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NAT4AT: Using Non-Autoregressive Translation Makes
Autoregressive Translation Faster and Better

Anonymous Author(s)

ABSTRACT
With the increasing number of web documents, the demand for
translation has increased dramatically. Non-autoregressive trans-
lation (NAT) models can significantly reduce decoding latency to
meet the growing translation needs, but they sacrifice translation
quality. And there is still an irreparable performance gap between
NAT models and strong autoregressive translation (AT) models at
the corpus level. However, more fine-grained comparative exper-
iments on AT and NAT are currently lacking. Therefore, in this
paper, we first conducted analysis experiments at the sentence level
and found complementarity and high similarity between the trans-
lations generated by AT and NAT. Then, based on this observation,
we propose a general and effective method called NAT4AT, which
can not only use NAT to speed up the inference speed of AT sig-
nificantly but also improve its final translation quality. Specifically,
NAT4AT first uses a NAT model to generate an original translation
in parallel and then uses an AT model as a correction model to
revise errors in the original translation. In this way, the AT model
no longer needs to predict the entire translation but only needs to
predict a small number of error parts in the NAT result. Extensive
experimental results on major WMT benchmarks verify the gener-
ality and effectiveness of our method, whose translation quality is
superior to the strong AT model and achieves a 5.0× speedup.
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1 INTRODUCTION
Web data is multilingual, and its volume is rapidly increasing. To
better mine and utilize the web data, neural machine translation
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Figure 1: Efficiency (SpeedUp) and Translation quality (BLEU)
of AT and NAT models in the WMT’14 EN→DE translation
task.

(NMT) models are essential, which require strong translation capa-
bilities and fast inference speeds. Transformer-based models [34]
have been widely used in NMT, and they usually adopt an autore-
gressive decoding paradigm where each generation step depends
on previously generated tokens. The autoregressive translation
(AT) model can be stably trained using the teacher forcing method
and produce high-quality translations. However, it strictly mod-
els left-to-right dependencies between target tokens, resulting in
poor inference efficiency, especially for long sentences. To alleviate
this problem, non-autoregressive translation (NAT) is proposed [6],
which assumes that the target tokens are conditionally independent
and can be decoded in parallel, significantly improving inference
efficiency. However, NAT suffers from performance degradation
due to the multi-modality problems [6].

Significant efforts [5, 11, 13, 20, 36] have been made to improve
NAT performance and narrow the gap between NAT and ATmodels.
Although these methods can effectively improve translation quality,
they still cannot fully solve the inherent multi-modality problem of
NAT, which results in an irreparable gap between NAT and strong
AT models.

While existing work shows that NAT performs worse than AT,
this is a corpus-level comparison. From a more fine-grained per-
spective, we still have the following two questions:

(1) How similar are the translations generated by AT and NAT
for the same source sentence?

(2) Do AT and NAT have their own strengths for different
source sentences?

To the best of our knowledge, no previous work has explored
these two questions in detail. Therefore, we conduct a preliminary

1
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experiment in Section 3 to compare AT and NAT models at the
sentence level. Experimental results demonstrate a high overlap
rate between the translations generated by NAT and AT models.
In addition, for some sentences, NAT models can translate better
than AT, suggesting that the translation capabilities of NAT and AT
models can be complementary. Therefore, based on this observation,
we propose a simple and effective method called NAT4AT, which
can not only significantly accelerate the inference speed of AT by
using NAT but also improve the final translation quality.

Similar to our method, recently, Xia et al. proposed generalized
aggressive decoding (GAD), which can speed up AT without quality
loss through NAT. However, GAD needs to specifically design and
train a NAT drafter model, and strictly requires that the final trans-
lation is exactly the same as the AT. When there is a bifurcation,
GAD discards all subsequent tokens generated by the NAT drafter
and regenerates them in the next iteration. However, due to NAT’s
conditional independence assumption, an incorrect prediction at
the current position does not necessarily imply that subsequent
predicted tokens will also be incorrect. Unlike GAD, NAT4AT only
requires NAT model decoding once to generate the original trans-
lation and then uses the AT model as a correction model to revise
errors in the original translation. Furthermore, NAT4AT does not
require the final translation to be identical to AT. Therefore, com-
pared to GAD, our method has three advantages: 1) it is orthogonal
to the model, meaning that any NAT model can be used to generate
the original translation; 2) the NAT model only needs to decode
once, making the inference process more efficient; 3) by leveraging
the complementarity of NAT and AT models, it can achieve better
performance than AT.

Extensive experimental results on major WMT benchmarks
demonstrate the generality and effectiveness of our method. For
various NAT and AT models, our method can not only generate
higher-quality translations than strong AT models, but also signifi-
cantly improve the inference efficiency. More notably, as shown in
Figure 1, our best variant achieves 29.06 BLEU with 5.0× speedup
in the WMT’14 EN→DE translation task.

2 BACKGROUND
2.1 Autoregressive Translation
The autoregressive translation (AT) model achieves state-of-the-art
performance on multiple machine translation benchmarks. Given
a source sentence 𝑋 = (𝑥1, 𝑥2, ..., 𝑥𝑛) and a target sentence 𝑌 =

(𝑦1, 𝑦2, ..., 𝑦𝑚), the AT model decomposes the target distribution of
translation into a chain of conditional probabilities with a left-to-
right causal structure:

𝑃AT (𝑌 | 𝑋 ) =
𝑚∏
𝑖=1

𝑃 (𝑦𝑖 | 𝑦<𝑖 , 𝑋 ;𝜃AT)

where 𝑦<𝑖 denotes the previous target tokens before the 𝑖𝑡ℎ posi-
tion. During training, the AT model can perform parallel decoding
through the teacher-forcing strategy. However, during inference,
the AT model cannot obtain target tokens, so it needs to generate
tokens one by one from left to right until [EOS] is generated.

Therefore, while AT models can achieve desirable translation
quality, their sequential decoding strategy during inference does not

Table 1: The corpus-level BLEU score of AT and NAT mod-
els in the WMT’14 EN→DE and WMT’14 DE→EN test sets.
Max(AT, NAT) indicates that the final translation of each
sentence is the one with a higher BLEU among the results
generated by AT and NAT.

Model WMT’14
EN→DE DE→EN

AT (Transformer-Base) 27.92 31.40
GLAT 25.33 29.04
GLAT + CandiSoups 27.67 31.04
Max(AT, GLAT) 29.61 33.63
Max(AT, GLAT + CandiSoups) 30.28 34.16

fully use existing parallel computing hardware, which is inefficient
when translating long sentences.

2.2 Non-Autoregressive Translation
To reduce decoding latency, the non-autoregressive translation
(NAT) model is proposed [6]. The Vanilla NAT model abandons ex-
plicit modeling of left-to-right dependencies between target tokens,
instead assuming that target tokens only depend on the source
sentence 𝑋 , so all tokens can be generated in parallel:

𝑃NAT (𝑌 | 𝑋 ) =
𝑚∏
𝑖=1

𝑃 (𝑦𝑖 | 𝑋 ;𝜃NAT)

This generation paradigm can fully use existing hardware’s com-
puting power to improve inference efficiency significantly. However,
due to the lack of dependency information between target tokens,
NAT has a serious multi-modality problem [6], resulting in a signifi-
cant decrease in translation quality. Although many advanced NAT
methods [13, 20, 36] have been proposed, there is still an irreparable
performance gap between NAT and strong AT models due to the
inherent flaws of NAT itself.

3 PRELIMINARY EXPERIMENT
This section explores AT and NAT models at the more fine-grained
level. Specifically, we conduct experiments to answer two main
questions: 1) For the same source sentence, how similar are the
translations generated by AT and NAT? 2) For different source
sentences, do AT and NAT have their strengths?

3.1 Experimental Setup
We conduct experiments on two translation tasks, WMT14 EN→DE
andWMT14 DE→EN. For AT, we use a conventional autoregressive
Transformer. For NAT,we choose GLAT [20] andGLAT+CandiSoups
[36], two methods with different performances. Both AT and NAT
models are based on the Transformer-Base architecture and trained
using open-source distilled data [12]. During inference, the beam
size is set to 5 for AT, and the number of candidate translations
is set to 5 for the CandiSoups algorithm. The performance of AT
and NAT models is shown in Table 1. In the experiment, we use
sentence-level BLEU to judge the translation quality of different
models for different source sentences. We use the overlap rate to

2
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Figure 2: The BLEU difference (blue color) and overlap rate (orange color) between the translations generated by AT and NAT
for the 3003 source sentences. And the order of sentences is sorted by the BLEU𝐴𝑇 - BLEU𝑁𝐴𝑇 .

evaluate the similarity between the translations generated by AT
and NAT models for the same source sentence:

Overlap Rate =
Len (𝑌common)

Max (Len (𝑌𝐴𝑇 ) , Len (𝑌𝑁𝐴𝑇 ))
where 𝑌common denotes the longest common subsequence between
𝑌𝐴𝑇 and 𝑌𝑁𝐴𝑇 .

3.2 Experimental Results
The main experimental results are shown in Figure 2. As we can see,
the translations generated by the ATmodel and the twoNATmodels
are complementary and highly similar. Specifically, for the same
source sentence, the average overlap rate of translations generated
by AT and NAT is above 70%, and the stronger NAT model can
achieve higher overlap rates. For example, the average translation
overlap rate between GLAT+CandiSoups and AT on the WMT14
DE→EN task reached 77.22%. In addition, the performance of AT
and NAT models is also different for different source sentences.
And the stronger the NAT model, the more source sentences it
can translate better than the AT model. In the WMT’14 EN→DE
translation task, GLAT+CandiSoups achieves higher translation
quality than AT on 38.79% source sentences. What’s more, Table
1 shows that if the better translation generated by AT and NAT
models is selected for each sentence, the corpus-level BLEU can
be significantly improved. Even using GLAT, which has a large
performance gap with the AT model, can still achieve 1.69 and 2.23
BLEU improvements on the AT model.

The above experimental results demonstrate that the NAT model
has the potential to make the AT model faster and better. The key
to achieving this goal is to retain the parts of the NAT generated

translation that are better than or the same as the AT translation
and allow the AT model to revise only the wrong parts. In this way,
the AT model can achieve better performance than generating the
entire translation using itself independently and requires only a
minimal amount of iterative decoding.

4 APPROACH
This section details the method proposed in this paper. We first
present the problem definition in 4.1, then introduce the implemen-
tation details of NAT4AT in Section 4.2, followed by a concrete
example in Section 4.3.

4.1 Problem Definition
Given any trained NATmodel, it can predict the original translation
𝑌 1 = (𝑦11, 𝑦

1
2, ..., 𝑦

1
𝑚) in parallel. Given any trained AT model, it can

autoregressively predict translation 𝑌 ∗ = (𝑦∗1, 𝑦
∗
2, ..., 𝑦

∗
𝑚) from left

to right. We aim to use the AT model to verify and revise the
original translation and generate a better result. Specifically, when
𝑌 1 is input to the AT model, the AT model needs to judge from
left to right whether 𝑦1

𝑖
is correct. If it is correct, the token will be

retained. Otherwise, the AT model needs to revise this token with
its own prediction. Moreover, since error propagation will have a
huge impact on the subsequent prediction of the AT model, after
the revision, it is necessary to construct the next iteration input
𝑌 𝑡+1 according to the current result and the original translation.
Therefore, there are two key issues to be addressed: 1) How to
determine if 𝑦𝑡

𝑖
is correct; 2) How to generate 𝑌 𝑡+1 that needs to be

verified in the next iteration.
3
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The new restrictions disproportionately affect people , minorities and those those with low incomes .

The new restrictions disproportionately affect young , minorities and those those with low incomes .

Von den neuen Einschränkungen sind junge Menschen , Minderheiten und Menschen mit niedrigem Einkommen unverhältnismäßig stark betroffen .

The new restrictions disproportionately affect people , minorities and those those with low incomes .
Source Input

NAT Result 𝒀𝒀𝟏𝟏
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AT Input 𝒀𝒀𝟏𝟏
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t = 2
AT Input 𝒀𝒀𝟐𝟐

AT Result 𝒀𝒀∗

𝒀𝒀𝟑𝟑
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P=0.1

P=0.7

t = 2    Window
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AT Result 𝒀𝒀∗
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t = 3

The new restrictions disproportionately affect young people , minorities and those those with low incomes .
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Figure 3: An example illustrates how NAT4AT generates high-quality final translations using both NAT and AT models. For
this example, the s is set to 0.3, and w is set to 2. The highlighted token represents the token added to the final translation, and
the blue token represents the token generated by NAT is the same as AT. For brevity, we omit [BOS] and [EOS] in this figure.

Algorithm 1: NAT4AT
Input: Source sentence X, 𝜃NAT, 𝜃AT, s, w
𝑌 1 = (𝑦11, ..., 𝑦1𝑚 ) = argmax P𝑁𝐴𝑇 (𝑌 |𝑋 ;𝜃NAT )
𝑌 ∗ = (𝑦∗1, ..., 𝑦∗𝑚 ) = argmax P𝐴𝑇 (𝑌 |𝑋 ;𝑌 1;𝜃AT )
Initialize i← 1, t← 1
while y∗

𝑖
≠ [EOS] and i <MAX_LEN do

if P𝐴𝑇 (𝑦∗𝑖 ) - P𝐴𝑇 (𝑦
𝑡
𝑖
) < s then

i← i + 1
else

if ∃ j ∈ [𝑖 − w, 𝑖 + w] and y1
𝑗
= 𝑦∗

𝑖
then

Y𝑡+1← CAT(y𝑡
<𝑖
, 𝑦∗

𝑖
, 𝑦1

> 𝑗
)

else
Y𝑡+1← CAT(y𝑡

<𝑖
, 𝑦∗

𝑖
, 𝑦𝑡

>𝑖
)

end
Y∗ = argmax P𝐴𝑇 (𝑌 |𝑋 ;𝑌 𝑡+1;𝜃AT )
t← t + 1

end
end
return 𝑌 𝑡 [:i]

4.2 NAT4AT
For the above problems, we propose a simple but very effective
algorithm called NAT4AT, which is summarized in Algorithm 1. It
greatly preserves the original translation predicted by NAT and
dramatically reduces the number of iterative decoding, thus signifi-
cantly accelerating the inference speed.

First, NAT4ATwill input𝑌 𝑡 to the AT decoder at the t-th iteration
to obtain the probability distribution output by the AT model and
the corresponding translation:

𝑃AT (𝑌 | 𝑋 ;𝑌 𝑡 ) =
𝑚∏
𝑖=1

𝑃
(
𝑦𝑖 | 𝑋 ; 𝑦𝑡<𝑖 ;𝜃AT

)
𝑌 ∗ = (𝑦∗1, ..., 𝑦∗𝑚 ) = argmax𝑃AT (𝑌 | 𝑋 ;𝑌 𝑡 )

Note that since𝑌 𝑡 is known, theATmodel can decode in parallel like
the training phase. Then NAT4AT will compare 𝑃AT (𝑦𝑡𝑖 | 𝑋 ;𝑦

𝑡
<𝑖
)

and 𝑃AT (𝑦∗𝑖 | 𝑋 ;𝑦
𝑡
<𝑖
) from left to right. If the difference between

the two is less than the threshold s, NAT4AT will consider the
current NAT prediction result is reliable and keep 𝑦𝑡

𝑖
. Otherwise,

NAT4AT will use 𝑦∗
𝑖
to revise 𝑦𝑡

𝑖
. In this way, NAT4AT does not

need to strictly guarantee that the final translation result is the
same as 𝑌 ∗, thus retaining more original translations, enabling
NAT to supplement AT’s translation performance, and reducing
the number of AT decoder iterations.

For the second problem, due to NAT’s conditional independence
assumption, the token at the current position is incorrectly pre-
dicted, which does not mean that subsequent tokens are also wrong.
Moreover, there is likely to be a misalignment between AT and NAT
generated translations, i.e., even if 𝑦∗

𝑖
is different from 𝑦1

𝑖
, it may be

the same as other tokens nearby (as shown in Figure 3). Therefore,
we propose a sliding window algorithm to find the corresponding
position of 𝑦∗

𝑖
in 𝑌 1. Specifically, if the window width is set to w,

NAT4AT will determine whether exists 𝑗 in [𝑖 −𝑤, 𝑖 +𝑤] that sat-
isfies 𝑦1

𝑗
= 𝑦∗

𝑖
. If it exists, NAT4AT will concatenate 𝑦1

> 𝑗
after 𝑦∗

𝑖
to

generate 𝑌 𝑡+1, otherwise NAT4AT will concatenate 𝑦𝑡
>𝑖

after 𝑦∗
𝑖
to

form 𝑌 𝑡+1. Finally, when AT verifies to the [EOS] token, iteration
terminates. Our experimental results show that this sliding win-
dow algorithm can make maximum use of the original translation,
significantly reducing the number of iterations.

4.3 Example
Figure 3 shows an example of how NAT4AT generates high-quality
translations with the cooperation of AT and NAT models. First,
when t=1, NAT4AT takes the original translation 𝑌 1 generated by
the NAT model as input to the AT decoder and obtains the AT
result. Then, by traversing from left to right, NAT4AT finds that

4
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Table 2: Comparison between our method and existing methods on WMT’14 EN↔DE and WMT’16 EN↔RO benchmarks. The
AT baseline’s results are cited from Qian et al. 20, and all NAT baselines’ results reported are quoted from respective papers.
Iter. is the average number of decoding iterations, Adv. denotes adaptive determines the number of iterations, ∗ means models
trained with distillation data from Transformer-Big. And the † denote NAT4AT is statistically better (t-test with p-value < 0.01)
than strong Transformer-Base (beam=5).

Models Iter. Speedup WMT’14 WMT’16
EN→DE DE→EN EN→RO RO→EN

AT baseline Transformer-Base (w/o Seq-KD) N 1.0× 27.48 31.27 33.70 34.05

Iterative NAT

InsT [33] ≈log N 4.8× 27.41 - - -
CMLM [5]∗ 10 1.7× 27.03 30.53 33.08 33.31
DisCO [15]∗ Adv. 3.5× 27.34 31.31 33.22 33.25
Imputer [25]∗ 8 3.9× 28.20 31.80 34.40 34.10
SUNDAE [26] 16 1.4× 28.46 32.30 - -
RewriteNAT [4]∗ 2.7 3.1× 27.83 31.52 33.63 34.09
CMLMC [14]∗ 10 - 28.37 31.41 34.57 34.13
GAD [35]∗ 4.9 3.0× 28.73 32.18 34.83 34.65
GAD++ [35]∗ 4.0 3.6× 28.89 32.56 35.32 34.98

Fully NAT

Vanilla NAT [6] 1 15.6× 17.69 21.47 27.29 29.06
ReorderNAT [22] 1 16.1× 22.79 27.28 29.30 29.50
OAXE [3]∗ 1 15.3× 26.10 30.20 32.40 33.30
CTC + VAE [7] 1 16.5× 27.49 31.10 33.79 33.87
GLAT [20] 1 15.3× 25.21 29.84 31.19 32.04
GLAT + Candidate Soups [36] 1 7.8× 27.59 30.95 33.22 33.73
DA-Transformer [13]∗ 1 7.0× 27.91 31.95 - -
CTC + NMLA [28] 1 5.0× 28.35 32.27 34.72 34.95

Ours

AT Teacher (beam = 5) N - 29.32 32.66 34.82 34.89
Transformer-Base (beam = 5)∗ N 1.0× 28.86 32.26 35.16 35.33
Transformer-Base (beam = 1)∗ N 1.1× 28.69 32.20 35.01 35.18
NAT Model (GLAT + Candidate Soups)∗ 1 7.8× 28.02 31.49 34.30 34.58
NAT4AT 4.3 5.0× 29.06† 32.58† 35.39† 35.66†

Table 3: COMET-22 scores on WMT’14 DE→EN and WMT’16
RO→EN test sets.

Model DE→EN RO→EN

Transformer-Base (beam=1) 79.49 63.92
Transformer-Base (beam=5) 79.56 64.01

GLAT + CandiSoups 77.63 63.62
NAT4AT 79.73 64.23

the predicted probability difference of the first five tokens is below
the threshold of 0.3, so they are kept. And when i=6, 𝑃𝐴𝑇 ("young")-
𝑃𝐴𝑇 ("people") is greater than 0.3, so NAT4AT believes that "people"
is incorrectly predicted by NAT, and replaces it with "young." Then,
because "young" does not exist in the sliding window, NAT4AT
concatenates 𝑦𝑡

>6 after "young" to form 𝑌 2.
When t=2, since the AT model has causal masks, the prediction

results in the first six positions are the same as before, so they can
be skipped directly. And when i=7, 𝑃𝐴𝑇 ("people")-𝑃𝐴𝑇 (",") is greater
than 0.3, so NAT4AT revises "," with "people". Then NAT4AT finds
"people" exist in the sliding window, so it concatenates 𝑦1

>6 after

"people" to form 𝑌 3. Similarly, when t = 3, NAT4AT revises the
first error in 𝑌 3 and generates 𝑌 4 based on 𝑌 1. When t=4, NAT4AT
traverses to the end and finds no errors in 𝑌 4, so the iteration ter-
minates, and 𝑌 4 is the final result. From this example, we can find
that NAT4AT can not only retain most of the correct tokens in
the original translation but also solve the problems of mistransla-
tion, missing translation, and repeated translation through a small
amount of AT iterative decoding.

5 EXPERIMENTS
In this section, we first introduce the experimental setup in Section
5.1, then report themain results in Section 5.2. Analysis experiments
are presented in Section 5.3.

5.1 Experimental Setup
Datasets and Evaluation. We validate our proposed method on

two standard translation benchmarks that are widely used in previ-
ous studies, i.e., WMT’14 English (EN)↔German (DE) (4.0M pairs)
and WMT’16 English (EN)↔Romanian (RO) (0.6M pairs). And for
EN↔DE and EN↔RO, we apply the same prepossessing steps and
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learn joint BPE subwords [27] vocabulary as mentioned in previ-
ous work (EN↔DE: Zhou et al., EN↔RO: Xia et al.). For a fair
comparison, we use tokenized BLEU [19] for all benchmarks to
evaluate translation quality. In addition, we use COMET-22 [24], a
learned and reference-based metric, as a complement to evaluate
translation quality. To evaluate inference efficiency, the speedup
and the average number of decoding iterations are measured with
a batch size of 1 on the WMT’14 En→De test set. Our experiments
are conducted on Nvidia A100-40G GPUs, and we use the Fairseq
[18] to implement our method.

Knowledge Distillation. Following the previous work [34, 35, 37],
we employ sequence-level knowledge distillation for our AT and
NAT models in all datasets. Specifically, for WMT’14 EN↔DE, we
use Transformer-Big as the teacher and generate distillation data
with beam search (beam = 5). And for WMT’16 EN↔RO, we use
Transformer-Base as the teacher and also set beam = 5.

Implementation Details. We use the conventional autoregressive
Transformer as our AT correction model, and GLAT+CandiSoups
[36] as our NAT model to generate the original translation. More-
over, since the CandiSoups algorithm requires using the AT model
to re-score NAT generated translations, we directly use the proba-
bility distribution generated by CandiSoups in the first iteration of
NAT4AT. All our models use the hyperparameters of Transformer-
Base [34]. During training, all AT models are trained for 100k up-
dates with a batch of 256k tokens, and all NAT models are trained
for 200k updates with a batch of 128k tokens. We adopt the Adam
optimizer [16] with 𝛽 = (0.9, 0.98). And the learning rate warms up
to 5 · 10−4 within 4k steps and then decays with the inverse square
schedule. For regularization, we use dropout (WMT’14 EN↔DE: 0.1,
WMT’16 EN↔RO: 0.3), 0.001 weight decay, and 0.1 label smoothing.
We evaluate the BLEU scores on the validation set every 500 steps
and average the best 5 checkpoints for the final model. During in-
ference, we use a beam size of 5 for the AT baseline, use 5 candidate
translations for the CandiSoups algorithm, and set threshold s =
0.35 and window width w = 8 for our NAT4AT method.

5.2 Main Results
As shown in Table 2, our proposed NAT4AT method can achieve
superior performance in the trade-off between translation quality
and inference speed. We highlight the advantages of our method
compared to other methods:

First, our method can generate better translations than all pre-
vious Fully NAT methods. Even compared to CTC+NMLA [28],
NAT4AT outperforms it on all translation tasks and maintains the
same inference speed, verifying that NAT4AT can effectively use
the AT model to revise the wrong parts in NAT translation, thus
achieving the performance that NAT is difficult to achieve.

Second, our method can achieve lower inference latency than
previous Iterative NAT methods. GAD++ [35] can achieve supe-
rior performance by combining AT and NAT models. However,
NAT4AT can outperform GAD++ regarding translation quality and
inference speed. Note that although NAT4AT requires an average
of 0.3 more iterations than GAD++, NAT4AT only needs to use
the AT decoder during iterations, while GAD++ requires both NAT
and AT decoders, so NAT4AT’s inference latency is lower than
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Figure 4: Performance of NAT4AT with different threshold s
on WMT’14 EN→DE validation set.

GAD++. Moreover, because NAT4AT takes advantage of the com-
plementarity between AT and NAT translations, it can achieve
better translation quality than GAD++.

Finally, our method can make AT models translate faster and
better. Specifically, NAT4AT achieves higher BLEU scores than
strong AT models with Seq-KD on all four translation tasks while
maintaining a 5.0× speedup. The significance test results also prove
that using NAT4AT can statistically achieve better results than the
strong AT models. Considering that BLEU may be biased, we also
measure our method with COMET-22 on WMT’14 DE→EN and
WMT’16 RO→EN tasks. As shown in Table 3, NAT4AT’s perfor-
mance is still better than the strong AT model.

In conclusion, the above experimental results demonstrate that
our method can fully exploit the similarity and complementarity
between AT and NAT translations, thus achieving excellent transla-
tion quality and inference speed. Moreover, NAT4AT is orthogonal
to the model, so it can achieve better performance while using more
advanced AT and NAT models.

5.3 Analysis
5.3.1 Hyperparameter.

Influence of the threshold s. We set the window width w = 8
unchanged and conduct experiments with various threshold s on
WMT’14 EN→DE validation set and show the results in Figure 4.
As we can see, s significantly affects translation quality and the
number of iterations. Specifically, when s = 0, NAT4AT requires
the translation generated by the NAT model to be exactly the same
as AT, so more iterations are needed. As s increases, the number of
iterations required by NAT4AT decreases linearly. And because of
the complementarity between NAT and AT translations, the trans-
lation quality is improved. However, when s > 0.4, NAT4AT may
retain some wrong tokens generated by the NAT model, resulting
in a gradual deterioration of its performance. Finally, when s = 1,
NAT4AT no longer uses AT for correction, so its performance is
exactly the same as the NAT model.
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Figure 5: Performance of NAT4AT with different window
width w on WMT’14 EN→DE validation set.

This experimental result shows that we can easily trade off trans-
lation quality and inference speed by choosing different s according
to different scenarios. Low s can achieve high translation quality,
and high s can achieve fast inference speed. And we set the thresh-
old s to 0.35 in our experiments.

Influence of the window width w. To analyze the effect of window
width w on our method, we conduct experiments with different
w on WMT’14 EN→DE validation set. Figure 5 shows that our
proposed sliding window algorithm can significantly reduce the
number of iterations and improve translation quality. When w =
0, NAT4AT strictly restricts the translation of AT and NAT to be
completely aligned, which does not fully use the original transla-
tion generated by NAT, so an average of 9.8 iterations are required
during the inference process. However, when w = 2, NAT4AT al-
lows misalignment between AT and NAT translations, significantly
reducing the number of iterations (9.8→ 5.8). In addition, the trans-
lation quality is improved because more NAT results are used.

When w > 8, the number of iterations does not obviously de-
crease with the increase of w. And due to the expansion of the
sliding window, there may be multiple identical tokens in the win-
dow, resulting in alignment errors between AT and NAT, so the
translation quality of our method drops slightly. Therefore, in our
experiments, we set the window width w to 8.

5.3.2 NAT and AT Models with Different Performance. Our pro-
posed NAT4AT is a general approach that can be applied to arbitrary
NAT and AT models. Therefore, we also conducted experiments
based on different NAT and AT models to verify the generality and
effectiveness of our method. As shown in Table 4, NAT4AT can
perform excellently in all scenarios. Specifically, when using GLAT,
which has a large performance gap compared to AT, to generate
the original translation, NAT4AT can still achieve better perfor-
mance than AT. However, because there are more errors in the
original translation, NAT4AT requires more iterations. When using
a stronger NAT model (GLAT-Big w/ CandiSoups) and AT model
(Transformer-Big), NAT4AT can achieve superior performance,
with BLEU scores of 29.43 and 32.91 on WMT’14 EN↔DE.
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Figure 6: Performance under different source sentence
lengths on WMT’14 EN→DE test set.

These experimental results show that the performance of NAT
and AT models affects NAT4AT’s translation quality and inference
speed. When using stronger NAT and AT, NAT4AT can generate
better translations. And the smaller the performance difference
between NAT and AT models, the faster the NAT4AT inference
speed. This further confirms the potential of our proposed method,
which can benefit from more advanced AT and NAT methods to
achieve better performance in the future.

5.3.3 Influence of the Source Input Length. We also explore the
effect of sentence length on the performance of our method. Specif-
ically, we partition the source sentences of the WMT’14 EN→DE
test set into five intervals by the length after BPE and compute the
BLEU score and iteration number for each interval. The experimen-
tal results are shown in Figure 6. As we can see, when the source
sentence length increases, the translation quality of both two mod-
els increases, and the AT model consistently outperforms the NAT
model. These results suggest that the sentences that AT and NAT
models are respectively good at translating cannot be distinguished
directly by length. And we believe that it is an interesting research
direction to explore the types of sentences that AT and NAT ex-
cel at translating, and we will explore this question in the future.
However, our method can still outperform the AT model at each
interval, which shows that NAT4AT can effectively distinguish the
quality of NAT generated tokens and exploit its complementarity
with AT translation to generate better translations.

Moreover, although the average number of iterations required by
NAT4AT increases as the length of the source sentence increases,
it is only 10%-20% of the iterations necessary by the AT model.
This result shows that NAT4AT can take advantage of the high
similarity between AT and NAT translations to significantly reduce
the number of iterations and improve inference efficiency.

5.3.4 Influence of the Knowledge Distillation. Sequence-level knowl-
edge distillation (Seq-KD) is a straightforward yet effective method
that can achieve considerable performance improvements for NAT
models. However, training an AT model as a teacher makes the
training process redundant and limits the translation capabilities of
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Table 4: Performance of NAT4AT based on different AT and NAT models on WMT’14 EN↔DE benchmark.

Models Iter. WMT’14
EN→DE DE→EN

MAT Model

GLAT 1 25.97 30.01
GLAT w/ CandiSoups 1 28.02 31.49
GLAT-Big 1 27.03 30.81
GLAT-Big w/ CandiSoups 1 28.86 31.99

AT Model Transformer-Base (beam = 1) N 28.69 32.20
Transformer-Big (beam = 1) N 29.03 32.60

NAT4AT

GLAT + Transformer-Base 6.1 28.88 32.56
GLAT w/ CandiSoups + Transformer-Base 4.3 29.06 32.58
GLAT-Big + Transformer-Big 5.6 29.32 32.84
GLAT-Big w/ CandiSoups + Transformer-Big 4.1 29.43 32.91

Table 5: Performance ofNAT4ATwithout Seq-KDonWMT’16
EN↔RO benchmark.

Model Iter.
WMT’16

EN→RO RO→EN

AT (Transformer-Base) N 34.69 34.89
GLAT + CandiSoups 1 32.88 33.05
NAT4AT 4.8 34.95 35.14

NAT models. Therefore, many researchers have recently begun to
focus on improving the performance of the NAT model in scenarios
where Seq-KD is not used [13, 17]. To analyze whether our pro-
posed method is still effective without using Seq-KD, we conduct
experiments on the WMT’16 EN↔RO benchmark.

As shown in Table 5, when Seq-KD is not used, the performance
of the NAT model drops significantly, about 2.0 BLEU lower than
the AT model. However, NAT4AT can still generate better transla-
tions than the AT model with a small number of iterative decoding.
This experimental result shows that even without Seq-KD, there is
complementarity and high similarity between the translations gen-
erated by AT and NATmodels, which makes our proposed NAT4AT
method still very effective in this scenario. Due to space constraints,
more analysis is presented in Appendix B.

6 RELATEDWORK
With the emergence of Transformer [34] and various pre-trained
models, such as MASS [32], T5 [21] and GPT3 [2], neural machine
translation models achieve state-of-the-art performance on most
machine translation benchmarks. However, they almost all predict
translation in an autoregressive manner, resulting in high inference
latency. To address the decoding inefficiency problem of autore-
gressive translation (AT), Gu et al. proposed non-autoregressive
translation (NAT), which can decode the entire translation in paral-
lel and achieve a superior inference speed. However, compared to
the AT, its translation quality drops significantly.

Therefore, in order to improve the performance of the NAT, sig-
nificant efforts have beenmade from various perspectives, including

introducing latent variables [1, 30, 31, 39], training with better cri-
terion [3, 13, 20, 25], using knowledge distillation [8, 29, 37] and
iterative decoding [4, 5, 9]. Among them, the iterative NAT model
will mask the wrong tokens in the output results of the previous
iteration and then use them as the input in the next iteration to
continuously refine and obtain the final translation. However, it is
difficult to verify and revise the original translation only through
the NAT model itself, so there is still an irreparable gap between
the performance of the NAT model and the strong AT model.

There are also some methods [10, 23, 38] that try to combine AT
and NAT to achieve better performance. For example, reorderNAT
[35] uses the reordering information generated by the AT module
to help the NAT decoding process, and Encoder-NAD-AD [38] uses
the implicit global information generated by the NAT decoder to
improve AT performance. These methods can improve translation
quality but lead to a decrease in inference speed. In contrast, Xia et al.
recently proposed a novel decoding method, generalized aggressive
decoding (GAD), which can achieve lossless acceleration for the AT
model with the help of an iterative NAT model (details are shown
in Appendix A.1). Unlike them, our method takes advantage of the
similarity and complementarity of AT and NAT translations, which
can not only accelerate the inference speed but also improve the
translation quality.

7 CONCLUSION
This paper finds complementarity and high similarity between AT
and NAT translations through fine-grained analysis experiments.
Based on this experimental result, we propose a general and effec-
tive method called NAT4AT, which uses the NAT model to generate
original translation and uses the AT model to verify and revise
it. Extensive experimental results show that our method can be
applied to any AT and NAT model and significantly improves the
translation quality and inference speed through the cooperation
of the two. In addition, our best variant achieves excellent perfor-
mance on two commonly used benchmarks while maintaining a
5.0× speedup. In the future, wewill further explore the performance
of our method on other natural language generation tasks.
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Figure 7: An example shows how GAD works by using both NAT and AT models. Block size k = 10 in this example.

Table 6: Performance of ChatGPT and NAT4AT on WMT’14
EN↔DE test sets.

Model Speedup
WMT’14

EN→DE DE→EN

ChatGPT 1.0× 29.03 34.80
NAT4AT 43.6× 29.06 32.58

A BACKGROUND
A.1 Generalized Aggressive Decoding
Generalized Aggressive Decoding (GAD) was proposed by Xia et al.,
which decomposes an AT decoding iteration into two substeps:
draft and verify, and each iteration can generate multiple tokens in
parallel.

Figure 7 shows an example of how GAD works by using both
NAT and AT models. Specifically, in the draft substep, GAD de-
signed a draft NAT model to generate a block of tokens in parallel
conditioning on the source sentence and previously verified to-
kens (highlighted tokens). In the verify substeps, GAD uses an AT
model to verify drafted tokens and finds the first position that the
drafted token does not match the top-1 result generated by AT
and replaces it with AT’s token. Then, all drafted tokens after this
bifurcation position (red token) are discarded to ensure that GAD’s
decoding results will be exactly the same as AT. Then, in the next
iteration, GAD continues to use the draft NAT model to generate a
subsequent block of tokens in parallel and uses AT for verification.

Moreover, because top-1 matching is too strict, Xia et al. also
proposed GAD++, which only requires drafted tokens to fall into
top-k candidates with a tolerable score gap. We recommend that
readers refer to the original paper for more details.

B ANALYSIS
B.1 Influence of the Batch Size
We also test the inference speedup of NAT4AT for AT under differ-
ent batch sizes. As shown in Figure 8, although the speedup of our
method decreases with the increase of batch size, NAT4AT can still
achieve a 3.3× speedup when batch size=32, which proves that our
approach can still effectively accelerate the inference speed in the
case of larger batch size.
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1 2 4 8 16 32

Batch Size
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Figure 8: The speedup of NAT4AT with different batch
size on WMT’14 EN→DE test set. The speedup baseline is
Transformer-Base (beam size=5).
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Figure 9: Use ChatGPT to judge the quality of translations
generated by NAT4AT and ChatGPT. Better indicates that
ChatGPT believes that the translation generated by NAT4AT
is better than ChatGPT itself.
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Translation Prompt Template:
Translate this source sentence from [source language] to [target language].
source sentence: [input]
target sentence:

Evaluation Prompt Template:
source sentence: [source]
reference translation: [reference]
candidate translation 1: [candidate1]
candidate translation 2: [candidate2]
Based on the given [source language] source sentence and [target language] reference translation above,

as well as the two [target language] candidate translations, determine which of the two candidate translations
is better. Returning 1 means candidate translation 1 is better, returning 2 means candidate translation 2 is better,
and returning 0 means both are of the similar quality.

Return:

Figure 10: Prompt template for translation and evaluation of ChatGPT in our experiments.

B.2 Comparison with ChatGPT
Recently, large language models (LLMs) similar to ChatGPT1 have
achieved outstanding performance on machine translation tasks.
Therefore, we compare the performance of our method with Chat-
GPT on WMT’14 EN↔DE test sets. Our translation prompt tem-
plate for ChatGPT can be found in Figure 10. The experimental
results are shown in Table 6 and Figure 9.

As we can see in Table 6, NAT4AT achieves higher BLEU scores
than ChatGPT on WMT’14 EN→DE translation task, while Chat-
GPT performs better on DE→EN translation task. Considering that
only the BLEU score may not be able to effectively measure the
translation quality of ChatGPT, we also use ChatGPT itself for
evaluation. Specifically, we wrote an evaluation prompt template
(Figure 10), input the source sentence, reference translation, and
two translations generated by ChatGPT and NAT4AT into ChatGPT,
and let ChatGPT judge which of the two translations is better. As
shown in Figure 9, NAT4AT can generate translations similar to
or better than ChatGPT in most sentences on the EN→DE task. In
contrast, on the DE→EN task, ChatGPT can generate better trans-
lations than NAT4AT on 58.9% sentences. We think this may be
because ChatGPT’s training corpus is almost English, which leads
to its very strong ability to generate English translations. But in the
EN→DE task, NAT4AT can not only generate better translations,
but also the inference speed is 43.6 times that of ChatGPT, which
further proves the effectiveness of our proposed method.

In addition, we conducted case studies on NAT4AT and ChatGPT.
As shown in Figure 11, there is complementarity and high simi-
larity between the translations generated by NAT and AT models.
Therefore, NAT4AT can take advantage of these characteristics and
generate high-quality translations similar to ChatGPT. Meanwhile,
ChatGPT may generate hallucinated words that are never men-
tioned in the source sentence, but NAT4AT does not. We speculate
that this is because the NAT model can only obtain information
from the source sentence during inference, which may make its
translation more faithful to the source sentence. The hallucination

1https://chat.openai.com

problem is a challenge faced by existing LLMs and has attracted
the attention of many researchers. And we will explore in the fu-
ture whether our proposed approach can alleviate the hallucination
problem in LLMs.
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NAT4AT can generate high-quality translations similar to ChatGPT:
Source Von den neuen Einschränkungen sind junge Menschen, Minderheiten und Menschen mit niedrigem

Einkommen unverhältnismäßig stark betroffen.
ChatGPT The new restrictions disproportionately affect young people, minorities, and individuals with low incomes.
NAT The new restrictions disproportionately affect people, minorities and those those with low incomes.
AT The new restrictions inappropriately affect young people, minorities and people with low income.
NAT4AT The new restrictions disproportionately affect young people, minorities and those with low income.
Source Arnold erklärte die Technik der neuen Anlage: Diese ist mit zwei Radarsensoren ausgestattet.
ChatGPT Arnold explained the technology of the new system: it is equipped with two radar sensors.
NAT Arnold explained the technique of the new plant: it is equipped with two radar sensors.
AT Arnold explained the technology of the new plant: it is equipped with two radar sensors.
NAT4AT Arnold explained the technology of the new plant: it is equipped with two radar sensors.

NAT4AT can generate translations that are more faithful to the source sentence:
Source Diese Fahrer werden bald die Meilengebühren statt der Mineralölsteuer an den Bundesstaat zahlen.
ChatGPT These drivers will soon pay mileage fees instead of the mineral oil tax to the state.
NAT These drivers will soon pay the mileage fees instead of the oil tax to the state.
AT These drivers will soon pay the mileage fees to the state instead of the oil tax.
NAT4AT These drivers will soon pay the mileage fees instead of the oil tax to the state.
Source Eine Entscheidung darüber wird voraussichtlich bereits im kommenden Jahr fallen.
ChatGPT A final decision on this is expected to be made in the coming year.
NAT A decision is expected to be made in the coming year.
AT A decision on this is expected to be taken next year .
NAT4AT A decision on this is expected to be made in the coming year.

Figure 11: Some cases show the translation results of ChatGPT and NAT4AT on WMT’14 DE→EN task.
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