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Abstract

Building on ideas from probabilistic programming, we introduce the concept of an ex-
pectation programming framework (EPF) that automates the calculation of expectations.
Analogous to a probabilistic program, an expectation program is comprised of a mix of
probabilistic constructs and deterministic calculations, between which a conditional distri-
bution over internal variables and outputs is defined. However, the focus of the inference
engine in an EPF is to directly calculate the expectation of the program return values,
rather than this conditional distribution. This is made possible by exploiting recent ad-
vancements in target–aware Bayesian inference, through which we can tailor our inference
engines to this expectation estimation, providing the potential for substantial improvements
over the standard probabilistic programming pipeline. We realize a particular instantiation
of our EPF concept by extending the probabilistic programming language Turing with a
new @expectation macro that uses a series of program transformations to automatically
run target–aware inference. We show that this leads to significant empirical gains in esti-
mation performance compared to conventional use of Turing on two example problems.

1. Introduction

Calculating expectations is at the center of many scientific workflows. For example, the
decision theoretic foundations of most statistical paradigms, e.g. Bayesian modeling, are
rooted in calculating the expectation of a loss function (Robert and Casella, 2004). More-
over, these expectations are often taken with respect to distributions whose densities are
only known up to a normalizing constant, requiring some form of inference to be performed.

One such context is probabilistic programming (Gordon et al., 2014; Rainforth, 2017;
van de Meent et al., 2018). Here our program is typically specified (often indirectly) through
an unnormalized density γ(x). The role of system’s inference engine is now to approximate
the normalized density π(x) = γ(x)/Z, where Z is a normalizing constant equal to the
integral of γ(x) over all possible values of x. Here if one wishes to calculate some expectation
Eπ(x)[f(x)], the standard pipeline is to construct such an approximation π̂(x) independently
of f(x), before using this approximation to in turn estimate the expectation.

Sometimes, f(x) is not yet known at the point of inference, such that this pipeline
is inevitable. However, in recent work considering a general estimation context (i.e. any
arbitrary π(x) and f(x)), Golinski et al. (2019); Rainforth et al. (2020) showed that if
f(x) is known upfront, then we can improve on this pipeline. Namely, they showed that
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substantial gains can be achieved by using the information in f(x) to construct target-aware
Bayesian inference (TABI) estimators directly geared towards the target expectation.

However, current probabilistic programming languages (PPL) (Bingham et al., 2019;
Carpenter et al., 2017; Cusumano-Towner et al., 2019; Ge et al., 2018; Salvatier et al., 2016;
Tran et al., 2016; Wood et al., 2014), in general, do not allow the explicit incorporation of
a function f(x) into their inference calculations. Most languages do not even have a direct
consideration of including the definition of such a f(x) into the program definition. Though
a handful of papers (Nori et al., 2015; Narayanan et al., 2016; Staton et al., 2016; Zinkov and
Shan, 2017) have considered formalizations for the expectation defined by a probabilistic
program—typically through considering its return values—none of these do this from the
perspective of directly targeting the calculation of this expectation. As such, no existing
language current supports generating estimates in a target–aware fashion.

To address this, we propose the concept of an expectation programming framework
(EPF), defining this as something which directly allows the definition of expectations and
then automates their estimation using target-aware inference algorithms. We further in-
troduce a specific implementation of an expectation programming framework, called EPT
(Expectation Programming in Turing), that is built upon the Turing PPL (Ge et al., 2018).
EPT takes as input Turing–style programs and uses program transformations to create a
new set of valid Turing programs that are suitable for the construction of TABI estimators,
exploiting the fact that the generalised TABI framework of (Rainforth et al., 2020) can
repurpose any marginal likelihood estimator into a target-aware inference algorithm.

To realize the potential of EPT, we introduce a new annealed importance sampling
(AnIS) (Neal, 2001) inference engine for Turing programs. We then use it to show that our
framework can be used to express real expectation problems, and empirically estimate them
significantly more accurately than the conventional probabilistic programming pipeline.

2. Background

We are concerned with computing expectation values of the form Eπ(x)[f(x)] where f(x) is
known, but π(x) cannot be directly evaluated or sampled from. Namely, π(x) = γ(x)/Z
where γ(x) is known unnormalized distribution, but Z is an unknown normalization con-
stant. The standard workflow to estimate Eπ(x)[f(x)] is to approximate π(x) (e.g. with
Monte Carlo samples) and then use this to approximate the expectation in turn.

However, this pipeline is suboptimal if we know f ahead of time (Golinski et al., 2019).
The Target-Aware Bayesian Inference (TABI) framework (Rainforth et al., 2020) provides
a means of creating an estimator for Eπ(x)[f(x)] that incorporates information from the
target function f . TABI breaks down the expectation into three different parts

Eπ(x)[f(x)] = (Z+
1 − Z

−
1 )/Z2

where Z+
1 =

∫
γ(x)f+(x)dx, Z−1 =

∫
γ(x)f−(x)dx, Z2 =

∫
γ(x)dx,

f+(x) = max(f(x), 0), f−(x) = −min(f(x), 0).

(1)

We can view the three subcomponents as the normalisation constants of the three den-
sities γ+

1 (x) ∝ γ(x)f+(x), γ−1 (x) ∝ γ(x)f−(x) and γ2(x) = γ(x), respectively. Thus we
can repurpose any algorithm which provides estimates of the normalisation constant into a
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@expectation function expct(y)

x ∼ MvNormal(zeros(length(y)), I) # x ∼ N (x; 0, I)
y ∼ MvNormal(x, I) # y ∼ N (y; x, I)
return pdf(MvNormal(x, 0.5*I), -y) # f(x) = N (−y; x, 12I)

end

expct_estimate, diagnostics = estimate_expectation(

expct(-2*ones(10)/sqrt(10)),

method=TABI(

marginal_likelihood_estimator=TuringAlgorithm(AnIS(), num_samples=1000)))

Figure 1: An example of estimating an expectation with EPT using a TABI estimator
with marginal likelihood estimation of each term performed using 1000 samples
of annealed importance sampling (AnIS). expct(-2*ones(10)/sqrt(10)) yields
a 10–dimensional variant of the problem defined in (2). Appendix D shows an
equivalent procedure using plain Turing.

target-aware inference algorithm. Namely, we can break down the problem into these three
densities, run a marginal likelihood estimator for each (returning Ẑ+

1 , Ẑ−1 , and Ẑ2 respec-
tively), and then recombine these to an overall estimator as Eπ(x)[f(x)] ≈ (Ẑ+

1 − Ẑ
−
1 )/Ẑ2.

Throughout the next section we will rely on basic understanding of the Turing PPL (Ge
et al., 2018) which we build upon. For the relevant introduction to Turing, see Appendix B.

3. Expectation Programming in Turing

Probabilistic programs can be interpreted as defining expectations over their return val-
ues (Gordon et al., 2014). Current probabilistic programming language largely ignore these
semantics and focus on approximating conditional distributions. We propose the concept
of Expectation Programming Framework (EPF) which exploits this fact to automate the
use of target-aware inference algorithms.

We enable users to write expectation programs which define an expectation Eπ(x)[f(x)]
by defining an unnormalised density γ(x)=π(x)Z and a function f(x). Our implementation
of the EPF concept, Expectation Programming in Turing (EPT), allows users to specify
γ(x) as they normally would using Turing @model macro, but it interprets the return

semantics as defining the integrand f(x).
Figure 1 shows how to define and estimate an expectation with EPT. @expectation is

an EPT macro, which is a drop-in replacement for the Turing @model macro, that allows
EPT to interpret the return semantics without any changes required to the function body
with respect to the plain Turing model definition. The expectation expct is estimated with
the EPT function estimate_expectation(expct, method) where method specifies the es-
timation method. EPT implements algorithms which exploit the TABI framework. As per
Section 2, TABI requires a choice of a marginal likelihood estimator. In this example we
use TABI with annealed importance sampling AnIS, which is a plain Turing inference algo-
rithm. Importantly, AnIS could be substituted with any other Turing inference algorithm
that returns a marginal likelihood estimate. In this example, AnIS() implies the use of
some arbitrary default AnIS parameters regarding the Markov chain Monte Carlo (MCMC)
algorithm, and the number and spacing of intermediate potentials used. The final element
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@expectation function expct(y)

x ∼ MvNormal(zeros(length(y)), I)

y ∼ MvNormal(x, I)

return pdf(MvNormal(x, 0.5*I), -y)

end

@model function expct(y)

x ∼ MvNormal(zeros(length(y)), I)

y ∼ MvNormal(x, I)

tmp = pdf(MvNormal(x, 0.5*I), -y)

@addlogprob!(log(max(tmp, 0)))

return tmp

end

Figure 2: The results of one of the three program transformations applied to the EPT
@expectation program from Figure 1 [left]. Presented is the transformation into
a valid Turing @model program [right] corresponding to the density γ+

1 (x) ∝
γ(x)f+(x). The transformed code fragment is highlighted. Appendix E shows
the full source code transformation for this model.

of the EPT API is TuringAlgorithm which is an object storing the necessary information
that allows TABI to use a Turing inference method to estimate each of the three terms
required by the TABI estimator.

We note that other implementations of the EPF concept can take advantage of other
methods that make use of the knowledge of the target function f(x) to improve the process
of estimation, in a similar way that different PPLs focus on different families of inference
algorithms. For example, we conceive EPF implementations which focus on the use of
control variates or other variance reduction techniques.

3.1. Program Transformation

The TABI framework requires us to estimate the normalisation constants of the three
densities γ2(x), γ+

1 (x) and γ−1 (x). We use Julia’s metaprogramming capabilities to trans-
form the user provided @expectation model definition into three valid Turing @model pro-
grams corresponding to each of these densities. Since these are valid Turing models we can
use any inference algorithm implemented in Turing that provides marginal likelihood esti-
mates. This is a big advantage because it means we do not require custom implementations
of inference algorithms that are adapted to our framework.

Firstly, note that the functions used to define expectations using EPT are also valid Tur-
ing models, i.e., replacing @expectation with @model yields a valid Turing program. Such
a program corresponds to the density γ2(x)=γ(x) without requiring any transformation.

To create a Turing program corresponding to γ+
1 (x) we need to multiply the density

of the unaltered Turing program γ(x) by max(f(x), 0). This is achieved using Turing’s
@addlogprob!(z) primitive, which increments the (log) density of the current execution
by an arbitrary value z. Our program transformation is a pattern matching procedure
that finds all the return expr statements in the function body and inserts a statement
@addlogprob!(log(max(expr, 0))) before each one of them. A concrete example of the
program transformation is presented in Figure 2. The transformation yielding density γ−1 (x)
is analogous, but inserts a statement @addlogprob!(log(-min(expr, 0))) instead.
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Figure 3: Relative squared error and effective sample size for posterior predictive experi-
ments. The solid lines show the median of the estimator while the shaded re-
gion show the 25 % and 75 % quantiles. Medians and quantiles are computed
over 10 separate runs with different random seed for the posterior predictive
problem. For the ESS plot we are plotting min(ESSZ1 ,ESSZ2) for TAAnIS and
min(ESSAnIS retargeted,ESSAnIS) for AnIS.

4. Experiments

While EPT is able to use any inference algorithm in Turing that provides marginal likeli-
hood estimates we found that none of the existing inference algorithms in Turing is powerful
enough for our use cases. For that reason we implemented a new inference engine for Tur-
ing which uses annealed importance samples (AnIS) (Neal, 2001). Appendix F gives a
brief introduction to AnIS. AnIS requires the setting of two hyperparameters: an annealing
schedule and a Markov chain Monte Carlo transition kernel. Currently, users can choose
between the Metropolis-Hastings (MH) transition kernel which is implemented using Tur-
ing’s AdvancedMH.jl (Turing Development Team, 2020) and the Hamiltonian Monte Carlo
(HMC) transition kernel (Neal, 2011) which is built on AdvancedHMC.jl (Xu et al., 2020).

In our experiments we will use AnIS to refer to the non-target-aware setting of annealed
importance sampling and target-aware annealed importance sampling (TAAnIS) to refer to
the estimator that uses annealed importance sampling to separately estimate the marginal
likelihoods described in Section 2. To ensure a fair comparison we use the same setting of
hyperparameters for the AnIS algorithm as we will for the separate estimators in TAAnIS.

To compare the performance of the two estimators we look at the relative squared error

(RSE) δ̂ := (µ̂−µ)2

µ2
, where µ denotes the ground truth value and µ̂ is the estimate, and the

effective sample size (ESS). In our experiments we only consider target functions which are
always positive, so from here on we use Z1 to refer to Z+

1 because we always have Z−1 = 0.
For TAAnIS we can look at the ESS of the two AnIS runs which we denote ESSZ1 and
ESSZ2 . Similarly, ESSAnIS is the ESS for AnIS. Note that we can also compute what the
ESS would be if we would use the samples from AnIS to estimate Z1 by multiplying the
importance weights produced by AnIS by f(x), we will denote the ESS computed in such
a way by ESSAnIS retargeted.
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Figure 4: Relative squared error and effective sample size for SIR experiment. Conventions
as in Figure 3. Results are computed over 5 runs for different random seeds.

4.1. Posterior Predictive

For our first experiment we compare AnIS and TAAnIS on the the task of calculating the
posterior predictive distribution of a Gaussian model with unknown mean. Let

γ(x) = N (x; 0, I)N (y; x, I) and f(x) = N (−y; x,
1

2
I). (2)

be our unnormalised density and target function. We assume our observed data is y = 2√
10

1

where 1 is a 10-dimensional vector of ones. The implementation of this model in Figure 1
highlights the user–friendly interface of EPT. The expectation can be defined in just 5 lines
of code as per Figure 1. Figure 3 compares the performance of AnIS and TAAnIS. Overall
we can see that there is a clear benefit of using the target-aware inference algorithm to
estimate the expectation. TAAnIS achieves a lower RSE and the ESS analysis highlights
the advantage of using separate marginal likelihood estimators for Z1 and Z2.

4.2. SIR Model

As a more applied example, assume we face an outbreak of a contagious disease. The
government has provided us with a function yielding the expected cost of the disease which
depends on the basic reproduction rate R0.1 To infer R0 we choose to model the outbreak
using a Susceptible-Infected-Recovered (SIR) model (Kermack et al., 1927). This model
divides the population into three compartments: people who are susceptible to the the
disease, people who are currently infected, and people who have already recovered. The
dynamics of the outbreak are modelled by a set of differential equations which are governed
by two parameters β and γ. Roughly, β models the constant rate of infectious contact
between people, while γ is the constant recovery rate of infected individuals. From these
parameters we can calculate the basic reproduction rate R0 = β

γ . In our experiment, we
assume γ to be fixed and we want to infer β and the initial number of infected people I0.
For a full description of the model and the experimental setup, see Appendix H.

This scenario is a good use case for EPT because we are interested in estimating a specific
expectation with high accuracy. Furthermore, in this case there are some outcomes which

1. R0 indicates the expected number of people one infected person will infect in a population in which all
people are susceptible to the disease.
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might be unlikely under the posterior but which incur a very high cost. By targeting only
the posterior in our inference problem we run the danger of underestimating the probability
of rare events which have a high cost and therefore underestimating the expected cost.

Figure 4 compares the performance of AnIS and TAAnIS for this problem. The RSE of
the AnIS estimate fails to improve at all in the range of samples we collected. This is due to a
strong mismatch between our target function and the posterior distribution. AnIS generates
samples only in the regions with high posterior density but not in the regions where the
target function is large. TABI methods were designed to overcome such a challenge.
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@model function model(y)

x ∼ Normal(0, 1)

y ∼ Normal(x, 1)

end

Figure 5: Example Turing program.

Appendix A. Related Work

Nori et al. (2015) introduce a C-like probabilistic programming language with a semantics
that defines the meaning of probabilistic programs as the expected value of its return ex-
pression. To construct a more efficient MCMC kernel, they generate a new program which
is a transformation of the user-defined program. Their program transformations preserve
the meaning of the original program i.e. it defines the same expected value. However, their
end goal is to construct a more efficient inference algorithm for the observed data opposed
to constructing a more efficient estimator for the given target expectation, which is the aim
of our work.

Hakaru (Narayanan et al., 2016) provides the primitive expect(m, f) (Zinkov and Shan,
2017) which takes as input given a program defining a measure and a function returns a
program which represents the expectation over the measure with respect to the function.
However, this primitive is mainly used to get a symbolic representation of the expectation
with the primary aim to compute the normalisation constant of unnormalised measures.
measures e.g. when conditioning a joint probability distribution on data. With the help of
a computer algebra solver the symbolic representation can be used to compute the integral
analytically.

To our knowledge, our framework is the first to use the semantics of probabilistic pro-
grams defining expectations over their return expressions to generate target-aware inference
algorithms.

Appendix B. A Short Introduction to Turing

We will present a brief overview of the Turing PPL and its internals. For more details
we refer the reader to the Turing documentation.2 A Turing program is defined similarly to
a normal Julia (Bezanson et al., 2017) function: the @model macro indicates the definition
of a Turing model which means we can use tilde statements to define random variables
inside the function body e.g., x ∼ Normal(0, 1) (see Figure 5). The left-hand side of the
tilde statement must be a random variable, and the right-hand side must be a distribution.
The values of the observed random variables must be passed as arguments to the function.

The @model macro takes the function and creates a Turing model generator with the
same name as the function. If we call this model generator with some specific function
arguments we get back a Turing model. At that stage the tilde statements get resolved
into calls to the primitives tilde_assume or tilde_observe. The exact behaviour of those
primitives usually depends on the inference algorithm that is used. Here we will describe

2. https://turing.ml/dev/docs/using-turing/
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the behaviour of tilde_assume and tilde_observe when we want to evaluate the density
of a raw random draw of the program.

The primitive tilde_observe(ctx, sampler, dist, value, vname, vinds, vi) gets
called if the left-hand side of the tilde statement was part of the observed data (i.e. one
of the formal parameters of the function). dist will be a distribution, value will be a
value in the support of that distribution, vi is a data structure which keeps track of the
sampled values and the log density of the current execution and vname is the random vari-
able identifier i.e. the lexical address that is used to uniquely identify the random variable.
For the purpose of this document the other function arguments can be ignored. Mainly,
tilde_observe evaluates the log density of value under dist and adds the value to the
log density stored in vi.

If the left-hand side of the tilde statement is not part of the observed data then the prim-
itive tilde_assume(rng, ctx, sampler, dist, vname, inds, vi) gets called. dist, vi
and vname have the same types as in the tilde_observe call. On a high-level tilde_assume
samples a value from dist and then stores the sampled value in vi and adds the corre-
sponding log density to the log density stored in vi.

Building on the notation of Rainforth (2017, Chapter 4.3) we can formalise the defini-
tions of tilde_assume and tilde_observe. tilde_assume takes as input a distribution
which is constructed from a set of variables η, formally, ga(x|η) where a is the lexical
address of the tilde_assume statement. Similarly tilde_observe takes as input a dis-
tribution constructed from a set of variables φ and some observed random variables y, or
formally, hb(y|φ) where b again is a lexical address.

Additionally, Turing also provides the @addlogprob!(x) primitive which increments the
log density of the current execution by an arbitrary value x. We let ψ1, . . . , ψK denote all
the terms that are added to the density using @addlogprob!.

Given the above definitions the density of a Turing program is

γ(x) =

nx∏
i=1

gai(xi|ηi)
ny∏
j=1

hbj (yj |φj)
K∏
k=1

exp(ψk).

Therefore the program in Figure 5 defines the density γ(x) = N (x; 0, 1)N (y;x, 1) where y
is the observed data. Note that there are no @addlogprob!(x) statements in this program.

Appendix C. A Note On the Formalization of f(·)

To provide a valid input for our normalization constant estimators in the TABI framework,
we need to be able to provide a valid density. This also means we need to be careful
about the random variable this density is defined over. When we construct, e.g., γ(x)+ we
are effectively including an additional factor f+(x) to the program density (informally, an
additional likelihood term). As such, this density is defined with respect to the raw random
draws of the program, as per a conventional probabilistic program (see e.g. (Rainforth,
2017, Section 4.3)). This means that the formal definition of f(·) is the full mapping from
the raw random draws to the returned values, rather than what is lexically written after
the return statement(s). This is why, for example, it is still valid to have multiple different
return statements in program, provided these all return outputs of the same type and
dimensionality.
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In practice, this is not something we need to worry about when writing either models or
inference engines, as the law of the unconscious statistician protects us from needing to care-
fully delineate between what our function is and what our random variable is. Essentially,
the output of the program is a random variable and we are calculating the expectation of
this random variable; this expectation does not vary if we change the parameterization of
our model. However, the distinction is important from the perspective of ensuring that the
approach is valid, both in terms of providing valid inputs to the individual TABI estimators,
and in terms of ensuring the inference engines are valid for these problems.

Appendix D. Estimating Expectations in Turing

@model function model(y)

x ∼ MvNormal(zeros(length(y)), I)

y ∼ MvNormal(x, I)

end

D = 10

y_observed = -2 * ones(D) / sqrt(D)

num_samples = 1000

posterior_samples = sample(

model(y_observed), NUTS(0.65), num_samples)

posterior_x = Array(posterior_samples[:x])

expectation_estimate = mean(

map(x -> pdf(MvNormal(x, 0.5*I), -y_observed), posterior_x))

Full example of the estimation of an expectation with the Turing language. The user first
defines the model, then conditions it on some observed data, computes posterior samples
and then uses these samples to compute a Monte Carlo estimate of the expectation.

Appendix E. Full Example of @expectation Macro Transformation

The expectation

@expectation function expct(y)

x ∼ MvNormal(zeros(length(y)), I)

y ∼ MvNormal(x, I)

return pdf(MvNormal(x, 0.5*I), -y)

end

gets transformed into

@model function gamma1_plus(y)

x ∼ MvNormal(zeros(length(y)), I)

y ∼ MvNormal(x, I)

tmp = pdf(MvNormal(x, 0.5*I), -y)

12
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@addlogprob!(log(max(tmp, 0)))

return tmp

end

@model function gamma1_minus(y)

x ∼ MvNormal(zeros(length(y)), I)

y ∼ MvNormal(x, I)

tmp = pdf(MvNormal(x, 0.5*I), -y)

@addlogprob!(log(-min(tmp, 0)))

return tmp

end

@model function gamma2(y)

x ∼ MvNormal(zeros(length(y)), I)

y ∼ MvNormal(x, I)

return pdf(MvNormal(x, 0.5*I), -y)

end

expct = Expectation(

gamma1_plus,

gamma1_minus,

gamma2

)

The type Expectation is simply used to have one common object which stores the three
different Turing models. Notice that for gamma2 the function body is identical to the original
function.

Appendix F. Annealed Importance Sampling

Annealed importance sampling (AnIS) (Neal, 2001) is an inference algorithm which was
developed with the goal of efficiently estimating the normalisation constant Z of an unnor-
malised density γ(x). It works by defining a sequence of annealing distributions π0(x), . . . , πn(x)
which anneal between a simple (i.e. we can sample from it and evaluate its density) base
distribution π0(x) and the complex target density πn(x) = γ(x). The most common scheme
for defining the annealing distributions is to set them to πi(x) ∝ λi(x) = p(x)1−βnγ(x)βn ,
with p(x) being the prior distribution and 0 = β0 < β1 < · · · < βn = 1. Furthermore, the
algorithm requires the definition of Markov chain transition kernels τ1(x, x′), . . . , τn−1(x, x′).
Each τi(x, x

′) needs to leave its target distribution λi(x) invariant.
The algorithm to create a jth single weighted sample then becomes:

1. Sample initial particle x
(1)
j ∼ π0(x)

2. For i = 1, . . . , (n− 1): Generate x
(i+1)
j ∼ τi(x(i)

j , ·)
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3. Return sample x
(n)
j with weight

wj =
λ1(x

(1)
j )λ2(x

(2)
j ) . . . λn(x

(n)
j )

p(x
(1)
j )λ1(x

(2)
j ) . . . λn−1(x

(n)
j )

We can estimate expectations with the weights and samples just as in standard importance
sampling. Thus an estimate for the normalisation constant is

Z ≈ 1

N

N∑
j=1

wj ,

and an estimate for the expectation is

Eπ(x)[f(x)] ≈
∑N

j=1wjf(x
(n)
j )∑N

j=1wj
.

Appendix G. Hyperparameters for Experiments

For both problems our target function is always positive which means in the TABI estimator
we only have to compute Z+

1 and Z2 because Z−1 = 0. Therefore, target-aware annealed
importance sampling (TAAnIS) runs standard annealed importance sampling twice, one
time to estimate Z+

1 and the other time to estimate Z2. For the experiments, on the same
problem we always use the same hyperparameters for the annealed importance sampling
algorithm both to run AnIS and for the two estimates in TAAnIS.

G.1. Posterior Predictive

For the annealed importance sampling we use a MH transition kernel with a standard
normal as the proposal and 20 MH steps on each annealing distribution. We use 100
annealing distributions uniformly spaced.

G.2. SIR Model

For the annealed importance sampling estimators we use HMC transition kernels with a
step size of 0.05, 10 leapfrog steps and 10 MCMC steps on each annealing distribution. We
use 100 geometrically spaced annealing distributions.

The ground truth is computed using importance sampling with 108 samples and the
prior as a proposal distribution. See Equation (4) for the full SIR model including the
priors.

Appendix H. SIR Experiment

The SIR model assumes the population is divided into three compartments: susceptible
(people not yet infected), infected and recovered (people who already had the disease).
Apart from a number of initially infected people I0, every person in the population starts
out as susceptible, then potentially becomes infected and then recovers after some time.
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Crucially, the SIR model makes some simplifying assumptions most notably that a recovered
person cannot get infected again and that the total number of people in the population
remains constant.

The SIR model can be succinctly described by the following set of ordinary differential
equations (ODE):

dS

dt
= −βS I

N
(3a)

dI

dt
= βS

I

N
− γI (3b)

dR

dt
= γI (3c)

For our case we assume that γ = 0.25 is known and need not be inferred from data.
Therefore our model has two unknown parameters: the initial number of infected patients
I0 and β. We assume we are given data in the form of observations yi, the number of
observed newly infected people on day i. This gives us the statistical model

γ = 0.25, (4a)

β ∼ truncated(Normal(2, 1.5), 0,∞), (4b)

i0 ∼ truncated(Normal(10, 10), 0, 1000), (4c)

I0 = i0 ∗ 10;S0 = 10000− I0;R0 = 0, (4d)

x = ODESolve(β, γ, S, I, R), (4e)

yi ∼ NegBinomial(xi, 0.5). (4f)

Here ODESolve indicates a call to an ODE solver which solves the set of equations (3).
It outputs xi the predicted number of newly infected people on day i. Since we assume
that we have noisy observations we use a negative Binomial to add some noise to the
predictions from the differential equations. The negative binomial NegBinomial(µ, φ) is
parametrised by its mean µ and an overdispersion parameter φ; for φ → ∞ the negative
binomial distribution approaches a Poisson distribution. For an in-depth discussion about
doing Bayesian parameter inference in the SIR model we refer the reader to the case study
of Grinsztajn et al. (2020).

We assume we are given a cost function in terms of the basic reproduction rate,

cost(R0) = 1e12 ∗ logistic(10R0 − 30).
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