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ABSTRACT

Recent works (Li et al., 2020; Wan et al., 2021) characterize an important mech-
anism of normalized model trained with SGD and WD (Weight Decay), called
Spherical Motion Dynamics (SMD), confirming its widespread effects in prac-
tice. However, no theoretical study is available on the influence of SMD on the
evolution of the loss of normalized models in literature. In this work, we seek
to understand the effect of SMD by theoretically analyzing a simple normalized
model, named as Noisy Rayleigh Quotient (NRQ). On NRQ, We theoretically
prove SMD can dominate the whole training process via controlling the evolution
of angular update (AU), an essential feature of SMD. Specifically, we show: 1)
within equilibrium state of SMD, the convergence rate and limiting risk of NRQ
are mainly determined by the theoretical value of AU; and 2) beyond equilibrium
state, the evolution of AU can interfere the optimization trajectory, causing odd
phenomena such as “escape” behavior. We further show the insights drawn from
NRQ is consistent with empirical observations in experiments on real datasets.
We believe our theoretical results shed new light on the role of normalization
techniques during the training of modern deep learning models.

1 INTRODUCTION

Normalization (Ioffe & Szegedy, 2015; Wu & He, 2018) is one of the most widely used deep learning
techniques, and has become an indispensable part in almost all popular architectures of deep neural
networks. Though the success of normalization techniques is indubitable, its underlying mechanism
still remains mysterious, and has become a hot topic in the realm of deep learning.

Many works have contributed in figuring out the mechanism of normalization from different as-
pects. While some works (Ioffe & Szegedy, 2015; Santurkar et al., 2018; Hoffer et al., 2018;
Bjorck et al., 2018; Summers & Dinneen, 2019; De & Smith, 2020) focus on intuitive reasoning
or empirical study, others (Dukler et al., 2020; Kohler et al., 2019; Cai et al., 2019; Arora et al.,
2018; Yang et al., 2018; Wu et al., 2020) focus on establishing theoretical foundation. A series of
works (Van Laarhoven, 2017; Chiley et al., 2019; Kunin et al., 2021; Li et al., 2020; Wan et al.,
2021; Lobacheva et al., 2021; Li & Arora, 2019) have noted that, in practical implementation, the
gradient of normalized models is usually computed in a straightforward manner which results in its
scale-invariant property during training. The gradient of a scale-invariant weight is always orthogo-
nal to the weight, and thus makes the training trajectory behave as motion on a sphere. Besides, in
practice, many models are trained using SGD with Weight Decay (WD), hence normalization and
WD in SGD can cause a so-called “equilibrium” state, in which the effect of gradient and WD on
weight norm cancel out (see Fig. 1(a)).

It has been a long time since the concept of equilibrium was first proposed (Van Laarhoven, 2017)
while either theoretical justification or experimental evidence had still been lacking until recently.
Recent works (Li et al., 2020; Wan et al., 2021) theoretically justify the existence of equilibrium
in both theoretical and empirical aspects, and characterize the underlying mechanism that yields
equilibrium, named as “Spherical Motion Dynamics”. In Wan et al. (2021) the authors further show
SMD exists in a wide range of computer vision tasks, including ImageNet Deng et al. (2009) and
MSCOCO (Lin et al., 2014). More detailed review can be seen in appendix A.
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(a) (b)

Figure 1: (a) Illustration of Spherical Motion Dynam-
ics; (b) Loss landscape of a Rayleigh Quotient with
WD (l2 regularization): x2+2y2/(x2+y2)+(x2+y2)

Though the existence of SMD has been
confirmed both theoretically and empiri-
cally, as well as some of its characteris-
tics, we notice that so far no previous work
has ever theoretically justified how SMD
can affect the evolution of the loss of nor-
malized models. Although some attempts
have been made in Li et al. (2020); Wan
et al. (2021) to explore the role of SMD
in the training by conjectures and empiri-
cal studies, they still lack theoretical justi-
fication on their findings. In hindsight, the
main challenge to theoretically analyze the
effect of SMD is that SMD comes from
the joint effect of normalization and WD
which can significantly distort the loss landscape (see Figure 1(b)), and thus dramatically weaken
some commonly used assumptions such as (locally) convexity, Lipschitz continuity, etc. Explor-
ing the optimization trajectory on such distorted loss landscape is very challenging, much less that
taking in addition SMD into account in the consideration.

In this paper, as the first significant attempt to overcome the challenge on studying the effect of
SMD towards evolution of the loss, we propose a simple yet representative normalized model, and
theoretically analyze how SMD influences the optimization trajectory. We adopt the SDE framework
of Li et al. (2020) to derive the analytical results on the evolution of NRQ, and concepts of Wan et al.
(2021) to interpret the theoretical results we obtain in this paper. Our contributions are

• We design a simple normalized model, named as Noisy Rayleigh Quotient (NRQ). NRQ
possesses all the necessary properties to induce SMD, consistent with those in real neural
networks. NRQ contributes a powerful tool for analyzing how normalization affects first-
order optimization algorithms;

• We derive the analytical results on the limiting dynamics and the stationary distribution of
NRQ. Our results show the influence of SMD is mainly reflected on how angular update
(AU), a crucial feature of SMD, affects the convergence rate and limiting risk. We discuss
the influence of AU within equilibrium and beyond equilibrium respectively, figuring out
the association between the evolution of AU and the evolution of the optimization trajectory
in NRQ;

• We show that the insights drawn from the theoretical results on NRQ can adequately in-
terpret typical observations in deep learning experiments. Specifically, we confirm the role
of learning rate and WD is equivalent to that of scale-invariant weight in SGD. We show
the Gaussian type initialization strategy can affect the training process only because it can
change the evolution of AU at the beginning. We also confirm that under certain condi-
tion, SMD may induce “escape” behavior of optimization trajectory, resulting in “pseudo
overfitting” phenomenon in practice.

2 NOISY RAYLEIGH QUOTIENT

2.1 PROBLEM SET UP

We use Rayleigh Quotient Horn & Johnson (2012) as the objective function, defined as

L(X) =
XTAX

2XTX
, (1)

where X ∈ Rp\{0}, A ∈ Rp×p is positive semi-definite. Based on its form, Rayleigh Quotient is
equivalent to a quadratic function using weight normalization (Salimans & Kingma, 2016).

Now considering the following optimization problem

min
X∈Rp\{0}

L(X), (2)
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Obviously the solutions to equation 2 are X ∗ = {αv|α ∈ R+,v ∈ Sp−1,Av = λ1v, λ1 is the
smallest eigen value of A}. Consider solving Eq equation 2 by Stochastic Gradient Descent (SGD)
with constant learning rate (LR) η > 0 and Weight Decay (WD), the update rule at step n is

Xn+1 = Xn − ηgn − ληXn, (3)
where −ληXn is the weight decay part with a positive factor λ; gn is the stochastic gradient of
equation 1 at step n. Inspired by Zhang et al. (2019), the gradient noise is constructed as Gaussian
noise to simulate the “mini-batch training”. Specifically, gn is constructed as

gn =
1

||Xn||2
PnAX̃n +

1

||Xn||2
Pn(Σ̃)1/2εn, (4)

where X̃n ≜ Xn/||Xn||2; Pn ≜ (I − X̃nX̃
T
n ); Σ̃ ∈ Rp×p is a positive definite matrix; εn ∼

N (0, I). Then we have

Egn = ∇XL(Xn), Cov(gn) =
1

||X||22
Pn(Σ̃)Pn. (5)

gn defined as equation 4 can simulate the mini-batch stochastic gradient of a scale-invariant loss
because

⟨gn,Xn⟩ = 0, gn =
1

k
gn

∣∣
X=kXn

, ∀k > 0, (6)

which are necessary conditions to let SMD occur during the evolution of SGD (Li et al., 2020; Wan
et al., 2021). We call the process Noisy Rayleigh Quotient (NRQ) which optimizes the Rayleigh
Quotient equation 3 using stochastic gradient Eq equation 4 as .
Remark 1. The form of stochastic gradient of NRQ can be regarded as the normalized form of Noisy
Quadratic Model (NQM) (Zhang et al., 2019), in which the objective function is

L(X) =
1

2
XTAX (7)

and the stochastic gradient is defined as

gn = AXn +Σ1/2εn. (8)
But the dynamics of NQM and NRQ are quite different: NQM is basically a convex model and
has only one optimal solution 0, while NRQ is a nonconvex problem and has an infinite number of
solutions (X ∗), thus making it much more difficult to analyze comparing with NQM.

2.2 APPROXIMATE SGD AS STOCHASTIC DIFFERENTIAL EQUATION

Though the thorough analysis on the characteristics of SMD is established on the discrete form (Wan
et al., 2021), directly analyzing evolution dynamics of equation 3 taking SMD into account in
discrete form is still too complex. On the other hand, we can tackle the problem using the SDE
approximation introduced in Li et al. (2020), which has established the continuous form of SMD.

Using SDE approximation, the evolution dynamics of equation 3 can be approximated by

dXt = −η(
1

||Xt||2
PtAX̃t + λXt)dt+

ηPt(Σ̃)1/2

||Xt||2
dBt, (9)

where Bt is a p-dimensional Brownian motion. Here we follow the form of SDE used in Li et al.
(2020) instead of the commonly used form proposed in Li et al. (2017) by extracting a LR factor η
from the differential time dt. The extracted factor is useful in connecting the characteristics of SMD
in discrete setting and continuous setting.

Due to the scale-invariant property, ||Xt||2 cannot influence the Rayleigh Quotient L(Xt) at all, the
intrinsic domain of NRQ is a unit sphere Sp−1 (Li et al., 2020). But ||Xt||2 may affect the evolution
dynamics of NRQ since it is involved in the system equation 9. To decouple the evolution of Xt

on its intrinsic domain (i.e. the evolution of X̃t), and the evolution of ||Xt||2, according to Li et al.
(2020), let Mt ≜ ||Xt||2, then equation 9 can be rewritten as the following two SDEs:

dX̃t =− [
η

Mt
PtAX̃t +

η2

2M2
t

Tr(PtΣ̃Pt)X̃t]dt−
η

Mt
PtΣ̃

1
2 dBt (10)

dMt =[−2ληMt +
η2

Mt
Tr(PtΣ̃)]dt (11)
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Note the diffusion part is missing in Eq equation 11, so it is possible to derive the explicit solution
of Eq equation 11, computed as

M2
t = e−4ληtM2

0 + 2η2
∫ t

0

e−4λη(t−τ) Tr(Pτ Σ̃)dτ. (12)

2.3 CHARACTERISTICS OF SMD IN NRQ

Previous works (Van Laarhoven, 2017; Chiley et al., 2019; Kunin et al., 2021; Li et al., 2020) usually
regard the convergence of weight norm as the sign of equilibrium state in SMD. However, Wan
et al. (2021) argues that equilibrium of SMD in practice is actually a dynamic state, where the
convergence of weight norm may not hold when the variance of gradient noise on intrinsic domain
varies dramatically during the whole training process. Notwithstanding, Wan et al. (2021) reveals
another essential characteristic of equilibrium regardless of the convergence of the norm: the AU,
defined as ∆n = ∠(Xn,Xn+1). When equilibrium of SMD is reached, AU will satisfy E∆n =√
2λη. In NRQ, the (discrete) AU can be computed by

∆n = ∠(Xn,Xn+1) = arctan(
||gn||η
||Xn||2

) ≈ ||gn||η
||Xn||2

. (13)

Then we have

E∆2
n =

[||∇XL(X̃n)||22 +Tr(PnΣ̃)]η2

||Xn||42
. (14)

Though AU has specific geometric meaning in discrete form, as it represents the geodesic distance
between X̃n and X̃n+1 on unit sphere Sp−1, its definition cannot be applied directly in continuous
setting. To connect the concept of SMD in discrete setting and continuous setting, a continuous
version of AU in NRQ is defined as
Definition 1 (AU). E||X̃τ − X̃t||22 is differentiable on [t,+∞), then AU at t is defined as

∆t =

√
lim
τ→t

Et||X̃τ − X̃t||22
τ − t

. (15)

Remark 2. The definition of AU in continuous setting is inspired from the concept of “angular
velocity” used in Kunin et al. (2021), in which the author formulated the equilibrium of SMD using
gradient flow.

This definition relies on the fact that E||X̃τ − X̃t||22 is differentiable on t. By the definition we can
derive the following properties of AU in NRQ:

Lemma 1. In the evolution of equation 10, equation 11, we have ∆2
t = Tr(PtΣ̃)η2

M2
t

. If Tr(PtΣ̃) is

constant, then limt→∞ ∆t =
√
2λη.

The proof is in Appendix B.1. Comparing with equation 14 and lemma 1, the theoretical value E∆2
n

in discrete form is similar to its continuous form except for an additional term ||∇XL(X̃n)||22 in
the top of fraction, denoting the full gradient norm. Note when X̃n is close to its optimal point,
this term is usually close to zero, hence can be ignored comparing with the magnitude of gradient
noise Tr(PnΣn). This is called noisy dominated regime (Zhang et al., 2019; Smith et al., 2020),
which commonly holds in practice especially in large-scale dataset tasks (Smith et al., 2020; Wan
et al., 2021), and happen to be the case where discretization error can be controlled (Li et al., 2021).
Besides, the limit of ∆t is

√
2λη, exactly same as the theoretical value of AU in discrete form.

In summary, SMD in continuous form is fundamentally equivalent to SMD in the discrete form in
noisy dominated regime, where they share the same characteristics on AU. In the following context,
we adopt the unifying concept of SMD and AU, without distinguishing the discrete and continuous
form.

3 ANALYTICAL RESULTS ON EVOLUTION OF NRQ

First of all, the following two assumptions are introduced to simplify the derivation and highlight
the insights of the analytical results:
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Assumption 1. A is diagonal matrix with diagonal elements in ascending order, i.e. A =
diag(a1, a2, . . . , ap), a1 < a2 ≤ a3, . . . ,≤ ap.

Assumption 2. ∃σ > 0, Σ̃ = σ2I .

In assumption 1, A is diagonalized to simplify derivation, same as Zhang et al. (2019) does in the
quadratic model. We further assume a1 < a2 to ensure NRQ has at most 2 solutions ±e1, where
e
(1)
1 = 1, e

(i)
1 = 0, 2 ≤ i ≤ p − 1. Assumption 2 is used to ensure Tr(PtΣ̃) is constant during

the whole process. This constant variance of gradient noise assumption are also used in Zhu et al.
(2019); Li et al. (2020).

Note even under assumption 1, NRQ still has two different global optimal solutions ±e1 on
Sp−1, so directly analyzing the convergence behavior by distance to the optimal points is inap-
propriate. Therefore, to properly track the optimization trajectory, we analyze the evolution of
ft ≜ (eT1 X̃t)

2 = (X̃
(1)
t )2, where X̃

(1)
t denotes the first element of X̃ . Note that ft is an ideal

index to reflect the optimization trajectory because ft = 1 if and only if Xt = ±e1. Besides, ft can
(roughly) bound the evolution of the loss Lt by

a1 + (a2 − a1)(1− ft) ≤ Lt ≤ a1 + (ap − a1)(1− ft).

Using Itô Lemma, the SDE of ft can be derived from equation 10 and equation 11, written as

dft =[
η(Lt − a1)

Mt
ft +

η2σ2

M2
t

(1− pft)]dt+
2ησ

Mt

√
ft(1− ft)dBt, (16)

M2
t =e−4ληt(M2

0 − (p− 1)σ2η

2λ
) +

(p− 1)σ2η

2λ
(17)

Remark 3. It is possible to directly explore the evolution of the loss Lt by deriving the SDE of Lt

using Itô’s lemma. But some terms in SDE of Lt is hard to handle comparing with the SDE of ft.

Now we can define the risk of NRQ as rt ≜ 1 − Eft, our first theorem depicts the convergence
behavior of NRQ by giving the bounds of the risk;
Theorem 1. The solution of Eqs equation 16 and equation 17 satisfies

rt ≥ e−G1(t)[1− f0 +

∫ t

0

∆2
τe

G1(τ)dτ ], (18)

where

G1(t) ≜
∫ t

0

[
(ap − a1)η√

p− 1σ
∆τ +

p

p− 1
∆2

τ ]dτ ; (19)

Furthermore, given ξ ∈ (0, 1), define ε(t) = P(ft < ξ) as the tail probability of ft dynamics. Then
for any t ≥ 0, we have

rt ≤ e−G̃1(t)[1− f0 +

∫ t

0

(
(a2 − a1)ηξε(t)√

p− 1σ
∆τ +∆2

τ )e
−G̃τ dτ ], (20)

where

G̃1(t) ≜
∫ t

0

[
(a2 − a1)ηξ√

p− 1σ
∆τ +

p

p− 1
∆2

τ ]dτ ; (21)

Proof is in Appendix C. Theorem 1 implies the evolution of risk are mostly determined by the
evolution of AU. Note the lower bound Eq equation 20 relies on ξ and ε(t). To make the lower
bound tighter, ideally ξ should be close to 1, while ε(t) should be close to 0. We will discuss ξ and
ε(t) in details later.

3.1 EQUILIBRIUM STATE OF SMD

Though an analytical result is shown in Theorem 1, the global picture of the dynamics is still not
clear, since the evolution of rt is associated with the evolution of AU ∆t. Fortunately, it has been
known that equilibrium of SMD must be reached, in which ∆t =

√
2λη regardless of the evolution

of X̃t. Hence, we can directly explore the evolution of rt in equilibrium, as the following corollary
shows:
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Corollary 1 (Equilibrium state dynamics). Assume M0 =
√

η(p−1)σ2

2λ , λη ≪ 1, and ∃ε > 0,

limt→+∞ ε(t) ≤ ε in Theorem 1, then ∃C > 0, such that

r∗ + (1− f0 − r∗)e−g∗
1
t ≤ rt ≤ r̄∗ + ε+ e−g̃∗

1 tC (22)

where

g∗
1
=

ap − a1√
p− 1σ

√
2λη +O(λη), g̃∗1 =

ξ(ap − a1)√
p− 1σ

√
2λη +O(λη), (23)

r∗ =

√
p− 1σ

ap − a1

√
2λη +O(λη) r̄∗ =

√
p− 1σ

ξ(a2 − a1)

√
2λη +O(λη), (24)

Proof is in Appendix D.1. Corollary 1 shows that in equilibrium state of SMD, when ε ≪ r̄∗, NRQ
still converges in a linear rate regime, where the convergence rate is (roughly) proportional to the
AU by equation 23, which is only determined by LR η and WD factor λ. However, the limiting
risk is also (roughly) proportional to the AU by equation 24. Thus, a trade-off exists between the
convergence rate and limiting risk when tuning AU: large AU can make the loss decrease more
quickly at the beginning, but will enlarge the limiting risk in the end, resulting a larger steady loss
(see Figure 2 (a)-(d)). This can explain why decreasing LR strategy is always necessary to obtain
the best performance when training models in practice.
Remark 4. Such trade-off between convergence rate and limiting risk also exists in the convergence
behavior of NQM (Zhang et al., 2019). Zhang et al. (2019) claims the trade-off in NQM can be
adjusted by tuning LR or gradient noise; while in NRQ, the trade-off can not only be adjusted by
LR or gradient noise, but also WD factor. Besides, the association between AU and the convergence
rate/limiting risk is consistent with the conjectures about the relation between AU and dynamics of
normalized DNN in Wan et al. (2021), in which the authors suppose AU is correlated with the steady
loss when training normalized DNN.

Stationary distribution of ft Corollary 1 only presents a bound for the risk. With additional
assumptions, the stationary distribution of ft and limiting risk r∗ can be explicitly derived using
Fokker Planck equation.

Theorem 2. Assume the spectrum of A takes only 2 distinct real value a1 = al < ah = a2 = · · · =
ap. Denote the stationary distribution of ft by ρ∗(f). Then

ρ∗(f) ∝ e2κff− 1
2 (1− f)

p−3
2 , f ∈ [0, 1] (25)

where κ =
√
p−1

2σ
√
2ηλ

. In addition, the limit of risk rt exists and is given by

r∗ ≜ lim
t→∞

rt = 1−
√
p− 1σ

ah − al

√
2λη + o(

√
2λη); (26)

Moreover, there exists µ,C > 0, such that for any ξ ∈ (0, 1), the tail probability ε(t) ≜ P(ft < ξ)
can be governed by

|ε(t)− ε∗| ≤ Ce−µt (27)

in which ε∗ is the stationary tail probability ε∗ ≜
∫ ξ

0
ρ∗(f)df

Proof is in Appendix D.2. Eq equation 26 supports our insights drawn from Theorem 1, that the
limiting risk should be proportional to the theoretical value of AU; Besides, equation 27 implies
that it is reasonable to assume ξ is close to 1 while the upper limit of ε(t) is close to 0 as we state in
Theorem 1 and Corollary 1.

3.2 BEYOND EQUILIBRIUM OF SMD

We have presented a detailed analysis on the evolution of the NRQ in equilibrium of SMD, showing
that the convergence rate and limiting risk are mainly controlled by AU. Based on the insights
drawn from the equilibrium case, we can infer how evolution of AU dominates the evolution of
NRQ beyond equilibrium.
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(a) Risk rt (b) Loss Lt (c) AU ∆t (d) Weight norm ||Xt||2

(e) Risk rt (f) Loss Lt (g) AU ∆t (h) Weight norm ||Xt||2

(i) Risk rt (j) Loss Lt (k) AU ∆t (l) Weight norm ||Xt||2

Figure 2: Experiments of NRQ. We exhibit the averaged results of 100 trials. (a)-(d): Evolution of
NRQ in equilibrium state; (e)-(h): Escape behavior of NRQ after LR decay. LR is divided by 10
when t = 104, “Rescale” means Xt is divided by (10)1/4 when learning is shrunk; (i)-(l): Evolution
of NRQ with different and LR, WD factor and initialized standard deviation, denoted by (η, λ, σ̃).
Blue lines are masked by yellow lines in (i), (j), (k) since they have exactly same evolution.

“Escape” by the autonomous increase of AU The following corollary shows the evolution of ∆t

can lead to an “escape” behavior of optimization trajectory, resulting in a temporary “decreasing,
then increasing” risk:
Corollary 2 (A sufficient condition of “escaping” behavior). Given η, λ, if the following conditions
hold: 1) ∃ε > 0, ∀t > 0, ε(t) < ε < r∗; 2) f0 = 1− r∗; 3) M0 > (p−1)σ2η

(r∗−ε)(a2−a1)ξ
. Then ∃T > 0,

rT < r0 ≤ lim
t→∞

rt. (28)

Proof is in Appendix E. equation 28 indicates a kind of “escape” behavior, because it implies that
the trajectory of X̃t will first approach an optimal point X̃∗ at the beginning, and then depart from
X̃∗. Intuitively, this “escape” behavior is caused by increasing AU (which is also the main idea
of the proof for Corollary 2): the initial weight norm

√
M0 is sufficiently large, so ∆t is relatively

smaller than
√
2λη at the beginning, which allows the risk rt to reduce below the inferior of limiting

risk given
√
2λη for a while. But when equilibrium is reached and AU increases to

√
2λη, it will

force the risk to go back to its limit value. See the blue lines in Figure 2 (e)-(h).

Even though Corollary 2 only gives a sufficient condition for the “escape” behavior in NRQ, such
“escape” phenomenon can be seen in real data experiments in practice. Wan et al. (2021) exhibits a
so-called “pseudo overfitting” phenomenon observed in CIFAR10 experiments with commonly used
settings. They speculate “pseudo overfitting” is caused by temporarily increasing AU after LR decay
based on empirical observations. Corollary 2 offers strong theoretical evidence for their conjecture,
showing increasing AU indeed can lead to “escape” behavior under specific conditions. We also
apply “rescale” strategy proposed in Wan et al. (2021) on NRQ, in which when LR is divided by k,
weight norm is divided by k1/4. The “rescale” strategy can indeed eliminate the “escape” behavior
(see Figure 2, (e)-(h), red lines).

Initialized value of weight norm The evolution of AU can provide new interpretations on how
initialization strategy affect the training of normalized model.
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The weights of neural network are usually initialized as Gaussian N (0, σ̃2I), where σ̃ need to be
carefully tuned. In mean field theory and NTK theory, standard derivation of Gaussian initializing
strategy is crucial in obtaining good performance. Experiments on real datasets seem to support
these theorems, where Gaussian initializing strategies with carefully tuned σ̃ such as Kaiming He
et al. (2015) or Xavier Glorot & Bengio (2010) indeed outperform the naive Gaussian initializing
strategy. However, when initializing normalized model, σ̃ only influences the initialized value of
weight norm according to the large number theorem: ||X0||22 =

∑p
i=0(X

(i)
t )2 ≈ pσ̃2. The follow-

ing corollary implies σ̃ are not so crucial for normalized model:
Corollary 3. ∀k > 0, if X0 is multiplied by k, enlarge η, λ by k2, 1

k2 times respectively, rt remains
unchanged.

Proof is in Appendix E.2. Corollary 3 shows no matter how to set σ̃, as long as LR η and WD factor
λ are adjusted accordingly, the evolution dynamics of NRQ does not change at all. Because the
adjustment in Corollary 3 can remain the evolution equation 10 by maintaining the evolution of ∆t

(Comparing blue and yellow lines in Figure 2, (i)-(l)).

Furthermore, combining equation 17 and equation 11, we can interpret why initialization affect the
evolution of NRQ: when λ, η are given, the initialized value M0 can change the evolution of AU
∆t by changing equation 17, resulting in different training curve at beginning. But their limiting
risk remains unchanged, since the theoretical value of AU does not change (Comparing blue and red
lines in Figure 2 (i)-(l)); same phenomenon occurs when M0, λη are fixed, but λ, η change.

Though in NRQ, the conclusion that “same limiting AU will lead to similar limiting risk” is true,
same conclusion does not necessarily hold on real data experiments. The two local minima of
Rayleigh Quotient have exactly same geometric characteristics, but in real data experiments, the loss
landscape may have multiple local minima with different geometric characteristics. Even though
the theoretical value of AU is fixed, different evolution of aus may make the optimization trajectory
get close to different local minima, resulting in different final performance. This is the reason
why in practice, with fixed LR, WD factor, and σ̃ in Gaussian initialization still may influence the
performance of neural network.

4 REAL DATA EXPERIMENTS

Aside from NRQ experiments, we also conduct experiments on CIFAR10 (Krizhevsky et al., 2009),
and ImageNet (Deng et al., 2009) respectively to verify the insights drawn from NRQ. We use pure
SGD without momentum in all real data experiments to eliminate the possible effect of momentum,
though Wan et al. (2021) claim SGD with momentum has similar SMD mechanism. In CIFAR10
experiments, we adopt Resnet18 (He et al., 2015) as the baseline model; total epochs is 200; LR
is divided by 5 at epoch 60, 120, 160; Batch size is 256. In ImageNet1000 (Deng et al., 2009)
experiments, most settings follow Goyal et al. (2017), except LR is initialized as 1, momentum is
0. Smith et al. (2020) shows using pure SGD with larger LR can obtain similar performance as the
standard SGDM setting.

Our experiments’ results (Figure 3,4) show the insights from NRQ also hold in real data experiments:
in cifar10 experiments, when ηλ is fixed, AU in equilibrium of SMD remains unchanged, so do the
steady loss and Accuracy (Figure 3 (a)-(d)). But different LR and WD factor can affect the evolution
at beginning. Wan et al. (2021) shows similar observations in ImageNet experiment; Figure 3 (e)-(h)
exhibit the “pseudo overfitting” phenomenon shortly after the first LR decay (epoch 60). Rescaling
strategy can avoid such “pseudo overfitting” by eliminating the increasing AU phenomenon after
LR decay; From Figure 3 (i)-(l), when initialized weight is enlarged by 10, the AU is smaller at the
beginning, hence the training loss (test accuracy) decreases slower (increases quicker). When the LR
and WD factor are adjusted according to corollary 3, the evolution of AU remains unchanged, and
so do the evolution of training loss/test accuracy. ImageNet experiments have similar phenomenon
(Figure 4 (a)-(d)).

5 CONCLUSION

In this paper, we propose a simple yet representative normalized quadratic model, named as Noisy
Rayleigh Quotient (NRQ), to study the effect of SMD on the evolution of SGD with WD. Our
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(a) Training loss (b) Test Accuracy (c) AU (d) Weight Norm

(e) Training loss (f) Test Accuracy (g) AU (h) Weight Norm

(i) Training Loss (j) Test Accuracy (k) AU (l) Weight Norm

Figure 3: Resnet18 on CIFAR10, we exhibit the averaged results of 10 trials. (a)-(d): Training
curves with different LR and WD factor, denoted as (η, λ); (e)-(h): pseudo overfitting in CIFAR10
experiments. LR is 0.5, WD factor is 10−3, “rescale” means all weights is divided by 51/4 at epoch
60; (i)-(l): Training with different LR, WD factors, and initialized standard deviation in convolution
layer, denoted by (η, λ, σ̃).

√
2
p denotes Kaiming Init (He et al., 2015).

(a) Training loss (b) Test Accuracy (c) AU (d) Weight norm

Figure 4: Resnet50 on Imagenet Training with different LR, WD factors, and initialized standard
deviation in convolution layer, denoted by (η, λ, σ̃).

√
2
p denotes Kaiming Initialization (He et al.,

2015).

theoretical results show SMD influences the evolution of SGD by controlling AU, and AU can
dominate the convergence rate as well as limiting risk of NRQ. Our real data experiments show the
insights drawn from NRQ are consistent with empirical observations. We believe our theorems can
deepen our understandings on the underlying mechanism of deep neural networks.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Sanjeev Arora, Zhiyuan Li, and Kaifeng Lyu. Theoretical analysis of auto rate-tuning by batch
normalization. In International Conference on Learning Representations, 2018.

Nils Bjorck, Carla P Gomes, Bart Selman, and Kilian Q Weinberger. Understanding batch normal-
ization. Advances in Neural Information Processing Systems, 31:7694–7705, 2018.

Yongqiang Cai, Qianxiao Li, and Zuowei Shen. A quantitative analysis of the effect of batch nor-
malization on gradient descent. In International Conference on Machine Learning, pp. 882–890.
PMLR, 2019.

Vitaliy Chiley, Ilya Sharapov, Atli Kosson, Urs Koster, Ryan Reece, Sofia Samaniego de la Fuente,
Vishal Subbiah, and Michael James. Online normalization for training neural networks. Advances
in Neural Information Processing Systems, 32:8433–8443, 2019.

Soham De and Sam Smith. Batch normalization biases residual blocks towards the identity function
in deep networks. Advances in Neural Information Processing Systems, 33, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.
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