
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

On-device Content-based Recommendation with Single-shot
Embedding Pruning: A Cooperative Game Perspective

Anonymous Author(s)
Abstract
Content-based Recommender Systems (CRSs) play a crucial role in
shaping user experiences in e-commerce, online advertising, and
personalized recommendations. However, due to the vast amount
of categorical features, the embedding tables used in CRS models
pose a significant storage bottleneck for real-world deployment,
especially on resource-constrained devices. To address this problem,
various embedding pruning methods have been proposed, but most
existing ones require expensive retraining steps for each target pa-
rameter budget, leading to enormous computation costs. In reality,
this computation cost is a major hurdle in real-world applications
with diverse storage requirements, such as federated learning and
streaming settings. In this paper, we propose Shapley Value-guided
Embedding Reduction (Shaver) as our response. With Shaver, we
view the problem from a cooperative game perspective, and quan-
tify each embedding parameter’s contribution with Shapley values
to facilitate contribution-based parameter pruning. To address the
inheriently high computation costs of Shapley values, we propose
an efficient and unbiased method to estimate Shapley values of a
CRS’s embedding parameters. Moreover, in the pruning stage, we
put forward a field-aware codebook to mitigate the information
loss in the traditional zero-out treatment. Through extensive ex-
periments on three real-world datasets, Shaver has demonstrated
competitive performance with lightweight recommendation mod-
els across various parameter budgets. The source code is available
at https://anonymous.4open.science/r/shaver-E808.

1 Introduction
In the modern era, recommender systems (RSs) play a vital role in
assisting users to identify relevant information. Meanwhile, on top
of user-item interactions, the increasingly available side features
of users and items (e.g., user gender and product category) have
made content-based RSs (CRSs) [36] a step above collaborative
filtering-based RSs, especially in cold-start settings. According to
the Statista report [50], in the US, online advertising – a major CRS
application – has doubled its market size from $107.5 billion in
2018 to $225 billion in 2023. More recently, with privacy legislation
and cyber security awareness on the rise, on-device deployment
of CRSs is quickly gaining popularity, where examples include
Brave Browser’s federated news recommendation [37], as well as
Kuaishou’s short video recommendation on mobile devices [15].

Most modern CRSs depend on sparse categorical features, such
as movie genres and user regions in movie recommendation [36],
where a dense embedding table that hosts all possible features’
embeddings (i.e., vector representations) is trained. Given the enor-
mous amount of sparse categorical features, embedding tables have
become the storage bottleneck for modern CRSs, which contradicts
the surging demand for scalability and efficiency during on-device
deployment [41, 60]. For illustration, in click-through rate (CTR)

prediction, a typical CRS task that predicts users’ clicking inten-
tion on an item, the RS deployed by Meta has been reported to
consume 12T parameters and can demand up to 96TB of memory
and multiple GPUs to train [39]. Consequently, lowering the pa-
rameter footprint has attracted immense attention in both industry
applications [24, 41] and academic research [19, 43]. For instance,
PEP [32] prunes the embedding table by searching a pruning mask
through a learnable threshold. After the initial training of both
the threshold and the model, the model is retrained from scratch
to work under the pruned setting. Another example is AutoSrh
[26], which adaptively groups features into blocks. After bi-level
optimization, a sparse embedding parameterization can be selected
according to the memory budget and then optimized via retraining.

Generally, these methods focus on pruning the embedding table
to a fixed size, hence an expensive training cycle is required for
every single target sparsity. On one side, in most existing solutions,
optimal trade-offs between recommendation accuracy and parame-
ter efficiency require tailoring models according to each device’s
specific computational and storage capacities. However, on the flip
side of the coin, such expensive, repetitive training procedures are
not affordable in practical settings with varying on-device storage
needs. We provide two scenarios below:
• Scenario 1: Federated recommendation ensures privacy by as-

signing each user an on-device recommender. Such paradigms
commonly suffer from hardware heterogeneity, where the varia-
tion of computing resources across devices (e.g., TV boxes, smart
watches, and mobile phones) [7, 60] prohibits a uniform model
architecture from being used. This naturally calls for more effi-
cient means of embedding pruning to provide multiple versions
of a trained model.

• Scenario 2:When deployed on-device, a model needs to operate
under different computational resource budgets due to software
parallelization and varying battery status [4, 61], and CRSs are no
exception. Considering the time-sensitive nature of recommen-
dation services, a sophisticated embedding pruning mechanism
that requires reinforcement learning [43] or even post-pruning
retraining [32] will lead to a significant overhead, hindering the
usability of the service pipeline.

Ideally, considering those real-life scenarios, a competent pruning
technique is expected to quickly adapt a well-trained CRS model
to any specified parameter budget, without undergoing iterative
search or retraining that are both time-consuming.

Therefore, this paper focuses on a more practical, yet largely
neglected setting of CRS compression for on-device deployment,
which is to prune the embedding table of a recommender in one
single shot1. To achieve single-shot pruning, a common practice
is based on attribution scores [2, 38]. In a nutshell, by quantifying

1To clarify, different from transfer learning, our single-shot setting refers to performing
model pruning in only one forward (and sometimes backward) pass [27, 42].

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

the contribution from each individual model weight (i.e., embed-
ding parameter in our case) to a performance metric, parameters
with the lowest scores can be nullified to meet an arbitrary size
constraint. In content-based recommendation, existing solutions
[42, 55] perform parameter attribution by measuring the loss value
change after removing the parameter from the full embedding table,
which can be approximated with first-order gradients [27]. If we
treat all embedding parameters as cooperative “players” in a game,
then this is essentially asking the question: In a team formed by all
players, what is each individual player’s contribution to the whole
team? However, this formulation hardly aligns with the pruning
context, where a player (i.e., embedding parameter), if not pruned,
will actually form a smaller team with only a subset of players.
In a single-shot pruning setting, instead of retaining embedding
parameters that are most important to the full parameter set, we
should ultimately identify parameters that can be of high value to
any parameter subsets. So, the right question to be asked is:What
is the expected contribution of each individual player, when it joins
any team formed by a subset of players? Due to the intertwined
dependency among parameters, it is clear that this question does
not share the same answer with the former one.

To answer this question, we aim to investigate embedding prun-
ing for CRSs via the lens of cooperative games, where we employ
Shapley value [47] to perform embedding parameter attribution.
Shapley value is a well-defined method in the cooperative game the-
ory for fairly allocating the total game revenue to players based on
their individual contributions [12, 23, 34]. It quantifies each player’s
contribution by considering all possible team combinations, result-
ing in the expected contribution of the player in any group. As
such, compared with existing practices [27, 42], Shapley value is a
better fit for generating unbiased attribution scores of embedding
parameters to facilitate fast recommendation model pruning.

However, some major challenges are yet to be resolved before we
can enjoy the benefit of Shapley values. Firstly, the computational
costs of Shapley value are prohibitively expensive. In our context,
when a CRS only activates a subset of embedding parameters, each
parameter’s contribution in this subset can be measured by com-
paring the CRS’s recommendation performance with and without
it. Then, a parameter’s Shapley value is its average contribution to
all possible subsets of parameters. To calculate all the exact Shapley
values, we need to enumerate over all 2𝑛𝑑 parameter subsets, where
𝑛 and 𝑑 are respectively the numbers of features and embedding di-
mensions. Considering that in CRSs 𝑛𝑑 is intractable (e.g., reaching
100 million in our biggest dataset), and reliably measuring the rec-
ommendation performance requires a sufficiently large dataset, the
number of resulted forward passes has rendered the straightforward
calculation of Shapley values an infeasible option. Secondly, most
pruning methods employ a simple zero-out approach to remove less
important parameters and create a sparse embedding matrix. While
this reduces the model size, it can result in significant information
loss as recommenders rely heavily on dense feature representations
for accurate predictions. This further deteriorates in CRSs due to
their extensive use of dot product [18, 46] and element-wise multi-
plication [53] between embeddings to model feature interactions.
By setting parameters to zero, pruning can disrupt the complex
relationships between features, leading to suboptimal performance.

Motivated by these challenges, we propose ShapleyValue-guided
EmbeddingReduction (Shaver), a novel embedding pruningmethod
for compressing a CRS model to any target size in one shot. Shaver
assigns each embedding parameter a Shapley value as its attribution
score, such that a well-trained model can prune its embeddings to
any parameter budget in a single shot. To address the high compu-
tational costs of obtaining exact Shapley values, through a series
of theoretical analyses, we develop an unbiased approximation
method to reliably estimate the Shapley values of all embedding
parameters. Efficiency-wise, Shaver reduces the computational com-
plexity from𝑂 ((𝑛𝑑)! × |D|) to the much lower𝑂 (𝑚𝑑 × |D|), with
D and𝑚 respectively being the dataset and number of feature fields
(e.g., user gender and movie genre). Notably,𝑚 ≪ 𝑛 in our case –
tens of feature fields versus millions of features (see Table 1). To
reduce the information loss caused by the default zero-padding on
pruned parameters, we propose an alternative that searches for an
optimal placeholder value per feature field, termed the codebook,
which is then used for padding nullified embedding parameters
during inference. In addition, the codebook values can be solved in
a closed form, making it better at retaining the recommendation
performance with a negligible computational overhead.

In summary, our main contributions are:
• We revisit one important but largely neglected task of single-

shot embedding pruning, which is more relevant in the
real-world, on-device deployment of CRSs.

• Wepropose Shaver, a novel embedding compressionmethod
that reduces the time complexity of Shapley value estima-
tion for CTR models and provides a more effective alterna-
tive to the widely used zero-out approach in model pruning
with a field-aware codebook.
• We conduct extensive experiments on three datasets to com-

pare Shaver with state-of-the-art embedding compression
methods. The results show that even without an extra fine-
tuning step, Shaver can achieve competitive performance.

2 Related Work
2.1 CTR Prediction
CTR prediction plays a vital role in the development of online adver-
tisements. One of the first and most influential backbones for CTR
prediction is Factorization Machine (FM) [46], where the interac-
tion between features are explicitly model upto 2nd order. Recently,
with the rapid development of deep neural networks (DNN), various
deep models have also been proposed. NeuMF [21] combines the
introduced Generalized Matrix Factorization (GMF) with a DNN
network branch. DeepFM [18] is another prime example, which
adds a DNN branch into the FM model. Unlike DeepFM, which
only attempts to model up to 2nd-order interaction, DCNv2 [53]
explicitly models the 𝑙 + 1-th order interaction by 𝑙 crossnet layers.
DCNv2 also incorporates a DNN to model more complex interac-
tions. To further reduce the computation cost of DCNv2, Wang et
al. [53] also propose integrating Mixture-of-Experts for modeling
the cross-layers, creating DCN–Mix.

2.2 Lightweight Recommender Systems
A diverse set of research endeavors has proposed various methods
for learning light-weight embeddings [29, 52, 62]. Compositional

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

On-device Content-based Recommendation with Single-shot Embedding Pruning: A Cooperative Game Perspective

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

embedding methods decompose the original embedding table into
multiple smaller meta-embedding tables and share parameters be-
tween features [8, 9, 25, 30, 41, 49, 59]. Quantization approaches
are also applied in light-weight RSs [16, 28, 56, 58], which focus on
reducing the loss of model quality in lower precision representation.
However, these approaches generally suffer from limited compres-
sion ratios [62]. Another line of research focuses on finding the best
parameter allocation through Neural Architecture Search (NAS),
which usually involves reinforcement learning [24, 44, 45], bi-level
optimization [26, 63, 64], or evolutionary search [7, 35]. Conse-
quently, NAS-based approaches generally have high computation
costs. Pruning is another popular approach to reduce the amount
of embedding parameters by finding a binary mask [32, 42, 54, 57].
Recently, many hybrid methods [31, 35] have also been proposed
to combine the benefit of various archetypes to achieve the best
trade-off between performance and parameter budget.

Our method falls within the pruning category. Unlike most of
other pruning methods [32, 57], we eliminate the hassle of simul-
taneously optimizing both the pruning budget mask and model
performance. Compared to [7, 45], which also can adapt to arbi-
trary parameter budgets but focus on collaborative filtering, our
method tailored towards CRSs. Additionally, unlike SSEDS [42],
which mandates uniform dimensions across all features within the
same field, our method offers greater flexibility by allowing varied
budget allocations without such constraints.

2.3 Shapley Value for Machine Learning
Shapley values have been widely adopted in the explainable AI
community due to its high correlation with human intuition [34].
Because of its high computation cost, various researches have been
proposed to tackle this challenge through random order sampling
[5, 12], solving weighted least square problem [11, 34], being model
specific [33, 34], and recently amortization approaches [10, 23]. Re-
cently, the success of Shapley values in explainable AI has inspired
its application in pruning deep models. To start with, Ancona et
al. [2] pointed out several desirable properties of Shapley values in
pruning neurons:

• Null player: If the game (loss) doesn’t depend on a player
(parameter or group of parameters), its attribution is zero.
• Symmetry: If the game depends on two players equally,

then the two players should receive the same attribution.
• Efficiency: Attributions sum up to the difference between

the loss evaluated when all players are enabled and the loss
evaluated when all players are removed.

Later, NeuronShapley [14] considered Shapley value estimation as
a multi-arm bandit problem, and applied truncated Monte Carlo to
estimate Shapley values. Leveraging the multi-arm bandit settings,
Guan et al. [17] employ an 𝜖-greedy approach. Troupe [48] pro-
poses using Shapley values to select models for an ensemble based
on a specific data point. Last, although it is not applied for com-
pressing embedding tables, Shapley values also have been applied
in recommender system designs [3, 13].

3 Preliminaries
In this section, we first introduce the key concepts of content-based
recommendation by defining a classic task, namely click-through

rate (CTR) prediction. Then, we provide the definition of Shapley
value, the theoretical foundation of our solution.

3.1 Content-based Recommendation
In CTR prediction, a dataset D is a set of samples (x, 𝑦), where x is
a multi-dimensional vector combining both user and item features,
and𝑦 is a binary label indicating positive (𝑦 = 1, clicked) or negative
(𝑦 = 0, not clicked) user interaction with the item. For x, its features
are commonly a collection of sparse binary features from multiple
fields (i.e., user occupation and product category) [36, 65], such as:

x = [1, 0]︸︷︷︸
x1 (field 1)

[0, . . . , 1, . . . , 0]︸ ︷︷ ︸
x2 (field 2)

. . . [0, . . . , 1, . . . , 0]︸ ︷︷ ︸
x𝑚 (field𝑚)

, (1)

where an example of x1 and x2 can be 𝑢𝑠𝑒𝑟 𝑔𝑒𝑛𝑑𝑒𝑟 = 𝑓 𝑒𝑚𝑎𝑙𝑒 in
field 1 and𝑚𝑜𝑣𝑖𝑒 𝑔𝑒𝑛𝑟𝑒 = 𝑎𝑐𝑡𝑖𝑜𝑛 in field 2. x is then a concatenation
of all categorical feature encodings {x𝑗 }𝑚𝑗=1 from all𝑚 fields, where
numerical features are commonly discretized via bucketing [65] in
CTR prediction tasks.

In real-world applications, the input vector x is extremely sparse,
therefore each field 𝑗 ’s feature is mapped into a 𝑑-dimensional,
dense latent vector e𝑗 ∈ R𝑑 , called embedding:

e𝑗 = V⊤𝑗 x𝑗 , (2)

where V𝑗 ∈ R𝑛 𝑗×𝑑 and x𝑗 ∈ R𝑛 𝑗 are respectively the embedding
table and sparse encoding for field 𝑗 , with 𝑛 𝑗 the number of features
in field 𝑗 . In practice, all𝑚 field-specific embedding tables V𝑖 are
concatenated as a single embedding table E ∈ 𝑅𝑛×𝑑 for storage,
where E = [V1,V2, . . . ,V𝑚], and 𝑛 =

∑𝑚
𝑗=1 𝑛 𝑗 is the total num-

ber of features. After obtaining embeddings for x from all fields
{e1, e2, . . . , e𝑚}, they are further processed by a recommendation
backbone model:

𝑦 = 𝑓 ({e1, e2, . . . , e𝑚}), (3)

with 𝑦 is a binary classification prediction whether a user will
click on an item or not. Its primary target is to model the complex
interactions between different features. For instance, the model can
combine the user gender and the movie genre to create a 2nd-order
interaction, enhancing model performance [18, 46]. These high
order interactions are commonly modeled explicitly by dot product
[18, 46] or element-wise multiplications [53], and implicitly by deep
neural networks [18, 53]. Finally, 𝑓 (·) is trained with log loss:

𝐿 = −𝑦 ln(𝑦) − (1 − 𝑦) ln(1 − 𝑦), (4)

which quantifies the prediction error between 𝑦 and 𝑦.

3.2 Shapley Value
Shapley value originates from the cooperative game theory, whose
aim is to assign each player a score that quantifies the player’s
contribution in a cooperative game. Formally, a cooperative game
consists of a set of players denoted byN , where any arbitrary subset
of players can form a “team”. The coalitional values generated by
player subsets are measured by function 𝑣 : 2N → R, with 𝑣 (∅) = 0.
For player 𝑖 ∈ N , its Shapley value 𝜙𝑣 (𝑖) w.r.t. function 𝑣 (·) is:

𝜙𝑣 (𝑖) =
1
|N |

∑︁
S⊆N\𝑖

(
|N | − 1
|S|

)−1 (
𝑣 (S ∪ 𝑖) − 𝑣 (S)

)
, (5)

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

0.2

1.1 0.4

3.1 1.5

② Calculate
Shapley Value
(Algorithm 1)

③ Prune

① Calculate
Codebook

0.2

1.1

1.1

0.4

1.5

3.1

Field 1
(e.g. Gender)

Field 2
(e.g. Movie Genre)

Field 3
(e.g. User ID)

Figure 1: The overview of Shaver. We calculate placeholder values (codebook C), and then compute Shapley values 𝜙𝑣 from the provided
dataset D. On any required memory budget 𝐵, we replace embedding parameters with the lowest attribution scores by placeholder values.

where
(·
·
)
is the binomial coefficient, and 𝑣 (S ∪ 𝑖) − 𝑣 (S) quantifies

the marginal contribution of 𝑖 after joining team S. In a nutshell,
𝜙𝑣 (𝑖) is computed by enumerating over all possible teamsS ⊆ N \𝑖 .
With that, a commonly used, permutation-based formulation of the
Shapley value is:

𝜙𝑣 (𝑖) =
1
|N |!

∑︁
∀R

(
𝑣 (PR𝑖 ∪ 𝑖) − 𝑣 (P

R
𝑖)

)
, (6)

where the ordered set R is a possible permutation of all players,
PR𝑖 is the set of players that precede 𝑖 in R. Thus, the Shapley value
𝜙𝑣 (𝑖) can be calculated as the mean/expectation of 𝑖’s contributions
in all |N |! possible permutations of N .

Monte Carlo Approximation of Shapley Values. Based on
Eq.(6), the default form of Shapley value calculation incurs a fac-
torial time complexity w.r.t. the number of players. To scale it to a
largeN , approximating the Shapley value via Mote Carlo approach
is a widely adopted workaround [2, 14], which estimates 𝜙𝑣 (𝑖)
by sampling 𝑝 permutations R𝑘 and take the average marginal
contribution in these samples to approximate Shapley value:

𝜙𝑣 (𝑖) ≈
1
𝑝

𝑝∑︁
𝑘=1

(
𝑣 (PR𝑘𝑖 ∪ 𝑖) − 𝑣 (PR𝑘𝑖)

)
, (7)

where 𝜙𝑣 (𝑖) is now the Monte Carlo approximation [5] of player
𝑖’s Shapley value w.r.t. value function 𝑣 (·).

4 Shaver: The Proposed Method
In this section, we unfold the design of Shaver, namely Shapley
Value-guided Embedding Reduction for on-device CRSs, of which
an overview is provided in Figure 1. We firstly formally define
the problem, and subsequently provide corresponding theoretical
analyses and pseudocode to efficiently estimate the Shapley value
of each embedding parameter. Finally, we derive a codebook to
replace the traditional zero-padding strategy, so as to compensate
for the information loss brought by embedding parameter pruning
and maintain maximum model performance. It is worth noting
that, the full training process of 𝑓 (·), Shapely value estimation, and

codebook computation are all performed on a cloud server, whose
role is to find the optimal embedding parameter configuration to
meet different parameter budgets for on-device model deployment.

4.1 Shapley Values of Embedding Parameters
Before defining the problem, we provide some clarifications for
Shapley value in our specific task context. To facilitate selective
embedding table pruning, we derive a Shapley value for every single
parameter in the feature embedding table E. Let E[𝑖, 𝑐] denote the
parameter at the 𝑖-th row and 𝑐-th column (i.e., the 𝑐-th embedding
dimension of feature 𝑖), the Shapley value of player (𝑖, 𝑐) is denoted
as𝜙𝑣 (𝑖, 𝑐) with a value function 𝑣 (·). Please note that the use case of
Shapley value in our work differs from the mainstream, data-centric
counterparts [23, 34] that focus on calculating values of individual
data points or raw features, while we are specifically interested in
the Shapley values of model parameters.

Value Function 𝑣 (·). For measuring 𝜙𝑣 (𝑖, 𝑐), we need to define a
value function 𝑣 (·) that can quantify the contribution from a group
of players (i.e., parameters) S = {E[𝑖1, 𝑐1], E[𝑖2, 𝑐2], . . . , E[𝑖𝑠 , 𝑐𝑠]}.
Given a CTR model 𝑓 (·), we define 𝑣 (·) as the log loss increase
when parameters S become absent from E:

𝑣 (S) = 1
|D|

∑︁
(x,𝑦) ∈D

(
𝐿(𝑓w/o-S (x), 𝑦) − 𝐿(𝑓 (x), 𝑦)

)
, (8)

where 𝑓w/o-S (·) denotes the CTR model without embedding pa-
rameters S, 𝐿 is the log loss, and D denotes the dataset. With this
definition, the Shapley value 𝜙𝑣 (𝑖, 𝑐) of a single parameter E[𝑖, 𝑐]
can be quantified via an analogous process as in Section 3.2.

Definition 4.1 (Single-shot Pruning with Shapley Values). Given
a trained CTR model 𝑓 (·), our goal is to obtain the Shapley value
of every single parameter 𝜙𝑣 (𝑖, 𝑐) in the feature embedding table.
Based on 𝜙𝑣 (𝑖, 𝑐), we can efficiently prune a CTR model for any
on-device budget by directly removing the lowest ranked entries
from its embedding table to meet the specified parameter size.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

On-device Content-based Recommendation with Single-shot Embedding Pruning: A Cooperative Game Perspective

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

4.2 Local and Global Values
If straightforward Monte Carlo approximation of 𝜙𝑣 (𝑖, 𝑐) is in use,
for all |N | = 𝑛𝑑 embedding parameters, |N ||D| = 𝑛𝑑 |D| forward
passes are needed per permutation, leading to a prohibitive com-
putational cost of O(𝑝𝑛𝑑 |D|). One main cause is that Eq.(8) lays
emphasis on embedding parameters’ values to the overall data dis-
tribution. We term this global values, whose calculation involves a
sufficiently large, if not the full dataset D. With that said, the func-
tion of local values 𝑣𝑙𝑜𝑐 (·) is defined based on single data samples:

𝑣𝑙𝑜𝑐 (S|x, 𝑦) = 𝐿(𝑓w/o-S (x), 𝑦) − 𝐿(𝑓 (x), 𝑦). (9)
In contrast to computing the global values, there are some efforts
that draw an individual data sample at a time, pair it with one
random permutation, and then derive each parameter’s local value
to approximate the global one [12]. This process can be described
as follows:
𝜙𝑣 (𝑖, 𝑐) = ER

[
𝑣 (PR𝑖,𝑐 ∪ (𝑖, 𝑐)) − 𝑣 (P

R
𝑖,𝑐)

]
= ERE(x,𝑦)

[
𝑣𝑙𝑜𝑐 (PR𝑖,𝑐 ∪ (𝑖, 𝑐) |x, 𝑦) − 𝑣

𝑙𝑜𝑐 (PR𝑖,𝑐 |x, 𝑦)
]

= E(x,𝑦),R
[
𝐿(𝑓w/o-S1 (x), 𝑦) − 𝐿(𝑓w/o-S2 (x), 𝑦)

]
,

=
1
|D|

∑︁
(x,𝑦) ∈D,R (x,𝑦)

(
𝐿(𝑓w/o-S1 (x), 𝑦) − 𝐿(𝑓w/o-S2 (x), 𝑦)

)
,

(10)
with S1 and S2 defined as:

S1 = {E[𝑖′, 𝑐′] | (𝑖′, 𝑐′) ∈ PR𝑖,𝑐 ∪ (𝑖, 𝑐)},

S2 = {E[𝑖′, 𝑐′] | (𝑖′, 𝑐′) ∈ PR𝑖,𝑐 },
(11)

where R (x,𝑦) denotes one random permutation paired with data
sample (x, 𝑦). In a nutshell, Eq.(10) shows that, with a quality,
decent-sized D, the global Shapley value can be confidently ap-
proximated as the mean of local values [12]. For all parameters,
this method runs in O(𝑛𝑑 |D|). Despite being 𝑝 times faster than
vanilla Monte Carlo and a subsampled D from the full training
dataset can help further lower the complexity, the large feature size
𝑛 (normally in million-level) remains the efficiency bottleneck for
parameter attribution. The following section shows how we further
reduce those 𝑛𝑑 |D| forward passes – which is essentially iterating
over the dataset for 𝑛𝑑 times – to a much smaller number.

4.3 Efficient Shapley Value Computation for
CRS Embeddings

Recall that in CRSs, features are categorized into𝑚 fields. On top
of the above defined local value 𝑣𝑙𝑜𝑐 (·), we further define a local
value function 𝑢𝑙𝑜𝑐 (·) specific to feature fields:

𝑢𝑙𝑜𝑐 (S′ |x, 𝑦) = 𝐿
(
𝑓w/o-S′ (x), 𝑦

)
− 𝐿 (𝑓 (x), 𝑦) , (12)

Distinct from 𝑣𝑙𝑜𝑐 (·), in 𝑢𝑙𝑜𝑐 (·), a player (𝑗, 𝑐) is a group of param-
eters that are located at the same column 𝑐 in field 𝑗 ’s embedding
table V𝑗 . To avoid cluttered notations, in this section, if not speci-
fied, both 𝑣 (·) and𝑢 (·) are the local value functions calculated with a
single instance (x, 𝑦). Then, we define our notion of corresponding
player as follows.

Definition 4.2 (Corresponding Player). Given player (𝑖, 𝑐) in 𝑣 (·)
and player (𝑗, 𝑐′) in 𝑢 (·), and a data instance (x, 𝑦), we call (𝑖, 𝑐)

Algorithm 1: Efficient Shapley Value Approximation for
Embedding Parameters
Data: A trained CTR model 𝑓 (·), dataset D, local value

function 𝑢 (·), number of feature fields𝑚, number of
features 𝑛, embedding dimension 𝑑

Result: Shapley value of each player {𝜙 (𝑖, 𝑐)}𝑛,𝑑𝑖=1,𝑐=1
1 {𝜙 (𝑖, 𝑐)}𝑛,𝑑𝑖=1,𝑐=1 ← 0;
2 for (x, 𝑦) ∈ D do
3 R ← a random order of players {(𝑗, 𝑐)}𝑚,𝑑

𝑗=1,𝑐=1;
4 S ← ∅;
5 𝑢𝑝𝑟𝑒𝑣 ← 𝑢 (S|x, 𝑦);
6 for (𝑗, 𝑐) ∈ R do
7 S ← S ∪ (𝑗, 𝑐);
8 𝑢𝑛𝑒𝑥𝑡 ← 𝑢 (S|x, 𝑦);
9 Find (𝑖, 𝑐) as (𝑗, 𝑐)’s corresponding player w.r.t. (x, 𝑦);

10 𝜙 (𝑖, 𝑐) ← 𝜙 (𝑖, 𝑐) + 𝑢𝑛𝑒𝑥𝑡 − 𝑢𝑝𝑟𝑒𝑣 ;
11 𝑢𝑝𝑟𝑒𝑣 ← 𝑢𝑛𝑒𝑥𝑡 ;
12 end
13 end
14 {𝜙 (𝑖, 𝑐)}𝑛,𝑑𝑖=1,𝑐=1 ← {

1
|D |𝜙 (𝑖, 𝑐)}

𝑛,𝑑
𝑖=1,𝑐=1

the corresponding player of (𝑗, 𝑐′) if 𝑐 = 𝑐′ and the 𝑖-th feature is
activated, i.e., x[𝑖] = 1.

With the above definition, we provide a key theorem for efficient
Shapely value computation below:

Theorem 4.3. Assume player (𝑖, 𝑐) in 𝑣 (·) is corresponding with
player (𝑗, 𝑐) in 𝑢 (·) w.r.t. data instance (x, 𝑦). Then, denote their
Shapley values based on local value functions respectively as𝜙x,𝑦𝑣 (𝑖, 𝑐)
and 𝜙x,𝑦𝑢 (𝑗, 𝑐), we have 𝜙

x,𝑦
𝑣 (𝑖, 𝑐) = 𝜙

x,𝑦
𝑢 (𝑗, 𝑐).

Our proof is provided in Appendix A. In short, we observe that
𝜙
x,𝑦
𝑣 (𝑖, 𝑐) is equivalent to 𝜙

x,𝑦
𝑢 (𝑗, 𝑐), as long as (𝑖, 𝑐) is the corre-

sponding player of (𝑗, 𝑐). As computing 𝜙x,𝑦𝑢 (𝑗, 𝑐) will suffice, only
𝑚𝑑 rather than 𝑛𝑑 iterations over D are now required to com-
pute 𝜙x,𝑦𝑢 (𝑗, 𝑐) for all players in 𝑢 (·). Taking our largest evaluation
dataset KDD as an example (see Table 1), with 11 (𝑚) feature fields,
over 6 million (𝑛) features, and an embedding dimension of 𝑑 = 16,
the O(𝑚𝑑 |D|) complexity of our Shapley value computation over
O(𝑛𝑑 |D|) given that𝑚 ≪ 𝑛.

The pseudo code is shown in Algorithm 1. For each data point,
we first sample a random order R for set of players in 𝑢 (·) (line
3). We initialize an empty set to track the selected players (line 4)
and record the value generated by local value function 𝑢 (·) for the
empty set (line 5). Then, for each player in the randomly ordered
list, we add them to the selection set S (line 7) and recalculate the
value with this new team S (line 8). With Theorem 4.3, we update
the corresponding player (𝑖, 𝑐)’s contribution accordingly (lines
9-10), and move on to the next player in the permutation. After
iterating over all data points, the algorithm normalizes accumulated
Shapley values with the total number of data samples in the dataset
(line 14). To validate the low variance of our approximation method,
an algorithm convergence rate analysis is provided in Appendix B.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

4.4 Replacing Zero-padding with Field-aware
Codebook

In various machine learning fields like explainable AI, the choice of
placeholder value (i.e. the value representing the missing value) is
crucial, and can greatly affect the final performance [6]. However,
most if not all CRS pruning algorithms opt for a simple zero-padding
strategy. This approach often leads to suboptimal recommendation
performance, as interactions between feature embeddings are mod-
eled using dot product and element-wise operations. Setting certain
parameters to zero eliminates such interactions with all other fea-
tures, compromising system effectiveness. Therefore, in this work,
we introduce a novel approach to represent pruned features by a
field-aware codebook C ∈ R𝑚×𝑑 . As it only comes with 𝑚𝑑 ele-
ments, its storage overhead is negligible. For a parameter budget,
let EQ denote the sparsified embedding table that replaces the least
important parameters identified in set Q, the following equation
specifies how we impute the pruned embedding table into EQ,C
with the codebook:

EQ,C [𝑖, 𝑐] =
{
EQ [𝑖, 𝑐] , if {𝑖, 𝑐} ∉ Q
C[𝑗, 𝑐], else

, (13)

with 𝑗 the corresponding field of feature 𝑖 . After calculating the
attribution score, we will replace pruned parameters based on the
above rule instead of only zeroing out.

To better preserve the model performance, we will choose code-
book C∗ that minimizes the expected Euclidean distance between
the original embedding table and its imputed version:

C∗ = min
C

Ex∼D, | Q |=𝐵
[
∥E⊤x − E⊤Q,Cx∥

2
2

]
, (14)

where 𝐵 ∈ (0, 𝑛𝑑) represents any possible number of pruned pa-
rameters, and Q is uniformly sampled such that |Q| = 𝐵. With this
formulation, the optimal codebook C∗ ∈ R𝑚×𝑑 can be solved via
the weighted average of all feature in each field:

C∗ [𝑗, :] =
∑
𝑖∈F𝑗 𝑝𝑖V𝑗 [𝑖, :]∑

𝑖∈F𝑗 𝑝𝑖
, (15)

where F𝑗 is the set of features in field 𝑗 , and 𝑝𝑖 is the occurrence
frequency of feature 𝑖 . The detailed deriviation is provided in Appen-
dix A. This closed-form solution allows for efficient computation
of codebook C∗ to compensate for the information loss from the
pruning stage. When deployed on-device, both the pruned sparse
embedding table EQ and the codebook C∗ are stored. When infer-
ence is needed, only the𝑚 embeddings {e1, e2, ..., e𝑚} of the feature
xwill be imputed as the input to 𝑓 (·) for on-device CTR prediction.

5 Experiments
In this section, we conduct experiments to study the effectiveness
of Shaver. Specifically, we are interested in answering the following
research questions (RQs):
RQ1: Compared with non-single-shot baselines, how does Shaver

perform when compressing CRS models?
RQ2: Comparedwith other single-shot baselines, how does Shaver

perform under different parameter budgets?
RQ3: In Shaver, the data D used for estimating Shapley values

can be subsampled to improve efficiency.What is the impact

Table 1: Statistics of the preprocessed datasets.

Name #Instances #Features #Fields
Criteo 45,840,617 1,086,810 39
Avazu 40,428,967 4,428,511 22
KDD 149,639,105 6,019,761 11

of dataset size to the recommendation performance of the
pruned models?

RQ4: Most on-device CRS compression methods require model
retraining/finetuning post pruning. Does Shaver also bene-
fit from such a practice?

RQ5: Does Shaver exhibit any patterns when pruning feature
embeddings?

5.1 Experimental Settings
5.1.1 Datasets. We conduct our experiments on three public datasets.
In all datasets, we randomly split them into 8:1:1 as the training,
validation and test set respectively. We specify the dataset prepro-
cess procedure in Appendix C.2. Table 1 provides the core statistics
of pre-processed datasets.

5.1.2 Metrics. We evaluate all models using two commonly used
evaluation metric in CTR prediction community [66]: LogLoss and
AUC (Area under the ROC curve). In the CTR problem, a difference
of 0.001 in AUC is generally considered significant [35, 52]. The
lower LogLoss suggests better performance, while the higher AUC
implies more accurate recommendations. The sparsity rate 𝑡 indi-
cates the portion of embedding parameters that have been removed
compared to the original embedding table, defined as 𝑡 = |Q|/𝑛𝑑 .

5.1.3 Implementation Details. All methods are tested with two
well-known CTR backbones: DeepFM [18] and DCN–Mix [53]. We
implement two variants of Shaver, namely Shaver-Zero that uses
the traditional zero-padding on pruned parameters, and Shaver-
Codebook described in Section 4.4. Descriptions of all baselines are
provided in Appendix C.1. We adhere strictly to the experimental
settings described in [52] for reproducibility, adopting the same
data splits and hyperparameter search ranges. To ensure a fair
comparison, we applied the same hyperparameters used in the
training of the original model during our fine-tuning step. We used
both the training and validation datasets to calculate the attribution
scores. We select final checkpoints according to validation AUC.

5.2 Comparison with Non-single-shot Pruning
Methods (RQ1)

Table 2 shows the performance of Shaver and other non-single-shot
pruning methods with the DCN-Mix backbone. The baselines com-
pared are QR [49], TTRec [59], PEP [32], OptEmb [35], and CERP
[31], whose detailed descriptions are provided in Appendix C.1.
As DCN-Mix is generally a more performant backbone compared
with DeepFM, results with the DeepFM backbone is deferred to
Appendix D due to page limits. For this comparison, we test three
sparsity rate settings with 𝑡 = {50%, 80%, 95%} as all baselines under
this category needs to be retrained for every setting.

Across three datasets, Shaver achieves competitive results with
other non-single-shot pruning methods that require costly training
steps for each parameter budget. Shaver demonstrates a strong

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

On-device Content-based Recommendation with Single-shot Embedding Pruning: A Cooperative Game Perspective

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Comparative results with non-single-shot baselines under three sparsity rates. All methods adopt DCN-Mix as the
CRS backbone, where we use ↑ and ↓ to respectively mark higher-is-better and lower-is-better metrics. For OptEmb, we did not
report results on some settings where it fails to converge. “#Params” indicates the parameter size of the embedding table (in
millions). In each dataset, the best result is marked in bold and the second best one is underlined.

Dataset Method Single- 𝑡 = 50% 𝑡 = 80% 𝑡 = 95%
shot? AUC↑ LogLoss↓ #Params AUC↑ LogLoss↓ #Params AUC↑ LogLoss↓ #Params

Criteo

QR [49] ✗ 0.8095 0.4425 8.69M 0.8091 0.4427 3.48M 0.8064 0.4452 870K
TTRec [59] ✗ 0.8112 0.4408 8.26M 0.8103 0.4416 3.48M 0.8106 0.4414 870K
PEP [32] ✗ 0.8113 0.4407 8.69M 0.8108 0.4413 3.46M 0.8114 0.4406 831K
OptEmb [35] ✗ - - - 0.8112 0.4408 1.45M 0.8109 0.4408 856K
CERP [31] ✗ 0.8110 0.4410 8.66M 0.8106 0.4416 3.44M 0.8107 0.4414 850K
Shaver-Zero ✓ 0.8114 0.4407 8.69M 0.8114 0.4407 3.48M 0.8110 0.4412 869K
Shaver-Codebook ✓ 0.8114 0.4407 8.69M 0.8114 0.4407 3.48M 0.8112 0.4410 870K

Avazu

QR [49] ✗ 0.7743 0.3857 35.43M 0.7698 0.3922 14.17M 0.7652 0.3895 3.54M
TTRec [59] ✗ 0.7711 0.3873 35.43M 0.7710 0.3900 14.17M 0.7678 0.3903 3.54M
PEP [32] ✗ 0.7754 0.3852 33.55M 0.7669 0.3906 12.57M 0.7564 0.3938 3.52M
OptEmb [35] ✗ - - - 0.7663 0.3877 13.24M 0.7683 0.3895 3.43M
CERP [31] ✗ 0.7723 0.3852 35.34M 0.7673 0.3873 13.05M 0.7631 0.3933 3.54M
Shaver-Zero ✓ 0.7759 0.3837 35.43M 0.7745 0.3840 14.17M 0.7690 0.3865 3.54M
Shaver-Codebook ✓ 0.7762 0.3838 35.43M 0.7749 0.3842 14.17M 0.7683 0.3873 3.54M

KDD

QR [49] ✗ 0.7724 0.1581 48.16M 0.7709 0.1584 19.26M 0.7702 0.1588 4.82M
TTRec [59] ✗ 0.7862 0.1576 48.16M 0.7843 0.1564 19.26M 0.7815 0.1559 4.82M
PEP [32] ✗ 0.7754 0.1576 45.93M 0.7731 0.1581 18.88M 0.7737 0.1579 4.50M
OptEmb [35] ✗ 0.7877 0.1558 48.99M 0.7818 0.1593 15.10M 0.7826 0.1591 4.80M
CERP [31] ✗ 0.7841 0.1566 47.50M 0.7781 0.1573 19.18M 0.7721 0.1589 4.68M
Shaver-Zero ✓ 0.7858 0.1563 48.16M 0.7826 0.1569 19.26M 0.7699 0.1601 4.82M
Shaver-Codebook ✓ 0.7870 0.1559 48.16M 0.7870 0.1557 19.26M 0.7836 0.1563 4.82M

0.2 0.4 0.6 0.8 1
.802

.804

.806

.808

.810

.812

Sparsity Rate

A
UC Original

MagPrune
PTQ
Taylor
Shaver-Zero
Shaver-Codebook

(a) Criteo

0.2 0.4 0.6 0.8 1
.750

.760

.770

.780

Sparsity Rate

Original
MagPrune
PTQ
Taylor
Shaver-Zero
Shaver-Codebook

(b) Avazu

0.2 0.4 0.6 0.8 1
.500

.600

.700

.800

Sparsity Rate

Original
MagPrune
PTQ
Taylor
Shaver-Zero
Shaver-Codebook

(c) KDD

Figure 2: Comparative results with single-shot baselines, where DCN-Mix is used as the backbone.

performance compared to other methods, especially with an 80%
sparsity rate. While in the low sparsity rate, the performance gap
between methods is small as it is generally easier to reduce param-
eters. At 95% sparsity, Shaver delivers impressive results exceeding
other methods, despite a lesser extent. Higher sparsity rates pose
challenges for single-shot pruning due to removing a larger portion
of original model parameters, thus, leading to a more significant
model degradation.

5.3 Comparison with Single-shot Pruning
Methods (RQ2)

To make further comparisons, we evaluate our approach against
other single-shot compression methods. The baselines compared
are MagPrune [52], PTQ [40], and Taylor [38] (see Appendix C.1 for

descriptions). Same with RQ1, DCN-Mix backbone is adopted by de-
fault, where results with DeepFM backbone are provided in Appen-
dix D. Notably, different from RQ1, as all baselines tested here are all
single-shot methods, we have been able to test with a wider variety
of sparsity rates 𝑡 = {0.2, 0.4, 0.5, 0.6, 0.8, 0.9, 0.95, 0.99, 0.999}.

Figure 2 shows the results. Shaver-Codebook is the most compet-
itive method for KDD and Criteo, retaining the performance even
with only 10% and 5% parameters of the original models, respec-
tively. The second best is Shaver-Zero, whose performance is similar
to Shaver-Codebook in the Avazu dataset. These results indicate
promising potential in applying the Shapley value in compressing
models for CTR problems. Taylor is the third best as they also utilize
information from the training and validation datasets, especially in
the Criteo dataset, where the difference is only noticeable under
high-sparsity settings. PTQ provides strong performance initially

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

0.2 0.4 0.6 0.8 1

.802

.806

.810

Sparsity Rate

A
UC

𝑝 = 0.0
𝑝 = 0.2
𝑝 = 0.6
𝑝 = 1.0

(a) Criteo

0.2 0.4 0.6 0.8 1
.700

.720

.740

.760

Sparsity Rate

𝑝 = 0.0
𝑝 = 0.2
𝑝 = 0.6
𝑝 = 1.0

(b) Avazu

0.2 0.4 0.6 0.8 1
.700

.720

.740

.760

.780

Sparsity Rate

𝑝 = 0.0
𝑝 = 0.2
𝑝 = 0.6
𝑝 = 1.0

(c) KDD

Figure 3: Trade-off between performance and data size used to estimate Shapley value. 𝑝 is
the portion of the full dataset used to calculate the Shapley value.

0 1 2
Frequency Bins

0
2
4
6
8

10
12

Em
be

dd
in

g
Si

ze

Avazu
KDD
Criteo

Codebook
Zero

Figure 4: Comparison of how
different Shaver variants
prune embeddings for fea-
tures in different frequency
buckets.

but could not hold up at a higher sparsity rate, as it allocates the
same memory budget for all features, limiting their performance.

5.4 Effect of Post-Pruning Finetuning (RQ3)
To answer RQ3, Table 3 shows the effect of fine-tuning pruned
models. This experiment also mimics scenarios where a deployed
recommendation model has sufficient computing resources to per-
form further on-device updates. While there is some variation in
results across different datasets, in most cases, fine-tuning models
further enhance their performance or maintain it at its current level,
or with minimal loss. However, occasionally, fine-tuning can lead
to decreased model performance, particularly for some settings in
KDD. The reason for the performance drop is that Shaver uses the
validation set to estimate Shapley values, which can cause data
leakage and potentially degrade the final checkpoint performance
post-fine-tuning. Moreover, fine-tuning seems to have a larger ef-
fect on high sparsity rates with Shaver-Zero, where performance
degradation is more pronounced.

5.5 Performance and Data Size Trade-off (RQ4)
Figure 3 depicts the trade-off between the performance and the
proportion 𝑝 of the full dataset D employed. Note that D com-
bines both training and validation samples in our setting. Under all
configurations, we guarantee the algorithms have converged and
seen all data. Empirically, the required runtime is linearly scaled

Table 3: Effect of post-pruning finetuning, where † indicates
variants that are finetuned with the pruned embeddings.

Dataset Method 𝑡 = 50% 𝑡 = 80% 𝑡 = 95%

Criteo
Shaver-Zero 0.8114 0.8114 0.8110
Shaver-Zero† 0.8116 0.8114 0.8112
Shaver-Codebook 0.8114 0.8114 0.8112
Shaver-Codebook† 0.8115 0.8114 0.8112

Avazu
Shaver-Zero 0.7759 0.7745 0.7690
Shaver-Zero† 0.7777 0.7735 0.7703
Shaver-Codebook 0.7762 0.7749 0.7683
Shaver-Codebook† 0.7781 0.7717 0.7670

KDD
Shaver-Zero 0.7858 0.7826 0.7699
Shaver-Zero† 0.7858 0.7826 0.7775
Shaver-Codebook 0.7870 0.7870 0.7836
Shaver-Codebook† 0.7754 0.7806 0.7836

with the dataset size employed, as Shaver generally converges after
iterating through the whole dataset once.

In the Criteo and KDD datasets, the amount of data employed
has a negligible effect on model performance. Conversely, in the
Avazu dataset, the volume of data has a markedly greater impact.
One possible hypothesis for this discrepancy is that despite contain-
ing more features than the Criteo dataset, the Avazu dataset has
fewer instances. Consequently, the validation dataset is insufficient
to represent the actual data distribution. Nonetheless, as our meth-
ods only require forward passes, we can effortlessly parallelize the
computation compared to other training-required methods. More-
over, the overhead remains minimal, even with the entire Criteo
dataset – our worst case as our computation cost increases with
the number of fields – Shaver takes approximately 2.5 hours to
compute the Shapley value. In comparison, for any given parameter
budget, training each method generally takes over 1 hour, without
including the time needed for hyperparameter tuning.

5.6 Qualitative Analysis (RQ5)
We aim to unveil the key difference between the traditional zero-out
approach and our codebook-based approach in compressed models.
Therefore, employing DCN-Mix with a 50% sparsity rate, we split
each dataset’s feature into three different bins based on frequency
so that each bin had the same number of features. Figure 4 shows
the average embedding size assigned per feature in each group.

The codebook approach assigns less parameter budget to high
frequency. One plausible explanation is that the codebook already
contained parameters representing the high-frequency features.
Thus, the model could have a larger budget to allocate to the lower
frequency features, improving the model’s performance.

6 Conclusions
In this paper, we propose ShapleyValue-guidedEmbeddingReduction
(Shaver), which employs Shapley value to fairly distribute each em-
bedding parameter contribution and effectively prune the embed-
ding table in CTR models. Shaver first provide an efficient method
to calculate the Shapley value for CTR models, and then implement
a novel field-aware codebook quantization to represent the removed
parameters. Extensive experiments show that Shaver achieves com-
petitive performance without expensive retraining and fine-tuning
steps for each parameter budget.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

On-device Content-based Recommendation with Single-shot Embedding Pruning: A Cooperative Game Perspective

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Yi Wang Aden. 2012. KDD Cup 2012, Track 2. https://kaggle.com/competitions/

kddcup2012-track2
[2] Marco Ancona, Cengiz Öztireli, and Markus Gross. 2020. Shapley value as

principled metric for structured network pruning. arXiv preprint arXiv:2006.01795
(2020).

[3] Omer Ben-Porat and Moshe Tennenholtz. 2018. A game-theoretic approach to
recommendation systems with strategic content providers. NeuRIPS (2018).

[4] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. 2020. Once-
for-all: Train one network and specialize it for efficient deployment. ICLR (2020).

[5] Javier Castro, Daniel Gómez, and Juan Tejada. 2009. Polynomial calculation of
the Shapley value based on sampling. Computers & operations research (2009).

[6] Hugh Chen, Ian C Covert, Scott M Lundberg, and Su-In Lee. 2023. Algorithms
to estimate Shapley value feature attributions. Nature Machine Intelligence 5, 6
(2023), 590–601.

[7] Tong Chen, Hongzhi Yin, Yujia Zheng, Zi Huang, Yang Wang, and Meng Wang.
2021. Learning Elastic Embeddings for Customizing On-Device Recommenders.
In SIGKDD. 138–147.

[8] Yizhou Chen, Guangda Huzhang, Anxiang Zeng, Qingtao Yu, Hui Sun, Heng-Yi
Li, Jingyi Li, Yabo Ni, Han Yu, and Zhiming Zhou. 2023. Clustered Embedding
Learning for Recommender Systems. In WWW.

[9] Benjamin Coleman, Wang-Cheng Kang, Matthew Fahrbach, Ruoxi Wang, Lichan
Hong, Ed H. Chi, and Derek Zhiyuan Cheng. 2023. Unified Embedding: Battle-
tested feature representations for web-scale ML systems. In NeuRIPS.

[10] Ian Covert, Chanwoo Kim, Su-In Lee, James Zou, and Tatsunori Hashimoto. 2024.
Stochastic Amortization: A Unified Approach to Accelerate Feature and Data
Attribution. arXiv preprint arXiv:2401.15866 (2024).

[11] Ian Covert and Su-In Lee. 2021. Improving kernelshap: Practical shapley value
estimation via linear regression. Artificial Intelligence and Statistics (2021).

[12] Ian Covert, Scott M Lundberg, and Su-In Lee. 2020. Understanding global feature
contributions with additive importance measures. NeuRIPS (2020).

[13] Yunfei Fang, Caihong Mu, and Yi Liu. 2023. AutoShape: Automatic Design
of Click-Through Rate Prediction Models Using Shapley Value. In Pacific Rim
International Conference on Artificial Intelligence.

[14] Amirata Ghorbani and James Zou. 2020. Neuron Shapley: discovering the re-
sponsible neurons. In NeuRIPS.

[15] Xudong Gong et al. 2022. Real-time short video recommendation on mobile
devices. In CIKM. 3103–3112.

[16] Hui Guan, Andrey Malevich, Jiyan Yang, Jongsoo Park, and Hector Yuen.
2019. Post-training 4-bit quantization on embedding tables. arXiv preprint
arXiv:1911.02079 (2019).

[17] Jiyang Guan, Zhuozhuo Tu, Ran He, and Dacheng Tao. 2022. Few-shot backdoor
defense using shapley estimation. In CVPR.

[18] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction. In
IJCAI, Carles Sierra (Ed.). 1725–1731.

[19] Jialiang Han, Yun Ma, Qiaozhu Mei, and Xuanzhe Liu. 2021. Deeprec: On-device
deep learning for privacy-preserving sequential recommendation in mobile
commerce. InWWW. 900–911.

[20] Song Han, Huizi Mao, and William J. Dally. 2016. Deep Compression: Compress-
ing Deep Neural Network with Pruning, Trained Quantization and Huffman
Coding. In ICLR, Yoshua Bengio and Yann LeCun (Eds.).

[21] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. InWWW. 173–182.

[22] Olivier Chapelle Jean-Baptiste Tien, joycenv. 2014. Display Advertising Chal-
lenge. https://kaggle.com/competitions/criteo-display-ad-challenge

[23] Neil Jethani, Mukund Sudarshan, Ian Connick Covert, Su-In Lee, and Rajesh
Ranganath. 2021. FastSHAP: Real-time shapley value estimation. In ICLR.

[24] Manas R. Joglekar, Cong Li, Jay K. Adams, Pranav Khaitan, and Quoc V. Le. 2019.
Neural Input Search for Large Scale Recommendation Models. SIGKDD (2019).
https://api.semanticscholar.org/CorpusID:195874115

[25] Wang-Cheng Kang et al. 2021. Learning to Embed Categorical Features without
Embedding Tables for Recommendation. In SIGKDD. 840–850.

[26] Shuming Kong, Weiyu Cheng, Yanyan Shen, and Linpeng Huang. 2022. Autosrh:
An embedding dimensionality search framework for tabular data prediction.
IEEE Transactions on Knowledge and Data Engineering 35, 7 (2022), 6673–6686.

[27] Namhoon Lee, ThalaiyasingamAjanthan, and Philip Torr. 2018. SNIP: Single-shot
network pruning based on connection sensitivity. In ICLR.

[28] Shiwei Li et al. 2023. Adaptive Low-Precision Training for Embeddings in Click-
through Rate Prediction. In AAAI.

[29] Shiwei Li et al. 2024. Embedding Compression in Recommender Systems: A
Survey. ACM Comput. Surv. (jan 2024).

[30] Xurong Liang, Tong Chen, Lizhen Cui, Yang Wang, Meng Wang, and Hongzhi
Yin. 2024. Lightweight Embeddings for Graph Collaborative Filtering. In SIGIR.
1296–1306.

[31] Xurong Liang, Tong Chen, Quoc Viet Hung Nguyen, Jianxin Li, and Hongzhi Yin.
2023. Learning Compact Compositional Embeddings via Regularized Pruning

for Recommendation. arXiv:2309.03518 [cs.IR]
[32] Siyi Liu, Chen Gao, Yihong Chen, Depeng Jin, and Yong Li. 2021. Learnable

Embedding Sizes for Recommender Systems. In ICLR. https://openreview.net/
forum?id=vQzcqQWIS0q

[33] Scott M Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M Prutkin,
Bala Nair, Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. 2020.
From local explanations to global understanding with explainable AI for trees.
Nature machine intelligence (2020).

[34] Scott M Lundberg and Su-In Lee. 2017. A unified approach to interpreting model
predictions. NeuRIPS (2017).

[35] Fuyuan Lyu et al. 2022. OptEmbed: Learning Optimal Embedding Table for
Click-through Rate Prediction. In CIKM. 1399–1409.

[36] Matteo Marcuzzo, Alessandro Zangari, Andrea Albarelli, and Andrea Gasparetto.
2022. Recommendation systems: An insight into current development and future
research challenges. IEEE Access 10 (2022), 86578–86623.

[37] Lorenzo Minto and Moritz Haller. 2021. Using Federated Learning to Improve
Brave’s On-Device Recommendations While Protecting Your Privacy. (2021).
https://brave.com/blog/federated-learning/

[38] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. 2017.
Pruning Convolutional Neural Networks for Resource Efficient Inference. In
ICLR.

[39] Dheevatsa Mudigere et al. 2022. Software-Hardware Co-Design for Fast and
Scalable Training of Deep Learning Recommendation Models. In Proceedings of
the 49th Annual International Symposium on Computer Architecture. 993–1011.

[40] Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart
Van Baalen, and Tijmen Blankevoort. 2021. A white paper on neural network
quantization. arXiv preprint arXiv:2106.08295 (2021).

[41] Niketan Pansare et al. 2022. Learning compressed embeddings for on-device
inference. Proceedings of Machine Learning and Systems 4 (2022), 382–397.

[42] Liang Qu, Yonghong Ye, Ningzhi Tang, Lixin Zhang, Yuhui Shi, and Hongzhi
Yin. 2022. Single-shot Embedding Dimension Search in Recommender System.
In SIGIR. 513–522.

[43] YunkeQu, TongChen, Quoc Viet HungNguyen, andHongzhi Yin. 2024. Budgeted
Embedding Table For Recommender Systems. In WSDM (WSDM ’24). 557–566.

[44] Yunke Qu, Tong Chen, Xiangyu Zhao, Lizhen Cui, Kai Zheng, and Hongzhi Yin.
2023. Continuous Input Embedding Size Search For Recommender Systems. In
SIGIR. 708–717.

[45] Yunke Qu, Liang Qu, Tong Chen, Xiangyu Zhao, Quoc Viet Hung Nguyen, and
Hongzhi Yin. 2024. Scalable Dynamic Embedding Size Search for Streaming
Recommendation. arXiv preprint arXiv:2407.15411 (2024).

[46] Steffen Rendle. 2010. Factorization Machines. In ICDM. 995–1000. https://doi.
org/10.1109/ICDM.2010.127

[47] Alvin E Roth. 1988. The Shapley value: essays in honor of Lloyd S. Shapley.
Cambridge University Press.

[48] Benedek Rozemberczki and Rik Sarkar. 2021. The Shapley Value of Classifiers in
Ensemble Games. In CIKM. 1558–1567.

[49] Hao-Jun Michael Shi, Dheevatsa Mudigere, Maxim Naumov, and Jiyan Yang.
2020. Compositional Embeddings Using Complementary Partitions for Memory-
Efficient Recommendation Systems. In KDD. 165–175.

[50] Statista. 2024. Online advertising revenue in the United States from 2000 to
2023. (2024). https://www.statista.com/statistics/183816/us-online-advertising-
revenue-since-2000/

[51] Will Cukierski Steve Wang. 2014. The Avazu Dataset. https://kaggle.com/
competitions/avazu-ctr-prediction

[52] Hung Vinh Tran, Tong Chen, Quoc Viet Hung Nguyen, Zi Huang, Lizhen Cui,
and Hongzhi Yin. 2024. A Thorough Performance Benchmarking on Lightweight
Embedding-based Recommender Systems. arXiv preprint arXiv:2406.17335 (2024).

[53] Ruoxi Wang et al. 2021. Dcn v2: Improved deep & cross network and practical
lessons for web-scale learning to rank systems. In WWW. 1785–1797.

[54] Shuyao Wang, Yongduo Sui, Jiancan Wu, Zhi Zheng, and Hui Xiong. 2024. Dy-
namic Sparse Learning: A Novel Paradigm for Efficient Recommendation. In
WSDM. 740–749.

[55] Yejing Wang, Zhaocheng Du, Xiangyu Zhao, Bo Chen, Huifeng Guo, Ruiming
Tang, and Zhenhua Dong. 2023. Single-shot feature selection for multi-task
recommendations. In SIGIR. 341–351.

[56] Zhiqiang Xu, Dong Li, Weijie Zhao, Xing Shen, Tianbo Huang, Xiaoyun Li, and
Ping Li. 2021. Agile and accurate CTR prediction model training for massive-
scale online advertising systems. In Proceedings of the International Conference
on Management of Data (SIGMOD).

[57] Bencheng Yan, Pengjie Wang, Kai Zhang, Wei Lin, Kuang-Chih Lee, Jian Xu, and
Bo Zheng. 2021. Learning Effective and Efficient Embedding via an Adaptively-
Masked Twins-based Layer. In CIKM.

[58] Jie Amy Yang, Jianyu Huang, Jongsoo Park, Ping Tak Peter Tang, and An-
drew Tulloch. 2020. Mixed-precision embedding using a cache. arXiv preprint
arXiv:2010.11305 (2020).

[59] Chunxing Yin, Bilge Acun, Xing Liu, and Carole-Jean Wu. 2021. TT-Rec: Ten-
sor Train Compression for Deep Learning Recommendation Models. ArXiv
abs/2101.11714 (2021). https://api.semanticscholar.org/CorpusID:231719841

9

https://kaggle.com/competitions/kddcup2012-track2
https://kaggle.com/competitions/kddcup2012-track2
https://kaggle.com/competitions/criteo-display-ad-challenge
https://api.semanticscholar.org/CorpusID:195874115
https://arxiv.org/abs/2309.03518
https://openreview.net/forum?id=vQzcqQWIS0q
https://openreview.net/forum?id=vQzcqQWIS0q
https://brave.com/blog/federated-learning/
https://doi.org/10.1109/ICDM.2010.127
https://doi.org/10.1109/ICDM.2010.127
https://www.statista.com/statistics/183816/us-online-advertising-revenue-since-2000/
https://www.statista.com/statistics/183816/us-online-advertising-revenue-since-2000/
https://kaggle.com/competitions/avazu-ctr-prediction
https://kaggle.com/competitions/avazu-ctr-prediction
https://api.semanticscholar.org/CorpusID:231719841

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[60] Hongzhi Yin, Liang Qu, Tong Chen, Wei Yuan, Ruiqi Zheng, Jing Long, Xin
Xia, Yuhui Shi, and Chengqi Zhang. 2024. On-Device Recommender Systems: A
Comprehensive Survey. arXiv preprint arXiv:2401.11441 (2024).

[61] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. 2019.
Slimmable neural networks. ICLR (2019).

[62] Hailin Zhang et al. 2023. Experimental Analysis of Large-scale Learnable Vector
Storage Compression. arXiv:2311.15578 [cs.LG]

[63] Xiangyu Zhao et al. 2021. AutoDim: Field-aware Embedding Dimension Searchin
Recommender Systems. In WWW. 3015–3022.

[64] Xiangyu Zhaok et al. 2021. AutoEmb: Automated Embedding Dimensionality
Search in Streaming Recommendations. In ICDM. 896–905.

[65] Jieming Zhu et al. 2022. BARS: Towards Open Benchmarking for Recommender
Systems. In SIGIR. 2912–2923.

[66] Jieming Zhu, Jinyang Liu, Shuai Yang, Qi Zhang, and Xiuqiang He. 2021. Open
benchmarking for click-through rate prediction. In CIKM. 2759–2769.

A Proofs

Figure 5: A graphic explanation on the notion of correspond-
ing player.

.......

Field 1
(e.g. Gender)

Field 2
(e.g. Movie

Genre)

Field m
(e.g. User ID)

x

1

0

1

0

0

0

0

0

1

0

.......

Theorem 4.3. Assume player (𝑖, 𝑐) in 𝑣 (·) is corresponding with
player (𝑗, 𝑐) in 𝑢 (·) w.r.t. data instance (x, 𝑦). Then, denote their
Shapley values based on local value functions respectively as𝜙x,𝑦𝑣 (𝑖, 𝑐)
and 𝜙x,𝑦𝑢 (𝑗, 𝑐), we have 𝜙

x,𝑦
𝑣 (𝑖, 𝑐) = 𝜙

x,𝑦
𝑢 (𝑗, 𝑐).

Proof. Figure 5 shows two examples of corresponding players
between game 𝑣 and 𝑢. In the proof below, we first simplify the
notations by using 𝑖 and 𝑗 to represent the player (𝑖, 𝑐) and (𝑗, 𝑐).
Let’s define function 𝑔 : 2 |N𝑣 | → 2 |N𝑢 | as follow:

𝑔(S𝑣) 𝑗 =
{
1 if corresponding 𝑖 ∈ S𝑣
0 else

(16)

In otherwords,𝑔(S𝑣) = S𝑢 if and only if∀𝑗 ∈ S𝑢 , corresponding 𝑖 ∈
S𝑣 and ∀𝑗 ∈ N𝑢 \S𝑢 , corresponding 𝑖 ∉ S𝑣 . Intuitively, this 𝑔 func-
tion provide a method to map from a set 𝑆𝑣 in 𝑣 to the corresponding

set 𝑆𝑢 in 𝑢. Let’s define marginal contribution Δ as:

Δ(𝑖 |S𝑣) = 𝑣 (S ∪ 𝑖) − 𝑣 (S) (17)

It is easy to show that if 𝑔({𝑖}) = { 𝑗} and 𝑔(S𝑣) = S𝑢 then:

𝑔(S𝑣 ∪ {𝑖}) = S𝑢 ∪ { 𝑗}.

Consequently, if 𝑔(S𝑣) = S𝑢 and 𝑔({𝑖}) = { 𝑗}, then:

Δ(𝑖 |S𝑣) = Δ(𝑗 |S𝑢)

It is trivial to show that 𝜙𝑥,𝑦𝑣 (𝑖) = 0 if 𝑔({𝑖}) = ∅ (feature 𝑖 is not
activated). We will only consider case that ∃ 𝑗 ∈ N𝑢 , 𝑗 = 𝑔({𝑖}). By
definition, we have Shapley value of a player 𝑖 in game 𝑣 as:

𝜙
𝑥,𝑦
𝑣 (𝑖) =

1
|N𝑣 |

∑︁
S𝑣⊆N𝑣\𝑖

(
|N𝑣 | − 1
|S𝑣 |

)−1
Δ(𝑖 |S𝑣), (18)

It is easy to show that:

|N𝑣 | = 𝑛𝑑 ; |N𝑢 | =𝑚𝑑. (19)

With known S𝑢 and |S𝑣 |, the number of S𝑣 s.t. 𝑔(S𝑣) = S𝑢 is(
|N𝑣 | − |N𝑢 |
|S𝑣 | − |S𝑢 |

)
=

(
𝑛𝑑 −𝑚𝑑

|S𝑣 | − |S𝑢 |

)
,

as we only need to find |S𝑣 | − |S𝑢 | from a pool of |N𝑣 | − |N𝑢 |
elements. Thus, we can write Eq. 18 as:

𝜙
𝑥,𝑦
𝑣 (𝑖)

=
1
𝑛𝑑

∑︁
S𝑢⊆N𝑢\𝑗

Δ(𝑗 |S𝑢)
𝑛𝑑−𝑚𝑑+|S𝑢 |∑︁

𝑘= |S𝑢 |

(
𝑛𝑑 −𝑚𝑑

𝑘 − |S𝑢 |

) (
𝑛𝑑 − 1

𝑘

)−1
=

1
𝑛𝑑

∑︁
S𝑢⊆N𝑢\𝑗

Δ(𝑗 |S𝑢)
𝑛𝑑−𝑚𝑑∑︁
𝑘=0

(
𝑛𝑑 −𝑚𝑑

𝑘

) (
𝑛𝑑 − 1
𝑘 + |S𝑢 |

)−1 (20)

With some rearrangements, we have the following equation:

(
𝑛𝑑 −𝑚𝑑

𝑘

) (
𝑚𝑑 − 1
|S𝑢 |

) (
𝑛𝑑 − 1
𝑘 + |S𝑢 |

)−1
=

𝑛𝑑

𝑚𝑑

(
𝑘 + |S𝑢 |
|S𝑢 |

) (
𝑛𝑑 − 1 − 𝑘 − |S𝑢 |
𝑚𝑑 − |S𝑢 | − 1

) (
𝑛𝑑

𝑚𝑑

)−1 (21)

And by Chu–Vandermonde Identity:

𝑛𝑑−𝑚𝑑∑︁
𝑘=0

(
𝑘 + |S𝑢 |
|S𝑢 |

) (
𝑛𝑑 − 1 − 𝑘 − |S𝑢 |
𝑚𝑑 − |S𝑢 | − 1

)
=

(
𝑛𝑑

𝑚𝑑

)
(22)

With Eq. (20), (21), and (22), we have:

𝜙
𝑥,𝑦
𝑣 (𝑖) =

1
𝑛𝑑

∑︁
S𝑢⊆N𝑢\𝑗

Δ(𝑗 |S𝑢)
𝑛𝑑

𝑚𝑑

(
𝑚𝑑 − 1
|S𝑢 |

)−1
= 𝜙

𝑥,𝑦
𝑢 (𝑗)

(23)

□
10

https://arxiv.org/abs/2311.15578

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

On-device Content-based Recommendation with Single-shot Embedding Pruning: A Cooperative Game Perspective

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

In the part below, we provide proof for the codebook optimiza-
tion result:

C∗ = min
C

Ex∼D, | Q |=𝐵
[
∥E⊤x − E⊤Q,Cx∥

2
2

]
,

C∗ [𝑗, :] =
∑
𝑖∈F𝑗 𝑝𝑖V𝑗 [𝑖, :]∑

𝑖∈F𝑗 𝑝𝑖
,

(24)

with 𝐵 is any given memory budget, F𝑗 is the set of features that
belong to field 𝑗 , 𝑝𝑖 is the appear frequency of feature 𝑖 . To begin
with, we have the following equation:

Ex∼D, | Q |=𝐵
[
∥E⊤x − E⊤Q,Cx∥

2
2

]
=

𝑚∑︁
𝑗=1

∑︁
𝑖∈F𝑗

𝑑∑︁
𝑐=1

𝑃
(
(𝑖, 𝑐) ∈ Q

��|Q| = 𝐵
)
𝑝𝑖 (E[𝑖, 𝑐] − C[𝑗, 𝑐])2

(25)

where 𝑃
(
(𝑖, 𝑐) ∈ Q

��|Q| = 𝐵
)
is the probability that parameter (𝑖, 𝑐)

is in Q. Since Q is sampled from a uniform distribution with a
budget 𝐵, the probability of any embedding parameter appearing in
Q is uniform across all parameters and can be treated as a constant.
By removing the above constant, we have the following equation:

C∗ = min
C

𝑚∑︁
𝑗=1

∑︁
𝑖∈F𝑗

𝑝𝑖 ∥V𝑗 [𝑖, :] − C[𝑗, :] ∥22 (26)

Apply Cauchy–Bunyakovsky–Schwarz inequality to the above
equation, we receive the required Eq. 24.

B Algorithm Analysis
This part provides prove for the converge rate of Algorithm. 1,
based on [12]. The central limit theorem states that if dataset D
becomes large, the sample mean 𝜙𝑣 (𝑖) converges in distribution to
a Gaussian with mean:

E [Δ(𝑗, 𝑐 |S𝑢)] = E [Δ(𝑖, 𝑐 |S𝑣)] = 𝜙𝑣 (𝑖, 𝑐) . (27)

The first equation is due to Theorem 4.3, while the second equation
is due to Eq. (10). Eq. (27) shows that Algorithm 1 is unbiased. Also
because of central limit theorem, the estimation variance is:

Var (Δ(𝑗, 𝑐 |S𝑢))
|D| .

Although we don’t have access to the numerator Var (Δ(𝑗, 𝑐 |S𝑢)),
we can conclude that the variance behaves as 𝑂 (1/|D|). Thus, the
algorithm would converge with large enough |D|.

C Experiment Settings
In this section, we provide more details on our experiment settings.

C.1 Baselines
We compare Shaver with the following embedding pruningmethods
for on-device content-based recommendation:

• QR [49] divides the original embedding table into two
smaller embedding tables (commonly calledmeta-embedding
tables). The meta-embedding vectors are aggregrated by
multiplication to create the final embedding vector.

• TTRec [59] tackles the challenge of excessive embedding
table parameters with a sequence of matrix products, em-
ploying tensor-train decomposition.

• PEP [32] adopts a Soft-Thresholding Reparametrization
(STR) trick to iteratively remove redundant parameters in
the first training step.

• OptEmbed [35] involves three consecutive steps: Train su-
pernet and remove excessive features, evolutionary search
for optimal embedding size for each field, and finally, retrain
the network from the found embedding mask.

• CERP [31] incorporate STR into two equal-size embedding
tables E1 and E2. To compensate for the two sparse meta-
embedding tables, the authors integrate a regularization
loss into the training loss and combine twometa-embedding
vectors with a sum operation, resulting in a dense vector.

• MagPrune [52] prune the trained embedding table by their
magnitude. In line with our method, MagPrune also com-
presses the model by pruning the trained model.

• Taylor [38] proposes to prune the model with the first-
order Taylor approximation of the loss function. Similar to
our method, this method also employs feedback from the
dataset to calculate the attribution scores.

• Post-Training Quantization (PTQ) [20, 40] first linearly
scales the weight into [−2𝑏−1, 2𝑏−1 − 1] range, where 𝑏
is the bit width used. Then we round up the result, convert-
ing parameters from float to int. When performing infer-
ence, these compressed parameters would be scaled back
to float32 with the stored bias and scale.

For Taylor and our methods, we pruned the original checkpoints
as specified. For PTQ, we compressed the models from float32 to (4,
8, 16)-bit integers, the sparsity rate is calculated as 1−𝑏/32. During
training, Shaver’s codebook C is freezed.

C.2 Datasets
The dataset preprocess steps are described below:

• Criteo [22] contains ad click data over a week. Following
the winning solution from the original Criteo Challenge, we
discretize each value𝑥 in numeric feature fields to ⌈log2 (𝑥)⌉
if 𝑥 > 2. We replace infrequent features, which appear less
than min_count = 10 times, with out-of-vocabulary (OOV)
tokens for each field.

• Avazu [51] includes 10 days of click-through data. As a
common practice, we first remove the ‘id’ field, which has
a unique value for every record. Similar to Criteo dataset,
we remove infrequent features and replace them with OOV
tokens (min_count = 2).

• KDD [1] consists of records gathered from search session
logs. Similar to previous two datasets, we utilize OOV to-
kens to represent infrequent features (min_count = 10).

For Criteo and Avazu dataset, we directly adopt the split and
preprocessed data from [52].

D Further Experimental Results
Table 4 and Figure 6 show the comparison results with other non-
single-shot and single-shot methods of Shaver for DeepFM back-
bone. Table 5 provides uncompressed model performance.

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Table 4: Comparative results with non-single-shot baselines under three sparsity rates. All methods adopt DeepFM as the CRS
backbone. In each dataset, the best result is marked in bold and the second best one is underlined.

Dataset Method Single- 𝑡 = 50% 𝑡 = 80% 𝑡 = 95%
shot? AUC↑ LogLoss↓ #Params AUC↑ LogLoss↓ #Params AUC↑ LogLoss↓ #Params

Criteo

QR [49] ✗ 0.8081 0.4435 8.69M 0.8078 0.4438 3.48M 0.8033 0.4482 870K
TTRec [59] ✗ 0.8075 0.4442 9.36M 0.8070 0.4446 3.15M 0.8087 0.4431 870K
PEP [32] ✗ 0.8105 0.4414 8.67M 0.8098 0.4419 3.47M 0.8084 0.4432 806K
OptEmb [35] ✗ - - - 0.8088 0.4430 3.17M 0.8043 0.4471 863K
CERP [31] ✗ 0.8099 0.4419 8.66M 0.8095 0.4423 3.21M 0.8062 0.4454 864K
Shaver-Zero ✓ 0.8101 0.4417 8.69M 0.8100 0.4418 3.48M 0.8085 0.4432 869K
Shaver-Zero† ✗ 0.8103 0.4415 8.69M 0.8105 0.4414 3.48M 0.8104 0.4414 869K
Shaver-Codebook ✓ 0.8101 0.4417 8.69M 0.8101 0.4418 3.48M 0.8093 0.4425 870K
Shaver-Codebook† ✗ 0.8105 0.4414 8.69M 0.8105 0.4414 3.48M 0.8106 0.4413 870K

Avazu

QR [49] ✗ 0.7697 0.3864 35.43M 0.7695 0.3871 14.17M 0.7644 0.3905 3.54M
TTRec [59] ✗ 0.7647 0.3915 35.43M 0.7651 0.3902 14.17M 0.7608 0.3924 3.54M
PEP [32] ✗ 0.7647 0.3886 29.67M 0.7633 0.3896 14.07M 0.7590 0.3922 3.50M
OptEmb [35] ✗ - - - - - - 0.7585 0.3936 3.41M
CERP [31] ✗ 0.7649 0.3885 35.30M 0.7638 0.3892 14.14M 0.7607 0.3920 3.54M
Shaver-Zero ✓ 0.7655 0.3934 35.43M 0.7645 0.3942 14.17M 0.7575 0.3984 3.54M
Shaver-Zero† ✗ 0.7715 0.3855 35.43M 0.7715 0.3857 14.17M 0.7655 0.3902 3.54M
Shaver-Codebook ✓ 0.7647 0.3939 35.43M 0.7623 0.3952 14.17M 0.7543 0.4002 3.54M
Shaver-Codebook† ✗ 0.7644 0.3903 35.43M 0.7602 0.3940 14.17M 0.7552 0.3974 3.54M

KDD

QR [49] ✗ 0.7744 0.1579 48.16M 0.7753 0.1578 19.26M 0.7779 0.1573 4.82M
TTRec [59] ✗ 0.7762 0.1588 48.16M 0.7727 0.1583 19.26M 0.7785 0.1572 4.82M
PEP [32] ✗ 0.7801 0.1568 47.80M 0.7745 0.1578 19.22M 0.7730 0.1579 4.71M
OptEmb [35] ✗ 0.7742 0.1584 47.52M 0.7740 0.1584 18.29M 0.7663 0.1597 4.79M
CERP [31] ✗ 0.7818 0.1567 48.10M 0.7765 0.1578 18.57M 0.7727 0.1581 4.77M
Shaver-Zero ✓ 0.7846 0.1563 48.16M 0.7836 0.1565 19.26M 0.7766 0.1578 4.82M
Shaver-Zero† ✗ 0.7846 0.1563 48.16M 0.7836 0.1565 19.26M 0.7766 0.1578 4.82M
Shaver-Codebook ✓ 0.7850 0.1562 48.16M 0.7854 0.1560 19.26M 0.7812 0.1567 4.82M
Shaver-Codebook† ✗ 0.7850 0.1562 48.16M 0.7854 0.1560 19.26M 0.7812 0.1567 4.82M

0.2 0.4 0.6 0.8 1

.600

.700

.800

Sparsity Rate

A
UC Original

MagPrune
PTQ
Taylor
Shaver-Zero
Shaver-Codebook

(a) Criteo

0.2 0.4 0.6 0.8 1

.500

.600

.700

Sparsity Rate

Original
MagPrune
PTQ
Taylor
Shaver-Zero
Shaver-Codebook

(b) Avazu

0.2 0.4 0.6 0.8 1

.600

.700

.800

Sparsity Rate

Original
MagPrune
PTQ
Taylor
Shaver-Zero
Shaver-Codebook

(c) KDD

Figure 6: Comparative results with single-shot baselines for DeepFM backbone.

Table 5: Original (Uncompressed) Model Performance

Dataset Backbone AUC Loss Params

Criteo DeepFM 0.8102 0.4416 17.39M
DCN 0.8114 0.4407 17.39M

KDD DeepFM 0.7847 0.1563 96.31M
DCN 0.7864 0.1562 96.31M

Avazu DeepFM 0.7658 0.3932 70.86M
DCN 0.7759 0.3839 70.86M

For DeepFM backbone, our methods achieves the best results in
all settings. With the DeepFM backbone, where the original model

has poor performance, our method can remove excessive parame-
ters and improve model performance with fine-tuning. Thus, model
fine-tuning has a more positive effect on the DeepFM backbone.
Except for the Avazu dataset, codebook approaches outperform
zero baseline slightly on Criteo, and significantly on KDD. The
reason for this exception is unclear. One plausible explanation is
that zero padding can act as a regularization and better prevent
overfitting compared to codebook approaches.

Regarding single-shot comparison, in general, the performance
trend is similar to DCN, with few exceptions. First, PTQ achieves
worse relative results in the Criteo dataset. Second, as mentioned
above, Shaver-Zero outperforms Shaver-Codebook and other meth-
ods in Avazu settings.

12

	Abstract
	1 Introduction
	2 Related Work
	2.1 CTR Prediction
	2.2 Lightweight Recommender Systems
	2.3 Shapley Value for Machine Learning

	3 Preliminaries
	3.1 Content-based Recommendation
	3.2 Shapley Value

	4 Shaver: The Proposed Method
	4.1 Shapley Values of Embedding Parameters
	4.2 Local and Global Values
	4.3 Efficient Shapley Value Computation for CRS Embeddings
	4.4 Replacing Zero-padding with Field-aware Codebook

	5 Experiments
	5.1 Experimental Settings
	5.2 Comparison with Non-single-shot Pruning Methods (RQ1)
	5.3 Comparison with Single-shot Pruning Methods (RQ2)
	5.4 Effect of Post-Pruning Finetuning (RQ3)
	5.5 Performance and Data Size Trade-off (RQ4)
	5.6 Qualitative Analysis (RQ5)

	6 Conclusions
	References
	A Proofs
	B Algorithm Analysis
	C Experiment Settings
	C.1 Baselines
	C.2 Datasets

	D Further Experimental Results

