
Reinforcement Learning Journal 2025
∣∣ Cover Page

Learning to Explore in Diverse Reward Settings via
Temporal-Difference-Error Maximization

Sebastian Griesbach, Carlo D’Eramo

Keywords: Deep RL, Exploration, TD-error Maximization

Summary
Numerous heuristics and advanced approaches have been proposed for exploration in dif-

ferent settings for deep reinforcement learning. Noise-based exploration generally fares well
with dense-shaped rewards and bonus-based exploration with sparse rewards. However, these
methods usually require additional tuning to deal with undesirable reward settings by adjust-
ing hyperparameters and noise distributions. Rewards that actively discourage exploration can
pose a major challenge. This is the case if the reward function contains an action cost and
no other dense signal to follow. We propose a novel exploration method, Stable Error-seeking
Exploration (SEE), that is robust across dense, sparse, and exploration-adverse reward settings.
To this endeavor, we revisit the idea of maximizing the TD-error as a separate objective. Our
method introduces three design choices to mitigate instability caused by: (i.) far off-policy
learning, when a behavior policy is too out of distribution w.r.t. the target policy; (ii.) the
conflict of interest of terminating an episode while the exploration objective follows an always
positive reward signal; (iii.) the non-stationary nature of the TD-error as a target. SEE can
be combined with off-policy algorithms without modifying the optimization pipeline of the
original objective. In our experimental analysis, we show that a Soft-Actor Critic agent with
the addition of SEE performs robustly across three diverse reward settings in a variety of tasks
without hyperparameter adjustments.

Contribution(s)
1. We propose methodological approaches to tackle three identified causes of instability as

mentioned above: (1.) combining the exploration and exploitation policies into a single
behavior policy to bridge the far-off-policy gap; (2.) using a maximum reward update,
which is agnostic towards the length of an episode; (3.) conditioning the exploration value
function on current estimates of the exploitation value function to inform it about the cause
of change in the TD-error target.
Context: Prior works investigated framing exploration as a separate optimization problem
(Whitney et al., 2021; Schäfer et al., 2022) and maximizing the TD-error (Simmons-Edler
et al., 2020). The combination of both is notoriously challenging to stabilize without altering
the original optimization objective.

2. We incorporate the proposed solutions resulting in SEE, and combine it with well-
established off-policy reinforcement algorithms, namely SAC (Tuomas Haarnoja et al.,
2018) and TD3 (Scott Fujimoto et al., 2018). Our results show that the addition of SEE
maintains performance in dense reward settings and improves robustness in sparse and
exploration-adverse settings, without additional hyperparameter tuning.
Context: We empirically compare the performances of the base algorithms and their SEE
extensions across a set of environments with variants for dense, sparse, and exploration-
adverse rewards.

Learning to Explore in Diverse Reward Settings

Learning to Explore in Diverse Reward Settings via
Temporal-Difference-Error Maximization

Sebastian Griesbach1, Carlo D’Eramo1,2,3

sebastian.griesbach@uni-wuerzburg.de, carlo.deramo@uni-wuerzburg.de

1Center for Artificial Intelligence and Data Science, University of Würzburg, Germany
2Department of Computer Science, Technical University of Darmstadt, Germany
3Hessian Center for Artificial Intelligence (Hessian.ai), Germany

Abstract

Numerous heuristics and advanced approaches have been proposed for exploration in
different settings for deep reinforcement learning. Noise-based exploration generally
fares well with dense-shaped rewards and bonus-based exploration with sparse rewards.
However, these methods usually require additional tuning to deal with undesirable re-
ward settings by adjusting hyperparameters and noise distributions. Rewards that ac-
tively discourage exploration, i.e., with an action cost and no other dense signal to fol-
low, can pose a major challenge. We propose a novel exploration method, Stable Error-
seeking Exploration (SEE)1, that is robust across dense, sparse, and exploration-adverse
reward settings. To this endeavor, we revisit the idea of maximizing the TD-error as a
separate objective. Our method introduces three design choices to mitigate instability
caused by far-off-policy learning, the conflict of interest of maximizing the cumulative
TD-error in an episodic setting, and the non-stationary nature of TD-errors. SEE can
be combined with off-policy algorithms without modifying the optimization pipeline of
the original objective. In our experimental analysis, we show that a Soft-Actor Critic
agent with the addition of SEE performs robustly across three diverse reward settings
in a variety of tasks without hyperparameter adjustments.

1 Introduction

Exploration is widely recognized as a crucial and distinctive aspect of reinforcement learning (RL).
Being such a fundamental problem, a plethora of theoretical studies and empirical works have been
produced over the years. Practical solutions to tackle exploration are numerous, with a prevalence
of methods based on the injection of stochastic noise into policies either directly (Mnih et al., 2013;
Lillicrap et al., 2016; Scott Fujimoto et al., 2018; Fortunato et al., 2018) or via entropy maximization
(Tuomas Haarnoja et al., 2018; Schulman et al., 2017). Noise-based exploration has proven to be
highly effective in settings where the reward function is informative and well-shaped. For less
favorable reward settings, e.g., sparse rewards, typically more targeted methods are employed. For
example, bonus-based methods, also referred to as intrinsic motivation, are a class of reward-shaping
mechanisms that aim to substitute sparse rewards such that the reward signal is transformed back to a
shaped reward scheme again (Bellemare et al., 2016; Burda et al., 2019; Yiming Wang et al., 2023).
Such methods often substitute the reward but still rely entirely on random noise for the actual action
selection for exploration. The reshaped rewards can potentially dilute the original reward function
of the MDP, changing the optimal policy or causing over-exploration of irrelevant state regions,
which may harm performance in other reward settings (Taıga et al., 2020). If in a sparse reward

1The code to reproduce all experiments is available at: https://github.com/Sebastian-Griesbach/SEE

https://github.com/Sebastian-Griesbach/SEE

Reinforcement Learning Journal 2025

setting one tries to enforce efficient behavior, it is reasonable to apply action costs. The resulting
reward may actively discourage exploration as every action that does not immediately reach the goal
is punished, adding complication to this setting. Adapting the exploration of a given RL algorithm
from one setting to another often demands a costly tuning procedure, which might be infeasible in
complex problems. Therefore, making RL algorithms more robustly applicable is an ongoing effort
of the research community.

To this endeavor, we propose Stable Error-seeking Exploration (SEE), a novel approach for explo-
ration that robustly handles diverse reward settings. SEE is a directed action selection mechanism
that can be combined with any off-policy RL algorithm and does not introduce relevant additional
hyperparameters. Our approach separates exploration from exploitation by optimizing for two dis-
entangled objectives and training two individual policies. On the one hand, the exploitation objective
remains the unchanged RL objective of maximizing the (discounted) cumulative reward, and, thus, it
can be combined with any existing RL optimization pipeline, including reward shaping mechanisms.
On the other hand, our exploration objective maximizes the absolute temporal-difference-error (TD-
error) encountered during training rollouts. The intuition behind this choice is that a high TD-error,
especially in deterministic environments, indicates the presence of potentially relevant information
not yet learned. We point out that decoupling exploration and exploitation into two separate objec-
tives is not a new idea, as shown in prior works (Whitney et al., 2021; Simmons-Edler et al., 2020;
Schäfer et al., 2022). However, till now, it has been challenging to devise effective and stable learn-
ing procedures when maximizing the TD-error. In this paper, we identify three distinct causes of
instability affecting this setting, namely (i.) far off-policy learning, when a behavior policy is too out
of distribution w.r.t. the target policy; (ii.) the conflict of interest of terminating an episode while the
exploration objective follows an always positive reward signal; and (iii.) the non-stationary nature
of the TD-error as a target. The contribution of this work is the formulation of a methodological
solution to tackle each of these issues, i.e., (1.) combining the exploration and exploitation policies
into a single behavior policy that bridges both distributions; (2.) using a maximum reward update,
which is agnostic towards the length of an episode; (3.) conditioning the exploration value function
on current estimates of the exploitation value function to inform it about the cause of change in the
TD-error target. We integrate these solutions into one algorithmic approach, resulting in SEE.

We empirically analyze SEE by combining it with Soft Actor-Critic (SAC) (Tuomas Haarnoja et al.,
2018; Haarnoja et al., 2019) and TD3 (Scott Fujimoto et al., 2018). We show that incorporating SEE
enhances robustness across diverse reward settings, without the need for hyperparameter tuning.
Especially SAC+SEE shows strong performance across all tested environments. Furthermore, we
conduct ablation studies to analytically evince the positive effect of our proposed design choices.

2 Preliminaries

We consider a reinforcement learning (RL) setting (Sutton & Barto, 2020) in which the environment
is modeled as a Markov decision process (MDP), defined by the tupleM = (S,A,P,R, γ), where
S is the state space, A the action space, P(s′|s, a) the state transition function, R(s, a, s′) the
reward function, and γ ∈ [0, 1) the discount factor. A stochastic policy πθ : S → P(A) defines
πθ(a|s), the probability of taking action a in state s. The objective is to maximize the expected return
J(πθ) = Eπθ

[
∑∞

t=0 γ
trt], where the expectation is over trajectories induced by πθ. In the actor-

critic framework, the actor represents the policy, while the critic estimates either the state-value
function V π(s) = Eπ[

∑∞
t=0 γ

trt|s0 = s] or the action-value function Qπ(s, a) = Eπ[r(s, a) +
γQπ(s′, a′)|s, a]. The critic is typically updated by minimizing the temporal-difference (TD) error
δ = r + γQπ(s′, a′) − Qπ(s, a), while the actor is updated via the policy gradient ∇θJ(πθ) ≈
Eπθ

[∇θ log πθ(a|s)Qπ(s, a)]. This framework leads to deep RL algorithms such as TD3 (Scott
Fujimoto et al., 2018) and SAC (Tuomas Haarnoja et al., 2018), which we are using as the basis of
our work.

Learning to Explore in Diverse Reward Settings

3 Stable Error-seeking Exploration

We propose an off-policy exploration method that performs robustly in different reward scenarios
without hyperparameter adjustments. To this end, we use separate objectives for exploitation and
exploration. On the one hand, the exploitation objective remains the regular cumulative discounted
reward. On the other hand, the exploration objective aims to maximize the absolute value of the
encountered TD-error of the exploitation objective throughout training rollouts. This choice entails
using two separate policies, one for each objective. It is worth noting that prior works have already
established this separation of objectives (Whitney et al., 2021; Simmons-Edler et al., 2020; Schäfer
et al., 2022). However, despite its simple formulation, the exploration objective is challenging to
optimize due to what we identify to be three main causes of instability in the learning process. In
the following, we describe in detail these causes of instability and propose targeted solutions for
each of them, eventually devising an algorithmic solution that mitigates them and enables stable and
effective learning.

3.1 Mixing of policies

In common off-policy deep RL approaches, the behavior policy used during rollouts is chosen to
be similar to the learned target policy. For example, it can be a noisy and past variant of the target
policy, e.g., when using ε-greedy exploration with a replay buffer. Ideally, it would suffice to use
an arbitrary exploration policy during training rollouts to gather relevant information about the en-
vironment. In practice, it has been shown that off-policy deep RL techniques perform poorly if the
behavior policy is too out-of-distribution w.r.t. the target policy (Scott Fujimoto et al., 2019). Impor-
tantly, by pursuing different objectives, our exploration and exploitation policies can be arbitrarily
far apart, thus creating instability. To tackle this issue, we propose to combine both exploration and
exploitation policies into a single behavior policy µ which is used during training rollouts. Assume
two arbitrary policies π1, π2 and their respective action-value functions Q1(s, a), Q2(s, a). Let the
two actions given by the policies in state s be denoted as

a1 ∼ π1 (·|s) a2 ∼ π2 (·|s) . (1)

The behavior policy µ selects one of the candidate actions under a Boltzmann distribution

∀a ∈ {a1, a2} : µ(a|s) ∝ exp (A (s, a)) , (2)

where A is the relative advantage of both actions w.r.t. their action-value functions defined as

A(s, a1) = Q1(s, a1)−Q1(s, a2) A(s, a2) = Q2(s, a2)−Q2(s, a1). (3)

Using a Boltzmann distribution enables the mixing of both policies in regions where their expected
values are close while focusing on one particular policy when a significantly higher value is ex-
pected. Intuitively, it explores the use of both policies and gravitates towards "goals" of any of the
two. We found that a temperature of τ = 1 works reliably and therefore do not consider it as a
relevant hyperparameter.
In general, the scale of Q1 and Q2 needs to be considered to achieve a balanced mixing. However, in
this case, the two relative advantages are estimates of 1.) the regular advantage following a specific
action which is defined as the temporal-difference (not the error) and 2.) the temporal-difference-
error of the same transition. As both values are based on the same reward function, they have a
similar magnitude and thus no balancing is required. Figure 1 shows an example of a mixed policy.
The data generated by the behavior policy µ creates a bridge between the two policy distributions.

3.2 Maximum reward formulation

Typical RL approaches optimize the cumulated discounted future reward. Differently, our explo-
ration objective optimizes the absolute value of the TD-error. This introduces a conflict of interest
between the exploitation and exploration policies, especially in problems where the agent is tasked

Reinforcement Learning Journal 2025

(a) Four sampled trajectories of a mixed policy. (b) Distribution of states where an action of the two
underlying policies is selected during the rollout.

Figure 1: Example of a mixed behavior policy of two deterministic policies π1, π2 going towards
their respective goals. An action moves a maximum distance of 0.05 on a plane of the size of 2× 2.
The respective action-value functions assume a reward of 1 and termination at their target position,
0 elsewhere. We use a discount factor of 0.9.

to reach a terminal state as soon as possible. The TD-error of the transition to a terminal state is
likely large if the agent has not yet learned to reliably seek it. However, in the remaining state-space
there might be many small TD-errors. When optimizing for the accumulated absolute TD-error, it
might be suboptimal to reach the terminal state as no further rewards can be gathered thereafter.
This is the same problem described by Burda et al. (2019), who tackle it by making the exploration
reward non-episodic, such that the accumulation considers the future beyond an episode termination.
However, this formulation discounts the transition of interest based on its distance to the initial state,
thus neglecting potentially relevant transitions that are far away from the initial state.
On the contrary, we propose to use a formulation that is agnostic to the length of the episode. A
first viable option would be to use an average reward formulation, as it circumvents the discounting
issue altogether. Although we think this would be the most natural choice, it is not clear how to
estimate the average reward of the current policy purely from off-policy data. Therefore, we opt for
the maximum reward formulation where the single highest discounted reward along a trajectory is
maximized (Gottipati et al., 2023; Veviurko et al., 2024). This simple to realize and agnostic towards
the length of the episode. Thus, the Bellman update of the exploration objective is replaced with the
maximum reward update:

Qk+1(s, a) = max
(
r, γmax

a′
Qk(s′, a′)

)
, (4)

where r is the reward received during the transition from state s with action a to state s′, γ is the
discount factor, a′ is the next action of the underlying policy, Qk is the state-action value function
and Qk+1 its next iteration after the update. Intuitively, this means that the exploration agent is
seeking the single largest misconception in the value function approximation along a trajectory.

3.3 Conditioning of value function

During training, the exploitation action-value approximation changes, causing in turn the TD-error
to change and thus the reward function of the exploration objective. Non-stationary rewards might
destabilize training as the agent has no information on why, how, and when the reward function
changes, and it is limited to adapting to the distributional shift as it appears. We propose to inform

Learning to Explore in Diverse Reward Settings

Figure 2: Fingerprinting ϕ is used to condition a value function Qω on another value function Qθ.

the exploration objective about the cause of changes. To achieve this, we add an embedding of the
exploitation value function parameters to the arguments of the exploration value function.
To obtain such embedding, we resort to fingerprinting, a method originally developed by Harb et al.
(2020), which has been later shown to be effective in deep RL settings (Faccio & Kirsch, 2021;
Faccio et al., 2022). Here, we adopt fingerprinting as follows. Let there be two action-value func-
tions Qθ and Qω where θ and ω are the parameters of the respective value functions. The goal is to
condition Qω such that it takes Qθ into account Qω(s, a|Qθ). A number of probe states ŝ ∈ S and
probe action â ∈ A are randomly initialized. The embedding is simply the concatenated result of
passing the probe states and actions through Qθ:

ϕ(θ) = (Qθ(ŝ1, â1), Q
θ(ŝ2, â2), · · · , Qθ(ŝn, ân)), (5)

where ϕ(θ) is a vector that embeds Qθ. The embedding is then given as an additional input to
Qω . Figure 2 shows a conceptual visualization of fingerprinting. As the embedding process is fully
differentiable, the probe states ŝ and actions â can be optimized based on the objective along with all
other parameters. For ease of notation, the probe states ŝ and actions â are from here on considered
to be part of the conditioned value function parameters ŝ, â ∈ ω. Thus, θ becomes directly an
additional input Qω(s, a, θ). For our method, we use fingerprinting to condition the exploration
value function on the exploitation value function to inform it about the cause of change in the TD-
errors. The number of used probe states and actions is an additional hyperparameter. However,
Faccio et al. (2022) has shown that as little as 10 probe-states are sufficient to inform a critic about
an actor network to solve MuJoCo environments. We do not tune for this hyperparameter but simply
pick a slightly higher number of 16 for all tasks.

3.4 Exploration objective

Following the three design choices described above, we can formulate our exploration objective,
which solves the MDP of the exploitation objective with two modifications:

• The parameters of the exploitation network θ ∈ Θ are included in the state space (conditioning):

S∆ = S ∪Θ. (6)

• The exploration reward functionR∆(s, a, s
′, θ) is defined as the absolute TD-error of the exploita-

tion action-value estimation:

R∆(s, a, s
′, θ) =

∣∣∣R(s, a, s′) + γmax
a′

Q̂θ(s′, a′)− Q̂θ(s, a)
∣∣∣ , (7)

where R(s, a, s′) is the reward function of the exploitation MDP and Q̂θ is the approximation of
the exploitation state-action value function with parameters θ.

We denote the state-action value function approximation of the exploration objective with param-
eters ω as ∆̂ω(s, a, θ). The fingerprinting probe inputs are contained in ω. Using the maximum

Reinforcement Learning Journal 2025

Algorithm 1 Generalized actor-critic + SEE

Input: Regular inputs for actor-critic algorithm: Q̂θ1 : S ×A → R, π̂θ2
Q : S ×A → R, θ1 ∈ Θ;

Exploration critic and actor ∆̂ω1 : S ×A×Θ→ R, π̂ω2

∆ : S ×A → R;
Empty replay buffer D;
for each iteration do

for each environment interaction do
aQ ∼ π̂θ2

Q (·|s), a∆ ∼ π̂ω2

∆ (·|s) ▷ sample candidate actions
A(s, aQ)← Q̂θ1 (s, aQ)− Q̂θ1 (s, a∆) ▷ calculate relative advantages
A(s, a∆)← ∆̂ω1 (s, a∆, θ1)− ∆̂ω1 (s, aQ, θ1)
a ∼ µ(a|s) ∝ exp(A(s, a)),∀a ∈ {aQ, a∆} ▷ sample action from behavior policy
s′ ∼ p(·|s, a), D ← D ∪ {s, a, r, s′} ▷ step and record transition

for each gradient step do
s, a, r, s′ ∼ D ▷ sample mini-batch
θ1 ← argminθ1 Jθ1 , θ2 ← argminθ2 Jθ2 ▷ unmodified off-policy actor-critic update
a′Q ∼ π̂θ2

Q (·|s′), a′∆ ∼ π̂ω2

∆ (·|s′) ▷ sample next actions

r∆ ←
∣∣∣r + γQ̂θ1(s′, a′Q)− Q̂θ1(s, a)

∣∣∣ ▷ calculate exploration rewards

ω1 ← argminω1

(
max

(
r∆, γ∆̂

ω1 (s′, a′∆, θ1)
)
− ∆̂ω1 (s, a, θ1)

)2

▷ maximum update

ω2 ← argminω2

(
−∆̂ω1 (s, a∆ ∼ π̂ω2

∆ (·|s) , θ1)
)

▷ update exploration actor

Output: Q̂θ1 , π̂θ2
Q , ∆̂ω1 , π̂ω2

∆

update formulation and conditioning, we obtain the exploration objective

Jω = Es,a,s′∼D

[(
max

(
R∆(s, a, s

′, θ), γmax
a′

∆̂ω′
(s′, a′, θ)

)
− ∆̂ω(s, a, θ)

)2
]
, (8)

where D is the transition replay buffer. During training rollouts, a mixed behavior policy µ samples
actions to collect data, as described in Section 3.1.
The exploitation objective remains the unchanged objective of the underlying base RL algorithm,
and it is only affected by the gathered data from the replay buffer during updates. Algorithm 1
shows how SEE can be combined with an arbitrary off-policy actor-critic RL method. For the sake
of clarity, some details like target networks are omitted. We refer to Appendix D for implementation
details.

4 Experiments

We empirically validate our approach by analyzing its effect when used in off-policy deep RL algo-
rithms. We select Twin-Delayed Deep Deterministic Policy Gradient (TD3) (Scott Fujimoto et al.,
2018) and Soft Actor-Critic (SAC) (Tuomas Haarnoja et al., 2018; Haarnoja et al., 2019) as base
algorithms. All additions to the regular update of these base algorithms, e.g., two critic networks
and entropy maximization for SAC, are also used for the exploration objective update. This means
that for SAC, both the exploration and exploitation policies perform separate entropy maximization
for their respective objectives. In TD3, a static noise is added on top of the policy for exploration
purposes. This static nature of the exploration noise does not align well with the idea of dynamical
exploration of SEE. Therefore, we opted to use no noise in the TD3+SEE implementation, making
the action selection of the exploration and exploitation policy deterministic. However, the behavior
policy stochastically selects one of the two candidate actions. Further implementation details are
described in Appendix D. We opt to not compare to any other methods due to the lack of compara-
bility. We are not aware of other works that focus on robustness across different reward settings in
deep RL. The most related class of algorithms is intrinsic motivation, which usually substitutes the
reward with novelty bonuses for very sparse rewards, for which we do not make any claims. In all

Learning to Explore in Diverse Reward Settings

Figure 3: Comparing SAC+SEE and TD3+SEE to their respective base algorithms across multiple
environments in different reward settings. The plots show the average evaluation return across 20
seeds per environment variant. The shaded regions indicate the standard error.

used environment variants, it is possible to occasionally find a positive reward with uniform random
actions. Furthermore, our method can be combined with such reward-shaping methods, as it is ag-
nostic to the exploitation optimization pipeline and its reward function. SEE only affects the action
selection during training rollouts; thus, it is not competing with methods that augment the reward
or the optimization pipeline. To our knowledge, the approach of Simmons-Edler et al. (2020) is the
closest to our work. However, a comparison is not sensible as they employ an additional method
that affects the optimization pipeline to stabilize their approach (Simmons-Edler et al., 2019).

4.1 Comparison to base algorithms

For the sake of conciseness, Figure 3 highlights results of four of the total eight environments. Re-
maining results are shown in Figure 6. We show that SEE performs robustly in diverse reward
settings by creating three reward variants per environment. The three reward settings are dense re-
wards, sparse rewards, and exploration-adverse rewards. In the following, we describe what exactly
these settings entail in our experimental setup.

• Dense rewards: The reward function is well-shaped. Every step towards the desired behavior is
reflected in the reward signal.

• Sparse rewards: There is a goal that must be reached. Only when the goal is reached does
the reward become a positive value; otherwise, it is 0. All goals in our environments can be
occasionally reached by uniform random actions or random environment initialization.

Reinforcement Learning Journal 2025

• Exploration adverse rewards: There is a goal that must be reached. The reward function actively
discourages exploration by applying an action cost to every action. A positive reward is only given
upon reaching the goal. Inactivity is always a local optimum.

We select eight environments of varying difficulty from Pendulum-v1 which is quickly solved by
most RL algorithms, to FetchPickAndPlace-v4 which was originally developed for Hindsight Expe-
rience Replay (Andrychowicz et al., 2017) and is quite challenging to solve without it. For each of
these environments, we created three variants of the previously established reward settings. Detailed
descriptions of the environments are listed in Appendix B. For our experimental results, we run the
two base algorithms and their respective SEE extension on all 24 environment variants. We do not
change hyperparameters in between the reward settings. Notably, the hyperparameters have not
been tuned for our extension. Instead, we use the pre-tuned hyperparameters of the base algorithms
in their respective extensions. Appendix C contains a list of all used hyperparameters. Generally, it
can be observed that in the dense reward setting, the addition of SEE does perform comparably to
their base algorithm. In the sparse reward setting, SEE seems to have some advantage, and in the
exploration adverse setting, SEE improves performance significantly. SAC performs surprisingly
well in the sparse reward setting and even has a slightly higher final performance on sparse reward
Pendulum-v1. However, in the adverse reward Pendulum-v1 not a single run of SAC was capable
of reaching the goal. Especially SAC+SEE performs robustly across all environments and reward
settings. TD3+SEE generally improves the performance of TD3 with some exceptions.

4.2 Ablations

To measure the impact of our three design choices, we conducted ablation studies on a subset of
environments. To avoid cluttering, we highlight in Figure 4 the ablation studies of combining SEE
with SAC. The results of the same ablation but with TD3+SEE are presented in Figure 7. The three
conducted ablations replace one of the three design choices each.

• w/o conditioning: The exploration value function does not receive an embedding of the exploita-
tion value function.

• w/o maximum update: The update of the exploration objective uses a regular Bellman update
instead of the maximum update.

• w/o mixing: Actions during training rollouts are selected alternately by the exploitation and ex-
ploration policy instead of using the proposed behavior policy.

We observe that some additions only have a positive effect in specific settings. The maximum update
even decreases performance in the Pendulum-v1 environment. However, the combination of all three
additions always performs robustly without a failure case. To evince this, Figure 5 shows normalized
accumulated results across all environments grouped by reward setting. SAC+SEE performs best on
average with all active design choices. However, this is not the case for TD3+SEE. Here, especially
the maximum update has a negative impact on performance in sparse reward settings. The most
positively impactful addition is the mixing of exploration and exploitation policy.

5 Related works

Exploration in RL is an active field of research. While naive undirected exploration methods like
ε-greedy or random noise are effective when exposed to well-shaped dense rewards, they often strug-
gle in other settings. One common idea to mitigate this effect is to substitute unfavorably shaped
rewards, such that the resulting reward ends up being well-shaped again. To this end, bonus-based
methods, also referred to as intrinsic reward methods, are used. While we do not think that it is
sensible to compare our method to intrinsic motivation methods, we highlight some works in that
field that are conceptually related to this work. Random network distillation (RND) (Burda et al.,
2019) popularized the idea of using a prediction error as a bonus reward. They also encountered the
conflict of interests of strictly positive exploration rewards in an episodic setting. Many similar ideas

Learning to Explore in Diverse Reward Settings

Figure 4: Comparing SAC+SEE to ablations where one of the design choices is replaced. The
graphs show the average evaluation return across 10 seeds per environment variant. The shaded
regions indicate the standard error.

(a) Accumulated average performances of
SAC+SEE ablation runs.

(b) Accumulated average performances of
TD3+SEE ablation runs.

Figure 5: The graphs show the normalized aggregated average returns grouped by reward setting for
all ablations. The normalization assigns the value 0 to the single worst run in an environment variant
and 1 to the single best run.

followed, addressing several issues of this method. One general issue of bonus-based exploration is
that the bonus objective is changing the MDP. A changed reward function also potentially changes
the optimal policy. Yiming Wang et al. (2023) propose a method that substitutes sparse rewards
without changing the optimal policy. For this, they employ a potential function that measures the
distance of states where the distance is a bisimulation metric. Intuitively, this means that the distance

Reinforcement Learning Journal 2025

of states is measured as their distance in the value space instead of the feature space. As a result,
their method is more likely to uncover states with high TD-errors. Due to the bisimulation metric
relying on the current policy and the respective value function, this method is limited to on-policy
settings. Sukhija et al. (2025) propose an intrinsic motivation method, where the bonus objective
is defined as the upper bound of an information gain approximation. Their method uses a learned
world model for this approximation and can be combined with any off-policy reinforcement learning
method. They integrate it into SAC in the same way as the entropy maximization is and are able
to show strong empirical results in sparse and dense reward environments. The previously men-
tioned methods disregard the non-stationary nature of their exploration bonus. Whitney et al. (2021)
recognize this and decouples exploration from exploitation. The exploration agent here follows an
optimistic pseudo-count intrinsic reward. To better deal with the non-stationarity, the exploration
reward is calculated during the update and not stored in the replay buffer. Additionally, the explo-
ration agent is updated more aggressively than the exploitation agent. To overcome the far-off-policy
instability, they use a product of exploration and exploitation policy as a behavior policy, which has
the downside that these policies require a significant overlap to work in practice. Simmons-Edler
et al. (2020) is similar to our method; they defined a separate exploration objective for maximizing
the TD-error incurred by the exploitation objective. To solve the far-off-policy instability, they roll
out both policies individually and collect the data in separate buffers. During the update, the data is
mixed with a specific ratio. They had trouble stabilizing this approach with DDPG-style parametric
policies and therefore augmented the optimization pipeline with an additional method (Simmons-
Edler et al., 2019). Our approach roughly follows the idea of Riedmiller et al. (2021) who propose
to see exploration and exploitation as two separate phases in the training refereed to as ’Collect and
Infer’. During the collection phase, the objective is to collect the optimal dataset such that during the
inference phase, the best possible policy based on that amount of data can be learned. This requires
the data collection to be aware of what data has already been collected. While our method still bal-
ances exploration and exploitation during training, it is informed about collected data through the
conditioning.

6 Discussion

After empirically showing the strength of our proposed method SEE, we also want to discuss limita-
tions of the approach. Due to the additional exploration objective, we double the amount of required
function approximations. Thus, in turn with the additional updates, roughly doubling the required
compute compared to the base algorithm. Bonus-based exploration methods often suffer from the
so-called noisy-TV problem. It describes a setting where a novelty-seeking agent gets stuck in
stochastic transitions that constantly produce novel states, such as a noisy TV. SEE is not directly
affected by this as it does not seek novel states; however, stochastic rewards may produce a similar
effect. For some transitions with a stochastic reward, the exploitation agent might learn the expected
reward, but due to the stochasticity, there will be a consistent TD-error related to this transition on
which the exploration policy might get stuck on.
We have shown that SAC+SEE works reliably in a diverse set of environments and reward settings,
notably without specifically tuning hyperparameters. Therefore, we consider SAC+SEE an inter-
esting candidate for challenging reward settings where precise hyperparameter tuning might not be
feasible. Furthermore, we think that the individual design choices may also be applicable in other
settings, such as when a behavior policy needs to reflect multiple objectives (mixing), a decision-
making agent should be indifferent to the length of an episode (maximum update), or where an
objective depends on a non-stationary target (conditioning).

Learning to Explore in Diverse Reward Settings

Figure 6: Comparing SAC+SEE and TD3+SEE to their respective base algorithms across multiple
environments with different reward settings. The graphs show the average evaluation return across
20 seeds per environment variant. The shaded regions indicate the standard error.

A Additional results

In this appendix we present the omitted results from the main paper for the sake of conciseness.
Figure 6 depicts the remaining environments of the comparison of SEE to the base algorithms.
Noteworthy is that in the Hopper-v5 environment, the addition of SEE is unable to improve perfor-
mance even in difficult reward settings. In Swimmer-v5 SAC+SEE outperforms SAC in the dense
reward setting. We think this is due to the fact that usually for this environment a high discount of
γ = 0.9999 is used. However, in our experiments, we use the same hyperparameters for all Mu-
joco environments (see Appendix C) and SEE seems to perform robustly in the absence of specific
tuning. In the sparse FetchPickAndPlace-v4, all methods regularly encounter a positive reward as
the box sometimes is initialized on top of the target position. But only SAC+SEE was capable of
picking up on that signal.
Figure 7 shows the individual ablation studies of TD3+SEE. It can be seen that in combination with
TD3 these additions are not as effective. As previously mentioned, for TD3+SEE we do not add
stochastic noise to our actions. This result therefore might hint towards stochastic exploration being
beneficial even in the presence of a dedicated exploration objective. As a reminder, in SAC+SEE
we employ entropy maximization on both the exploitation and exploration objectives.

Reinforcement Learning Journal 2025

Figure 7: Comparing TD3+SEE to ablations where one of the design choices is replaced. The
graphs show the average evaluation return across 10 seeds per environment variant. The shaded
regions indicate the standard error.

Acknowledgments

This work was funded by the German Federal Ministry of Education and Research (BMBF) (Project:
01IS22078).

The authors gratefully acknowledge the scientific support and HPC resources provided by the Er-
langen National High Performance Computing Center (NHR@FAU) of the Friedrich-Alexander-
Universität Erlangen-Nürnberg (FAU) under the NHR project b187cb. NHR funding is provided
by federal and Bavarian state authorities. NHR@FAU hardware is partially funded by the German
Research Foundation (DFG) – 440719683.

The authors also gratefully acknowledge the "Julia 2" HPC provided by the Julius-Maximilians-
University Würzburg. "Julia 2" was funded as DFG project as "Forschungsgroßgerät nach Art 91b
GG" under INST 93/1145-1 FUGG.

Learning to Explore in Diverse Reward Settings

References
Marcin Andrychowicz, Dwight Crow, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,

Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight Experience
Replay. In Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach,
CA, USA, December 4–9, 2017., volume 31, 2017.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying Count-Based Exploration and Intrinsic Motivation. In Proceedings of the 30th Confer-
ence on Neural Information Processing Systems (NeurIPS 2016), Barcelona, Spain, December
5–10, 2016., volume 30, 2016.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In 7th International Conference on Learning Representations, ICLR 2019, New Or-
leans, LA, USA, May 6-9, 2019, ICLR 2019, 2019.

Francesco Faccio and Louis Kirsch. Parameter-Based Value Functions. In 9th International Con-
ference on Learning Representations, ICLR 2021, Virtual Conference, May 3–7, 2021., 2021.

Francesco Faccio, Aditya Ramesh, Vincent Herrmann, Jean Harb, and Jürgen Schmidhuber. General
Policy Evaluation and Improvement by Learning to Identify Few But Crucial States, July 2022.
arXiv:2207.01566 [cs, stat].

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Matteo Hessel, Ian Os-
band, Alex Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell,
and Shane Legg. Noisy Networks for Exploration. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30–May 3, 2018., 2018.

Sai Krishna Gottipati, Yashaswi Pathak, Rohan Nuttall, Sahir, Raviteja Chunduru, Ahmed Touati,
Sriram Ganapathi Subramanian, Matthew E. Taylor, and Sarath Chandar. Maximum Reward
Formulation In Reinforcement Learning, December 2023. arXiv:2010.03744 [cs, stat].

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic Algo-
rithms and Applications, January 2019. arXiv:1812.05905 [cs].

Jean Harb, Tom Schaul, Doina Precup, and Pierre-Luc Bacon. Policy Evaluation Networks, Febru-
ary 2020. arXiv:2002.11833 [cs, stat].

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In 4th
International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May
2–4, 2016., 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing Atari with Deep Reinforcement Learning, December 2013.
arXiv:1312.5602 [cs].

Antonin Raffin. RL Baselines3 Zoo, 2020. Published on GitHub.

Martin Riedmiller, Jost Tobias Springenberg, Roland Hafner, and Nicolas Heess. Collect & Infer –
a fresh look at data-efficient Reinforcement Learning. In Proceedings of the 5th Conference on
Robot Learning, PMLR 164:1736–1744, London, UK, November 8–11, 2021., 2021.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy
Optimization Algorithms, August 2017. arXiv:1707.06347 [cs].

Lukas Schäfer, Filippos Christianos, Josiah P. Hanna, and Stefano V. Albrecht. Decou-
pled Reinforcement Learning to Stabilise Intrinsically-Motivated Exploration, February 2022.
arXiv:2107.08966 [cs].

Reinforcement Learning Journal 2025

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing Function Approximation Error in
Actor-Critic Methods. In Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of ICML 2018,
pp. 1582–1591. PMLR, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-Policy Deep Reinforcement Learning without
Exploration. In Proceedings of the 36th International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of ICML 2019, pp. 2052–2062.
PMLR, 2019.

Riley Simmons-Edler, Ben Eisner, Eric Mitchell, Sebastian Seung, and Daniel Lee. Q-Learning for
Continuous Actions with Cross-Entropy Guided Policies. In Reinforcement Learning for Real
Life (RL4RealLife) Workshop in the 36 th International Conference on Machine Learning, Long
Beach, California, USA, 2019., 2019.

Riley Simmons-Edler, Ben Eisner, Daniel Yang, Anthony Bisulco, Eric Mitchell, Sebastian Se-
ung, and Daniel Lee. Reward Prediction Error as an Exploration Objective in Deep RL. In
Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-
PRICAI-2020, pp. 2816–2823, Yokohama, Japan, July 2020. International Joint Conferences on
Artificial Intelligence Organization. ISBN 978-0-9992411-6-5. DOI: 10.24963/ijcai.2020/390.

Bhavya Sukhija, Stelian Coros, Andreas Krause, Pieter Abbeel, and Carmelo Sferrazza. MaxIn-
foRL: Boosting Exploration in Reinforcement Learning Through Information Gain Maximiza-
tion. In 9th International Conference on Learning Representations, ICLR 2025, Virtual Confer-
ence, May 5–9, 2025., 2025.

Richard S. Sutton and Andrew Barto. Reinforcement learning: an introduction. Adaptive computa-
tion and machine learning. The MIT Press, Cambridge, Massachusetts London, England, second
edition edition, 2020. ISBN 978-0-262-03924-6.

Adrien Ali Taıga, William Fedus, Marlos C Machado, Aaron Courville, and Marc G Bellemare. On
Bonus-Based Exploration Methods in the Arcade Learning Environment. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26–May 1,
2020.

Mark Towers, Jordan K Terry, Ariel Kwiatkowski, John U. Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, An-
drea Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymna-
sium, March 2023. Published on GitHub.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. In Proceedings of the
35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, volume 80 of ICML 2018, pp. 1856–1865. PMLR, 2018.

Grigorii Veviurko, Wendelin Boehmer, and Mathijs de Weerdt. To the Max: Reinventing Reward
in Reinforcement Learning. In Forty-first International Conference on Machine Learning, ICML
2024, Vienna, Austria, July 21-27, 2024, ICML 2024. OpenReview.net, 2024.

William F. Whitney, Michael Bloesch, Jost Tobias Springenberg, Abbas Abdolmaleki, Kyunghyun
Cho, and Martin Riedmiller. Decoupled Exploration and Exploitation Policies for Sample-
Efficient Reinforcement Learning, July 2021. arXiv:2101.09458 [cs].

Yiming Wang, Ming Yang, Renzhi Dong, Binbin Sun, Furui Liu, and Leong Hou U. Efficient
Potential-based Exploration in Reinforcement Learning using Inverse Dynamic Bisimulation
Metric. In Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023., volume 36 of NeurIPS 2023, pp. 38786–38797. Curran Associates, Inc., 2023.

Learning to Explore in Diverse Reward Settings

Supplementary Materials
The following content was not necessarily subject to peer review.

B Environments

In this work we use modified versions of well know environments. Table 1 gives details on the
modification that was done for each environment. All environments are original or modified versions
of the environments found in Gymnasium (Towers et al., 2023) and Gymnasium-Robotics. Refer to
our provided code for more details.

Figure 8: Depiction of LocalOptimumCar-v0 a modified version of MountainCarContinuous-v0
with an additional easier to reach goal on the left. Unlike the goal on the right the additional goal
only yields a reward of 10 when reached instead of 100.

C Hyperparameters

Table 2 shows used hyper parameters. These were taken from the RL Baseline3 Zoo (Raffin, 2020).
The parameter sets for the Classic environments were taken from the tuned version of Pendulum-v1
for TD3 and SAC respectively, and the MuJoCo sets were taken from HalfCheetah-v4 hyperparam-
eters. SEE does not introduce relevant new hyperparameters but doubles them as we separately
optimize for two objectives. All hyperparameters for the exploration objective are copied from the
exploitation objective. For the FetchPickAndPlace environments, we use an additional hidden layer
such that the hidden dims are [400, 300, 200]. All remaining hyperparameters are the same as the
MuJoCo setting.

D Implementation details

For the sake of clarity, some details of SEE are omitted from the main paper that concern the imple-
mentation.

Policy mixing balance In section 3.1 it is mentioned that in our case the two objectives do not
require scaling to achieve a balanced mixing due to a similar magnitude. In practice we use two
mixing factors λ and (1−λ) for the relative advantage values during mixing. For all our experiments
lambda is set to λ = 0.5. Therefore, this does not change their relative magnitude. However, it does
change their absolute magnitude, which could affect the sampling probabilities of the Boltzmann
distribution.

Exploration Update The SEE extensions make use of all update methods used in the respective
base algorithms. Including target networks, multiple critics, soft critics, minimum over multiple

https://gymnasium.farama.org/
https://robotics.farama.org/
https://github.com/Sebastian-Griesbach/SEE
https://github.com/DLR-RM/rl-baselines3-zoo

Reinforcement Learning Journal 2025

Name General Dense Sparse Adverse
Pendulum-v1 unmodified unmodified +1 if Pendulum

within upper 10
degree else 0,
Pendulum always
starts pointing
down with 0
velocity

sparse reward +
action cost of
unmodified
version

LocalOptimum-
Car-v0

MountainCar-
Continuous-v0
with an additional
lesser goal on the
left at position
–1.1 giving a
reward of +10
(see Figure 8)

Original reward
with additional
negative distance
to the optimal
goal

original reward
without action
cost

original reward

HalfCheetah-v5 for sparse and
adverse setting
observation
includes position
of the agent

unmodified +1 for x-position
> 5 else 0

sparse reward +
action cost of
unmodified
version

Ant-v5 for sparse and
adverse setting
observation
includes position
of the agent

unmodified +1 for x-position
> 4 else 0

sparse reward +
action cost of
unmodified
version

Hopper-v5 for sparse and
adverse setting
observation
includes position
of the agent

unmodified +1 for x-position
> 1 else 0

sparse reward +
action cost of
unmodified
version

Swimmer-v5 for sparse and
adverse setting
observation
includes position
of the agent

unmodified +1 for x-position
> 1 else 0

sparse reward +
action cost of
unmodified
version

FetchPickAnd-
Place-v4

Adding goal
position to
observation,
episode truncated
at 200 steps

using reward of
FetchPickAnd-
PlaceDense-v4

+1 if distance to
goal <= 0.05
else 0

sparse reward -
0.1

∑dim(A)
i=0 a2

i

LargePoint-Maze-
v3

PointMaze_-
Large_Diverse_-
GR-v3, adding
goal position to
observation

reward is negative
distance to goal
position

+1 if distance to
goal <= 0.45
else 0

sparse reward -
0.1

∑dim(A)
i=0 a2

i

Table 1: List of all used environments with descriptions of general modifications and modifications
made for each of the three setting namely dense-rewards, sparse-rewards and exploration adverse-
rewards.

critics for target calculation, etc. This means that if the base algorithm uses the minimum over two
target networks for its next value estimate, so does the update of our exploration objective.

https://gymnasium.farama.org/environments/classic_control/pendulum/
https://gymnasium.farama.org/environments/classic_control/mountain_car_continuous/
https://gymnasium.farama.org/environments/classic_control/mountain_car_continuous/
https://gymnasium.farama.org/environments/mujoco/half_cheetah/
https://gymnasium.farama.org/environments/mujoco/ant/
https://gymnasium.farama.org/environments/mujoco/hopper/
https://gymnasium.farama.org/environments/mujoco/swimmer/
https://robotics.farama.org/envs/fetch/pick_and_place/
https://robotics.farama.org/envs/fetch/pick_and_place/
https://robotics.farama.org/envs/maze/point_maze/
https://robotics.farama.org/envs/maze/point_maze/
https://robotics.farama.org/envs/maze/point_maze/

Learning to Explore in Diverse Reward Settings

Hyperparameter Classic MuJoCo

Learning rate 0.001 0.0003
Batch size 256 256
Discount γ 0.99 0.99
Replay buffer size 200000 1000000
Target networks τ 0.005 0.005
Update freq 1 1
Warm-up steps 1000 10000
Hidden dims [400, 300] [400, 300]
Temperature auto auto
Initial temperature 1.0 1.0
Target entropy auto auto

(a) Hyperparameters used for SAC

Hyperparameter Classic MuJoCo

Learning rate 0.001 0.001
Batch size 256 256
Discount γ 0.99 0.99
Replay buffer size 200000 1000000
Target networks τ 0.005 0.005
Critic update freq 1 1
Actor update freq 2 2
Target update freq 2 2
Warm-up steps 1000 10000
Hidden dims [400, 300] [400, 300]
Action noise std 0.1 0.1
Target noise std 0.2 0.2
Target noise clip 0.5 0.5

(b) Hyperparameters used for TD3

Hyperparameter Classic MuJoCo

Probe states (3.3) 16 16

(c) Hyperparameters used for SAC+SEE that differ
from SAC

Hyperparameter Classic MuJoCo

Action noise std 0.0 0.0
Probe states (3.3) 16 16

(d) Hyperparameters used for TD3+SEE that differ
from TD3

Table 2: Overview of used hyperparameters by methods and environments. Classic includes the en-
vironment Pendulum-v1 and LocalOptimumCar-v0. MuJoCo includes all remaining environments.
For the FetchPickAndPlace-v4 environment all methods used one additional hidden layer and thus
had hidden dims of [400, 300, 200].

Relative advantage calculation To calculate the relative advantage, we take the difference of
two state-action values. The exact calculation of these state-action values imitates the calculation of
the state-action value for the actor update of the base algorithm. This means that in TD3+SEE this
is simply the state-action value given by the first of the two critic networks. In SAC+SEE this is the
minimum across both state-action values.

Use of online parameters for exploration reward For calculating the exploration reward, only
the online parameters of the exploitation objective are used (not of the target network), as these are
also the only parameters used for the conditioning of the exploration objective.

Reproducibility Our full implementation to reproduce all results is available at:
https://github.com/Sebastian-Griesbach/SEE.

https://github.com/Sebastian-Griesbach/SEE

