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Abstract

The advancement of generative radiance fields has pushed the boundary of 3D-
aware image synthesis. Motivated by the observation that a 3D object should look
realistic from multiple viewpoints, these methods introduce a multi-view constraint
as regularization to learn valid 3D radiance fields from 2D images. Despite the
progress, they often fall short of capturing accurate 3D shapes due to the shape-
color ambiguity, limiting their applicability in downstream tasks. In this work, we
address this ambiguity by proposing a novel shading-guided generative implicit
model that is able to learn a starkly improved shape representation. Our key insight
is that an accurate 3D shape should also yield a realistic rendering under different
lighting conditions. This multi-lighting constraint is realized by modeling illumina-
tion explicitly and performing shading with various lighting conditions. Gradients
are derived by feeding the synthesized images to a discriminator. To compensate
for the additional computational burden of calculating surface normals, we further
devise an efficient volume rendering strategy via surface tracking, reducing the
training and inference time by 24% and 48%, respectively. Our experiments on mul-
tiple datasets show that the proposed approach achieves photorealistic 3D-aware
image synthesis while capturing accurate underlying 3D shapes. We demonstrate
improved performance of our approach on 3D shape reconstruction against existing
methods, and show its applicability on image relighting. Our code will be released
at https://github.com/XingangPan/ShadeGAN.

1 Introduction

Advanced deep generative models, e.g., StyleGAN [1, 2] and BigGAN [3], have achieved great
successes in natural image synthesis. While producing impressive results, these 2D representation-
based models cannot synthesize novel views of an instance in a 3D-consistent manner. They also fall
short of representing an explicit 3D object shape. To overcome such limitations, researchers have
proposed new deep generative models that represent 3D scenes as neural radiance fields [4, 5]. Such
3D-aware generative models allow explicit control of viewpoint while preserving 3D consistency
during image synthesis. Perhaps a more fascinating merit is that they have shown the great potential
of learning 3D shapes in an unsupervised manner from just a collection of unconstrained 2D images.
If we could train a 3D-aware generative model that learns accurate 3D object shapes, it would broaden
various downstream applications such as 3D shape reconstruction and image relighting.

Existing attempts for 3D-aware image synthesis [4, 5] tend to learn coarse 3D shapes that are
inaccurate and noisy, as shown in Fig.1 (a). We found that such inaccuracy arises from an inevitable
ambiguity inherent in the training strategy adopted by these methods. In particular, a form of
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Figure 1: Motivation. (a) Previous methods like pi-GAN [4] resort to the "multi-view constraint",
where the 3D representation is projected to different viewpoints as fake images to the discriminator.
The extracted 3D meshes are often inaccurate due to the shape-color ambiguity. (b) The proposed
approach ShadeGAN further adopts a "multi-lighting constraint", which motivates the 3D represen-
tation to look realistic under different lighting conditions. This constraint effectively addresses the
ambiguity, giving rise to more natural and precise 3D shapes.

regularization, which we refer to as "multi-view constraint", is used to enforce the 3D representation
to look realistic from different viewpoints. The constraint is commonly implemented by first
projecting the generator’s outputs (e.g., radiance fields [6]) to randomly sampled viewpoints, and
then feeding them to a discriminator as fake images for training. While such a constraint enables
these models to synthesize images in a 3D-aware manner, it suffers from the shape-color ambiguity,
i.e., small variations of shape could lead to similar RGB images that look equally plausible to the
discriminator, as the color of many objects is locally smooth. Consequently, inaccurate shapes are
concealed under this constraint.

In this work, we propose a novel shading-guided generative implicit model (ShadeGAN) to address
the aforementioned ambiguity. In particular, ShadeGAN learns more accurate 3D shapes by explicitly
modeling shading, i.e., the interaction of illumination and shape. We believe that an accurate 3D
shape should look realistic not only from different viewpoints, but also under different lighting
conditions, i.e., satisfying the "multi-lighting constraint". This idea shares similar intuition with
photometric stereo [7], which shows that accurate surface normal could be recovered from images
taken under different lighting conditions. Note that the multi-lighting constraint is feasible as
real-world images used for training are often taken under various lighting conditions. To fulfill
this constraint, ShadeGAN takes a relightable color field as the intermediate representation, which
approximates the albedo but does not necessarily satisfy viewpoint independence. The color field is
shaded under a randomly sampled lighting condition during rendering. Since image appearance via
such a shading process is strongly dependent on surface normals, inaccurate 3D shape representations
will be much more clearly revealed than in earlier shading-agnostic generative models. Hence, by
satisfying the multi-lighting constraint, ShadeGAN is encouraged to infer more accurate 3D shapes
as shown in Fig.1 (b).

The above shading process requires the calculation of the normal direction via back-propagation
through the generator, and such calculation needs to be repeated dozens of times for a pixel in volume
rendering [4, 5], introducing additional computational overhead. Existing efficient volume rendering
techniques [8, 9, 10, 11, 12] mainly target static scenes, and could not be directly applied to generative
models due to their dynamic nature. Therefore, to improve the rendering speed of ShadeGAN, we
formulate an efficient surface tracking network to estimate the rendered object surface conditioned
on the latent code. This enables us to save rendering computations by just querying points near the
predicted surface, leading to 24% and 48% reduction of training and inference time without affecting
the quality of rendered images.

Comprehensive experiments are conducted across multiple datasets to verify the effectiveness of
ShadeGAN. The results show that our approach is capable of synthesizing photorealistic images
while capturing more accurate underlying 3D shapes than previous generative methods. The learned
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distribution of 3D shapes enables various downstream tasks like 3D shape reconstruction, where
our approach significantly outperforms other baselines on the BFM dataset [13]. Besides, modeling
the shading process enables explicit control over lighting conditions, achieving image relighting
effect. Our contributions can be summarized as follows: 1) We address the shape-color ambiguity in
existing 3D-aware image synthesis methods with a shading-guided generative model that satisfies the
proposed multi-lighting constraint. In this way, ShadeGAN is able to learn more accurate 3D shapes
for better image synthesis. 2) We devise an efficient rendering technique via surface tracking, which
significantly saves training and inference time for volume rendering-based generative models. 3)
We show that ShadeGAN learns to disentangle shading and color that well approximates the albedo,
achieving natural relighting effects in image synthesis.

2 Related Work

Neural volume rendering. Starting from the seminal work of neural radiance fields (NeRF) [6],
neural volume rendering has gained much popularity in representing 3D scenes and synthesizing
novel views. By integrating coordinate-based neural networks with volume rendering, NeRF performs
high-fidelity view synthesis in a 3D consistent manner. Several attempts have been proposed to extend
or improve NeRF. For instance, [14, 15, 16] further model illumination, and learn to disentangle
reflectance with shading given well-aligned multi-view and multi-lighting images. Besides, many
studies accelerate the rendering of static scenes from the perspective of spatial sparsity [8, 9],
architectural design [10, 11], or efficient rendering [17, 12]. However, it is not trivial to apply these
illumination and acceleration techniques to volume rendering-based generative models [5, 4], as they
typically learn from unposed and unpaired images, and represent dynamic scenes that change with
respect to the input latent codes.

In this work, we take the first attempt to model illumination in volume rendering-based generative
models, which serves as a regularization for accurate 3D shape learning. We further devise an efficient
rendering technique for our approach, which shares similar insight with [12], but does not rely on
ground truth depth for training and it is not limited to a small viewpoint range.

Generative 3D-aware image synthesis. Generative adversarial networks (GANs) [18] are capable
of generating photorealistic images of high-resolution, but lack explicit control over camera viewpoint.
In order to enable them to synthesis images in a 3D-aware manner, many recent approaches investigate
how 3D representations could be incorporated into GANs [19, 20, 21, 22, 23, 24, 25, 26, 27, 5, 4, 28,
29, 30]. While some works directly learn from 3D data [19, 20, 21, 22, 30], in this work we focus
on approaches that only have access to unconstrained 2D images, which is a more practical setting.
Several attempts [23, 24, 25] adopt 3D voxel features with learned neural rendering. These methods
produce realistic 3D-aware synthesis, but the 3D voxels are not interpretable, i.e., they cannot be
transferred to 3D shapes. By leveraging differentiable renderer, [26] and [27] learn interpretable
3D voxels and meshes respectively, but [26] suffers from limited visual quality due to low voxel
resolution while the learned 3D shapes of [27] exhibit noticeable distortions. The success of NeRF
has motivated researchers to use radiance fields as the intermediate 3D representation in GANs
[5, 4, 28]. While achieving impressive 3D-aware image synthesis with multi-view consistency, the
extracted 3D shapes of these approaches are often imprecise and noisy. Our main goal in this work is
to address the inaccurate shape by explicitly modeling illumination in the rendering process. This
innovation helps achieve better 3D-aware image synthesis with broader applications.

Unsupervised 3D shape learning from 2D images. Our work is also related to unsupervised
approaches that learn 3D object shapes from unconstrained, monocular view 2D images. While
several approaches use external 3D shape templates or 2D key-points as weak supervisions to facilitate
learning [31, 32, 33, 34, 35, 36, 37], in this work we consider the harder setting where only 2D
images are available. To tackle this problem, most approaches adopt an “analysis-by-synthesis”
paradigm [38, 39, 40]. Specifically, they design photo-geometric autoencoders to infer the 3D shape
and viewpoint of each image with a reconstruction loss. While succeed in learning the 3D shapes for
some object categories, these approaches typically rely on certain regularization to prevent trivial
solutions, like the commonly used symmetry assumption on object shapes [39, 40, 31, 32]. Such
assumption tends to produce symmetric results that may overlook the asymmetric aspects of objects.
Recently, GAN2Shape [41] shows that it is possible to recover 3D shapes for images generated by
2D GANs. This method, however, requires inefficient instance-specific training, and recovers depth
maps instead of full 3D representations.
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Figure 2: Method overview. Our generator gθ models a relightable color field conditioned on a latent
code z ∼ pz . To synthesis an image, it performs volume rendering under a random camera pose
ξ ∼ pξ. The rendering process also performs shading with a randomly sampled lighting condition
µ ∼ pµ. The discriminator learns to distinguish the synthesized images with real images from the
training dataset, and the whole model is trained with a GAN loss. Although our model is trained from
unconstrained 2D images, it allows explicit control over camera pose and lighting condition during
inference.

The proposed 3D-aware generative model also serves as a powerful approach for unsupervised
3D shape learning. Compared with aforementioned autoencoder-based methods, our GAN-based
approach avoids the need to infer the viewpoint of each image, and does not rely on strong regulariza-
tions. In experiments, we demonstrate superior performance over recent state-of-the-art approaches
Unsup3d [39] and GAN2Shape [41].

3 Methodology

We consider the problem of 3D-aware image synthesis by learning from a collection of unconstrained
and unlabeled 2D images. We argue that modeling shading, i.e., the interaction of illumination and
shape, in a generative implicit model enables unsupervised learning of more accurate 3D object
shapes. In the following, we first provide some preliminaries on neural radiance fields (NeRF) [6],
and then introduce our shading-guided generative implicit model.

3.1 Preliminaries on Neural Radiance Fields

As a deep implicit model, NeRF [6] uses an MLP network to represent a 3D scene as a radiance
field. The MLP fθ : (x,d)→ (σ, c) takes a 3D coordinate x ∈ R3 and a viewing direction d ∈ S2
as inputs, and outputs a volume density σ ∈ R+ and a color c ∈ R3. To render an image under
a given camera pose, each pixel color C of the image is obtained via volume rendering along its
corresponding camera ray r(t) = o+ td with near and far bounds tn and tf as below:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt, where T (t) = exp(−
∫ t

tn

σ(r(s))ds). (1)

In practice, this volume rendering is implemented with a discretized form using stratified and
hierarchical sampling. As this rendering process is differentiable, NeRF could be directly optimized
via posed images of a static scene. After training, NeRF allows the rendering of images under new
camera poses, achieving high-quality novel view synthesis.

3.2 Shading-Guided Generative Implicit Model

In this work, we are interested in developing a generative implicit model that explicitly models the
shading process for 3D-aware image synthesis. To achieve this, we make two extensions to the MLP
network in NeRF. First, similar to most deep generative models, it is further conditioned on a latent
code z sampled from a prior distribution N (0, I)d. Second, instead of directly outputting the color c,
it outputs a relightable pre-cosine color term a ∈ R3, which is conceptually similar to albedo in the
way that it could be shaded under a given lighting condition. While albedo is viewpoint-independent,
in this work we do not strictly enforce such independence for a in order to account for dataset bias.
Thus, our generator gθ : (x,d, z)→ (σ,a) takes a coordinate x, a viewing direction d, and a latent
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code z as inputs, and outputs a volume density σ and a pre-cosine color a. Note that here σ is
independent of d, while the dependence of a on d is optional. To obtain the color C of a camera ray
r(t) = o+ td with near and far bounds tn and tf , we calculate the final pre-cosine colorA via:

A(r, z) =

∫ tf

tn

T (t, z)σ(r(t), z)a(r(t),d, z)dt, where T (t, z) = exp(−
∫ t

tn

σ(r(s), z)ds).

(2)

We also calculate the normal direction n with:

n(r, z) = n̂(r, z)/‖n̂(r, z)‖2, where n̂(r, z) = −
∫ tf

tn

T (t, z)σ(r(t), z)∇r(t)σ(r(t), z)dt,

(3)

where ∇r(t)σ(r(t), z) is the derivative of volume density σ with respect to its input coordinate,
which naturally captures the local normal direction, and could be calculated via back-propagation.
Then the final color C is obtained via Lambertian shading as:

C(r, z) = A(r, z)(ka + kdmax(0, l · n(r, z))), (4)

where l ∈ S2 is the lighting direction, ka and kd are the ambient and diffuse coefficients. We provide
more discussions on this shading formulation at the end of this subsection.

Camera and Lighting Sampling. Eq.(2 - 4) describe the process of rendering a pixel color given a
camera ray r(t) and a lighting condition µ = (l, ka, kd). Generating a full image Ig ∈ R3×H×W

requires one to sample a camera pose ξ and a lighting condition µ in addition to the latent code z,
i.e., Ig = Gθ(z, ξ,µ). In our setting, the camera pose ξ could be described by pitch and yaw angles,
and is sampled from a prior Gaussian or uniform distribution pξ, as also done in previous works
[4, 5]. Sampling the camera pose randomly during training would motivate the learned 3D scene to
look realistic from different viewpoints. While this multi-view constraint is beneficial for learning a
valid 3D representation, it is often insufficient to infer the accurate 3D object shape. Thus, in our
approach, we further introduce a multi-lighting constraint by also randomly sampling a lighting
condition µ from a prior distribution pµ. In practice, pµ could be estimated from the dataset using
existing approaches like [39]. We also show in our experiments that a simple and manually tuned
prior distribution could also produce reasonable results. As the shading process is sensitive to the
normal direction due to the diffuse term kdmax(0, l · n(r, z)) in Eq.(4), this multi-lighting constraint
would regularize the model to learn more accurate 3D shapes that produce natural shading, as shown
in Fig.1 (b).

Training. Our generative model follows the paradigm of GANs [18], where the generator is trained
together with a discriminator D with parameters φ in an adversarial manner. During training, the
generator generates fake images Ig = Gθ(z, ξ,µ) by sampling the latent code z, camera pose ξ and
lighting condition µ from their corresponding prior distributions pz , pξ, and pµ. Let I denotes real
images sampled from the data distribution pI . We train our model with a non-saturating GAN loss
with R1 regularization [42]:

L(θ, φ) = Ez∼pz,ξ∼pξ,µ∼pµ

[
f
(
Dφ(Gθ(z, ξ,µ))

)]
+ EI∼pD

[
f(−Dφ(I)) + λ‖∇Dφ(I)‖2

]
,

(5)
where f(u) = − log(1 + exp(−u)), and λ controls the strength of regularization. More implementa-
tion details are provided in the supplementary material.

Discussion. Note that in Eq.(2 - 4), we perform shading after A and n are obtained
via volume rendering. An alternative way is to perform shading at each local spatial
point as c(r(t),d, z) = a(r(t),d, z)(ka + kdmax(0, l · n(r(t), z))), where n(r(t), z) =
−∇r(t)σ(r(t), z)/‖∇r(t)σ(r(t), z)‖2 is the local normal. Then we could perform volume ren-
dering using c(r(t), z) to get the final pixel color. In practice, we observe that this formulation
obtains suboptimal results. An intuitive reason is that in this formulation, the normal direction is
normalized at each local point, neglecting the magnitude of∇r(t)σ(r(t), z), which tends to be larger
near the object surfaces. We provide more analysis in experiments and the supplementary material.

The Lambertian shading we used is an approximation to the real illumination scenario. While
serving as a good regularization for improving the learned 3D shape, it could possibly introduce an
additional gap between the distribution of generated images and that of real images. To compensate
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Figure 3: (a) Conventional volume rendering samples dozens of points within a predefined near and
far bounds tn and tf . (b) We propose an efficient volume rendering technique via surface tracking.
Before rendering, our surface tracking network Sψ predicts an initial guess of the surface position s
conditioned on the latent code z and camera pose ξ. Then we sample points near s, which requires
fewer samples. Finally, we use the volume rendered depth d as the ground truth to train Sψ . During
training, Sψ is able to predict depth s that well approximates the real surface depth d.

for such risk, we could optionally let the predicted a be conditioned on the lighting condition,
i.e., a = a(r(t),d,µ, z). Thus, in cases where the lighting condition deviates from the real data
distribution, the generator could learn to adjust the value of a and reduce the aforementioned gap.
We show the benefit of this design in the experiments.

3.3 Efficient Volume Rendering via Surface Tracking

Similar to NeRF, we implement volume rendering with a discretized integral, which typically requires
to sample dozens of points along a camera ray, as shown in Fig. 3 (a). In our approach, we also
need to perform back-propagation across the generator in Eq.(3) to get the normal direction for each
point, which introduces additional computational cost. To achieve more efficient volume rendering, a
natural idea is to exploit spatial sparsity. Usually, the weight T (t, z)σ(r(t), z) in volume rendering
would concentrate on the object surface position during training. Thus, if we know the rough surface
position before rendering, we could sample points near the surface to save computation. While for a
static scene it is possible to store such spatial sparsity in a sparse voxel grid [8, 9], this technique
cannot be directly applied to our generative model, as the 3D scene keeps changing with respect to
the input latent code.

To achieve more efficient volume rendering in our generative implicit model, we further propose a
surface tracking network S that learns to mimic the surface position conditioned on the latent code.
In particular, the volume rendering naturally allows the depth estimation of the object surface via:

ts(r, z) =

∫ tf

tn

T (t, z)σ(r(t), z)t dt, (6)

where T (t, z) is defined the same way as in Eq.(2). Thus, given a camera pose ξ and a latent code
z, we could render the full depth map ts(z, ξ). As shown in Fig. 3 (b), we mimic ts(z, ξ) with the
surface tracking network Sψ , which is a light-weighted convolutional neural network that takes z, ξ
as inputs and outputs a depth map. The depth mimic loss is:

L(ψ) = Ez∼pz,ξ∼pξ [‖Sψ(z, ξ)− ts(z, ξ)‖1 + Prec(Sψ(z, ξ), ts(d(z, ξ))] , (7)

where Prec is the perceptual loss that motivates Sψ to better capture edges of the surface.

During training, Sψ is optimized jointly with the generator and the discriminator. Thus, each time
after we sample a latent code z and a camera pose ξ, we can get an initial guess of the depth map as
Sψ(z, ξ). Then for a pixel with predicted depth s, we could perform volume rendering in Eq.(2,3,6)
with near bound tn = s−∆i/2 and far bound tf = s+ ∆i/2, where ∆i is the interval for volume
rendering that decreases as the training iteration i grows. Specifically, we start with a large interval
∆max and decrease to ∆min with an exponential schedule. As ∆i decreases, the number of points
used for rendering m also decreases accordingly. Note that the computational cost of our efficient
surface tracking network is marginal compared to the generator, as the former only needs a single
forward pass to render an image while the latter will be queried for H ×W ×m times. Thus, the
reduction of m would significantly accelerate the training and inference speed for ShadeGAN.
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Figure 4: Qualitative comparison on BFM (top), CelebA (middle), and Cats (bottom) datasets.
"Albedo" refers to the pre-cosine color that approximates albedo. Our approach synthesizes more
accurate 3D shapes than pi-GAN and GRAF, and also learns to disentangle shading with albedo.

4 Experiments

In this section, we evaluate the proposed ShadeGAN on 3D-aware image synthesis. We also show
that ShadeGAN learns much more accurate 3D shapes than previous methods, and in the meantime
allows explicit control over lighting conditions. The datasets used include CelebA [43], BFM [13],
and Cats [44], all of which contain only unconstrained 2D RGB images.

Implementation. In terms of model architectures, we adopt a SIREN-based MLP [45] as the
generator and a convolutional neural network as the discriminator following [4]. For the prior
distribution of lighting conditions, we use Unsup3d [39] to estimate the lighting conditions of real
data and subsequently fit a multivariate Gaussian distribution of µ = (l, ka, kd) as the prior. A
hand-crafted prior distribution is also included in the ablation study. In quantitative study, we let the
pre-cosine color a be conditioned on the lighting condition µ as well as the viewing direction d unless
otherwise stated. In qualitative study, we observe that removing view conditioning achieves slightly
better 3D shapes for CelebA and BFM datasets. Thus, we show results without view conditioning
for these two datasets in the main paper, and put those with view conditioning in Fig. 4 of the
supplementary material. Other implementation details are also provided in the supplementary.
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Figure 5: Generated face images and their 3D meshes.

Normal AlbedoMeshImage

(a) ShadeGAN

(b) Local normal

(c) Manual prior

Figure 6: Qualitative ablation.
See the main text for discussions.

Table 1: Comparisons on the BFM dataset.
We report FID (1282) for image synthesis, and
SIDE (×10−2) and MAD (deg.) for the accuracy
of 3D shapes. ‘-’ indicates not available. Results
of pi-GAN and Ours are averaged over 5 runs.

Method FID ↓ SIDE ↓ MAD ↓
Supervised - 0.410 10.78
Unsup3d [39] - 0.793 16.51
GAN2Shape [41] - 0.756 14.81
GRAF [5] 53.4 1.857 26.60
pi-GAN [4] 16.7±0.2 0.727±0.012 20.09±0.23

Ours 17.7±0.2 0.607±0.007 14.52±0.11

Table 2: Comparisons on the CelebA and
Cats datasets. The image resolution is 1282.

Dataset Method FID ↓ MAD ↓

CelebA
GRAF 43.0 30.48
pi-GAN 15.7 27.22
Ours 16.2 20.49

Cats
GRAF 30.3 65.47
pi-GAN 10.7 33.48
Ours 10.3 25.47

Comparison with baselines. We compare ShadeGAN with two state-of-the-art generative implicit
models, namely GRAF [5] and pi-GAN [4]. Specifically, Fig. 4 includes both synthesized images
as well as their corresponding 3D meshes, which are obtained by performing marching cubes on
the volume density σ. While GRAF and pi-GAN could synthesize images with controllable poses,
their learned 3D shapes are inaccurate and noisy. In contrast, our approach not only synthesizes
photorealistic 3D-consistent images, but also learns much more accurate 3D shapes and surface
normals, indicating the effectiveness of the proposed multi-lighting constraint as a regularization.
More synthesized images and their corresponding shapes are included in Fig.5. Besides more accurate
3D shapes, ShadeGAN can also learn the albedo and diffuse shading components inherently. As
shown in Fig. 4, although not perfect, ShadeGAN has managed to disentangle shading and albedo
with satisfying quality, as such disentanglement is a natural solution to the multi-lighting constraint.

The quality of learned 3D shapes is quantitatively evaluated on the BFM dataset. Specifically,
we use each of the generative implicit models to generate 50k images and their corresponding
depth maps. Image-depth pairs from each model are used as training data to train an additional
convolutional neural network (CNN) that learns to predict the depth map of an input image. We
then test each trained CNN on the BFM test set and compare its predictions to the ground-truth
depth maps as a measurement of the quality of learned 3D shapes. Following [39], we report the
scale-invariant depth error (SIDE) and mean angle deviation (MAD) metrics. The results are included
in Tab. 1, where ShadeGAN significantly outperforms GRAF and pi-GAN. Besides, ShadeGAN also
outperforms other advanced unsupervised 3D shape learning approaches including Unsup3d [39] and
GAN2Shape [41], demonstrating its large potential in unsupervised 3D shapes learning. In terms
of image quality, Tab. 1 includes the FID [46] scores of images synthesized by different models,
where the FID score of ShadeGAN is slightly inferior to pi-GAN in BFM and CelebA. Intuitively,
this is caused by the gap between our approximated shading (i.e. Lambertian shading) and the
real illumination, which can be potentially avoided by adopting more realistic shading models and
improving the lighting prior.

In Tab. 2, we also show the quantitative results of different models on CelebA and Cats. To evaluate
the learned shape, we use each generative implicit model to generate 2k front-view images and
their corresponding depth maps. While these datasets do not have ground truth depth, we report
MAD obtained by testing pretrained Unsup3d models [39] on these generated image-depth pairs as
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Table 3: Ablation study on the BFM dataset.
No. Method FID ↓ SIDE ↓ MAD ↓
(1) ShadeGAN 17.7 0.607 14.52
(2) local shading 30.1 0.754 18.18
(3) w/o light 19.2 0.618 14.53
(4) w/o view 18.6 0.622 14.88
(5) manual prior 20.2 0.643 15.38
(6) +efficient 18.2 0.673 14.72

Table 4: Training and inference time cost on
CelebA. The efficient volume rendering signifi-
cantly improves training and inference speed.

Method Train (h) Inference (s) FID
ShadeGAN 92.3 0.343 16.4
+efficient 70.2 0.179 16.2
pi-GAN 56.8 0.204 15.7
+efficient 46.9 0.114 15.9
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Figure 7: Visualization of depths
predicted by our depth tracking
network and those calculated via
volume rendering.
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Figure 8: Illumination-aware image synthesis. ShadeGAN al-
lows explicit control over the lighting. The pre-cosine color
(albedo) is independent of lighting in (a) and is conditioned on
lighting in (b). We show results of adding a specular term in (c).

a reference. As we can observe, results on CelebA and Cat are consistent with those on the BFM
dataset.

Ablation studies. We further study the effects of several design choices in ShadeGAN. First, we
perform local points-specific shading as mentioned in the discussion of Sec. 3.2. As Tab. 3 No.(2)
and Fig. 6 (b) show, the results of such a local shading strategy are notably worse than the original
one, which indicates that taking the magnitude of∇xσ into account is beneficial. Besides, the results
of Tab. 3 No.(3) and No.(4) imply that removing a’s dependence on the lighting µ or the viewpoint d
could lead to a slight performance drop. The results of using a simple manually tuned lighting prior
are provided in Tab. 3 No.(5) and Fig. 6 (c), which are only moderately worse than the results of
using a data-driven prior, and the generated shapes are still significantly better than the ones produced
by existing approaches.

To verify the effectiveness of the proposed efficient volume rendering technique, we include its effects
on image quality and training/inference time in Tab. 3 No.(6) and Tab. 4. It is observed that the
efficient volume rendering has marginal effects on the performance, but significantly reduces the
training and inference time by 24% and 48% for ShadeGAN. Moreover, in Fig. 7 we visualize the
depth maps predicted by our surface tracking network and those obtained via volume rendering. It is
shown that under varying identities and camera poses, the surface tracking network could consistently
predict depth values that are quite close to the real surface positions, so that we can sample points
near the predicted surface for rendering without sacrificing image quality.

Illumination-aware image synthesis. As ShadeGAN models the shading process, it by design
allows explicit control over the lighting condition. We provide such illumination-aware image
synthesis results in Fig.8, where ShadeGAN generates promising images under different lighting
directions. We also show that in cases where the predicted a is conditioned on the lighting condition
µ, a would slightly change w.r.t. the lighting condition, e.g., it would be brighter in areas having a
overly dim shading in order to make the final image more natural. Besides, we could optionally add a
specular term ksmax(0,h · n)p in Eq. 4 (i.e., Blinn-Phong shading [47], where h is the bisector of
the angle between the viewpoint and the lighting direction) to create specular highlight effects, as
shown in Fig.8 (c).

GAN inversion. ShadeGAN could also be used to reconstruct a given target image by performing
GAN inversion. As shown in Fig. 9 such inversion allows us to obtain several factors of the image,
including the 3D shape, surface normal, approximated albedo, and shading. Besides, we can further
perform view synthesis and relighting by changing the viewpoint and lighting condition. The
implementation of GAN inversion is provided in the supplementary material.
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Figure 9: GAN inversion for real image editing.
Discussions. As the Lambertian shading we used is an approximation to the real illumination, the
albedo learned by ShadeGAN is not perfectly disentangled. Our approach does not consider the
spatially-varying material properties of objects as well. In the future, we intend to incorporate more
sophisticated shading models to learn better disentangled generative reflectance fields.

5 Conclusion

In this work, we present ShadeGAN, a new generative implicit model for shape-accurate 3D-aware
image synthesis. We have shown that the multi-lighting constraint, achieved in ShadeGAN by explicit
illumination modeling, significantly helps learning accurate 3D shapes from 2D images. ShadeGAN
also allows us to control the lighting condition during image synthesis, achieving natural image
relighting effects. To reduce the computational cost, we have further devised a light-weighted surface
tracking network, which enables an efficient volume rendering technique for generative implicit
models, achieving significant acceleration on both training and inference speed. A generative model
with shape-accurate 3D representation could broaden its applications in vision and graphics, and our
work has taken a solid step towards this goal.
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