
Causal Discovery using Marginal Likelihood

Anonymous Author(s)
Affiliation
Address
email

Abstract

Causal discovery is an important problem in many fields such as medicine, epi-1

demiology, or economics. Here, causal structure is necessary to relay information2

about the effectiveness of treatments. Recently, causal structure has also been3

linked with generalisation and out of distribution generalisation in prediction tasks.4

This problem however, is only solvable upto a Markov equivalence class without5

strong assumptions. Previous work has made assumptions on the data generation6

process to render the causal graph identifiable. These methods fail when the data7

generation assumptions no longer hold. In this work, we directly algorithmise8

the independence of causal mechanism (ICM) assumption to achieve a flexible9

causal discovery algorithm. In the bivariate case, this is done by showing that10

independent parametrisation with independent priors encodes an ICM assumption.11

We show that this implies different marginal likelihoods for models of different12

causal directions. Using a Bayesian model selection procedure to take advantage13

of this, we show that our method outperforms competing methods.14

1 Introduction15

Having access to a causal structure allows for answering questions beyond predictions, opening the16

possibilities to answer interventional questions [31] with only observational data, that is, data where17

no interventions have taken place [3, 36]. Knowing the causal structure also has consequences for18

prediction. Conditional distributions corresponding to the causal generative process remain invariant19

as other variables in the system are intervened on [32, 1]. This is a particularly useful for domain20

adaptation [41, 7, 2], but also impacts the robustness [6, 23], and adaptation speed under distributional21

shifts [4, 34] of machine learning models. It is also possible to take advantage of these properties22

when causal variables are not given by learning causal representations [35].23

Causal relations can be inferred reliably from interventional data, however obtaining this can be24

financially burdensome or ethically problematic. This motivates the need to learn causal relations25

using observational data. In this regime, conditional independences can only recover a causal26

structure upto its Markov equivalence class [31]. However, identifying the causal structure within an27

equivalence class is necessary to take advantage of causal insights. For example, while the causal28

structures X → Y , and Y → X are in the same Markov equivalence class, an intervention on any of29

the variables in these two graphs will have different causal conclusions.30

Previous methods make assumptions on the noise distribution or functions to identify the causal31

direction. These assumptions may not always hold in practice. Independence of causal mechanisms32

(ICM) has been proposed as a foundational principle for causal discovery [20]. This states that the33

conditional distributions corresponding to the causal generative process are mutually independent.34

This implies that a change in any one of these distributions, should leave the rest invariant. For35

example, if the altitude A is the cause and the temperature T is the effect, changing the distribution36

of altitudes p(A) will not change how the altitude effects the temperature, p(T |A). Although this is37
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an assumption on the data generating process, it does not restrict the functions or noise distributions38

that induce the joint.39

In this work, we tackle the problem of learning bivariate causal relations with access to observational40

data by using Bayesian model selection [27]. We show that models with causal direction can encode41

an ICM condition if the causal conditionals have separate parametrisations and the parameters have42

independent priors. This retains the intuitive implications of the ICM principle. We show that the43

models cannot be reversed, in general, in a way where ICM holds in the reverse direction. Hence, with44

the same priors, our models of causal direction imply different densities over datasets. Given that a45

dataset is generated according to our model, the correct causal model will obtain a higher log marginal46

likelihood that allows for identification of the causal model. To calculate the marginal likelihood, we47

use Gaussian Process latent variable models that allows us to model flexible densities [40, 10, 24]. We48

test our method with synthetic and real data that encode different data generation assumptions. Our49

results show that we not only out perform methods that make specific data generating assumptions,50

but also other methods inspired by the ICM principle.51

2 Related Work52

One direction of work has relied on strict assumptions about the data generation process to infer53

the causal structure within an equivalence class. [18] shows that causal discovery is possible when54

the functional relationship between cause and effect is non linear and the effect has additive noise55

(ANM). It is not possible in general to reverse a causal model with these assumptions and stay within56

the model class. This intuition has been extended to post non linear noise relationships (PNL) [42].57

Assuming a linear relationship with non Gaussian noise allows for recovery of the independent noise58

terms. This procedure, known as LiNGAM [37, 38], relies on the statistical dependences between59

these recovered noise terms and the cause and effect. This has also been extended to non linear60

relationships [29] by using non linear ICA [19]. RECI [5] assumes low effect noise and shows that61

the test error can identify the causal direction.62

Attempts to formalise the ICM principle have depended on algorithmic information theory [13, 20],63

with work even showing that this may subsume other methods of causal discovery [21]. This relies64

on the notion of Kolmogorov complexity [25], with the implication that the complexity of the causal65

factorisation is minimal. The Kolmogorov complexity however, is uncomputable in general. Other66

ways of viewing this principle attempt to alleviate the problem of uncomputability. IGCI [8] tries to67

infer the dependence between the mechanisms by using information geometry. A near zero measure68

of dependence infers the causal direction. However, this requires a low effect noise assumption as69

well as invertibility of the cause to effect function. CGNN [12] try to learn a generative model of the70

data with competing causal generative structures. With limited complexity, the causal direction with71

independent components should be easier to fit than the anticausal direction. Overfitting is tackled72

by using validation datasets as increasing the complexity will lead to an equally good fit in both73

directions. CDCI [9] tries to measure the complexity of the conditional distributions by measuring74

the stability of the conditional under different input values. Similar attempts have been made by using75

the norm of kernel mean embeddings to define variability [28]. The method closest to ours is the GPI76

[39]. They extend previous methods using Gaussian processes [11] to using latent variable Gaussian77

processes. Our method differs from theirs as we show that there is an explicit model asymmetry, and78

our approximation for the marginal likelihood leads to empirically better results.79

3 Preliminaries80

In this section we describe the Structural Causal Model (SCM) [31], which is the main framework81

we utilise. We also outline the main assumption underpinning this work, mainly that of Independent82

Causal Mechanisms (ICM) [20].83
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Figure 1: Graphical model for the model MX→Y . The causal direction indicates which factorisation
has independent parameters.

3.1 Structural Causal Models (SCM)84

In the bivariate case, and with the following data generating process, we say that X causes Y , written85

as X → Y :86

X :=fx(Nx),

Y :=fy(X,Ny), (1)

where Nx and Ny are independent noise variables that are sampled from some arbitrary distribution.87

The equations above induce a joint probability and we refer to the factorisation corresponding to88

terms in the SCM (P (X)P (Y |X) in the above) as the causal factorisation. The factorisation found89

by applying Bayes rule to the causal factorisation is referred to as the anticausal factorisation.90

3.2 Independent causal mechanisms (ICM)91

This assumption follows directly from the form of the SCM. Assuming there are no confounders,92

the ICM assumption states that the distribution of the cause, PCause, and the distribution of the effect93

given the cause, PEffect|Cause, are independent. These two components are independent in the sense that94

a change in one of them leaves the other invariant. Changes in the distribution in the SCM correspond95

to changing either the functions or the noise terms. Hence changing fx or Nx in equation 1 will result96

in a change in the distribution P (X), but will leave the form of P (Y |X) invariant. This is because97

P (Y |X) is only determined by fy and Ny . Shifting the values of X will change the values of Y that98

are observed, but not the distribution P (Y |X) itself. This intuition does not necessarily hold for the99

anticausal factorisation. As P (Y ) =
∫
P (Y |X)P (X)dX and P (X|Y ) ∝ P (Y |X)P (X), we can100

easily see that changing fx or Nx can result in a change in both P (Y ) as well as P (X|Y ). This is101

a fundamental asymmetry implied by assuming that variables are generated by an SCM. ICM is a102

flexible assumption for causal discovery in the sense that no assumptions on the functional or noise103

terms of the SCM have been made.104

4 Causal discovery using marginal likelihood105

We cast the problem of causal discovery in the bivariate case as a Bayesian model selection problem.106

We show that a model that directly parametrises an ICM condition has an asymmetry in its causal and107

anticausal factorisation, depdendent on the choice of the prior. Bayesian model selection then gives108

us the assurance that if the data is generated according to a model, it will have a higher log marginal109

likelihood than the competing model.110

4.1 Asymmetry between causal and anticausal models111

In the bivariate case, causal discovery can be reframed as a model selection problem between two112

models, MX→Y and MY→X . The arrow in the model subscript indicates the causal direction that113

the model postulates. We directly parametrise the causal factorisation of each model, with a prior114

over the parameters. We assume the same parametrisation and same priors for both the causal models.115

Figure 1 shows the graphical model for the corresponding model MX→Y . The joint factorises into116

the causal factorisation as the following here,117

P (x, y, θ, ϕ|MX→Y ) = P (y|x, θ,MX→Y )P (x|ϕ,MX→Y )P (θ|MX→Y )P (ϕ|MX→Y ). (2)

The below analysis always considers the model MX→Y and we leave out MX→Y from here on for118

succinctness. As we don’t observe ϕ and θ, the observed distribution for the conditional and marginal119

postulated by this model is the following120

P (x, y) = P (y|x)P (x) (3)

=

∫
P (y|x, θ)P (θ)dθ

∫
P (x|ϕ)P (ϕ)dϕ (4)
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ICM here is encoded in equation 4 as the two components P (y|x, θ) and P (x|ϕ) have different121

parameters, and the parameters have independent priors, P (ϕ, θ) = P (ϕ)P (θ). Effectively these122

conditions imply that the distributions P (y|x) and P (x) are independent in the sense discussed in123

section 3.2; changing the distribution of θ and hence P (y|x) will not effect P (x), and vice versa.124

We are interested in the case where ICM holds in the anticausal direction. This is interesting as it125

may lead to cases where two causal models that postulate ICM in different causal direction, end up126

implying the same distribution over the joint. This analysis closely follows [16, 15] where it is used127

as a starting assumption, but for our case guides identifiability.128

Theorem 4.1 Assume a given a model MX→Y . Assume that the model factorises as figure 1. if129

there exists an η := f1(θ, ϕ) and γ := f2(θ, ϕ), such that130 ∫ ∫
P (x|y, θ, ϕ,MX→Y )P (y|θ, ϕ,MX→Y )P (θ|MX→Y )P (ϕ|MX→Y )dθdϕ (5)

=

∫
P (x|y, η,MX→Y )P (η|MX→Y )dη

∫
P (y|γ,MY→X)P (γ|MX→Y )dγ. (6)

Then the following are true:131

1. For every (θ, ϕ), P (x|y, θ, ϕ) = P (x|y, η), and P (y|θ, ϕ) = P (y|γ).132

2. The implied priors133

P (η, γ) = P (θ)P (ϕ)

∣∣∣∣∣
[

∂f1(θ,ϕ))
∂θ

∂f1(θ,ϕ)
∂ϕ

∂f2(θ,ϕ)
∂θ

∂f2(θ,ϕ)
∂ϕ

]∣∣∣∣∣
−1

(7)

are independent.134

If the above is true, we say that the anticausal factorisation of a causal model satisfies ICM.135

The proof of this is in appendix B.1. The constraint in condition 1 in the above is required so that the136

anticausal factorisation can be expressed using the chosen independent parametrisation. The implied137

priors over the parameters also need to be independent, this is trivially true if the Jacobian in equation138

7 is diagonal. If these two conditions hold, the observed anticausal densities can be split into separate139

integrals in the same way as equation 4.140

If ICM does not hold in the anticausal direction for a causal model, two causal models with opposite141

causal directions will imply different densities over the data for any choice of priors.142

Theorem 4.2 Assume two given causal models MX→Y and MY→X . If the anticausal factorisation143

of MX→Y and MY→X do not satisfy ICM, then there exist x, y such that144

P (x, y|MX→Y ) ̸= P (x, y|MY→X). (8)

The proof of the above is in appendix B.2. An important insight is that for the densities to be the145

same, we usually require different priors on the two causal models.146

To summarise, a causal model postulates the direction in which ICM holds. This implies independent147

priors and an overall structure as shown in figure 1. Hence, two models, that postulate ICM in148

opposite directions, will imply different densities on a dataset. In general, the above shows that149

P (x, y|MX→Y ) does not equal P (x, y|MY→X) for all x, y. We can use this insight to design a150

Bayesian model selection procedure such that data generated by a causal model is likely to have151

a higher marginal likelihood under the true causal model. Furthermore, the above also gives us152

conditions when we would expect the Bayesian model selection procedure to fail to distinguish153

between causal directions.154

4.2 Causal Discovery as Model selection155

Based on the previous section, we propose using Bayesian model selection [22, 27] to select between156

causal models. We denote the models in the bivariate case as MX→Y and MY→X . To choose157

between the two models, and given data D = (X,Y ), we need to compare their log posteriors,158

logP (Mi|D) = log
P (D|Mi)P (Mi))

P (D)
. (9)
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D

P(D|MX →Y ) P(D|MY →X)

X → Y
Y → X

(a)

D

P(D|MX →Y ) P(D|MY →X)

X → Y
Y → X

(b)

Figure 2: Datasets can have the ICM assumption hold in one direction (red and green), or both. A
causal model effectively encodes the direction in which it expects ICM to hold. The log marginal
likelihood is then higher for the correct causal model as it encodes the correct assumptions. (b)
Changing the prior on the parameters changes the shape of the marginal likelihood distribution. There
are cases where the data can be described by both causal directions (overlap between green and red).

Assuming a uniform prior over models, we can then simply choose the model with the highest log159

marginal likelihood160

M∗ = argmax
i

{logP (D|Mi)}i. (10)

The marginal likelihood for a model is calculated by integrating over all the parameters and latents in161

a model. Figure 2 shows the intuition behind our model selection procedure. If a data is generated162

according to a causal model, it will have a higher log marginal likelihood under that causal model.163

This allows for identifiability of the correct causal model. Changing the prior will change these164

densities, but as long as ICM is encoded in one causal direction, the log marginal likelihood should165

be higher for the correct causal model. There are cases where the models are indistinguishable, for166

example when the prior for the second causal model is chosen using 7. A case where this happens167

is linear Gaussian models as shown in appendix A. For cases that are unidentifiable, the right prior168

should lead to a similar marginal likelihood value for the two models.169

5 Method170

It is necessary to choose flexible models to work with a wide range of data. We use latent variable171

Gaussian Process models to do this [10, 40, 24].172

Causal Score To perform model selection, we calculate the log marginal likelihood by modelling173

the causal factorisations for both models. Thus, for MX→Y we model logP (x,y|MX→Y ) =174

logP (y|x,MX→Y ) + logP (x|MX→Y ), where we directly calculate the two terms by modelling175

the conditional and marginal distributions separately. The model with the higher log marginal176

likelihood is chosen as the most likely model.177

Latent variable Gaussian Processes Gaussian processes (GPs) [33] are non-parametric Bayesian178

models that directly define a prior over functions. The form of the prior is controlled by a choice179

of a kernel function. Specifically, the kernel defines a covariance over outputs for the function f ,180

f ∼ N (0,Kρ). The kernels are parametrised by continuous hyperparameters, ρ. Changing the181

prior simply amounts to choosing a different kernel or changing the values of the hyperparameters —182

allowing the ability to model different distributions. Latent variable Gaussian Processes (GPLVM)183

consider a latent noise term w as an input with an associated prior. Integrating over the noise term184

allows for modelling of heteroscedastic noise as well as non Gaussian likelihoods. The likelihood for185

the conditional distribution for this model is P (y|x, f ,w, σ) = N
(
f(x,w), σ2

)
, with σ denoting186

the likelihood noise hyperparameter. The final log marginal likelihood for the conditional distribution187

is188

P (y|x) =
∫ ∫ ∫ ∫

P (y|x, f ,w, σ)P (f |x,w, ρ)P (w)P (ρ)P (σ)dfdwdρdσ. (11)

The marginal likelihood for the marginal distribution P (x) is analogous.189
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Methods CE-Cha CE-Multi CE-Net CE-Gauss

CGNN [12] 76.2 94.7 86.3 89.3
GPI [39] 71.5 73.8 88.1 90.2
PNL [42] 78.6 51.7 75.6 84.7
ANM [18] 43.7 25.5 87.8 90.7
IGCI [8] 55.6 77.8 57.4 16.0
LiNGAM [37] 57.8 62.3 3.3 72.2
RECI [5] 59.0 94.7 66.0 71.0
CDCI [9] 72.2 97.6 94.3 91.8
GPLVM 82.1 97.7 98.8 90.2

Table 1: Performance comparisons. Results for the baselines taken from [14]. Numbers convey the
ROC AUC metric. Best results are in bold. Our method (GPLVM) outperforms competing methods.

Priors We use a standard normal prior for the latent term w and uniform priors over hyperparam-190

eters. The priors are the same for the marginal and conditional distributions, and for both causal191

models.192

Integration The integration over the function and latent term is done by following the procedure in193

[40]. Here, an inducing point approximation is also used for scalability and variational inference [17]194

is used to tackle the intractability of the integrals. The integral over the hyperparameters ρ and σ is195

done by using the evidence approximation [26]. This simply involves maximising the log marginal196

likelihood with respect to the hyperparameters. This is motivated by the observation that the log197

marignal likelihood tends to be peaked for low dimensional hyperparameters and high data [33].198

6 Experiments199

We wish to test our method on a wide variety of data generating distributions. As we use flexible200

density approximators (latent variable GPs), we expect our method (labelled GPLVM) to work for a201

wide variety of functional and noise assumptions.202

Datasets The following datasets are used to measure the performance of the proposed method.203

Each dataset contains 300 pairs with relationships X → Y and Y → X of 1500 samples each:204

• CE-Cha: A mixture of synthetic and real world data. Taken from the cause-effect pairs205

challenge [14].206

• CE-Multi [12]: Synthetic data with effects generated with varying noise relationships. The207

noise relationships are pre-additive (f(X+E)), post-additive (f(X)+E), pre-multiplicative208

(f(X × E)), or post-multiplicative (f(X)× E). The function is linear or polynomial.209

• CE-Net [12]: Synthetic data with randomly initialised neural networks for functions and210

random exponential family distributions chosen for the cause.211

• CE-Gauss [30]: Synthetic data generated with random noise distributions E1, E2 defined212

in [30]. The cause and effect are generated according to X = fx(E1) and Y = fy(X,E2),213

where fx, fy are sampled from Gaussian processes.214

Metrics We use the Area under ROC curve (AUC) metric to analyse the performance of the methods.215

This takes the confidence of classifying a causal model into account as well.216

Results Table 1 shows the results of our method (GPLVM), along with competing methods. Our217

method outperforms previous methods in a wide range of data generating assumptions. Methods that218

explicitly put assumptions on the data generation process (ANM, LiNGAM, RECI), only seem to do219

well on certain datasets. Methods based on ICM (CGNN, GPI, CDCI) do better on multiple datasets,220

however our method outperforms.221
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P (y|b,MX→Y ) = N (y|0, 1) , (14)

P (x|y, b,MX→Y ) = N
(
x|by, 1− b2

)
. (15)

Clearly ICM holds in the backward direction here. The causal factorisation for the model MY→X330

must follow the same parametrisation as the causal factorisation for MX→Y331

P (y|b,MY→X) = N (y|0, 1) , (16)

P (x|y, b,MY→X) = N
(
x|by, 1− b2

)
. (17)

With any prior on the parameter b, it is clear to see that332

P (x, y|MY→X) = P (x, y|MX→Y ). (18)

Normalisation forces an ICM condition here that makes the linear additive Gaussian noise model333

non identifiable. In a lot of cases, this is desirable as a shift in the mean or scale can be semantically334

meaningless. For example, a shift from Celsius to Fahrenheit should not affect the causal conclusions.335

It is interesting to note that in this case, the marginal likelihoods are equal and the posteriors for the336

two models will be roughly equal — effectively conveying uncertainty over the model choice.337

B Proofs338

B.1 Proof of theorem 4.1339

Proof. For a causal model MX→Y , the anticausal factorisation is340 ∫ ∫
P (x|y, θ, ϕ,MX→Y )P (y|θ, ϕ,MX→Y )P (θ|MX→Y )P (ϕ|MX→Y )dθdϕ, (19)

where θ, ϕ are the parameters of the causal factorisation. If condition 1 holds, this is equal to341 ∫ ∫
P (x|y, η,MX→Y )P (y|γ,MY→X)P (η, γ|MX→Y )dηdγ, (20)

where P (η, γ|MX→Y ) is given by equation 7. If condition 2 must be satisfied, P (η, γ|MX→Y ) =342

P (η|MY→X)P (γ|MX→Y ). Hence the anticausal factorisation is343 ∫
P (x|y, η,MX→Y )P (η|MX→Y )dη

∫
P (y|γ,MX→Y )P (γ|MX→Y )dγ. (21)

ICM holds in equation 21 as a change in the distribution of η changes P (x|y,MX→Y ) but does not344

affect P (y|MX→Y ). The same intuition holds for changing the distribution of γ.345
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B.2 Proof of theorem 4.2346

Note that we assume the same parametrisation of causal factors for both causal models. We prove347

this for the model MX→Y . The anticausal factorisation of MX→Y is348 ∫ ∫
P (x|y, θ, ϕ,MX→Y )P (y|θ, ϕ,MX→Y )P (θ|MX→Y )P (ϕ|MX→Y )dθdϕ, (22)

where ϕ and θ are the parameters for the causal factorisation. The causal factorisation for MY→X is349 ∫
P (x|y, ζ,MX→Y )P (ζ|MY→X)dζ

∫
P (y|ρ,MY→X)P (ρ|MY→X)dρ, (23)

where ζ and ρ are the parameters for the causal factorisation for this causal model.350

It is instructive to see the case where two causal models imply the same joint. It is trivial to see351

that if ICM holds in the anticausal direction for MX→Y , that is theorem 4.1 holds, the anticausal352

factorisation can be written as353 ∫
P (x|y, η,MX→Y )P (η|MX→Y )dη

∫
P (y|γ,MX→Y )P (γ|MX→Y )dγ, (24)

with η and γ defined in theorem 4.1. With the right choice of priors for MY→X , namely354

P (ρ|MY→X) = P (γ|MX→X) and P (ζ|MX→Y ) = P (η|MY→X), we get355

P (x, y|MX→Y ) = P (x, y|MY→X). (25)

Note that this will usually require a different prior for the two causal models. The choice of prior356

for MY→X for equality to hold will depend on equation 7. For the same prior to give equality in357

two models, the Jacobian of the implied prior in equation 7 needs to be identity. A case where this358

happens is discussed in appendix A.359

Proof. Assume that MX→Y does not satisfy the ICM principle in the anticausal direction. Ac-360

cording to theorem 4.1, this is due to the two conditions not being satisfied. If condition 1 is not361

satisfied, there exists some θ, ϕ such that there is no η := f1(θ, ϕ) and γ := f2(θ, ϕ) that gives362

P (x|y, θ, ϕ,MX→Y ) = P (x|y, η,MX→Y ), and P (y|θ, ϕ,MX→Y ) = P (y|γ,MX→Y ). This im-363

plies that the anticausal factorisation for MX→Y cannot be expressed in the chosen parametrisation.364

Hence, we have that for some θ, ϕ365

P (x|y, θ, ϕ,MX→Y ) ̸=P (x|y, ζ,MY→X), (26)
P (y|θ, ϕ,MX→Y ) ̸=P (y|ρ,MY→X). (27)

If condition 1 does hold, but condition 2 does not, then the anticausal factorisation for MX→Y can366

be written as367 ∫ ∫
P (x|y, η,MX→Y )P (y|γ,MX→Y )P (η, γ|MX→Y )dηdγ, (28)

where368

P (η, γ|MX→Y ) = P (θ|MX→Y )P (ϕ|MX→Y )

∣∣∣∣∣
[

∂f1(θ,ϕ))
∂θ

∂f1(θ,ϕ)
∂ϕ

∂f2(θ,ϕ)
∂θ

∂f2(θ,ϕ)
∂ϕ

]∣∣∣∣∣
−1

. (29)

Due to the parametrisations being the same of the two causal models, clearly for every (η, γ),369

there is some (ζ, ρ) such that P (x|y, ζ,MY→X) = P (x|y, η,MX→Y ) and P (y|ρ,MY→X) =370

P (y|γ,MX→Y ) . As the priors for the parameters are dependent (as a consequence of condition 2371

not holding), it cannot be expressed as the product of two distributions and hence equation 28 cannot372

equal equation 23 for any choice of prior in equation 23. To conclude, there must be some x, y such373

that374

P (x, y|MX→Y ) ̸= P (x, y|MY→X). (30)
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