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ABSTRACT

In this work, we provide a large-scale empirical study of the scaling properties
of multilingual (multitask) neural machine translation models. We examine how
increases in the model size affect the model performance and investigate the role
of the individual task weights on the scaling behavior. We find that these weights
only affect the multiplicative factor of the scaling law and in particular, the scaling
exponent is unaffected by them. Through a novel joint scaling law formulation,
we compute the effective number of parameters allocated to each task and exam-
ine the role of language similarity in the scaling behavior of our models. We find
minimal evidence that language similarity has any impact. In contrast, “direction”
of the multilinguality plays a significant role, with models translating from multi-
ple languages into English having a larger number of effective parameters per task
than their reversed counterparts. Finally, we leverage our observations to predict
the performance of multilingual models trained with any language weighting at
any scale, greatly reducing efforts required for task balancing in large multitask
models. Our findings apply to both in-domain and out-of-domain test sets and to
multiple evaluation metrics, such as ChrF and BLEURT.

1 INTRODUCTION

Over the past few years, scaling has emerged as a popular and effective way to improve the perfor-
mance of neural networks (Brown et al., 2020; Chowdhery et al., 2022; Lepikhin et al., 2020). Given
the costs associated with training large state-of-the-art neural models, much work has gone into un-
derstanding their scaling properties and predicting the evolution of their performance with scale
through scaling laws. Such scaling laws have been instrumental in guiding the model development
efforts across a variety of domains such as computer vision (Zhai et al., 2022), language modelling
(Kaplan et al., 2020; Hoffmann et al., 2022), and neural machine translation (Ghorbani et al., 2022).

Despite these impressive developments, as of yet, most of the scaling laws studies available in the
literature only focus on single-task models. On the contrary, current massive neural models are
often trained to solve more than one task across one or more modalities (Chowdhery et al., 2022;
Sanh et al., 2022; Reed et al., 2022). This disconnect from the current research frontier limits the
applicability of the scaling laws in guiding model development decisions. In particular, currently
available scaling laws studies are unable to inform the decision process on how to balance the
different tasks effectively at training time. Without such guidance, practitioners often have to rely
on cumbersome and costly approaches such as approximate grid search to inform their decision-
making. Such approaches quickly become infeasible as the problem scale grows.

In this paper, we take the initial step towards developing a quantitative understanding of the scaling
behavior for multitask models. We choose multilingual neural machine translation (MNMT) as the
setup for this initial study. This choice is motivated by several reasons: MNMT provides a popular
setup with mature benchmarks and substantial literature on scaling (Lepikhin et al., 2020; Costa-
jussà et al., 2022; Bapna et al., 2022; Huang et al., 2019). Moreover, recent results on scaling laws for
single-task MT models provide a natural starting point for our study (Ghorbani et al., 2022; Bansal
et al., 2022; Gordon et al., 2021; Zhang et al., 2022). Finally, recent findings on the optimization
dynamics of MNMT models greatly simplify our study by removing the need to examine the role of
the optimization algorithm in our results (Xin et al., 2022).
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For our analysis, we train over 200 MNMT models (ranging from 20M to 1B non-embedding param-
eters) and systematically examine their scaling behaviors. We focus our investigation on the data
rich-compute rich regime where we have access to vast amounts of training data for all the tasks
(i.e. language pairs)1 and the model is trained to near convergence. Here, the main bottleneck in the
model performance is due to the lack of model capacity. We establish the following observations:

• For each fixed task i and task weighting w, the evolution of the test cross-entropy loss (L)
with model size (N ) follows a scaling law that resembles the scaling behavior of single-task
models:

Li(N ;w) ≈ βw,iN
−αw,i + L(w,i)

∞ . (1)

Furthermore, we find that changes in the task weightings only affect the multiplicative
factor β. The scaling exponent α and the irreducible loss L∞ are unaffected by these
changes. In other words, scaling multi-task models will improve their performance in a
task at the same rate independently of its weight on the optimization objective.

• We leverage these findings to propose a scaling law that jointly predicts the performance for
all tasks and weightings considered, and use it to examine how the model splits its capacity
in between the tasks by computing the effective number of parameters allocated to each
task (subsection 3.3)

• We examine the popular belief that training multilingual models in similar languages is
more effective than training models in unrelated languages. Surprisingly, for the high-
resource language pairs considered, we don’t observe any significant differences in the scal-
ing behavior of models trained to translate from English into related languages (En→{De,
Fr}) with models trained in unrelated languages (En→{De, Zh}). In contrast, we observe
that models trained to translate from multiple languages into English (XX→En) benefit
much more from multitasking compared to trained on translation out of English (En→XX).

• In Section 3.4, we use simple approximations to fi(w) to provide a scaling law that predicts
the full task performance trade-off frontier as a function of the model size N (See Figure
7). We describe how these predictions can be utilized for guiding task balancing in the
development of massive models.

2 BACKGROUND

2.1 NEURAL SCALING LAWS

Recent research suggests that the performance of large neural models is well-predicted by a smooth
function of the fundamental problem parameters: the model size N 2, the size of the training data
D, and the amount of compute used for training C (Hestness et al., 2017; Rosenfeld et al., 2019;
Kaplan et al., 2020; Hernandez et al., 2021). The most relevant of these studies to ours is Ghorbani
et al. (2022) where the authors study the effects of increasing the model size for single-task NMT
models in the data-rich (D → ∞), compute-rich (C → ∞) regime. In this setting, the authors show
that the following bivariate law describes the scaling behavior of encoder-decoder Transformers

L(Ne, Nd) = βN−pe
e N−pd

d + L∞. (2)

Here, Ne and Nd correspond to the number of parameters in the encoder and decoder respectively
and L∞ corresponds to the irreducible loss associated with the task. {β, pe, pd, L∞} are the param-
eters of the scaling law that need to be empirically estimated from the data.

In addition, Ghorbani et al. (2022) examine the question of optimally allocating parameters between
the encoder and the decoder. They show that in order to observe the optimal scaling behavior, one
needs to proportionally scale the encoder and the decoder together. Under such scaling scheme,
Equation 2 simplifies to

L(N) = βN−α + L∞, (3)

1Using machine translation terminology, all language pairs are high-resource.
2Following the literature conventions, we only consider the non-embedding layers when computing N .

2



Under review as a conference paper at ICLR 2023

which is similar to the scaling behavior observed in other domains such as computer vision (Zhai
et al., 2022) and autoregressive generative models (Henighan et al., 2020).

Based on these results, to achieve the optimal scaling behavior, we adopt the proportional encoder-
decoder scaling scheme for our experiments. A detailed overview of the size and architecture of our
models is presented in Appendix A.

2.2 MULTITASK OPTIMIZATION

We focus our investigation on the supervised learning setup where the model parameters θ ∈ Rp are
trained on K different tasks simultaneously. In multilingual MT, each task corresponds to translation
for a different language pair. We denote the loss associated with task i with Li(θ).

Multitask models are often trained by minimizing a convex combination of the per-task losses:

θ̂(w) = argmin

K∑
i=1

wiLi(θ) where w > 0,

K∑
i=0

wi = 1 (4)

Here, w is a fixed vector of the task weights, determined apriori by the practitioner to emphasize her
preferences on the balancing of the tasks. This so-called scalarization approach is highly popular
in the community due to its effectiveness and simplicity.3 In fact, despite this simplicity, recent
results on multitask optimization suggest that scalarization achieves performances on par or better
than bespoke optimizers designed specifically for multitask models (Xin et al., 2022; Kurin et al.,
2022).

In current large text models, such explicit scalarization is rare. Instead, scalarization is often im-
plemented implicitly, by sampling observations from each task proportionally to that task’s weight.
Proportional sampling produces (in expectation) the same overall loss function as explicit scalariza-
tion but with much less engineering complexity.

3 EFFECTS OF SCALE IN MULTILINGUAL MT

3.1 EXPERIMENTAL SETUP
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Figure 1: Cartoon representation
of the performance trade-off fron-
tier for a hypothetical model.

We use the (pre-LN) encoder-decoder Transformer architec-
ture in our models (Xiong et al., 2020; Vaswani et al., 2017).
We train models of up to 8 sizes, approximately ranging
from 20M to 1B (non-embedding) parameters. When scaling
encoder-decoder Transformers, to achieve the optimal scaling
behavior, we scale the encoder and the decoder proportionally
by increasing the model dimension and the number of layers
in tandem. See Appendix A for a detailed overview.

For our experiments, we train two cohorts of models: En→XX
and XX→En. For En→XX cohort, we train multilingual
model for translation from English to {German (De), Chinese
(Zh)} and {German (De), French (Fr)}. For XX→En cohort,
we present results for {De, Zh}→En.

We use the implicit scalarization approach to train our models;
each observation in the training batch is chosen from the first
language pair with probability p and the second language pair
with probability 1 − p. 4 For our experiments, we choose p
from the set

p ∈ {0, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 1}. (5)

For En→XX models, to avoid confusing the model, we prepend a language token to the source
sentence specifying the target language (e.g. <2de>). The models are trained using a per-token

3See (Boyd & Vandenberghe, 2004) for more a detailed discussion of scalarization.
4To emphasize the fact that we use sampling-based scalarization, we replace w with p in our notation.
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cross-entropy loss and the Adafactor optimizer (Shazeer & Stern, 2018), using a fixed batch size of
500K tokens. To mirror the compute-rich regime as closely as possible, we trained our models to
near convergence. In practice, this translates to training our smaller models (< 500M parameters)
for 500K gradient steps and our larger models for 1M steps.

To place our models in the data-rich regime, we use a massive in-house web-crawled dataset for
training our models. We filter this data using an online data selection procedure (Wang et al., 2018)
and high-quality web-domain reference sets, extracting 600M sentences for each language pair. We
tokenize this corpus by using a pretrained multilingual SentencePiece Kudo (2018) vocabulary, with
a size of 128K sub-words.

We measure the performance of models on both in-domain and out-of-domain test sets. For the
in-domain test set, we extract 2000 sentences from the same in-house datasets used to create the
training (ensuring no overlap). For out-of-domain, we use newstest2019 (Barrault et al., 2019),
consisting of 2000 sentence-pairs extracted from aligned news documents.

3.2 RESULTS & ANALYSIS

Understanding Multitask Scaling We start our analysis by independently examining the model
scaling behavior for each individual task weighting p in (5). For each choice of p, we fit a scaling
law of the form

Li(N ; p) = βp,iN
−αp,i + L(p,i)

∞ (6)

to the empirical (test) performance of models resulting from that task weighting.

Figure 2 presents our findings for En→{De, Zh} models. Each point on the graph corresponds to
the empirical test-cross entropy performance of a model at the end of the training.5 We can see
that our per-task-weighting laws are able to capture the scaling behavior of our multilingual models
on both language pairs. As expected, when the weight for one of the languages is decreased, the
performance of the models on that language decreases for all scales. Our results suggest that the
benefits of the increased model size for MNMT models are well-described by a power-law. See
Appendix B for similar results for other language pair combinations.
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Figure 2: The evolution of the (in-domain) test cross-entropy loss with model size for En→{De,
Zh} models, as well as the fitted scaling laws. These scaling laws are fitted separately for each
task weighting. The color represents the weighting of the languages. The scaling laws are able to
capture close to 100% of the variation in the data for both language pairs. Note that we don’t show
the zero-shot behavior.

Figure 4 shows the fitted coefficients of the scaling laws for all p. The shaded area marks the one
standard deviation uncertainty interval of our estimates.6 Interestingly, we find that, across all values

5For low probability tasks, we apply a convergence correction procedure to make up for slow convergence.
See the Appendix G for more details.

6We gauge the uncertainty in the coefficients by examining the fluctuations in our estimates if our empirical
datapoints are perturbed by ϵ

i.i.d∼ N (0, σ2). We choose a conservative σ of 1% of the observed empirical loss
for each data point.
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Figure 3: Log-log plot of the evolution of the (in-domain) test cross-entropy loss as we scale. We
subtract a constant L(i)

∞ , jointly fitted for all the task weights (Equation 7). All lines are nearly
parallel, suggesting that the scaling exponent is unchanged for all p.
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Figure 4: Coefficient values for German (left) and Chinese (right) as a function of the language
weight, with the shaded region representing the standard deviation. The dashed lines represent the
value of jointly fitted coefficients from Equation 7

of p, both the scaling exponent (α) and the irreducible loss (L∞) seem to be relatively unchanged.
In particular, all of our estimated α and L∞ parameters are within two standard deviations of each
other. In contrast, the multiplicative factor β seems to be highly sensitive to the choice of p.

Figure 3 visually confirms the assertion that for our models αp and L∞ are effectively constant.
Here, we have subtracted a fixed constant L(i)

∞ from all the Figure 4 curves corresponding to the
task i. We then plot results on log-log axes. As the figure suggests, the lines are all near parallel,
suggesting that the scaling exponent is unchanged for all p. In practical terms this means that, for
example, doubling the capacity of a multitask model will reduce its loss by the same 1

2α factor,
whether it was trained with 0.1 or 0.9 task weight. This also means that single-task scaling laws can
be used to gauge the benefits of scaling multitask models.

Jointly Modeling Multitask Scaling Based on the findings above, we make the assumption that
the scaling exponents and the irreducible losses are independent of the task weights, and propose a
joint scaling law of the form

Li(N ; p) ≈ βp,iN
−αi + L(i)

∞ . (7)

Figure 5 shows the fit of this joint scaling law for En→{De, Zh} models evaluated on the in-domain
test sets. Note that here, we fit a total of 10 parameters for each task – 8 for βp,i’s and two for αi

and L
(i)
∞ . In contrast, in Figure 2, we used 24 overall parameters to capture the scaling behavior for

each task. Despite this significant decrease in the number of total fitted parameters, we observe that
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our joint laws are able to almost completely capture the scaling behavior. We observe a similar phe-
nomenon for out-of-domain test sets and other language pairs (see Appendix C), further suggesting
that the joint law accurately describes the scaling behavior of MNMT models.
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Figure 5: The joint scaling law of Equation 7 closely captures the scaling behavior of En→{De, Zh}
models. Test loss here is evaluated on in-domain test sets. See Appendix C for similar observations
on En→{De, Fr} and {De, Zh}→En models.

3.3 EFFECTIVE NETWORK CAPACITY FOR MULTITASK MODELS

We leverage our joint scaling law to examine how MNMT models split their capacity in between the
different tasks. We start by defining the notion of the effective number of parameters:
Definition. Consider a multitask model in which a task i has been trained with weight p. We define
the effective number of parameters allocated to i, N (i,p)

eff , to be equal to the number of parameters
necessary for a single-task model solely trained on i to reach the same (test loss) performance as
the multitask model.

Mathematically, N (i,p)
eff can be written as the solution of the equation

Li(N ; p) = Li(N
(i,p)
eff ; 1). (8)

A simple derivation yields that 7

N
(i,p)
eff =

(
β1,i

βp,i

) 1
αi

N. (9)

Crucially, our calculations suggest that the fraction of parameters allocated to task i, which we
denote by fi(p), is independent of the model size:

fi(p) ≡ N
(i,p)
eff /N =

(
β1,i

βp,i

) 1
αi

. (10)

This observation yields a fundamental, scale-independent quantity that can be leveraged for under-
standing the interactions between the different tasks in MNMT models.

Figure 6 shows the empirically estimated effective parameter ratios for our models. Several obser-
vations are in order:

Consistency Across Domains: In Figure 6 (left), we compare the capacity splitting behavior of
the models on in-domain and out-of-domain (newstest19) test sets. Even though the scaling laws
coefficients for in-domain and out-of-domain test sets differ, we observe that the capacity splitting
behavior is mostly unchanged with different test sets. These findings hint at some measure of univer-
sality across test domains on how MNMT models divide their capacity and share their parameters.

7See Appendix D for details.
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Figure 6: The effective fraction of parameters allocated to each task as estimated by our joint scaling
laws. Left: Comparison of the capacity splitting behavior of En→{De, Zh} models for in-domain
and out-of-domain test sets. We observe minimal differences between the two setups. Center:
Comparison of the capacity splitting behavior for En→{De, Zh} and En→{De, Fr} models. We
don’t observe any changes in the interaction between the tasks based on language similarity. Right:
Comparison of the capacity splitting behavior for translation to and from English. XX→En exhibit
more synergy among the tasks.

Consistency Across Languages Pairs: In Figure 6 (center), we compare the capacity splitting
behavior of En→{De, Zh} and En→{De, Fr} models. The conventional wisdom in the MT literature
suggests that the tasks in En→{De, Fr} should exhibit a more positive interaction with each other
compared to En→{De, Zh}. This is often justified by the intuition that representations are more
aligned in related languages and more aligned representations will encourage parameter sharing
(Dabre et al., 2017). Surprisingly, our results suggest that the interaction dynamics in En→{De, Fr}
and En→{De, Zh} models are not significantly different. In both settings, we observe a relatively
neutral multitask behavior – the performance of MNMT of size N trained on task i with (sampling)
weight p is essentially similar to a single-task model of size pN . In other words, there is minimal
synergy among the tasks in both setups.

En→XX vs XX→En: In Figure 6 (right), we compare the interaction between the tasks when trans-
lating out of English vs when translating to English. In stark contrast to the En→XX setting, when
translating into English, we observe significant positive synergy among the tasks. This observation
aligns well with recent results in the literature showing multilingual models achieving SOTA perfor-
mance for translation to English (Chowdhery et al., 2022; Lepikhin et al., 2020). It is unclear if this
synergy arises as a specificity of having English is the target language or because multi-task encod-
ing is intrinsically more amenable to parameter sharing than multi-task decoding. Understanding the
exact dynamics giving rise to such positive interaction between the task is an exciting open question.

3.4 GUIDING TASK BALANCING

As discussed in the introduction, one of the areas where multitask (multilingual) scaling laws can
be most impactful is in guiding task balancing/weighting when training large multitask models, an
open problem that has been studied extensively (Aharoni et al., 2019; Wang et al., 2020). However,
in its current form, our (joint) scaling law can only be use to decide between weightings that were
for used for fitting it and cannot be used to predict performance on new, unseen weightings, as βp,i

needs to be estimated empirically.

To extend to unseen task weightings, we instead focus on estimating fi(·). Given access to fi(p), ac-
curate prediction of Li(N) for any weighting can be achieved by using the single-task scaling law:

Li(N ; p) = β1,i

(
f̂i(p)N

)−αi
+ L(i)

∞ . (11)

As observed in Section 3.3, fi(p) has a series of desirable properties that makes it easy to estimate:
(i) it is invariant to test set and languages, (ii) it is smooth and generally well-behaved. As such, one
can achieve an accurate approximation of f with just a few data points.
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Figure 7: Approximate joint scaling laws described by equations (11) and (12) almost perfectly
capture the task interactions across all scales. Left: The fitted approximation f̂ described in Equa-
tion 12. Right: The predicted performance trade-off frontier (dashed lines) as well as the empirically
observed trade-off values.

We utilize this methodology to estimate the full task performance trade-off frontier for En→{De,
Zh} models. For estimating fi(·), we fit an approximate joint scaling law of the form Equation 11,
where fi(·) is parameterized as

f̂i(p) = p+ c1p
c2(1− p)c3 (12)

with c1, c2, c3 being fitted coefficients. Figure 7 demonstrates our results; our procedure is able to
almost perfectly capture the full task performance frontier across a variety of model scales. With ac-
cess to such accurate predictions of the performance frontier, a practitioner can precisely determine
how to weigh the individual tasks during the training based on her preference and target model size.

We should note that the choice of function class to fit fi(·) is highly dependent on the practitioner’s
computational budget. In our case, we prioritized accuracy and used a flexible function class of the
form (12) for fitting. Such flexibility comes with the cost of needing to compute more empirical
values to reliably estimate f(·). In the scenarios with more limited computational budget, we have
observed that even rudimentary linear approximations of f are able to provide accurate representa-
tions of the performance frontier. See Appendix E for examples.

Translation Quality Finally, we note that in the MT literature, quality is often measured via
metrics such as BLEU (Papineni et al., 2002), ChrF (Popović, 2015) and BLEURT (Sellam et al.,
2020) as opposed to cross-entropy, since the latter doesn’t account for the problem of decoding
translations from the models and is sometimes found to not correlate with human preferences (Koehn
& Knowles, 2017). As such, MT practitioners might be concerned regarding the applicability of
these results for practical applications. To ensure that our findings also apply to the quality of
translations, we decode translations from our trained models using beam search (Graves, 2012) and
evaluate how their quality changes as we scale the models, using ChrF and BLEURT.

Figure 8 (left) shows cross-entropy and ChrF scores for the En→De language pair of our En→{De,
Fr} models, evaluated on the in-domain test set. We find that this automatic metric has an almost-
linear relationship with cross-entropy, hinting that our observations also generalize from cross-
entropy to generation quality. Figure 8 (right) also shows the predicted ChrF performance trade-
off frontier obtained by fitting our joint scaling law (Equation 7) to the ChrF performance on the
in-domain test set (parametrizing the effective parameter fraction function as in Equation 12). Our
procedure is able to capture this trade-off frontier almost as well as the cross-entropy frontier. Sim-
ilar findings for the BLEURT metric on out-of-distribution test sets can be found in Appendix F.
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Figure 8: The generation quality behavior of our models as measured by ChrF. Left: We observe
consistent positive correlations between ChrF and cross-entropy loss. Right: Our scaling laws can
be used to generate accurate performance trade-off frontiers for ChrF.

4 CONCLUSIONS & FUTURE WORK

Current state-of-the-art large neural models are moving towards using as much data from as many
domains and modalities as possible to unlock exciting new capabilities. Unfortunately, as of yet, the
research community does not have a clear understanding of the behavior of these multitask models
at scale. This in turn slows down the model development process since practitioners have to resort to
trial and error for balancing their tasks in their models. In this paper, we attempted to take an initial
step towards alleviating this problem by performing a large-scale study of the properties of models
trained to solve multiple task.

In particular, we attempted to study this problem from the lens of multilingual machine translation.
We showed that, for each task and each task weighting, a power-law describes the evolution of
the model test performance as a function of the model size. We examined the dependence of the
scaling law parameters on the task weights and demonstrated that the scaling exponent and the
irreducible loss are independent of the task weightings. Using these observations, we provided a
novel joint scaling law that succinctly captures the scaling behavior across different model sizes and
task weightings and used it to define the notion of effective fraction of parameters assigned to a
task (fi(·)). We showed that this quantity robustly captures the task interactions and is surprisingly
invariant to the similarity of the tasks. In the end, we sketched a procedure to use fi to estimate the
task performance trade-off frontier for all model scales.

Future Work In this paper, we attempted to study the scaling behavior of multitask models. In
order to keep our investigation tractable, we focused our study on MNMT models. Examining
whether the conclusions of our work apply to setups beyond translation is a promising research
direction. In the experiments presented in the paper, we focused only on the two-task scenario. We
believe the presented results should be easily extendable to the multitask setup. We leave this to
future work. Finally, to simplify the model scaling behavior, we focused our analysis to the data rich
setup. However, in many applications, at least some of the tasks are mid- or low-resource. Extending
these results to such scenarios is an interesting future direction.
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A MODEL SIZES AND HYPERPARAMETERS

Enc. Layers Dec. Layers Emb. Dim # Heads Head Dim MLP dim Vocab Size # Parameters Corrected # Parameters

2 2 512 8 64 2048 128k 149,953,024 18,881,024
3 3 768 12 64 3072 128k 260,322,816 63,714,816
6 6 768 12 64 3072 128k 324,035,328 127,427,328
9 9 768 12 64 3072 128k 387,747,840 191,139,840
9 9 1024 16 64 4096 128k 601,931,776 339,787,776
12 12 1024 16 64 4096 128k 715,193,344 453,049,344
12 12 1280 16 80 5120 128k 1,035,876,864 707,869,184
12 12 1536 16 96 6144 128k 1,412,528,128 1,019,312,128

B INDIVIDUAL SCALING LAWS FITS

B.1 OUT-OF-DOMAIN
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Figure 9: The evolution with model size of the cross-entropy loss on the newstest19 test set for
En→{De, Fr} models, as well as the fitted scaling laws. The color represents the weighting of the
languages. Note that we don’t show the zero-shot behavior.
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tion. The dashed lines represent the value of jointly fitted coefficients from Equation 7

B.2 ENGLISH→GERMAN, FRENCH

B.3 GERMAN, CHINESE→ENGLISH
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Figure 11: The evolution of the (in-domain) test cross-entropy loss with model size for En→{De,
Fr} models, as well as the fitted scaling laws. The color represents the weighting of the languages.
Note that we don’t show the zero-shot behavior.
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15



Under review as a conference paper at ICLR 2023

0.2 0.4 0.6 0.8 1.0
Language Weight (p)

0.5

0.0

0.5

1.0

1.5

2.0

Fi
tte

d 
Co

ef
fic

ie
nt

 V
al

ue
s

German English

0.2 0.4 0.6 0.8 1.0
Language Weight (p)

0.5

0.0

0.5

1.0

1.5

2.0
Chinese English

Figure 14: Coefficient values for German (left) and French (right) into English as a function of
the language weight, with the shaded region representing the standard deviation. The dashed lines
represent the value of jointly fitted coefficients from Equation 7

16



Under review as a conference paper at ICLR 2023

C JOINT SCALING LAW FITS

C.1 OUT-OF-DOMAIN
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Figure 15: The joint scaling law (Equation 7) fitted to models trained for En→{De, Zh} models.
Test loss here is evaluated on the newstest2019 test set.

C.2 ENGLISH→{GERMAN, FRENCH}
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Figure 16: The joint scaling law (Equation 7) fitted to models trained for En→{De, Fr} models.
Test loss here is evaluated on in-domain test sets.

C.3 {GERMAN, CHINESE}→ENGLISH
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Figure 17: The joint scaling law (Equation 7) fitted to models trained for {De, Zh}→En models.
Test loss here is evaluated on in-domain test sets.
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D DERIVATION OF THE EFFECTIVE NUMBER OF PARAMETERS
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E OTHER APPROXIMATIONS TO THE EFFECTIVE PARAMETER RATIO

We use a linear approximation of the form

f̂i(p) = c1(p− 1) + 1. (13)
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Figure 18: Approximate joint scaling laws described by equations (11) and (13) is able to capture
the task interactions across all scales well, even with single fitted coefficient for ratio function. Left:
The fitted approximation f̂ described in Equation 12. Right: The predicted performance trade-off
frontier (dashed lines) as well as the empirically observed trade-off values.

F TRANSLATION QUALITY
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Figure 19: (left) shows cross-entropy and BLEURT scores for the En→De language pair of our
En→{De, Fr} models, evaluated on the newstest19 test set. We find that this automatic metric has
an almost-linear relationship with cross-entropy, hinting that our observations also generalize from
cross-entropy to generation quality. Figure 8 (right) also shows the predicted BLEURT performance
trade-off frontier obtained by fitting our joint scaling law (Equation 7) to the BLEURT performance
on the newstest19 test set (parametrizing the effective parameter fraction function as in Equation 12).

G CONVERGENCE CORRECTION

Due to implicit scalarization, models trained with very little task weight (< 0.1) will see less than a
full epoch of that task’s data, even when trained with 1M steps. I our experiments we saw that this
was causing problems in the fit the scaling laws due to an undertraining of our largest models.

To mitigate this problem without training these models for a prohibitively large number of steps,
we apply recent findings in learning curve (Hutter, 2021) to estimate the performance of largest
models trained with p ≤ 0.05 task weight at convergence, by fitting a power-law to the performance
evolution as training progresses, and predicting the performance of these models at 2.5M steps. This
only affect two models per scenario considered.
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