places.

Model Size A B C α β γ L0

400M 0.66 614.30 0.16 0.42 0.88 0.56 2.52
100M 0.59 521.40 0.24 0.46 0.60 0.65 2.79
25M 0.51 446.40 2.07 0.53 0.41 0.52 3.17

5 10 15 20 25
Step(×103)

3.4

3.6

3.8

4.0

Lo
ss

22.0 22.5 23.0 23.5 24.0
3.3100

3.3125

3.3150

3.3175

3.3200

Seed 45018
Seed 337
Seed 1660

(a) Random Seed Ablation

5000 10000 15000 20000 25000
Step

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

WSDLD

3.0

3.2

3.4

3.6

3.8

Lo
ss

18000 20000 22000

2.95

3.00

3.05

3.10

Loss
Multi-power
One-power
Momentum

(b) Comparison with Momentum Law

Figure 14: (a) Experiments with a 25M model over 24,000 steps across different seeds, showing a final
loss standard deviation of 0.0007 and a maximum gap of 0.0014. (b) Comparison between Multi-Power Law
(MPL) and Momentum Law (MTL). In the decay stage, MPL achieves higher fitting accuracy and matches
the curvature of the loss curve, whereas MTL fits the stable stage but predicts a counterfactual concave curve
during the decay stage.

only achieves higher fitting accuracy but also aligns with the curvature of the loss curve. In contrast,
MTL fits the stable stage well but predicts a counterfactual concave curve during the decay stage.

Chinchilla Data Scaling Law. The Chinchilla Data Scaling Law (CDSL) is similar to the one-
power law mentioned in Appendix C, but uses the power of steps instead of the LR sum, with
θ = {A,α, L0}, and Xt = t (final steps only) for Equation (26). The fitting of CDSL follows
Hoffmann et al. (2022) and uses the L-BFGS algorithm to minimize the Huber loss. With regard
to sample efficiency (Figure 5(a)), CDSL uses cosine curves at 14,960, 20,080, 27,760, 40,560,
53,360, and 72,000 steps, requiring 4.8 times more compute than MPL (two 24,000-step curves),
with prediction errors of 0.007 (MPL) versus 0.024 (CDSL). MPL achieves less than one-third the
prediction error of CDSL. In Figure 5(b), CDSL fits all intermediate steps, ignoring the effect of LR
schedule and loss reductions for the comparison with MPL.

Discussion on the Optimization Method. We also explored the use of the L-BFGS algorithm
for fitting MPL but found it highly sensitive to parameter initialization. For instance, under certain
initializations, the fitted parameters may include a high β value and a near-zero C. Note that 1 −
(1 + Cx)−β = 1− exp(−β log(1 + Cx)) ≈ 1− exp(−βCx) in this case, making MPL resemble
a multi-exponential form. In practice, this issue can be mitigated by constraining parameters such
as β and γ to the interval (0, 1). Additionally, we can initialize C, β, and γ through grid search to
obtain more feasible results. However, using the Adam optimizer is not without limitations, as it
lacks theoretical convergence guarantees. Future work will focus on enhancing the fitting process to
achieve greater robustness and stability.

H.3 ABLATION EXPERIMENTS

We perform ablation studies over key hyper-parameters to assess the applicability and robustness of
the Multi-Power Law (MPL). These hyperparameters include the model architectures, model sizes,
peak learning rates, batch sizes, and random seeds, incorporating both self-conducted and open-
source experimental results.

27

Published as a conference paper at ICLR 2025

5000 10000 15000 20000 25000
Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

Cosine
WSD
WSDSC
Loss
LR

3.25

3.50

3.75

4.00

4.25

4.50

Lo
ss

18000 19000 20000 21000 22000 23000

3.25

3.30

(a) Loss Curve Comparison for GPT-2

10000 20000 30000 40000 50000 60000 70000
Step

3.2

3.3

3.4

3.5

3.6

Lo
ss 60000 62500 65000 67500 70000

3.14

3.16

3.18

3.20

3.22

Learning Rate
Loss
Multi-power
One-power

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

(b) Long-Horizon Prediction for GPT-2

Figure 15: Loss curves of GPT-2 models with Multi-Power Law fitted over 24,000-step constant and cosine
schedule losses. (a) Comparison between the cosine, WSD, and WSDSC schedules (see Section 5.2); (b)
Prediction for a 72,000-step cosine schedule loss curve.

Model Architectures. We validate MPL’s generalizability across GPT-2 (Radford et al., 2019) and
OLMo (Groeneveld et al., 2024) models to evaluate the generalizability of the MPL across model
architectures. For GPT-2, we go through the simplified experiments, fitting the MPL on cosine and
constant schedules of 24,000 steps and predicting the 72,000-step loss of the cosine schedule. The
prediction result is illustrated in Figure 15 and model parameters align to GPT-2 small Radford
et al. (2019), as detailed in Table 4. For the 7B OLMo model, we fit the MPL on the open-source
training curve, which employs a linear decay schedule, as shown in Figure 5(b). Our results show
that the MPL presents a high prediction accuracy across different model types for both self-run and
open-source experiments.
Model Size To test MPL at scale, we train a 1B model on 144B tokens with a batch size of
2M-token and peak LR of 2 × 10−4 for training stability. The model architecture matches Llama-
3.2-1B (Dubey et al., 2024) and is detailed in Table 4. Simplified experiments involve fitting MPL
to 24,000-step constant and cosine schedules and predicting the 72,000-step loss for both, as shown
in Figure 6(a). Results demonstrate MPL’s consistent performance across model sizes, as well as the
robustness under a different peak LR and batch size.
Peak Learning Rate We further investigate MPL’s robustness across varying peak learning rates.
While prior experiments fixed the peak learning rate at 3 × 10−4, empirical observations of two-
stage schedules reveal deviations at higher rates, as illustrated in Figure 8. Therefore, we run full
experiments with peak learning rates of 4×10−4 and 6×10−4 on 25M models, yielding average R2

values of 0.9965 and 0.9940 respectively, underscoring MPL’s consistently decent accuracy while
accuracy degrading as peak LR goes up. The training and test set conform to Table 6 and the fitting
results are shown in Figure 17.
Batch Size We extend experiments to batch sizes of 64 and 256 sequences on 25M models, com-
plementing the prior 128-sequence (0.5M) results, with sequence length of 4096. MPL maintains
high accuracy, with R2 values exceeding 0.9970 across all cases, as illustrated in Figure 16. These
experiments indicate that, while the coefficients of MPL are batch-size dependent, the functional
form of MPL remains robust across varying batch size configurations
Random Seeds To assess the influence of random seed variability, we train a 25M model over
24,000 steps using cosine schedules with three distinct seeds. As shown in Figure 14(a), the loss
values exhibit a standard deviation of approximately 0.001, establishing a lower bound for prediction
error and highlighting MPL’s precision.

I DETAILS OF OPTIMIZED LR SCHEDULE (SECTION 5)

Optimizing the Surrogate Objective. To enhance optimization stability, we redefine the learning
rate schedule E = {η0, η1, . . . , ηT } using dη = {dη1, dη2, . . . , dηT }, where dηi = ηi−1 − ηi.
Thus, ηi = η0 −

∑i
k=1 dηk, establishing a one-to-one mapping between E and dη. We transform

28

Published as a conference paper at ICLR 2025

5000 10000 15000 20000 25000
Step

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

Const
Cosine
Two-Stage

B = 9 × 10 5

5000 10000 15000 20000 25000
Step

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

Two-Stage
B = 1.8 × 10 4

WSD
WSDLD

0 2 4 6
Step (x104)

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

Const
Cosine

5000 10000 15000 20000 25000
Step

3.4

3.6

3.8

4.0

Lo
ss

loss
pred

5000 10000 15000 20000 25000
Step

3.4

3.6

3.8

4.0

Lo
ss

loss
pred

0 2 4 6
Step (x104)

3.4

3.6

3.8

4.0

4.2

Lo
ss

Const loss
Const pred
Cosine loss
Cosine pred

5000 10000 15000 20000 25000
Step

3.3

3.4

3.5

3.6

3.7

3.8

Lo
ss

loss
pred

5000 10000 15000 20000 25000
Step

3.3

3.4

3.5

3.6

3.7

3.8

Lo
ss

loss
pred

0 2 4 6
Step (x104)

3.2

3.4

3.6

3.8

4.0

Lo
ss

Const loss
Const pred
Cosine loss
Cosine pred

Figure 16: Ablation study on batch sizes, with R2 values of 0.9977 (batch size 64) and 0.9973 (batch size
256). The subfigure layout is as follows. Rows: (1) Learning rate schedules, (2) Loss curves for batch size
64, (3) Loss curves for batch size 256. Columns: (1) Training set results, (2) Test set results (same horizon as
training), (3) Test set results (extended horizon).

the objective LΘ̂(E) in Equation (15) into L̃Θ̂(dη), optimizing:
min
dη

L̃Θ̂(dη)

s.t.
T∑

i=1

dηi ≤ η0,

0 ≤ dηi, ∀i = 1, . . . , T.

In practice, we relax this to:
min
dη

L̃Θ̂(dη)

s.t. 0 ≤ dηi ≤ η0,

enforcing constraints via clipping. This reformulation, applied to the MPL fitted from Appendix H.1,
empirically stabilizes optimization by aligning learning rate reductions with zero initialization. For
optimization, we use the Adam optimizer with a constant learning rate, grid searched from 2×10−8

to 1 × 10−9, over 50,000 to 200,000 for better convergence. The resulting dη satisfies the original
constraint.

Optimized Schedule of Longer Horizons and Different Model Sizes. Beyond Figure 1 and
Figure 18, we validate the optimized schedules for extended horizons and different model sizes. For
models ranging from 25M to 400M, we optimize LR schedules for 72,000-step training based on
the MPL fit over the training set. As shown in Figure 19, the resulting schedules exhibit a WSD-
like shape, consisting of a stable phase and a decay phase, outperforming cosine schedules across
sizes. For the 1B model, we derive a 72,000-step schedule based on the MPL fitted from 24,000-step
constant and cosine schedule curves, with results in Figure 6(b) confirming superiority over cosine

29

Published as a conference paper at ICLR 2025

5000 10000 15000 20000 25000
Step

1

2

3

4

Le
ar

ni
ng

 R
at

e
(x

10
4)

Const
Cosine
Two-Stage

B = 1.2 × 10 4

5000 10000 15000 20000 25000
Step

3.4

3.6

3.8

Lo
ss

loss
pred

5000 10000 15000 20000 25000
Step

1

2

3

4

Le
ar

ni
ng

 R
at

e
(x

10
4)

Two-Stage
B = 4 × 10 5

WSD
WSDLD

5000 10000 15000 20000 25000
Step

3.4

3.6

3.8

Lo
ss

loss
pred

0 1 2 3 4 5 6 7
Step (x104)

1

2

3

4

Le
ar

ni
ng

 R
at

e
(x

10
4)

Const
Cosine

0 1 2 3 4 5 6 7
Step (x104)

3.2

3.4

3.6

3.8

4.0

Lo
ss

Const loss
Const pred
Cosine loss
Cosine pred

5000 10000 15000 20000 25000
Step

2

4

6

Le
ar

ni
ng

 R
at

e
(x

10
4)

Const
Cosine

5000 10000 15000 20000 25000
Step

3.4

3.6

3.8

Lo
ss

loss
pred

5000 10000 15000 20000 25000
Step

2

4

6

Le
ar

ni
ng

 R
at

e
(x

10
4)

Two-Stage
B = 6 × 10 5

WSD
WSDLD

5000 10000 15000 20000 25000
Step

3.4

3.6

3.8

Lo
ss

loss
pred

0 1 2 3 4 5 6 7
Step (x104)

2

4

6

Le
ar

ni
ng

 R
at

e
(x

10
4)

Const
Cosine

0 1 2 3 4 5 6 7
Step (x104)

3.2

3.4

3.6

3.8

Lo
ss

Const loss
Const pred
Cosine loss
Cosine pred

Figure 17: Ablation study on peak learning rates. Left: Learning rate schedules; Right: Corresponding loss
curves. Layout: The first three rows show the results for a peak LR of 4 × 10−4 while the last three rows are
for the peak LR of 6×10−4. Within each set of the three rows, the first row shows the fitting on the training set,
the second row displays the prediction over unseen schedules and the third row demonstrates the extrapolation
capability on a long horizon loss curve.

30

Published as a conference paper at ICLR 2025

5000 10000 15000 20000 25000
Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

Cosine
WSDLD
WSD
Opt

5000 10000 15000 20000 25000
Step

3.4

3.6

3.8

4.0

Lo
ss

19000 20000 21000 22000 23000
3.26

3.28

3.30

3.32

3.34

Cosine
WSDLD
WSD
Opt

5000 10000 15000 20000 25000
Step

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

Cosine
WSDLD
WSD
Opt

5000 10000 15000 20000 25000
Step

3.0

3.2

3.4

3.6

3.8

Lo
ss

19000 20000 21000 22000 23000

2.94

2.96

2.98

3.00

3.02

3.04

Cosine
WSDLD
WSD
Opt

Figure 18: Comparison of our optimized LR schedules and their loss curves with cosine, WSD, and WSDLD
schedules over 24,000 steps. The decay step for WSD and WSDLD is set to 4,000. Upper: 25M model;
Lower: 100M model. Left: Learning rates over steps. Right: Losses over steps.

0 10000 20000 30000 40000 50000 60000 70000
Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

Cosine
Opt(25M)
Opt(100M)
Opt(400M)
Loss
Learning Rate

50000 55000 60000 65000 70000
Step

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

Lo
ss

Figure 19: Left: Optimized and cosine LR schedules over 72,000 steps for models ranging from 25M to
400M. Right: Corresponding loss curves for optimized and cosine schedules.

schedule. Additionally, over 1B-model, we evaluate the downstream performance of the MPL-
induced schedule against the cosine schedule on tasks including LAMBADA (Paperno et al., 2016),
HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), ARC-easy (Gu & Dao, 2023; Clark et al.,
2018), C3 (Sun et al., 2020), and RTE (Wang et al., 2019). The MPL-induced schedule achieves an
average score improvement of 1.03 compared to the cosine schedule, as shown in Table 2.

31

Published as a conference paper at ICLR 2025

5000 10000 15000 20000 25000
Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Le
ar

ni
ng

 R
at

e
(x

10
4)

WSDLD
WSDLD(ZE)
WSD
WSD(ZE)
Opt

5000 10000 15000 20000 25000
Step

3.4

3.6

3.8

4.0

Lo
ss

19000 20000 21000 22000 23000
3.26

3.28

3.30

3.32

3.34

WSDLD
WSDLD(ZE)
WSD
WSD(ZE)
Opt

Figure 20: Comparison between the optimized schedules and WSD variants with a near-zero ending LR. WSD
(ZE) and WSDLD (ZE) denote WSD and WSDLD schedules with an ending learning rate of 3× 10−7. Left:
Learning rate comparison. Right: Loss comparison.

Zero-Ending Learning Rate Experiments. Optimized schedules consistently outperform WSD
variants with near-zero learning rates (3×10−7, approximately 1/100 of the default setting). To test if
a higher ending LR (e.g., 1/10 peak LR) degrades baseline performance, we compare the optimized
schedules against WSD(LD) variants with near-zero ending learning rates and the original ones. As
shown in Figure 20, the optimized schedule still outperforms these WSD variant. In addition, lower
ending learning rates do not consistently improve the final loss (e.g., zero-ending WSD exceeds
baseline loss), suggesting a complex interaction between the ending learning rate and the decay
function. This highlights the advantage of the optimized schedule in reducing the need for extensive
hyperparameter tuning.

WSD with Sqrt-Cube Decay (WSDSC). We derive the decay function for optimized schedules
by analyzing the decay phase across LLaMA2 models ranging from 25M to 400M. We compute nor-
malized steps and learning rates (LRs) within the decay phase for schedules of varying step counts
and model sizes. After averaging the normalized LRs, we perform symbolic regression against the
normalized steps and approximate the decay function as f(x) = (1− x)1.5. Validation experiments
on 1B LLaMA2 and GPT models confirm its efficacy: Figure 6(b) shows that WSDSC outperforms
the cosine schedule for the 1B model, though it falls short of the MPL-optimized schedule. Fig-
ure 15(a) demonstrates WSDSC’s superiority over both the standard WSD and cosine schedules for
GPT.

J OPTIMAL LEARNING RATE SCHEDULE FOR MOMENTUM LAW

In this section, we derive the optimal learning rate schedules for the Momentum Law (Tissue et al.,
2024):

L(T) = L0 +A · S−α
1 − C · S2,

where S1 =
∑T

t=1 ηt and S2 =
∑T

t=1

∑t
k=1(ηk−1 − ηk) · λt−k. λ is a hyperparameter typically

ranges from 0.99 to 0.999, and L0, A,C > 0 are parameters.

Similar to Section 5, here we could also optimize this law to get a learning rate schedule achieving
lowest final loss by solving

min
η1,η2,...,ηT

LΞ(η1, η2, . . . , ηT) (A)

s.t., 0 ≤ ηt ≤ ηt−1, ∀1 ≤ t ≤ T,

where Ξ = {L0, A,C, λ} represents the hyperparameters and parameters in L(T). For simplicity
of derivation, we introduce η0 in front of E as the maximal LR. Compared with Multi-Power Law
(MPL), this optimization problem is obviously convex, so we could get its minimizer in theory. In
our result, the Momentum Law would yield optimal schedules, which go through a stable phase at
peak LR and then go to zero LR in no more than two steps. However, these kinds of schedules are

32

Published as a conference paper at ICLR 2025

clearly far from the optimal schedules in practice. As a comparison, in Section 5, MPL can induce
a WSD-like schedule, which is empirically effective. This shows the superiority of our MPL.

Next, we will formalize the above arguments mathematically.

Theorem 2. For any LR schedule E∗ := {η∗0 , η∗1 , . . . , η∗T } that minimizes the optimization prob-
lem (A), there exists k ∈ {0, 1, . . . , T} such that the following holds for all t ∈ {1, . . . , T}:

1. If t ≤ k, then η∗t = η0;

2. If t ≥ k + 2, then η∗t = 0.

For the convenience, we first prove the following lemma.

Lemma 1. For a function f(x) = x −M(1 − λx) with M > 0 and 0 < λ < 1, we have the
following properties:

1. f(x) is strictly convex and has a unique minimizer over x ∈ [0,∞).

2. If f(y) ≥ 0 for some y ∈ [0,∞), then f(x) ≥ f(y) for all x ∈ [y,∞).

Proof. First, it is easy to check

f(0) = 0,
df

dx
(x) = 1 +Mλx log λ,

d2f

dx2
(x) = Mλx(log λ)2 > 0.

Then we can discuss the property of f(x) over x ∈ (0,∞) by discussing df
dx (0).

1. When df
dx (0) ≥ 0, df

dx (x) > df
dx (0) ≥ 0. Thus, f(x) is monotonically increasing and f(x) >

f(0) = 0.

2. When df
dx (0) < 0, then there exists x∗ ∈ (0,∞) such that df

dx (x
∗) = 0. Thus, f(x) mono-

tonically decreases over (0, x∗) and monotonically increases over (x∗,∞). Hence x∗ is the
only minimal over (0,∞). Moreover, f(x∗) < f(0) = 0 and limx→∞ f(x) = ∞, so there
exists x̃ ∈ (x∗,∞), such that f(x) < 0 over (0, x̃) and f(x) > 0 over (x̃,∞). Clearly, f(x)
monotonically increases over x ∈ [x̃,∞).

The above discussion completes the proof.

Next, we prove Theorem 2.

Proof for Theorem 2. First, we reparameterize ηt as ηt = η0 −
∑t

k=1 ∆k, then the optimization
problem (A) becomes

min
∆1,∆2,...,∆T

L̂Ξ(∆1,∆2, . . . ,∆T)

s.t. ∆t ≥ 0, ∀1 ≤ t ≤ T,

T∑
i=1

∆i ≤ η0,

where L̂Ξ(∆1,∆2, . . . ,∆T) is given by

L̂Ξ(∆1,∆2, . . . ,∆T) = L0 +A ·

(
Tη0 −

T∑
t=1

t∑
k=1

∆k

)−α

− C ·
T∑

t=1

t∑
k=1

∆kλ
t−k.

Define the Lagrangian by

L(∆, λ, µ) = L̂Ξ(∆1, . . . ,∆T)−
T∑

t=1

λt∆t + µ

(
T∑

t=1

∆t − η0

)
,

where λ1, . . . , λT and µ are the Lagrange multipliers associated with the constraints ∆t ≥ 0 and∑T
i=1 ∆t ≤ η0, respectively. By Karush-Kuhn-Tucker (KKT) conditions, there exist λ1, . . . , λT ≥

0 and µ ≥ 0 such that the following conditions hold:

33

Published as a conference paper at ICLR 2025

• Complementary Slackness: λt∆t = 0 for all t = 1, . . . , T and µ

(∑T
t=1 ∆t − η0

)
= 0.

• Stationary: ∂L̂Ξ

∂∆t
(∆1, . . . ,∆T)− λt + µ = 0 for all t = 1, . . . , T .

Here, we have
∂L̂Ξ

∂∆t
= αAΦ−α−1 · (T − t+ 1)− C · (λ0 + λ1 + · · ·+ λT−t)

= αAΦ−α−1 · (T − t+ 1)− C · 1− λT−t+1

1− λ

= Kf(T − t+ 1),

where Φ := Tη0 −
∑T

t=1

∑t
k=1 ∆k, K := αAΦ−α−1 > 0, and f(x) := x −M(1 − λx) with

M := C
(1−λ)K > 0.

Note that Φ does not depend on t. We can rewrite the stationary condition as
λt = Kf(T − t+ 1) + µ.

By Lemma 1, f(x) is strictly convex and has a unique minimizer over x ∈ [0,∞). Let x∗ be this
unique minimizer. Let fmin := mint∈{1,...,T}{f(T − t+1)} be the minimum value of f(T − t+1),
and S be the set of indices that minimize f(T − t+1). Then |S| ≤ 2 and S ⊆ {⌊T −x∗+1⌋, ⌈T −
x∗ + 1⌉}.
Now we discuss the following two cases by the value of Kfmin + µ.

Case 1. If Kfmin + µ > 0, then λt > 0 for all t = 1, . . . , T . By the complementary slackness
condition, ∆t = 0 for all t = 1, . . . , T . This implies that E∗ is a constant schedule, η0 = η∗1 =
η∗2 = · · · = η∗T .

Case 2. If Kfmin + µ = 0, then λt = 0 for all t ∈ S and λt > 0 for all t /∈ S. By the
complementary slackness condition, the latter implies that ∆t = 0 for all t /∈ S. Then E∗ falls into
one of the two categories:

1. If S = {s} for some s, then η0 = η∗1 = η∗2 = · · · = η∗s−1 and η∗s = η∗s+1 = · · · = η∗T ;

2. If S = {s− 1, s} for some s, then η0 = η∗1 = η∗2 = · · · = η∗s−2 and η∗s = η∗s+1 = · · · = η∗T .

We claim that η∗T = 0 if s < T . If not, then µ = 0 must hold by the complementary slackness
condition. Moreover, s < T implies T /∈ S, and then we have 0 < λT = Kf(1) + µ = Kf(1).
By Lemma 1, f(x) ≥ f(1) > 0 for all x ≥ 1, which implies that λt = Kf(T − t + 1) + µ =
Kf(T − t+ 1) > 0 for all t = 1, . . . , T , which contradicts the fact that λt = 0 for all t ∈ S.

Putting all these together, we conclude that E∗ must exhibit the pattern described in the theorem.

34

Published as a conference paper at ICLR 2025

K PROOF OF THEOREM 1

The proof of Theorem 1 consists of two main parts. In the first part, we derive the last iterate loss.
To prove Theorem 1, we first treat all λi and Σii as fixed constants (not random variables as stated
in Assumption 1), and we give a theorem in this scenario.
Theorem 3. For θT ∼ Φ(θ0, E), we have the following estimate of E[L(θT)]:

M(θ0, E) :=
1

2

d∑
i=1

(
θ20,iλi exp(−2λiS1) + η1Σii ·

1− exp(−2λiS1)

2

)

− 1

2

T∑
k=2

(ηk−1 − ηk)

d∑
i=1

1− exp(−2λiSk)

2
Σii,

where Sk :=
∑T

τ=k ητ , and the estimation error is bounded as

|E[L(θT)]−M(θ0, E)| ≤ 5ηmax

d∑
i=1

λ3
iS1 exp(−2λiS1)θ

2
0,i + 5 exp(2)η2max

d∑
i=1

Σiiλi.

To prove the theorem, we first introduce some notations and auxiliary expectations. WLOG, we
assume that H = diag(λ1, . . . , λd), and set θ∗ = 0. And we define that

U(θ, η, S) :=
1

2

d∑
i=1

(
θ2i λi exp(−2λiS) + ηΣii ·

1− exp(−2λiS)

2

)
.

We decompose the expected loss EθT∼Φ(θ0,E)[L(θT)] into a telescoping sum of T + 1 auxiliary
expectations A0, A1, . . . , AT :

EθT∼Φ(θ0,E)[L(θT)] = A0 +

T∑
k=1

(Ak −Ak−1)

Ak := Eθk∼Φ(θ0,E≤k)[U(θk, ηk, Sk+1)], (B)

Here we define η0 = η1 for convenience. Also we define ST+1 = 0, so AT = EθT∼Φ(θ0,E)[L(θT)].
The above theorem needs the following two lemmas.
Lemma 2. If x ∈ [0, 1], then

∃ξ1 ∈ [0, 10] s.t. (1− x)2 = exp(−2x)(1 + ξ1x
2),

∃ξ2 ∈ [0, 10] s.t. (1− 2x) = exp(−2x)(1 + ξ2x
2).

Proof. The above inequalities hold for x = 0. For x ∈ (0, 1], we have
1− (1− 2x) exp(2x)

x2
≥ 1− (1− x)2 exp(2x)

x2
≥ 1− exp(−2x) exp(2x)

x2
= 0,

where we use the fact that 1 − 2x ≤ (1 − x)2 ≤ exp(−2x). Also note that 1−(1−2x) exp(2x)
x2 is an

increasing function of x. So we have 1−(1−2x) exp(2x)
x2 ≤ 1−(−1)·exp(2)

12 ≤ 10.

Lemma 3. If ηmax ≤ 1
λmax

, then for all k ∈ [T],
k−1∑
t=1

ηt exp(−2λiSt) ≤
1

2λi
exp(−2λiSk) ≤

k−1∑
t=1

ηt exp(−2λiSt+1) ≤
exp(2)

2λi
exp(−2λiSk).

Proof. The first inequality follows the fact that lower Darboux sum is smaller than the Darboux
integral

k−1∑
t=1

ηt exp(−2λiSt) =

k−1∑
t=1

(St − St+1) exp(−2λiSt) ≤
∫ S1

Sk

exp(−2λiS)dS

=
1

2λi
[exp(−2λiSk)− exp(−2λiS1)]

≤ 1

2λi
exp(−2λiSk).

35

Published as a conference paper at ICLR 2025

Similarly, the upper Darboux sum’s property induces the second inequality. Also, we have
k−1∑
t=1

ηt exp(−2λiSt+1) =

k−1∑
t=1

ηt exp(−2λiSt) exp(2λiηt) ≤
k−1∑
t=1

ηt exp(−2λiSt) exp(2)

≤ exp(2)

2λi
exp(−2λiSk),

which completes the proof.

The following lemma characterizes the difference between two consecutive auxiliary expectations
Ak and Ak−1.

Lemma 4. If ηmax ≤ 1
λmax

, then for all k ∈ [T],

Ak −Ak−1 = −1

2
(ηk−1 − ηk)

d∑
i=1

1− exp(−2λiSk)

2
Σii + ϵk,

where the error term ϵk is bounded by

|ϵk| ≤ 5

d∑
i=1

η2kλ
3
i exp(−2λiSk)Eθk−1∼Φ(θ0,E≤k−1)[θ

2
k−1,i] + 5

d∑
i=1

η3kΣiiλ
2
i exp(−2λiSk).

Proof. By the definition of Ak and Ak−1, we have
Ak −Ak−1 = Eθk∼Φ(θ0,E≤k)[U(θk, ηk, Sk+1)]− Eθk−1∼Φ(θ0,E≤k−1)[U(θk−1, ηk−1, Sk)]

= Eθk−1∼Φ(θ0,E≤k−1)[
Egk∼N (Hθk−1,Σ)[U(θk−1 − ηkgk, ηk, Sk+1) | θk−1]︸ ︷︷ ︸

=: Ū(θk−1)

−U(θk−1, ηk−1, Sk)

]
.

We expand Ū(θk−1) := Egk∼N (Hθk−1,Σ)[U(θk−1 − ηkgk, ηk, Sk+1) | θk−1] based on the defini-
tion of U :

Ū(θk−1) = Egk∼N (Hθk−1,Σ)

[
1

2

d∑
i=1

(θk−1,i − ηkgk,i)
2λi exp(−2λiSk+1)

∣∣∣∣∣ θk−1

]
︸ ︷︷ ︸

=:Ū1(θk−1)

+
1

2

d∑
i=1

ηkΣii ·
1− exp(−2λiSk+1)

2︸ ︷︷ ︸
=:Ū2(θk−1)

.

We can simplify Ū1(θk−1) as

Ū1(θk−1) =
1

2

d∑
i=1

(
λi exp(−2λiSk+1)

(
(1− ηkλi)

2θ2k−1,i + η2kΣii

))
,

=
1

2

d∑
i=1

λi exp(−2λiSk+1)(1− ηkλi)
2θ2k−1,i︸ ︷︷ ︸

=:Ū11(θk−1)

+
1

2

d∑
i=1

λi exp(−2λiSk+1)η
2
kΣii︸ ︷︷ ︸

=:Ū12(θk−1)

.

Let Ū3(θk−1) := Ū12(θk−1) + Ū2(θk−1). Then Ū(θk−1) = Ū11(θk−1) + Ū3(θk−1). We can
rewrite Ū3(θk−1) as

Ū3(θk−1) =
1

2

d∑
i=1

(
ηkΣii ·

1− exp(−2λiSk)(1− 2ηkλi)

2

)
.

Since ηkλi ∈ [0, 1] for all i, by Lemma 2, we can find ξ1,i, ξ2,i ∈ [0, 10] such that
(1− ηkλi)

2 = exp(−2ηkλi)(1 + ξ1,iη
2
kλ

2
i), (1− 2ηkλi) = exp(−2ηkλi)(1 + ξ2,iη

2
kλ

2
i).

36

Published as a conference paper at ICLR 2025

Then we can rewrite Ū11(θk−1) as

Ū11(θk−1) =
1

2

d∑
i=1

(1 + ξ1,iη
2
kλ

2
i)λi exp(−2λiSk)θ

2
k−1,i

=
1

2

d∑
i=1

λi exp(−2λiSk)θ
2
k−1,i +

1

2

d∑
i=1

ξ1,iη
2
kλ

3
i exp(−2λiSk)θ

2
k−1,i.

Similarly, we can rewrite Ū3(θk−1) as

Ū3(θk−1) =
1

2

d∑
i=1

(
ηkΣii ·

1− (1 + ξ2,iη
2
kλ

2
i) exp(−2λiSk)

2

)

=
1

2

d∑
i=1

(
ηkΣii ·

1− exp(−2λiSk)

2

)
− 1

2

d∑
i=1

ξ2,iη
3
kΣiiλ

2
i exp(−2λiSk).

Therefore, we can rewrite Ū(θk−1) as

Ū(θk−1) =
1

2

d∑
i=1

(
λi exp(−2λiSk)θ

2
k−1,i + ηkΣii ·

1− exp(−2λiSk)

2

)

+
1

2

d∑
i=1

ξ1,iη
2
kλ

3
i exp(−2λiSk)θ

2
k−1,i −

1

2

d∑
i=1

ξ2,iη
3
kΣiiλ

2
i exp(−2λiSk).

Subtracting U(θk−1, ηk−1, Sk) from the above expression, we have
∆Ū(θk−1) := Ū(θk−1)− U(θk−1, ηk−1, Sk−1)

= −1

2

d∑
i=1

(ηk−1 − ηk)

d∑
i=1

1− exp(−2λiSk)

2
Σii

+
1

2

d∑
i=1

ξ1,iη
2
kλ

3
i exp(−2λiSk)θ

2
k−1,i −

1

2

d∑
i=1

ξ2,iη
3
kΣiiλ

2
i exp(−2λiSk).

Taking the expectation of ∆Ū(θk−1) over θk−1 ∼ Φ(θ0, E≤k−1) proves the lemma.

The following lemma gives an upper bound for Eθk−1∼Φ(θ0,E≤k−1)[θ
2
k−1,i].

Lemma 5. If ηmax ≤ 1
λmax

, then for all k ∈ [T] and i ∈ [d],

Eθk−1∼Φ(θ0,E≤k−1)[θ
2
k−1,i] ≤ θ20,i exp(−2λi(S1 − Sk)) +

exp(2)

λi
ηmaxΣii.

Proof. By the update rule, we have
E[θ2t,i] = (1− ηtλi)

2E[θ2t−1,i] + η2tΣii.

Since (1− ηtλi)
2 ≤ exp(−2ηtλi) and ηt ≤ ηmax, we have the following bound:

E[θ2t,i] ≤ exp(−2ηtλi)E[θ2t−1,i] + ηtηmaxΣii.

Expanding the recursion, we have

E[θ2k−1,i] ≤ θ20,i exp(−2λi(S1 − Sk)) +

k−1∑
t=1

ηtηmaxΣii exp(−2λi(St+1 − Sk))

= θ20,i exp(−2λi(S1 − Sk)) + exp(2λiSk)ηmaxΣii

k−1∑
t=1

ηt exp(−2λiSt+1)

≤ θ20,i exp(−2λi(S1 − Sk)) + exp(2λiSk)ηmaxΣii ·
1

λi
exp(−2λiSk)

= θ20,i exp(−2λi(S1 − Sk)) +
exp(2)

λi
ηmaxΣii,

where the first inequality uses the fact that
∏k−1

τ=t+1 exp(−2ητλi) = exp(−2λi(St+1 − Sk)) and
the second inequality uses Lemma 3.

37

Published as a conference paper at ICLR 2025

Lemma 6. In the setting of Lemma 4, we can bound the sum of the error terms ϵk as∣∣∣∣∣
T∑

k=1

ϵk

∣∣∣∣∣ ≤ 5ηmax

d∑
i=1

λ3
iS1 exp(−2λiS1)θ

2
0,i + 5 exp(2)η2max

d∑
i=1

Σiiλi.

Proof. By the upper bound of |ϵk|,∣∣∣∣∣
T∑

k=1

ϵk

∣∣∣∣∣ ≤
T∑

k=1

|ϵk|

≤ 5

d∑
i=1

(T∑
k=1

η2kλ
3
i exp(−2λiSk)Eθk−1∼Φ(θ0,E≤k−1)[θ

2
k−1,i]︸ ︷︷ ︸

=: E1,i

+

T∑
k=1

η3kΣiiλ
2
i exp(−2λiSk)︸ ︷︷ ︸

=: E2,i

)
.

For E1,i, we apply Lemma 5 and have

E1,i ≤
T∑

k=1

η2kλ
3
i exp(−2λiSk)

(
θ20,i exp(−2λi(S1 − Sk)) +

exp(2)

λi
ηmaxΣii

)

=

T∑
k=1

η2kλ
3
i exp(−2λiS1)θ

2
0,i +

T∑
k=1

exp(2)η2kλ
2
i ηmaxΣii exp(−2λiSk)

≤ ηmaxλ
3
iS1 exp(−2λiS1)θ

2
0,i + η2max

exp(2)

2
Σiiλi,

where the last inequality uses Lemma 3. For E2,i, we have

E2,i =
T∑

k=1

η3kΣiiλ
2
i exp(−2λiSk)

≤ η2max

T∑
k=1

ηkΣiiλ
2
i exp(−2λiSk)

≤ η2max

1

2λi
Σiiλ

2
i

Adding the upper bounds of E1,i and E2,i together completes the proof of Lemma 6.

Now we are ready to prove Theorem 3.

Proof for Theorem 3. Using Lemma 4 and Lemma 6, we have that
T∑

k=1

Ak −Ak−1 = −1

2

T∑
k=1

(ηk−1 − ηk)

d∑
i=1

1− exp(−2λiSk)

2
Σii + ϵ,

where the error bound ϵ can be bounded as

ϵ ≤ 5ηmax

d∑
i=1

λ3
iS1 exp(−2λiS1)θ

2
0,i + 5 exp(2)η2max

d∑
i=1

Σiiλi.

According to (B), we have

E[L(θT)] = A0 +

T∑
k=1

(Ak −Ak−1).

Plugging in the expression of each Ak, we get the results in Theorem 3.

Next, we prove Theorem 1 as follows.

Proof for Theorem 1. First, we recap some definitions used in the following calculation. The ex-
pectation of Σii for any i ∈ {1, . . . , d} is denoted by E[Σ] = µ from Assumption 1. Also, in
Assumption 1, we have that E[Σ|λ] ∝ λρ exp(−Gλ). Here for the alignment of scale and making
the derivation neat, we let E[Σ|λ] = Fµλρ exp(−Gλ), where F is a universal constant and µ is the
expectation of Σ’s marginal distribution.

38

Published as a conference paper at ICLR 2025

We take the expectation of M(θ, E) over all λi and Σii as a direct result of integral

E[M(θ0, E)] =
1

2
∥θ0∥22E[λ exp(−2λS1)]︸ ︷︷ ︸

:=I1

+
d

4
ηmaxE[Σ]−

d

4
ηmaxE[Σ exp(−2λS1)]︸ ︷︷ ︸
:=I2

− d

4

T∑
k=2

(ηk−1 − ηk) (E[Σ]− E[Σ exp(−2λSk)])︸ ︷︷ ︸
:=I3

Separately, we have that

I1 =
1

2
∥θ0∥22µ

1

Zλ

∫ D

0

λα+1 exp(−2λS1)dλ

=
∥θ0∥22µγ(α+ 2, D)

2α+3Zλ
S−α−2
1 ,

and that

I2 =
d

4
ηmaxµ−

d

4
ηmaxµF

1

Zλ

∫ D

0

λα+ρ exp(−(2S1 +G)λ)dλ

=
d

4
ηmaxµ−

dηmaxµFγ(α+ ρ+ 1, D)

2α+ρ+3Zλ
(S1 +

G

2
)−α−ρ−1,

and that

I3 =
dµ

4

T∑
k=2

(ηk−1 − ηk)(1− F
1

Zλ

∫ D

0

λα+ρ exp(−(2Sk +G)λ))dλ

=
dµ

4

T∑
k=2

(ηk−1 − ηk)

(
1− Fγ(α+ ρ+ 1, D)

Gα+ρ+1Zλ
(
2

G
Sk + 1)−α−ρ−1

)
.

Putting I1, I2 and I3 all together then we have that

E[M(θ0, E)] =
∥θ0∥22µγ(α+ 2, D)

2α+3Zλ
S−α−2
1

+
d

4
ηmaxµ−

dηmaxµFγ(α+ ρ+ 1, D)

2α+ρ+3Zλ
(S1 +

G

2
)−α−ρ−1

− dµ

4

T∑
k=2

(ηk−1 − ηk)

(
1− Fγ(α+ ρ+ 1, D)

Gα+ρ+1Zλ
(
2

G
Sk + 1)−α−ρ−1

)
.

where γ(·, ·) denote the lower incomplete gamma function such that γ(s, x) :=
∫ x

0
ts−1e−tdt, Zλ

denote the partition function such that Zλ :=
∫D

0
p(λ)dλ. The second equality uses Assumption 1,

and the last equality uses the property of Laplace Transform. To make the expression clear, we let
F = Gα+ρ+1Zλ

γ(α+ρ+1,D) , and we define the following parameters L0, A,B,C,R as

L0 :=
d

4
ηmaxµ,

A :=
∥θ0∥22µγ(α+ 2, D)

2α+3Zλ
,

B :=
dµ

4
,

C :=
2

G
,

R :=
dηmaxµFγ(α+ ρ+ 1, D)

2α+ρ+3Zλ
.

39

Published as a conference paper at ICLR 2025

So we get that
M̃(θ0, E) := E[M(θ0, E)]

= L0 +AS−α−2
1 −R(S1 +

1

C
)−αρ−1 −

T∑
k=2

B(ηk−1 − ηk)
(
1− (CSk + 1)−α−β−1

)
.

Also, we take the expectation of the error bound as∣∣∣E[L(θT)]− M̃(θ0, E)
∣∣∣ ≤E[5ηmax

d∑
i=1

λ3
iS1 exp(−2λiS1)θ

2
0,i] + E[5 exp(2)η2max

d∑
i=1

Σiiλi]

=5ηmax∥θ0∥22E[λ3S1 exp(−2λS1)] + 5 exp(2)η2maxdE[Σλ]

=5ηmax∥θ0∥22
1

Zλ

∫ D

0

λ3+αS1 exp(−2λS1)dλ

+ 5 exp(2)η2maxd
1

Zλ
µF

∫ D

0

λ1+ρ exp(−2Gλ)dλ

=
5ηmax∥θ0∥22γ(4 + α,D)

24+αZλ
S−α−3
1 +

5 exp(2)η2maxdµFγ(2 + ρ,D)

(2G)ρ+2Zλ

=O(S−α−3
1) +O(η2max)

Notice that, not only in the case of T iterations, the results above holds for all 0 ≤ t ≤ T , with the
next variable replacement

M̃(θ0, E)← M̃t(θ0, E),

L(θT)← L(θt),
Si ← Si(t).

If S1(t) >
1

ηmax
, then we have

Rηmax(S1(t) +
1

C
)−α−ρ−1 ≤ Rη2max(S1(t) +

1

C
)−α−ρ

= O(η2max).

This completes the proof of Theorem 1.

40

	Introduction
	Preliminary
	Empirical Derivation of the Multi-Power Law
	Our Approach: Learning Rate Sum Matching
	Approximation by Parts
	Constant Process Loss Approximation
	Loss Reduction Approximation

	Bottom-Up Derivation: Two-Stage, Multi-Stage, and General Schedules

	Empirical Validation of the Multi-Power Law
	Results
	Comparison with Baselines

	The Multi-Power Law Induces Better LR Schedules
	Method
	Results

	Conclusions
	Bottom-Up Derivation: Two-Stage, Multi-Stage (sec:bottom-up)
	Case 1: Two-Stage Learning Rate Schedule
	Case 2: Multi-Stage Learning Rate Schedule

	How Might the Multi-Power Law Arise?
	Setup
	Loss Formula

	Formula Component Ablation
	Limitation and Future Direction
	Related Work
	Experiment Setting
	Discussions of Multi-Power Law Derivation (sec:approachsection)
	Constant Process Loss Approximation (sec:lr-sum-matching)
	Two-Stage Experiments (sec:two-stage)
	Multi-Stage Experiments (sec:multi-stage)

	Details of Validation Experiments (Section 4)
	Training Set and Test Set
	Law Fitting
	Ablation Experiments

	Details of Optimized LR Schedule (Section 5)
	Optimal Learning Rate Schedule for Momentum Law
	Proof of Theorem 1

