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ABSTRACT

Effectively evaluating the viability of a procured organ in the transplant patient1

prior the procedure is of critical importance. Current viability assessment methods2

rely on evaluating the organ’s morphology and/or laboratory biopsy results with3

limited effectiveness. A recently proposed, well-designed noninvasive method4

evaluated the viability status of organs by detecting the variance change point5

of their surface temperature through exploring the entire data profile. However,6

most part of the data in a temperature profile barely contains the change informa-7

tion, which yields a waste of computational resources of their method. This paper8

proposes an accelerating algorithm with a well-designed dual control windows9

scheme that can be extended to online change detection. The proposed method10

significantly improves the computational speed and retains the same change de-11

tection power as the method Gao19 through the removal of redundant data. Simu-12

lation and application results demonstrate the robust performance of the proposed13

method.14

1 INTRODUCTION15

Organ transplantation is an effective method to treat end-stage diseases of various organs. Due16

to the limitation of storage and transportation techniques, the viability of organs cannot be fully17

guaranteed. Therefore, the quality of procured organs must be evaluated before transplantation.18

Different organs can accept different cold ischemia time. For example, the upper limit of the cold19

ischemia time of the liver is about 12 hours, and that of the heart is only 8 hours. Therefore, in an20

organ transplantation operation, both doctors and patients are racing against time. The traditional21

evaluation often relies on subjective experience in the viability of the organ based on the physical22

shape and some functional data. In many cases, it is impossible to clearly distinguish the viable23

organs from nonviable organs. Laboratory biopsy usually cut off a small piece of the organ for an24

integrity test of the transplanted organs. However, the test results of samples cannot represent the25

viability state of the entire organ, which leads to a missing identification of the transplantable organ26

areas, and results in a waste of valuable organs. Therefore, in order to further improve the utilization27

rate of transplanted organs, a more accurate and convenient organ viability change detection method28

is desired.29

It has been proved that there is a strong correlation between surface temperature of organs and30

their viability (Skowno & Karpelowsky, 2014; Vidal et al., 2014; Kochan et al., 2015), where the31

surface temperature of the viable organ fluctuates greatly. A research team of clinical scientists and32

engineers at Virginia Tech designed a set of noninvasive organ viability evaluation methods (Bhonsle33

et al., 2016; O’Brien et al., 2017; Gao et al., 2019). A porcine liver was used in the experiment.34

The organ surface was divided into a dense grid covering the entire liver surface. A noninvasive,35

high-precision thermal imaging system was used to measure the surface temperature of the liver.36

Temperatures were collected every ten minutes for 24 hours. Figure 1 is the temperature profile37

of a randomly selected spot on the organ surface. From the plots we see that the mean trend of38

the temperature changes slowly and smoothly in the perfusion process. The surface temperature39

fluctuates strongly in the first 12 hours, which indicates a high viability of the organ. After 1240

hours’ perfusion, a sudden viability drop appears, and the organ gradually loses its viability. The red41

vertical line is the potential viability change point. Then, the viability evaluation of a procured organ42

is transformed from a medical problem into a statistical problem of variance change point detection43

under a smoothly changing mean trend.44
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Figure 1: Temperature profile at a randomly selected spot of the liver. The red vertical line is the
approximated location of the variance change point.

Recent research on the change point detection are mainly based on the parametric methods and45

the nonparametric methods. The parametric method assumes that the data distribution belongs to46

a certain distribution family, and infers sudden changes in one or several parameters of the data47

distribution (Inclan & Tiao, 1994; Chen & Gupta, 1997; Pan & Chen, 2006; Kang et al., 2018; Dette48

& Gösmann, 2020; Wang et al., 2021). However, these existing methods cannot be applied in our49

liver experiment, since not only the variance change suddenly, the mean function of the temperature50

profile also changes smoothly. The nonparametric change point detection method does not depend51

on an overall distribution (Hariz et al., 2007; Matteson & James, 2014; Zou et al., 2014; Yu & Chen,52

2022). These methods can effectively detect sudden changes. However, the data obtained from53

the liver experiment not only has a sudden change in variance, but also has constant changes in the54

mean function. This constantly changing mean will affect the detection effect of the variance change55

point. Directly applying these methods to the liver data will lead to an ironic detection result. For56

the smooth mean estimation in the liver data, the smoothing spline is one of the common method57

(Shang & Cheng, 2013; 2017; Xu & Wang, 2018). There are also some methods combining mean58

function estimation and change detection together (Loader, 1996; Liao & Meyer, 2017; Grégoire &59

Hamrouni, 2002). However, all these methods are about to estimate the sudden changes in the mean60

curve. They are not suitable for our scenario, where the mean function changes constantly in our61

scenario.62

Gao et al. (2019; 2020) proposed algorithms that can do the smooth mean function estimation and63

the variance change point detection simultaneously. However, limited by the practical meaning of64

the application scenario, it is very common that the location of the change point is normally in a65

certain range. In the liver experiment, we found that the variance change point of the temperature66

profile is basically distributed in 10-16 hours. However, the computational logic of their methods67

needs to scan the entire data profile, in which most parts of the data series have no change point.68

Therefore, scanning the whole time series to detect variance change points is unnecessary. There are69

more than 36,000 temperature profiles need to be analyzed in the scene of time competition. Clearly70

their methods are highly lack of efficiency.71

In this paper, we propose a new variance change point detection approach with dual control windows72

to improve the computational efficiency of the method proposed by Gao et al. (2019) to simultane-73

ously improve the accuracy and speed of the change detection. In our proposed method one control74

window CWα is designed for the mean estimation and the other control window CWβ is designed75

for the variance change point detection. In the liver procurement experiment, the variance change76

point of the liver surface temperature generally conforms to a normal distribution. We obtain the77

preliminary variance change points information by randomly scanning a group of temperature pro-78

files in the early stage, and construct a model for the mean estimation based on the distribution79

information of the variance change point. Our proposed method reduces the redundant data infor-80

mation sufficiently and allows to address an accurate estimate of the change point fleetly, which81

significantly improves the computational efficiency of the algorithm, and saves plenty of time in82

detection for urgent life saving circumstances.83
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2 METHOD84

2.1 MODEL AND NOTATION85

Suppose that yt are the independent observations generated from the following model:86

yt = f0(t/n) + ϵt, t = 1, . . . , n,

where f0 is an unknown smoothing function, ϵt ∼ N(0, σ2
t ) is the error term. Let τ be the position87

of the variance change point. σ2
0 and δ2

0 are variances. For t ≤ τ , σ2
t = σ2

0 . For t > τ , σ2
t = δ2

0 .88

Algorithm 1 is the computational framework of our proposed method. This algorithm begins with89

an initialization of the dual control windows. To obtain a possible range of the potential variance90

change points, we firstly perform a preliminary variance change point detection procedure and con-91

struct an initialized control window CW 0
α for the mean estimation and a control window CW 0

β for92

the variance change point detection based on the randomly selected K data profiles. The variance93

change point detection procedures of these K randomly selected data profiles are the method by94

Gao et al. (2019). Since the sample space of determining the control window CW 0
α will be updated95

iteratively in Algorithm 1, the choice of K is arbitrary as long as it satisfies the minimum statistical96

requirement. Then we estimate the mean function and detect the variance change point within the97

control windows. The dual control windows CWα and CWβ are updated iteratively and simultane-98

ously based on the information of the newly detected variance change points. The details of the dual99

control windows are shown in Section 2.2.100

All parameters’ estimates are obtained by minimizing the following objective function,101

1
n

(y − f)⊤Σ−1
n,τ,σ,δ(y − f) + λJ(f), (1)

where y = (y1, y2, . . . , yn)⊤, f = (f(1/n), f(2/n), . . . , f(1)⊤), Σn,τ,σ,δ is a diagonal matrix,102

where the first τ diagonals are σ2
0 , and the rest are δ2

0 . J(f) is the roughness penalty with the103

smoothing parameter λ > 0 balancing the tradeoff between the smoothness of the estimated mean104

function and the goodness of fit represented by the weighted sum of squared errors. Since the objec-105

tive function Equation 1 tends to zero as σ2 goes to infinity, the global minimizer of Equation 1 does106

not exist. Therefore an iterative parameter estimation procedure is designed to obtain a local optimal107

solution. The parameter estimation starts with the initialization of the mean function f̂ (0) assuming108

constant variance. Therefore, the covariance matrix in Equation 1 reduces to σ2I , and σ2 can be109

absorbed into the smoothing parameter λ. Given the mean function estimate, the variance change110

point τ̂ , and the variances σ̂2 and δ̂2 are obtained in the change detection procedures. The mean111

function estimates and the detected variance change points are updated iteratively. The convergence112

criterion of our proposed algorithm is the maximum absolute difference between the residuals of113

the current iteration and the previous iteration. In the numerical experiments conducted in the later114

sections, our algorithm can converge in a few iterations. The consistency of parameter estimates has115

been proved by Gao et al. (2019).116

2.2 THE DUAL CONTROL WINDOWS117

Suppose we have detected K data profiles, and {ι1, . . . , ιK} is the set of detected variance change118

points. To build a proper control window CWα for the mean estimation, we have verified that the119

asymptotic distribution of the variance change point is normal. According to the empirical rule,120

about 95% of the data falls into the range of the mean plus or minus two standard deviations. More121

general, we use the upper quantiles of the standard normal distribution as an approximate substitute122

to get CW ′
α.123

CW ′
α = [CLL′

α, CLU ′
α] , CLL′

α = µ − W, CLU ′
α = µ + W,

3



Under review as a conference paper at ICLR 2024

Algorithm 1: Variance Change Point Detection with Dual Control Windows

Input: Data set D ∈ RM×n, where M is the number of data profiles, n is the length of
each data profile

Output: {τ̂1, . . . , τ̂M }
Step1 Initialize the dual control windows. Randomly select K data profiles from D, detect

the variance change points ι̂1, . . . , ι̂K to initialize the control window CW
(0)
α and CW

(0)
β .

Step2 Variance change detection within dual control windows. For the mth data profile,

Step2.1 capture the reduced data profile y∗
m =

{
yi|i ∈ CW

(m−1)
α

}
.

Step2.2 Initialize the mean function estimate f̂
(0)
m assuming constant variance.

f̂
(0)
m minimizes 1

n (ym − fm)⊤(ym − fm) + λJ(fm).
Step2.3 Estimate the variance change point iteratively. Each iteration consists of
two steps. At the jth iteration,

Step-A Given the mean estimate f̂ (j−1), the data profile
y∗∗

m =
{

yi|i ∈ CW
(m−1)
β

}
is validated to yield estimates of τ̂ (j),

[σ̂2](j) and [δ̂2](j).
Step-B Substitute the current parameters estimates from Step-A into
Equation 1 to update the mean function estimate f̂ (j).

Step2.4 Iterate until the algorithm converges, and obtain the estimates
τ̂m, σ̂2

m, δ̂2
m, and f̂m.

Step2.5 Update CW
(m)
α and CW

(m)
β by {ι1, . . . , ιK , τ̂1, . . . , τ̂m}.

where µ = 1
K

∑K
i=1 ιi, W = zq

√
1

K−1
∑K

i=1(ιi − µ)2, K is the number of detected change points,124

τ is the known change point data, and zq is the upper quantile of the standard normal distribution125

corresponding to the desired accuracy.126

In our method, we use the cubic splines method to estimate the mean functions. The computational127

efficiency of the smoothing spline method is highly affected by the sample size of the data. The128

minimizer fλ of Equation 1 resides in the n-dimensional space, and the computation in multivariate129

settings is generally of the order O(n3) (Kim & Gu, 2004). Therefore, large sample size will ex-130

tremely slow down the computational speed. However, the accuracy of the mean function estimation131

using the nonparametric method highly relies on the sufficiency of the quantity of the data. In or-132

der to improve the speed of the algorithm without reducing the accuracy of parameter estimates, we133

need to choose an appropriate radius of the control window CWα. We define a hyper parameter Wα,134

which is the minimum size of the control window CWα. The determination of Wα refers to the rule135

of elbow in the K-means clustering. The minimum window size can be estimated by balancing the136

tradeoff between the accuracy of the estimation and computational speed. For example, in the liver137

experiment, if we want the accuracy of the change detection to be above 0.95, we should ensure that138

the control window contains at least 100 data points. In that case, to make the calculations as fast as139

possible, we can choose Wα = 50. Considering the above two factors, the definition for CWα is140

CWα = [CLLα, CLUα] , CLLα = µ − max {Wα, W} , CLUα = µ + max {Wα, W} ,

where µ = 1
n

∑n
i=1 τi, and W = zq

√
1

n−1
∑n

i=1(τi − µ)2.141

CWβ is designed for variance change point detection. Generally, the mean function estimation142

requires more data information than the variance change points detection. Therefore, a portion of143

the data contained in CWα is redundant for variance change detection. Generally speaking, the144

change point location presents a high degree of concentration. This is a common situation in many145

change point detection problems, such as the change of the daily traffic flow data set of the same146

road section, the change of the stock market, and the change of the sales of an industry company.147
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Therefore, the variance change point detection interval CWβ should be further controlled to make148

the probability of variance change points in the interval reaches to a certain value or more, and149

those points that are not likely to become variance change points are eliminated as much as possible.150

According to the Glivenko-Cantelli Theorem, we have151

P

{
lim

m→∞
sup

−∞<τ<∞
|Fm(τ) − F (τ)| = 0

}
= 1,

where Fm(τ) is the empirical distribution function of the dataset {τ1, . . . , τm} and F (τ) is the real152

distribution function of the variance change points. When the sample size is large enough, we adopt153

the concepts of the probability interval to control the likelihood of the change point positions ac-154

cording to the empirical distribution function. We get CWβ = [CLLβ , CLUβ ], where the potential155

variance change points fall into this interval with a probability of at least q. The upper and lower156

bounds of CWβ satisfy Fm(CLUβ) − Fm(CLLβ) ≥ q. Since the asymptotic distribution of the157

variance change point is normal, we can do it in terms of the quantile of the sample158

CWβ = [CLLβ , CLUβ ] , CLLβ = τ 1−q
2

, CLUβ = τ 1+q
2

,

where τ 1±q
2

is the 1±q
2 percentile of the detected variance change points. By using the control159

window CWβ , we further reduce the amount of data used for variance change point detection.160

2.3 SMOOTHING SPLINES ESTIMATION FOR MEAN FUNCTION161

The mean estimation in this article uses the cubic smoothing splines. Before introducing the es-162

timation method for the mean function, it is necessary to first introduce the polynomial smooth-163

ing spline with period 1 on the interval [0, 1]. The mean function f0 is estimated by minimiz-164

ing the objective function 1
n

∑n
i=1

(
yi − f0(ti)

)2 + λ
∫ 1

0
(
f

(m)
0 (t)

)2
dt in the space C(m)[0, 1] =165 {

f : f (m) ∈ L2[0, 1]
}

, where C(m)[0, 1] is a reproducing kernel Hilbert space (RKHS). The true166

mean function f0 is an unknown smoothing function and is a function in the reproducing kernel167

Hilbert space C = {f | f : [0, 1] → R, J(f) < ∞}. When σ2,δ2 and τ are given, the estimate of f0168

is the minimizer of the penalized weighted least squares Equation 1, where the smoothness param-169

eter λ > 0 is chosen by the generalized cross-validation. Note that since C is of infinite dimension,170

it is not possible to optimize Equation 1 on C directly. However, since the weighted least squares171

part in Equation 1 depends on f0 only at the observation yi, i ∈ [CLLα, CLUα], the representation172

theorem guarantees that the exact minimizer exists in a finite dimensional subspace of C. Therefore,173

the minimizer of the objective function Equation 1 can be analytically obtained.174

2.4 VARIANCE CHANGE POINT DETECTION175

When the mean function estimate f̂ is given, the variance change point τ̂ is detected within the176

control window CWβ through a well designed hypothesis test procedure. The estimates of the177

variances are σ̂2 = τ̂−1∑τ̂
t=1

{
yt − f̂(t/n)

}2
and δ̂2 = (n − τ̂)−1∑n

t=τ̂+1

{
yt − f̂(t/n)

}2
. For178

variance change point detection, establish the null and alternative hypotheses.179

H0 : σ2
1 = · · · = σ2

n vs H1 : σ2
1 = · · · = σ2

τ ̸= σ2
τ+1 = · · · = σ2

n

For a potential variance change point τ̂ = k, k ∈ {1, . . . , n}, the likelihood function is180

L(k) = k

[
log 1

k

k∑
t=1

{
yt − f̂(t/n)

}2
]

+ (n − k)
[

log 1
n − k

n∑
t=k+1

{
yt − f̂(t/n)

}2
]

,

then we have L(n) = −2L0(σ̂2) − n − n log 2π, and L(τ) = −2L1(σ̂2, δ̂2) − n − n log 2π. Where181

L0 and L1 are the log-likelihood functions under the hypotheses H0 and H1. Then we have the182

definition of the test statistic: ∆2
n = max1<k<n {L(n) − L(k)}. By the principle of the minimum183
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information criterion, there is no evidence of the existence of the variance change point within the184

control window CWβ if L(n) ≤ mink L(k), k ∈ [CLLβ , CLUβ ] . The null hypothesis is failed to185

reject if ∃k ∈ [CLLβ , CLUβ ], we have L(n) > L(k), then the null hypothesis is rejected, and there186

exists a variance change point. Therefore the position of the estimated variance change point is187

τ̂ = arg min
CLLβ≤k≤CLUβ

L(k).

3 SIMULATION188

In this section, we compare the performance of our proposed change detection method, which is189

denoted by the New method hereafter, with one of the most sufficient method in Gao et al. (2019)190

hereafter denoted by the Gao19 method. We conduct the comprehensive simulation studies using191

the same data generating schemes in Gao et al. (2019). Two mean functions f01(t) = 20+12t(1−t)192

and f02(t) = sin(t)+t5−8t3+10t+6 are considered. The first mean function f01 mimics the trend193

of the temperature profile obtained in the porcine liver procurement experiment, while the second194

function f02 represents a more complex smooth mean trend. We use two sample sizes n = 130195

and n = 500. When n = 130, the true variance change point is τ0 = 65 and the parameter of the196

control window Wα = 50. When n = 500, we have τ0 = 250 and Wα = 190. The true variances197

are σ2
0 = 0.24 and δ2

0 = 0.06 when f01 is the mean function, and σ2
0 = 8 and δ2

0 = 2 when f02 is198

the mean function. We simulated 1000 data replicates for each combination of simulation settings.199

We also conduct the sensitivity and power analysis of the proposed method. However, due to the200

limitation of the space, we include these studies in Appendix.201

Figure 2 is the boxplots of the change point estimates of the proposed algorithm and the method202

of Gao19. New is our proposed algorithm. Gao19 and New are tested with sample size n = 130.203

New500 represents the change point estimates of the proposed algorithm with sample size n = 500.204

We can see that the accuracy of the change estimates is the same for the proposed method and Gao19.205

However, the number of the extreme change estimates is greatly reduced by the proposed method.206

This is due to the fact that Gao19 identifies pseudo change points far from the actual position of207

the change point if there are strong abnormal data fluctuation behaviors near the boundaries of the208

data profiles. The new algorithm, however, restricts the data to the interval where the change points209

have a high probability of existence, which reduces the influence of the extreme pseudo change210

points and thus reduces the extreme change estimates. When the sample size increases from 130 to211

500, the estimation accuracy is significantly improved and the extreme change estimates are further212

reduced, which indicates that the proposed method has a better effect on improving the accuracy of213

the change estimates.214
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Figure 2: Boxplots of the change point estimates. The left panel is the simulation result with the
true mean function f01(t); the right side panel is the result with f02. Both methods are tested with
sample size n = 130. New500 represents the change point estimates of the proposed algorithm with
sample size n = 500. The red dashed line is the true change point τ0/n = 0.5.

To compare the computational efficiency of our proposed algorithm with Gao19, we conduct sim-215

ulations with the mean function f01 and the sample size n = 130. We generate m = 5, 000 and216

m = 50, 000 replicates. The experiments are repeated for five times, and the average results are217

shown in the Table 1. We can see that the average time consumed by the method of Gao19 is218

280.92s for m = 5, 000 data profiles, and is only 156.96s for our proposed algorithm. This is a219
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significant improvement in computational speed. The difference of the time consumption for these220

two methods are linearly increased as the amount of data increases. Combining the results of Fig-221

ure 2 and Table 1, we can draw a conclusion that our proposed algorithm achieves a significant222

improvement in computational efficiency on the basis of guaranteed estimation accuracy.223

Table 1: Computational efficiency Comparison.

Method Gao19 New
m=5,000 280.92s 156.96s
m=50,000 2,634.93s 1,601.53s

Figure 3 evaluates the performance of the mean estimates of the proposed method. We compute224

the mean squared errors and plot the boxplots. The left side panels show the 25th, 50th, and 75th225

percentiles of the MSEs for sample sizes n = 130 and 500. We can see that within the control226

window CWα, the mean function estimates match the true mean function well. In addition, the227

MSE of the mean estimation improves as the sample size increases.228
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Figure 3: Performance of the mean estimation. The top panels show the simulation results when the
mean function is f01. The bottom panels show the simulation results when the mean function is f02.
The sample size of the left side panels is n = 130 whose MSE are the 25th (dashed green), 50th
(dotted red), and 75th (dot-dashed blue) percentiles of the 1,000 MSEs obtained in each setting. The
middle panels are the same as the left side panels but with n = 500. The vertical blue lines are the
upper and lower boundaries of the control window CWα. The right side panels are the boxplots of
the 1,000 MSEs in each setting.
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Figure 4: Boxplots of the log ratios of the variance estimates versus the true variances. The left panel
shows the simulation results when the mean function is f01. The right panel shows the simulation
results when the mean function is f02. Red: n = 130; Blue: n = 500.
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Figure 4 uses the log ratio of the variance estimates versus the true variances to evaluate the esti-229

mation performance for the two variances. We can see that both variances are estimated accurately.230

The estimation performances are improved as the sample size increases from 130 to 500.231

4 APPLICATION232

The data were collected through a well designed noninvasive bimedical experiment conducted by233

a research team from Virginia Tech. In the mechanical perfusion process, they measured the sur-234

face temperature of each profile over 24 hours using a noninvasive, high precision thermal imaging235

system. They divided a porcine liver’s surface into a dense grid composed by 36,795 spots. Tem-236

perature measurements were collected every 10 minutes producing a 24 hours surface temperature237

profile with 145 points in each profile. We discarded the data in the first 2.5 hours, since the perfu-238

sion fluid needs one to two hours to completely infuse and stabilize the liver. Finally, there were 130239

points left in each profile. Previously, (Gao et al., 2019) conducted a spot-wise analysis method on240

each of these 36,795 temperature profiles and obtained a heat map of the estimates of the variance241

change points on the liver surface. We repeat their experiments, and compare their results (Gao19)242

with our proposed method (New).243

Figure 5 is the heat maps of the variance change point detection results of Gao19 and our proposed244

method. Different color indicates that different areas of the organ have different viability deterio-245

ration time. An earlier change in variance means an earlier drop in the viability of the cells around246

the spot. Two maps share the similar color patterns of regional hierarchical structure, which is the247

viability of the top half and the middle bottom parts of the liver deteriorated around 12 hours while248

the left and right bottom corners of the liver last beyond 14 hours. There are also several clearly vis-249

ible straight green line type boundaries between the early and late failure areas. These may be parts250

where the porcine liver lobe was deformed during dissection and perfusion. The detection results of251

Gao19 have been validated by the biomedical scientists. Similar regional color patterns of these two252

heat maps suggest that the results of our proposed algorithm are accurate in a practical sense. How-253

ever, there are still macroscopic differences. In the bottom left and right areas of the heat map, there254

are less green dots of our New method. That means our proposed algorithm discovers more earlier255

deteriorated change points distributed around 12 hours than Gao19. Our results are more consistent256

with the biological and biomedical conclusions. We also compare the computational efficiency of257

these two methods. The computational time of Gao19 is 3,589.66s, while the new algorithm only258

takes 2,099.45s. The proposed method can greatly reduce the detection time. This makes the online259

organ viability assessment in realtime possible.260

(a) Gao19 (b) New

Figure 5: Heat map of the estimated variance change points on the surface of porcine liver.

Figure 6 is the mean function and variance change point estimates of our proposed method applied261

respectively on the raw and de-trended temperature profiles at three randomly selected spots on the262
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Figure 6: Mean and variance change point estimates imposed respectively on the raw temperature
profiles (top panels) and de-trended temperature profiles (bottom panels) at three randomly selected
spots on the liver surface. The smooth red curves are the estimated mean function. The blue vertical
lines are the upper and lower bounds of the control window CWα. The green vertical lines are
the upper and lower bounds of the control window CWβ . The red vertical lines are the estimated
variance change points.

liver surface. All mean estimates fit well with the potential trends hidden in the data. All detected263

variance change points reasonably locate at the proper locations in the data profiles. In the first 12264

hours or so, the average temperature at these three spots rises at different speeds and has a faster265

downward trend after 12 hours. The variance change points of these three spots are all around 12266

hours, which is consistent with the biomedical conclusion.267

5 CONCLUSION268

The viability detection of the transplanted organs is an important biomedical issue. In organ trans-269

plantation, timelines are the most important thing. The noninvasive viability change detection algo-270

rithm proposed by Gao et al. (2019) can well solve the existing problems and provide a reasonable271

viability assessment of the organ. However, their method spends a lot of time to explore the ar-272

eas where change points unlikely exist, thus losses the computational efficiency. It is necessary to273

improve the computational efficiency of the algorithm. Motivated by this, we propose an evolution-274

ary algorithm with a well designed double-layer control windows to filter out these noninformative275

data. The simulation shows that the proposed algorithm reduces the computational time significantly276

without losing detection accuracy. In the application, the heat map of the detected viability change277

points on the organ surface obtained by the proposed algorithm discovers earlier deteriorated areas278

on the liver surface, which is more consistent with the biomedical conclusions. The proposed change279

detection method has a very high application value in the field of online change detection.280
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APPENDIX349

A SENSITIVITY ANALYSIS OF THE METHOD WITH RESPECT TO THE SAMPLE SIZE350

The performance of our proposed change detection method is affect by the sample size of the data351

profile. Here we perform the test on the data with mean function f01(t). The sample size n is set352

to be {20, 25, 30, 35, . . . , 130}. The true variance change point τ = n
2 . The variances before and353

after the change point are σ2
0 = 0.24 and δ2

0 = 0.06. We simulate 10,000 data profiles for each354

sample size. The change point estimation accuracy and the computational efficiency of the proposed355

algorithm are shown in Figure 7. We can see that the accuracy of the proposed algorithm increases356

rapidly as the sample size increases. The accuracy has a steeper curve before n = 100 and slows357

down afterwards. The computational cost is linearly related to the sample size. According to the358

rule of elbow, we choose n = 100 in the mean function estimation stage, which makes the minimum359

window size Wα = 50. By choosing n = 100 the accuracy of the proposed algorithm exceeds 90%,360

and the time consuming is about 400 seconds per 10,000 data profiles.361

20 40 60 80 100 120

0.
2

0.
4

0.
6

0.
8

n

A
cc

ur
ac

y

20 40 60 80 100 120

10
0

30
0

50
0

n

T
im

e

Figure 7: The accuracy and computational speed of the proposed method against the sample size.

B POWER ANALYSIS362

We also present a power analysis study on the change point testing procedure. We considered the363

data simulated from the mean function f01(t). The variance δ2
0 = 0.06 and σ2

0 = θδ2
0 , where θ ≥ 1364

was the ratio of σ2
0 over δ2

0 .365

When θ = 1, δ2
0 = δ2

0 indicates there is no variance change point in the data profile. Therefore we366

can investigate the size of the test under this setting. Two levels α = {0.05, 0.1} and four sample367

sizes n = {130, 500, 2000, 10000} are considered. For each combination of α and n, we simulated368

10,000 replicated data profiles. Table 2 summarizes the results about the size of the test. We see369

that the empirical sizes of the test are smaller than the levels of the test indicating that the test is a370

bit more conservative than expected in claiming a change point when there is no change point. The371

reason is that the asymptotic null distribution is a heavy-tailed extreme value distribution and may372

require a larger sample size to achieve the desired size of the hypothesis test.373

Table 2: Proportions of rejections when H0 is true under different levels of α. The true mean
function is f01(t).

Test Level Sample Size n
α 130 500 2000 10000

0.05 0.0000 0.0002 0.0010 0.0107
0.1 0.0325 0.0336 0.0356 0.0401

When θ > 1, we investigate the power of the proposed change detection method in the simulation.374

The power plots are shown in Figure 8. Consider the data generated with the mean function f01(t).375

The variances δ2 = 0.06 and σ2 = θδ2, where θ ≥ 1 is the ratio of σ2 over δ2. Two sample sizes376

n = 130 and 500 are considered. When n = 130, θ takes the value of {1, 1.25, 1.5, . . . , 5}. When377

n = 500, the grid points of θ are {1, 1.2, 1.4, . . . , 5}. For each combination of θ and n, we simulate378

10,000 data replicates. For n = 130, the power is greater than 0.8 when the variance ratio is 3. For379

n = 500, the power is higher than 0.9 before the variance ratio reaches 2.380
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Figure 8: Plots of detection power against the ratio of the variances.
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